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Overview

Main exascale challenge is variability

— Static and dynamic

— Exacerbated by strong scaling requirements

— Persistence is our [only?] friend

— Good division of labor between “system” and app developer is essential
My Mantra: Overdecomposition, migratability, asynchrony (Oma)
Explain each concept briefly (what it is)
Explain how it empowers RTS: Introspection and adaptivity

Potential costs and how they can be mitigated: overhead, memory, algo overhead
— Soln include considering node as a unit (so, have 8-16 work units per chunk)

Show benefits apps:
— Strong scaling via overdecomposition: NAMD 200+ us step
— Asynchrony -> AMR
What RTSs can do with this empowerment:
— Ldb, FT, power/energy
— Reconfigurability (apps/RTS) and runtime auto-tuning
What can app developers do to get ready for exascale/arts

— Note: our solution (OMA) was needed for dynamic irregular apps even on yesterday’s
machines
« Just that it needs to be applied to even regular apps
How charm++ meets exascale challenges already, almost
— How we got so lucky: because of these irregular apps

— What to do:
Explore overdecomposition in your apps
* Create control points for runtime manipulation
* Get used to words like “continuations”.. But we need only simpler versions of those
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Exascale Challenges

« Main challenge: variability
— Static/dynamic
— Heterogeneity: processor types, process variation, ..
— Power/Temperature/Energy
— Component failure

« Exacerbated by strong scaling needs from apps
— Why?

 To deal with these, we must seek
— Not full automation
— Not full burden on app-developers

— But: a good division of labor between the system and
app developers
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My Mantra

| call it a mantra because | will repeat it a lot in
this talk. And its going to be my message to
App Developers on how to get ready for
Adaptive Runtimes
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My Mantra

order doesn’t matter

OMa

Oh....Maybe the J
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Overdecomposition

Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/..
Not so hard: we do decomposition anyway




Migratability

e Allow these work and data units to be
migratable at runtime

— i.e. the programmer or runtime, can move them

« Consequences for the app-developer

— Communication must now be addressed to
logical units with global names, not to physical
Processors

— But this is a good thing
« Consequences for RTS

— Must keep track of where each unit is
— Naming and location management
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Asynchrony:
Message-Driven Execution

 Now:
— You have multiple units on each processor
— They address each other via logical names

« Need for scheduling:
— What sequence should the work units execute in?

— One answer: let the programmer sequence them
« Seen in current codes, e.g. some AMR frameworks

— Message-driven execution:

« Let the work-unit that happens to have data ("message”)
available for it execute next

« Let the RTS select among ready work units

* Programmer should not specify what executes next, but
can influence it via priorities
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Message-driven Execution
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Empowering the RTS

Adaptive
Runtime System

Asynchrony Overdecomposition Migratability

« The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
« Spread over time, async collectives

— Automatic latency tolerance
— Prefetch data with almost perfect predictability

Adaptivity
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Application Examples
to
Demonstrate the Utility of

Overdecomposition,
Migratability,
Asynchrony!
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NAMD: Biomolecular Simulations

 Collaboration with K.
Schulten

« With over 45,000
registered users

« Scaled to most top US
supercomputers

* In production use on
supercomputers and
clusters and desktops

« Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten
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Time Profile of ApoA1 on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile

2ms total

A snapshot of optimization in progress.. Not the final result

Percentage Utilization
Y Py [ 9

19.482s 19.4822s 19.4824s 19.4826s 19.4828s 19.483s 19.4832s 19.4834s 19.4836s 19.4838s 19.484s
Time (0.002ms resolution)

L Overlapped steps, as a result of asynchrony
=na 15 PPL
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Timeline of ApoATl on Power7 PERCS

. 230us .

In Microseconds
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NAMD: Strong

« HIV Capsid was a 64

million atom
simulation, including
explicit water atoms
Most biophysics
systems of interests

are 10M atoms or
less... maybe 100M

Strong scaling
desired to billions of
steps

Scaling

. pRL

UI0C



[

}l [ ]

[ 1L §
[ ll>1

%

(] ]

Structured AMR miniApp
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Structured AMR

Typical MPI Approach
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Process based
Contiguous blocks
assigned to a process
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Charm-++ Approach

1100 1101 1110

1010 1011

0000 0001 0010 0011 1000

100100 100101 100110 100111

Object based
« Each block is an independent object
* is the basic execution unit
« can be mapped to any physical
process
* is uniquely addressable
« is migratable . PPL
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Structured AMR

Typical MPI Approach
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Charm-++ Approach
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Structured AMR

Typical MPI Approach
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Charm++ Approach
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Structured AMR
Charm++ Approach

Typical MPI Approach
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Mesh Restructuring Mesh Restructuring
* Ripple Propagation Algorithm * Exchange messages with neighboring blocks
* Level-by-level » Update state using a state machine
e O(d) global reductions = * Quiescence to detect global consensus

O(d*logP
(d*logP) O(log P) time
Synchronization overhead » Blocks save current level of neighbors

* Tree-replication on each process * O(#blocks/P) memory per process

* O(#block
(#blocks) memory per process O(#blocks/P) space
Memory overhead » PPL
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Structured AMR: State Machine

Required depth @

Initial state »@ Coarsen

Decision ©

Received message —> Stay 7 Refine
Local error condition  ------- > Coarsen,
Stay
Termination detection — — >
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Testbed: IBM BG/Q Mira
Cray XK/6 Titan

=

Structured AMR: Performance

Steps per second

Advection Benchmark
First order method in

3d-space
— No Load Balancmg g
== Distributed Load Balaneging
128} -- Ideal |

o4t
32t
16¢
8_

7048 4096 8192 16384 32768 65536 131072
Number of Cores
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Where are Exascale Issues?

« | didn’t bring up exascale at all so far..

— Overdecomposition, migratability, asynchrony
were needed on yesterday’s machines too

— And the app community has been using them

— But:

« On *some* of the applications, and maybe without a
common general-purpose RTS

« The same concepts help at exascale
— Not just help, they are necessary, and adequate
— As long as the RTS capabilities are improved

« We have to apply overdecomposition to all
(most) apps
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Exascale-like capabilities
based on

Overdecomposition,
Migratability,
Asynchrony!
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Fault Tolerance in Charm++/AMPI

 Four approaches available:
— Disk-based checkpoint/restart
— In-memory double checkpoint w auto. restart
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Easy checkpoint: migrate-to-disk
— Based on dynamic runtime capabilities
— Use of object-migration

— Can be used in concert with load-balancing
schemes
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In-local-storage Checkpoint/restart

 |s practical for many apps
— Relatively small footprint at checkpoint time

« Very fast times...

 Demonstration challenge:

— Works fine for clusters in production version of
Charm++

— For MPI-based implementations running at centers:
« Scheduler does not allow jobs to continue on failure
« Communication layers are not fault tolerant

— Fault injection: dieNow(),
— Spare processors
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LeanMD Checkpoint Time on BlueGene/Q

or
2.8 million =—e— | | 3
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LeanMD Restart Time on BlueGene/Q
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Checkpoint Time — Jaguar(Jacobi)

25 | | | | I
Jacobi(128 MB/core) =l
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#cores
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Extensions to fault recovery

« Based on the same over-decomposition
ideas
— Use NVRAM instead of DRAM for checkpoints

« Non-blocking variants
« [Cluster 2012] Xiang Ni et al.

— Replica-based soft-and-hard-error handling
* As a “gold-standard” to optimize against
« [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.
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Saving Cooling Energy

Easy: increase A/C setting
— But: some cores may get too hot

So, reduce frequency if temperature is high (DVFS)
— Independently for each chip

But, this creates a load imbalance!

No problem, we can handle that:

— Migrate objects away from the slowed-down processors
— Balance load using an existing strategy

— Strategies take speed of processors into account

Implemented in experimental version
— SC 2011 paper, IEEE TC paper

Several new power/energy-related strategies

— PASA ‘12: Exploiting differential sensitivities of code segments
to frequency change
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PARM:Power Aware Resource Manager

« Charm++ RTS facilitates malleable jobs

« PARM can improve throughput under a fixed
power budget using:

— overprovisioning (adding more nodes than
conventional data center)

— RAPL (capping power consumption of nodes)
— Job malleability and moldability

Power Aware Resource Manager
= (PARM)
Profiler :
Scheduler fEXECUl‘IOﬂk
Strong Scaling ramewor
N~ Schedule
Power Aware Model Ea Jobs (LP) P| Launch Jobs/
. Shrink-Expand
Job Characteristics
Datage lélpdate Ensure Power
ueue rﬂ Cap
\ . \ -
7 \ A
. . \ Job Ends/
- Triggers Terminates
a PPL
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What Do RTSs Look Like: Charm++

XARTS

WUDUs: Indexed collection,
Migratable threads,
Scalable sections (sub-communicators),
Location services

v

—» Fault tolerance protocols]

\,
S J
- J

~
N

Load balancers: I
intra-node, inter-node
—»  Power-aware, Thermal-
aware, Topo-aware

>

Data-driven scheduler, user-
level threads, priority queues

Communication Libs
(Colletives/persistence)

Jdomauled UO!JDBdSOJJLH snonunuogj

LRTS: m/c specific implementations:
(start-up, communication, virtual mem. management)

Scalable Tools
Analysis, Debugging

68)
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ARGO

Key Areas of Innovation:

NodeOS/R

Core-specialization permits multiple,
concurrent kernels

Lightweight Concurrency

- Embed fine-grained tasks and
lightweight threads into OS for massive
parallelism

Backplane

- Event, Control, and Performance
backplanes to support global
optimizations

Global View

“Enclave” abstraction to allow global

optimization of power, resilience, perf.
Exascale System

| ]
An Exascale Operating System and Runtime
Node
[ NVRAM
v,
B\ e
( 3D Stacked ) [ 3D Stacked ) ( 3D Stacked ) [ 3D Stacked )
EEEEE)
Regular ....... Regular
orav | JOOOO0 OOOQO0 ....... DRAM
Q0000 ..... oeaean -
00000 Q.00 .......
00000 00000 .. 0000080
\—’ 00000 C0ooa cocaaae \_ /)
. Power-efficient core . Single-thread optimized core . Acceleration engine
$9.7M ASCR DOE .
3 year project, launched Aug 2013
THE CREW OF THE ARGO:
Argonne National Laboratory;
Principle Investigator and Chief Architect: Pete Beckman
Chief Scientist: Marc Snir /

P. Balaji, R. Gupta, K. Iskra, R. Thakur, K. Yoshii, F. Cappello

Boston University: ]. Appavoo, O. Krieger
Lawrence Livermore National Laboratory:

M. Gokhale, E. Leon, B. Rountree, M. Schulz, B. Van Essen

Pacific Northwest National Laboratory: S. Krishnamoorthy, R. Gioiosa

University of Chicago: H. Hoffmann

University of Illinois at UC: L. Kale, E. Bohm, R. Venkataraman

University of Oregon: A. Malony, S. Shende, K.

Huck

University of Tennesee Knoxville: ]. Dongarra, G. Bosilca
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System Management \
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Backplanes: BEACON and EXPOSE

Concurrency RTS Concurrency RTS

Multi-kernels Multi-kernels

Components
S
wv
8

Enclave 1 & Enclave 2
-]
Enclave Management % Enclave Management
Components g Components
(]
=
Nodes o Nodes
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Allowing RTS to Reconfigure Apps

 We can push adaptivity further
— With a collaboration between RTS and programmer

 The programmer:
— Exposes some knobs (control-points) to the RTS
— Describes their effects in a standard “language”’

« The RTS:
— Observes the runtime behavior,
— Optimizes what it can without reconfiguration

— When needed, asks app to reconfigure by
choosing the right knob and direction
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ChaNGa: Cosmology Simulation

™ Collaboration with
Tom Quinn UW

S 9 - Tree: Represents
particle

distribution

 TreePiece: object/
chares containing
particles
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Clustered Dataset — Dwarf

BTGO0 [ g
£ S —
DDEQ0 | rrromsrmroo oot e Time Profile
15000 |y gissbons bbb -
T N £
O ,h:f i i ‘, :i:‘ 1 : i 2 E ;:é | N Time (2.7;7‘m: iesolution)
0 2000 4000 6000 8000

« Highly clustered

Processors

e Idle time due to

+ Maximum request per message delay
processor: > 30K
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Solution: Replication
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« Replicate tree nodes to distribute requests
« Requester randomly selects a replica
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Replication Impact

Lo ERRY
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0 2000 4000 6000 8000

Processors

With Replication —>é—
Without Replication =—f—

! a o 1 1 1 1
= OT_ )

“um % 2048 409 8192 16384
=8 Number of Cores

Percentage Utilization

Time Profile

23.3575s

Time (1.851ms resolution)

Replication distributes
requests

Maximum request
reduced from 30K to
4.5K

Gravity time reduced
from 2.4sto 1.7 s, on 8k
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Control Point for Replication?

« This optimization can be turned into a
control point via an abstraction
— For data

« That doesn’t change during a phase, and
* Is requested based on a key

— The RTS can then observe and decide / tune
* If replication is needed,
« Which objects to replicate
« Degree of replication

|t turns out to be of general use:

— A cloth simulation, with collision detection, also
can use it
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Costs of Overdecomposition?

We examined the “Pro”’s so far
Cons and remedies:

Scheduling overhead?
— Not much at all
— In fact get benefits due to blocking

Memory in ghost layer increases

— Fuse local regions with compiler support

— Fetch one ghost layer at a time

— Hybridize (pthreads/openMP inside objects/DEBs)

Less control over scheduling?

— i.e. too much asynchrony?

— But can be controlled in various ways by an observant RTS/programmer
For domain-decomposition based solvers, may increase number
of iterations

— You can lift it to node-level overdecomposition (use openMP inside)

— Also, other ideas:

Too radical and new?

— Well, its working well for the past 10-15 years in multiple applications,
via Charm++ and AMPI

= PPL



How can
Application Developers
get ready for
Adaptive RTSs?
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Its not that weird or new

* First, note:

— The techniques | advocated were needed for
dynamic irregular apps even on yesterday’s
machines

 Just that they need to be applied to even regular apps

« How Charm++ meets exascale challenges already,
almost

— How we got so lucky: because of these irregular
apps

The adaptivity that was created via overdecomposition,
migratability, & asynchrony, for dynamic applications, is
also useful for handling machine variability at exascale
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So, What are the Action Items

Explore overdecomposition in your application
— Without using any RTS

Increase the asynchrony in your app

Add migratability in small measures

— But you will need to do some location management
yourself

Try coding a small module using an existing
adaptive RTS

— E.g. Charm++ modules work with MPI modules
Create control points for runtime manipulation

Get used to words like “continuations’..
— But we need only simpler versions of those

)



Experiment with Languages/Libraries that
support these concepts

 Programming models that exhibit some features
— Charm++
— Adaptive MPI
— KAAPI
— ProActive
— FG-MPI (if it adds migration)
— mpC
— HPX (once it embraces migratability)
— StarPU
— ParSEC
— CnC
— MSA (multi-phase Shared arrays)
— Charisma
— Charj
— Chapel: may be a higher level model
— X10: has asynchrony, but not migratable units

« So, pick some of them to start experimenting w miniApps

. PPL
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Benefits in Charm++

Over-decomposition Scalable Tools
Automatic overlap of

l Communication and Computation

message-diven
execution

compositionality

Emulation for
Performance
Prediction

Migratability

] Dynamic load balancing
Introspective and (topology-aware, scalable)

adaptive runtime system

Temperature/Power/Energy
Optimizations

s PPL
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Summary

« Adaptive Runtime Systems are coming

« Advice to Application developers
— Get familiar with:
— Do | need to repeat?
— Overdecomposition, Migratability, Asynchrony

— Experiment with new models that support these
and are interoperable
« E.g. Charm++ ©

Charm++ workshop live webcast

More info on Charm++: http://charm.cs.illinois.edu/charm Workshop
http://charm.cs.1llinois.edu April 29-30 2014
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