™

Getting Ready for Adaptive RTSs

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana Champaign

I LLINOTIS PARALLEL

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB

DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

PPL

UI0C

}III
|
(]]

A

(-

(1]
(=

Overview

Main exascale challenge is variability

— Static and dynamic

— Exacerbated by strong scaling requirements

— Persistence is our [only?] friend

— Good division of labor between “system” and app developer is essential
My Mantra: Overdecomposition, migratability, asynchrony (Oma)
Explain each concept briefly (what it is)
Explain how it empowers RTS: Introspection and adaptivity

Potential costs and how they can be mitigated: overhead, memory, algo overhead
— Soln include considering node as a unit (so, have 8-16 work units per chunk)

Show benefits apps:
— Strong scaling via overdecomposition: NAMD 200+ us step
— Asynchrony -> AMR
What RTSs can do with this empowerment:
— Ldb, FT, power/energy
— Reconfigurability (apps/RTS) and runtime auto-tuning
What can app developers do to get ready for exascale/arts

— Note: our solution (OMA) was needed for dynamic irregular apps even on yesterday’s
machines
« Just that it needs to be applied to even regular apps
How charm++ meets exascale challenges already, almost
— How we got so lucky: because of these irregular apps

— What to do:
Explore overdecomposition in your apps
* Create control points for runtime manipulation
* Get used to words like “continuations”.. But we need only simpler versions of those

(. (-
. (I

\II}I (

(W

"L

Exascale Challenges

« Main challenge: variability
— Static/dynamic
— Heterogeneity: processor types, process variation, ..
— Power/Temperature/Energy
— Component failure

« Exacerbated by strong scaling needs from apps
— Why?

 To deal with these, we must seek
— Not full automation
— Not full burden on app-developers

— But: a good division of labor between the system and
app developers

[A ¥
(I (O (R

/

My Mantra

| call it a mantra because | will repeat it a lot in
this talk. And its going to be my message to
App Developers on how to get ready for
Adaptive Runtimes

PPL

UI0C

My Mantra

OM

PPL
v1uC

[

My Mantra

order doesn’t matter

OMa

Oh....Maybe the J

My Mantra

\/er@mosiﬁon
5yncﬁrony

igm’mﬁiﬁ’ty

- PPL
UIUC

| llyll

([s 3

"1
T L

Overdecomposition

Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/..
Not so hard: we do decomposition anyway

Migratability

e Allow these work and data units to be
migratable at runtime

— i.e. the programmer or runtime, can move them

« Consequences for the app-developer

— Communication must now be addressed to
logical units with global names, not to physical
Processors

— But this is a good thing
« Consequences for RTS

— Must keep track of where each unit is
— Naming and location management

[} . b
(W(7
.

[J Y

(W

. (I

Asynchrony:
Message-Driven Execution

 Now:
— You have multiple units on each processor
— They address each other via logical names

« Need for scheduling:
— What sequence should the work units execute in?

— One answer: let the programmer sequence them
« Seen in current codes, e.g. some AMR frameworks

— Message-driven execution:

« Let the work-unit that happens to have data ("message”)
available for it execute next

« Let the RTS select among ready work units

* Programmer should not specify what executes next, but
can influence it via priorities

(I
M

v
(]]

10 PPL

UI0C

(1]
(=

(-

Message-driven Execution

u
D DI\ Al..].foo(...) D

“a
- a S0 _ @

Processor | Frocessor 2
Message Queue Message Queue
— —

1 PPL

UI0C

Empowering the RTS

Adaptive
Runtime System

Asynchrony Overdecomposition Migratability

« The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
« Spread over time, async collectives

— Automatic latency tolerance
— Prefetch data with almost perfect predictability

Adaptivity

> PPL

UIuc

=

e .
I}ﬂll
()R]

Application Examples
to
Demonstrate the Utility of

Overdecomposition,
Migratability,
Asynchrony!

PPL
vIuC

(
My

/
(]]

(LA
mE
A

(-

NAMD: Biomolecular Simulations

 Collaboration with K.
Schulten

« With over 45,000
registered users

« Scaled to most top US
supercomputers

* In production use on
supercomputers and
clusters and desktops

« Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

)

UI0C

[

[

Time Profile of ApoA1 on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile

2ms total

A snapshot of optimization in progress.. Not the final result

Percentage Utilization
Y Py [9

19.482s 19.4822s 19.4824s 19.4826s 19.4828s 19.483s 19.4832s 19.4834s 19.4836s 19.4838s 19.484s
Time (0.002ms resolution)

L Overlapped steps, as a result of asynchrony
=na 15 PPL
mcs UIuC

Timeline of ApoATl on Power7 PERCS

. 230us .

In Microseconds

ST R P ﬂ O
v, W e ™ o
I e
ST T YT VRl T s wll—4
e\ e y— Hmwm
‘ H#H BAAEG A E HIHHH T
(R _"':" THERS ISR il
v el \)i i ——-)
o’ N W b

PE 11625 m w A/
sssss)
PE 16588 wmdl & Th g . ! L pp— | - 'W 'M
77777) [£ ! e e E] :
- | |

[} | |
B %A
i 1o PPL
T 21 UIUC

(1 31

/

A

(-

My

(]]

NAMD: Strong

« HIV Capsid was a 64

million atom
simulation, including
explicit water atoms
Most biophysics
systems of interests

are 10M atoms or
less... maybe 100M

Strong scaling
desired to billions of
steps

Scaling

. pRL

UI0C

[

}l []

[1L §
[ll>1

%

(]]

Structured AMR miniApp

15 PPL

UI0C

Structured AMR

Typical MPI Approach

\ I \
\ i 1
v
\ \ 1 \
\ | \
\ \ 1 \
R \ 1 \
1 \
\ \ 3
¥ N L3 \
RS Oy OV O
1 \
: U 3 \
N \
\ \ <4 \ |
\ \ 1
1 ! -
3 \
\ 4 1 \
1
1 1
O OO0 OO0OO0: O OrO
q I} 1 :
! ’ \ 1
1 4 1 1 1
e 1]
4 ,” 1 1
,’z’ h 1 I
o O000 ! v
2| 1 ;
¢ 1 1
;o 1 1 ’I
1
PO P1 P2 P3 P4 P5

Process based
Contiguous blocks
assigned to a process

/
i

i
(0 (P

Charm-++ Approach

1100 1101 1110

1010 1011

0000 0001 0010 0011 1000

100100 100101 100110 100111

Object based
« Each block is an independent object
* is the basic execution unit
« can be mapped to any physical
process
* is uniquely addressable
« is migratable . PPL

UI0C

[]

II}A []

(=
| [l>1

Blrfz {,

(]]

PO

Structured AMR

Typical MPI Approach

1
|
}
1
1
\ \ 1
|
}
}
\
1

N
\
% 1 1 ‘- \
\

\
O O OO
1 1
Il P o : :
1 ,° \) I
,’] \ 1 1 A4
1 1 1 1
1 1 1 1
\ 1 1 ’I
1
P1 P2 P3 P4 P5

Mesh Restructuring

Charm-++ Approach

1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 1000

100100 100101 100110 100111

» PPL

UI0C

Structured AMR

Typical MPI Approach

\

v O
} \

1
1
1
] 1
\ 1 \
< \ 1 \
\ o~ “
~ \ 1
~ o 1 \
1
Y Oy O \
T \
N \
. i & \ |
A \ 1
1 1 -
3 \
\ 4 ! \
1 1 1 |\ & - -
1 1 1 1
4 / \ 1 I
4 / \ 1]
! ¢ 1 1
! -7 1 1
1 -
i % \ 1 1
1 ! .. 1 |
/A \ 1 1
/A | 1 1 1
A 1 1 ’I
1
PO P1 P2 P3 P4 P5

Mesh Restructuring

t g

L

. Wy
W
CE T

[]
(]

Charm++ Approach

0000 0001 0010 0011 1000 1010 1011 1100 1101 1110 1111

100100 100101 100110 100111

» PPL

UI0C

Structured AMR
Charm++ Approach

Typical MPI Approach

1 \

T |

|
}
1
}
|
1
}
}
\
1

o R S

0000 0001 1 1110 1111

Ill | \\‘ v N
PO I Pl| P2 ' P3 P4 ', s T i
Mesh Restructuring Mesh Restructuring
* Ripple Propagation Algorithm * Exchange messages with neighboring blocks
* Level-by-level » Update state using a state machine
e O(d) global reductions = * Quiescence to detect global consensus

O(d*logP
(d*logP) O(log P) time
Synchronization overhead » Blocks save current level of neighbors

* Tree-replication on each process * O(#blocks/P) memory per process

* O(#block
(#blocks) memory per process O(#blocks/P) space
Memory overhead » PPL
UI1uc

(. (-
. (I II}III
B gF |

(W

AN
T L

Structured AMR: State Machine

Required depth @

Initial state »@ Coarsen

Decision ©

Received message —> Stay 7 Refine
Local error condition ------- > Coarsen,
Stay
Termination detection — — >

AR BN

(. | .
LT 2 m
EER =N uIuc

[]

II}A []

| [l>1g
[] N

(=

3
[]

Testbed: IBM BG/Q Mira
Cray XK/6 Titan

=

Structured AMR: Performance

Steps per second

Advection Benchmark
First order method in

3d-space
— No Load Balancmg g
== Distributed Load Balaneging
128} -- Ideal |

o4t
32t
16¢
8_

7048 4096 8192 16384 32768 65536 131072
Number of Cores

»» PPL

UI0C

Where are Exascale Issues?

« | didn’t bring up exascale at all so far..

— Overdecomposition, migratability, asynchrony
were needed on yesterday’s machines too

— And the app community has been using them

— But:

« On *some* of the applications, and maybe without a
common general-purpose RTS

« The same concepts help at exascale
— Not just help, they are necessary, and adequate
— As long as the RTS capabilities are improved

« We have to apply overdecomposition to all
(most) apps

[} . b
(W(7
.

[J Y

(W

. (I

»» PPL

UI0C

Exascale-like capabilities
based on

Overdecomposition,
Migratability,
Asynchrony!

PPL

UI0C

Fault Tolerance in Charm++/AMPI

 Four approaches available:
— Disk-based checkpoint/restart
— In-memory double checkpoint w auto. restart
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Easy checkpoint: migrate-to-disk
— Based on dynamic runtime capabilities
— Use of object-migration

— Can be used in concert with load-balancing
schemes

(I
M

v
(]]

(1]
(=

(-

» PPL

UI0C

In-local-storage Checkpoint/restart

 |s practical for many apps
— Relatively small footprint at checkpoint time

« Very fast times...

 Demonstration challenge:

— Works fine for clusters in production version of
Charm++

— For MPI-based implementations running at centers:
« Scheduler does not allow jobs to continue on failure
« Communication layers are not fault tolerant

— Fault injection: dieNow(),
— Spare processors

[A b
(W(7
.

[J Y

(W

» PPL

UI0C

. (I

|

II}A [|

[]
m [l>13

[]
(=

LeanMD Checkpoint Time on BlueGene/Q

or
2.8 million =—e— | | 3
50 + 1.6 million ====eseee= e
£
QO
E
-
10 e
O | | | J
2048 4096 8192 16384 32768
Number of processes
; » PPL
o UIuC

160
140
120
100

Time(ms)
o0
S

LeanMD Restart Time on BlueGene/Q

2.8 million —e—
1.6 million === tunns

2048 4096 8192 16384 32768

1

. Wy
ma
CRCT

[]
(]

Number of processes

}l []

[
-

1
-
e
T

Checkpoint Time — Jaguar(Jacobi)

25 | | | | I
Jacobi(128 MB/core) =l
2 -
— 1.5 B
2
2 .——I—I_./.
£
[1k
05 r
0 | | | | |
1K 2K 4K 8K 16K
#cores

s PPL

(1 31
}III

[llsll

(-

Extensions to fault recovery

« Based on the same over-decomposition
ideas
— Use NVRAM instead of DRAM for checkpoints

« Non-blocking variants
« [Cluster 2012] Xiang Ni et al.

— Replica-based soft-and-hard-error handling
* As a “gold-standard” to optimize against
« [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

i

(]]

» PPL

UI0C

N

(. (-
R II}I (

(]
(]]

Saving Cooling Energy

Easy: increase A/C setting
— But: some cores may get too hot

So, reduce frequency if temperature is high (DVFS)
— Independently for each chip

But, this creates a load imbalance!

No problem, we can handle that:

— Migrate objects away from the slowed-down processors
— Balance load using an existing strategy

— Strategies take speed of processors into account

Implemented in experimental version
— SC 2011 paper, IEEE TC paper

Several new power/energy-related strategies

— PASA ‘12: Exploiting differential sensitivities of code segments
to frequency change

)

UI0C

[} B 1
. (I II}H [|
m ll>1

PARM:Power Aware Resource Manager

« Charm++ RTS facilitates malleable jobs

« PARM can improve throughput under a fixed
power budget using:

— overprovisioning (adding more nodes than
conventional data center)

— RAPL (capping power consumption of nodes)
— Job malleability and moldability

Power Aware Resource Manager
= (PARM)
Profiler :
Scheduler fEXECUl‘IOﬂk
Strong Scaling ramewor
N~ Schedule
Power Aware Model Ea Jobs (LP) P| Launch Jobs/
. Shrink-Expand
Job Characteristics
Datage lélpdate Ensure Power
ueue rﬂ Cap
\ . \ -
7 \ A
. . \ Job Ends/
- Triggers Terminates
a PPL
| - =
[| UI10C

i

[]

UL

/
-
T

What Do RTSs Look Like: Charm++

XARTS

WUDUs: Indexed collection,
Migratable threads,
Scalable sections (sub-communicators),
Location services

v

—» Fault tolerance protocols]

\,
S J
- J

~
N

Load balancers: I
intra-node, inter-node
—» Power-aware, Thermal-
aware, Topo-aware

>

Data-driven scheduler, user-
level threads, priority queues

Communication Libs
(Colletives/persistence)

Jdomauled UO!JDBdSOJJLH snonunuogj

LRTS: m/c specific implementations:
(start-up, communication, virtual mem. management)

Scalable Tools
Analysis, Debugging

68)

- PPL

UI0C

ARGO

Key Areas of Innovation:

NodeOS/R

Core-specialization permits multiple,
concurrent kernels

Lightweight Concurrency

- Embed fine-grained tasks and
lightweight threads into OS for massive
parallelism

Backplane

- Event, Control, and Performance
backplanes to support global
optimizations

Global View

“Enclave” abstraction to allow global

optimization of power, resilience, perf.
Exascale System

|]
An Exascale Operating System and Runtime
Node
[NVRAM
v,
B\ e
(3D Stacked) [3D Stacked) (3D Stacked) [3D Stacked)
EEEEE)
Regular Regular
orav | JOOOO0 OOOQO0 DRAM
Q0000 oeaean -
00000 Q.00
00000 00000 .. 0000080
\—’ 00000 C0ooa cocaaae _ /)
. Power-efficient core . Single-thread optimized core . Acceleration engine
$9.7M ASCR DOE .
3 year project, launched Aug 2013
THE CREW OF THE ARGO:
Argonne National Laboratory;
Principle Investigator and Chief Architect: Pete Beckman
Chief Scientist: Marc Snir /

P. Balaji, R. Gupta, K. Iskra, R. Thakur, K. Yoshii, F. Cappello

Boston University:]. Appavoo, O. Krieger
Lawrence Livermore National Laboratory:

M. Gokhale, E. Leon, B. Rountree, M. Schulz, B. Van Essen

Pacific Northwest National Laboratory: S. Krishnamoorthy, R. Gioiosa

University of Chicago: H. Hoffmann

University of Illinois at UC: L. Kale, E. Bohm, R. Venkataraman

University of Oregon: A. Malony, S. Shende, K.

Huck

University of Tennesee Knoxville:]. Dongarra, G. Bosilca

}I [}

(. (-

[1L §
(]]

[ll>1

|

System Management \

|

Backplanes: BEACON and EXPOSE

Concurrency RTS Concurrency RTS

Multi-kernels Multi-kernels

Components
S
wv
8

Enclave 1 & Enclave 2
-]
Enclave Management % Enclave Management
Components g Components
(]
=
Nodes o Nodes

L g L/
c
i
)
-
Q
©
-]

w PPL

[

[

UI0C

Allowing RTS to Reconfigure Apps

 We can push adaptivity further
— With a collaboration between RTS and programmer

 The programmer:
— Exposes some knobs (control-points) to the RTS
— Describes their effects in a standard “language”’

« The RTS:
— Observes the runtime behavior,
— Optimizes what it can without reconfiguration

— When needed, asks app to reconfigure by
choosing the right knob and direction

[} . b
(W(7
.

[J Y

(W

)

UI0C

. (I

[

II}A [|

. (=
m [l>1

%3

(]]

ChaNGa: Cosmology Simulation

™ Collaboration with
Tom Quinn UW

S 9 - Tree: Represents
particle

distribution

 TreePiece: object/
chares containing
particles

PPL

UI0C

Number of Messages

i

(0 (P

/
-
T

Clustered Dataset — Dwarf

BTGO0 [g
£ S —
DDEQ0 | rrromsrmroo oot e Time Profile
15000 |y gissbons bbb -
T N £
O ,h:f i i ‘, :i:‘ 1 : i 2 E ;:é | N Time (2.7;7‘m: iesolution)
0 2000 4000 6000 8000

« Highly clustered

Processors

e Idle time due to

+ Maximum request per message delay
processor: > 30K

[} B 1

(]

}l []

a
..

Solution: Replication

=
D

h

PE2

i

i

PE 3

3

i
-

« Replicate tree nodes to distribute requests
« Requester randomly selects a replica

«w PPL

UI0C

Number of Messages

i

Replication Impact

Lo ERRY
TS :
. ST
2000 (55
. 2,
.
;

? R ’ fa
y JEAR -
1000

5000
4000
3000
0
)
16
'—
Z
g
©)

0 2000 4000 6000 8000

Processors

With Replication —>é—
Without Replication =—f—

! a o 1 1 1 1
= OT_)

“um % 2048 409 8192 16384
=8 Number of Cores

Percentage Utilization

Time Profile

23.3575s

Time (1.851ms resolution)

Replication distributes
requests

Maximum request
reduced from 30K to
4.5K

Gravity time reduced
from 2.4sto 1.7 s, on 8k

. PPL

UI0C

Control Point for Replication?

« This optimization can be turned into a
control point via an abstraction
— For data

« That doesn’t change during a phase, and
* Is requested based on a key

— The RTS can then observe and decide / tune
* If replication is needed,
« Which objects to replicate
« Degree of replication

|t turns out to be of general use:

— A cloth simulation, with collision detection, also
can use it

[A b
(W(7
.

[J Y

(W

= PPL

UI0C

. (I

nym
g

A

(. (-

. (I
(]]

Costs of Overdecomposition?

We examined the “Pro”’s so far
Cons and remedies:

Scheduling overhead?
— Not much at all
— In fact get benefits due to blocking

Memory in ghost layer increases

— Fuse local regions with compiler support

— Fetch one ghost layer at a time

— Hybridize (pthreads/openMP inside objects/DEBs)

Less control over scheduling?

— i.e. too much asynchrony?

— But can be controlled in various ways by an observant RTS/programmer
For domain-decomposition based solvers, may increase number
of iterations

— You can lift it to node-level overdecomposition (use openMP inside)

— Also, other ideas:

Too radical and new?

— Well, its working well for the past 10-15 years in multiple applications,
via Charm++ and AMPI

= PPL

How can
Application Developers
get ready for
Adaptive RTSs?

PPL
u1uC

Its not that weird or new

* First, note:

— The techniques | advocated were needed for
dynamic irregular apps even on yesterday’s
machines

 Just that they need to be applied to even regular apps

« How Charm++ meets exascale challenges already,
almost

— How we got so lucky: because of these irregular
apps

The adaptivity that was created via overdecomposition,
migratability, & asynchrony, for dynamic applications, is
also useful for handling machine variability at exascale

}III

T
a
T

[1L §

)

UI0C

%

}I [}

(. (-

[1L §

[ll>1
(]]

So, What are the Action Items

Explore overdecomposition in your application
— Without using any RTS

Increase the asynchrony in your app

Add migratability in small measures

— But you will need to do some location management
yourself

Try coding a small module using an existing
adaptive RTS

— E.g. Charm++ modules work with MPI modules
Create control points for runtime manipulation

Get used to words like “continuations’..
— But we need only simpler versions of those

)

Experiment with Languages/Libraries that
support these concepts

 Programming models that exhibit some features
— Charm++
— Adaptive MPI
— KAAPI
— ProActive
— FG-MPI (if it adds migration)
— mpC
— HPX (once it embraces migratability)
— StarPU
— ParSEC
— CnC
— MSA (multi-phase Shared arrays)
— Charisma
— Charj
— Chapel: may be a higher level model
— X10: has asynchrony, but not migratable units

« So, pick some of them to start experimenting w miniApps

. PPL

UI0C

R II}I (

(. (-
m
(]]

(]
i

EE nE
!gﬂr'!
BN uE
-
El =B

Benefits in Charm++

Over-decomposition Scalable Tools
Automatic overlap of

l Communication and Computation

message-diven
execution

compositionality

Emulation for
Performance
Prediction

Migratability

] Dynamic load balancing
Introspective and (topology-aware, scalable)

adaptive runtime system

Temperature/Power/Energy
Optimizations

s PPL

U10C

Summary

« Adaptive Runtime Systems are coming

« Advice to Application developers
— Get familiar with:
— Do | need to repeat?
— Overdecomposition, Migratability, Asynchrony

— Experiment with new models that support these
and are interoperable
« E.g. Charm++ ©

Charm++ workshop live webcast

More info on Charm++: http://charm.cs.illinois.edu/charm Workshop
http://charm.cs.1llinois.edu April 29-30 2014

}III

T
a
T

[1L §

0 PPL

UI0C

