
POWER-­‐AWARE	
 JOB	
 SCHEDULING	

Maximizing	
 Data	
 Center	
 Performance	
 Under	
 Strict	
 Power	
 Budget	

Osman	
 Sarood,	
 Akhil	
 Langer,	
 Abhishek	
 Gupta,	
 Laxmikant	
 Kale	

	

Parallel	
 Programming	
 Laboratory	

Department	
 of	
 Computer	
 Science	

University	
 of	
 Illinois	
 at	
 Urbana-­‐Champaign	

	

29th	
 April	
 2014	

	

	

Major	
 Challenges	
 to	
 Achieve	
 Exascale1	

q Energy	
 and	
 Power	
 Challenge	

q Memory	
 and	
 Storage	
 Challenge	

q Concurrency	
 and	
 Locality	
 Challenge	

q Resiliency	
 Challenge	

Kogge,	
 Peter,	
 et	
 al.	
 "Exascale	
 compuWng	
 study:	
 Technology	
 challenges	
 in	
 achieving	
 exascale	
 systems."	
 (2008).	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 2	

Major	
 Challenges	
 to	
 Achieve	
 Exascale1	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 3	

Exascale	
 in	

20MW!	

Kogge,	
 Peter,	
 et	
 al.	
 "Exascale	
 compuWng	
 study:	
 Technology	
 challenges	
 in	
 achieving	
 exascale	
 systems."	
 (2008).	

Power	
 consumpWon	
 for	
 Top500	

Data	
 Center	
 Power	

How	
 is	
 data	
 center	
 power	
 need	
 calculated? 	
 	

q using	
 Thermal	
 Design	
 Power	
 (TDP)	
 of	
 nodes	

However,	
 TDP	
 is	
 hardly	
 reached!!	

	

	

SoluWon	

q constrain	
 power	
 consumpWon	
 of	
 nodes	

q Overprovisioning	
 -­‐	
 Use	
 more	
 nodes	
 than	
 convenWonal	

data	
 center	
 for	
 the	
 same	
 power	
 budget	

	

	

	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 4	

DistribuWon	
 of	
 Node	
 Power	
 ConsumpWon	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 5	

Pie	
 Chart:	
 Sean	
 Wallace,	
 Measuring	
 Power	
 ConsumpWon	
 on	
 IBM	
 Blue	
 Gene/Q	

Power	
 distribuWon	
 for	
 BG/Q	

processor	
 on	
 Mira	

q  76%	
 by	
 CPU/Memory	

q  No	
 good	
 mechanism	
 for	

controlling	
 other	
 power	

domains	

	

	

	

Constraining	
 CPU/Memory	
 Power	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 6	

Intel	
 Sandy	
 Bridge	

q Running	
 Average	
 Power	
 Limit	
 (RAPL)	
 library	

Ø measure	
 and	
 set	
 CPU/memory	
 power	

ApplicaWon	
 Performance	
 with	
 Power	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 7	

(20x32,10)	
 	

(12x44,18)	
 	

Configura7on	
 	

(n	
 x	
 pc,	
 pm	
)	

Performance	
 of	
 LULESH	
 at	
 different	
 configuraWons	

pc:	
 CPU	
 power	
 cap	

Pm:Memory	
 power	
 cap	

q  ApplicaWon	
 performance	
 does	
 not	

improve	
 proporWonately	
 with	

increase	
 in	
 power	
 cap	

q  Beher	
 is	
 to	
 run	
 on	
 larger	
 number	

of	
 nodes	
 each	
 capped	
 at	
 lower	

power	
 level	

Problem	
 Statement	
 	

	

Maximizing	
 Data	
 Center	
 Performance	
 Under	
 	
 Strict	

Power	
 Budget	

	

Data	
 center	
 capabiliWes	
 and	
 job	
 features	

q Power	
 capping	
 ability	

q Overprovisioning	

q Moldability	
 (OpWonal)	

q Malleability	
 (OpWonal)	

Ø Charm++	

Ø Dynamic	
 MPI	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 8	

Power	
 Aware	
 Resource	
 Manager	
 (PARM)	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 9	

SCHEDULER	

JOB	
 QUEUE	

JOB	
 PROFILER	

PASS	
 MODEL	

EXECUTION	

FRAMEWORK	

	

q  SHRINK/EXPAND	
 JOBS	

q  APPLY	
 POWER	
 CAPS	

	

JOB	
 ARRIVAL	
 JOB	

TERMINATION	

TRIGGERS	

JOB	
 PROFILER	

q Measure	
 job	
 performance	
 at	
 various	
 scales	

and	
 cpu	
 power	
 caps	

q Power	
 Aware	
 Strong	
 Scaling	
 (PASS)	
 Model	
 	

Ø Predict	
 job	
 performance	
 at	
 any	
 (n,	
 p)	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 10	

Power	
 Aware	
 Strong	
 Scaling	
 (PASS)	
 Model	

Time	
 vs	
 Scale	

Downey’s	
 strong	
 scaling	

Time	
 vs	
 Frequency	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 11	

Frequency	
 vs	
 Power	

t = F(n,A,σ)

A. Strong Scaling Model

An application can be characterized by an average par-
allelism of A. The application’s parallelism remains equal
to A, except for some fraction � of the duration. Available
parallelism is 2A � 1 for �

2 fraction of the duration and just
1 for the remaining �

2 fraction of the duration. We adjust
Downey’s [26] model to satisfy the boundary conditions -
t(1) = T1, and t(n) = T1

A

for n � A, where t(n) is the
application time on n nodes, and T1 is the application time on
a single node. According to Downey’s model, the execution
time, t(n), of an application executing on n nodes can be
modeled as:

t(n) =

8
>>>>>><

>>>>>>:

T1 �
T1�

2A

n

+
T1�

2A
, 1  n  A (9)

�(T1 �
T1
2A)

n

+
T1

A

�

T1�

2A
A < n  2A� 1 (10)

T1

A

, n > 2A� 1 (11)

The first equation in this group represents the range of n

where the application is most scalable i.e. when the number
of nodes is less than A. The application’s scalability declines
significantly once n becomes larger than A because of lack
of parallelism for most of the duration. Finally, for n � 2A,
the execution time t(n) equals T1/A and does not decrease
further. Given application characteristics �, A, and T1, this
model can be used to estimate execution time for any number
of nodes n.

B. Adding Power Awareness to Strong Scaling Model

The effect of changing frequency on the execution time
varies from application to application [27] . In this section, we
model execution time as a function of CPU frequency. Since,
CPU frequency can be expressed as a function of CPU power,
we can finally express execution time as a function to CPU
power.

1) Execution Time as a Function of Frequency: Existing
work [4], [27] indicates that increase in CPU frequency beyond
a certain threshold frequency (let us call it f

h

) does not
reduce the execution time. The value of f

h

depends on the
memory bandwidth being used by the application. For f < f

h

,
execution time depends on the CPU-bounded and memory (off-
chip) bounded work of the application and can thus be modeled
as [5]–[7], [28]:

t(f) =

8
<

:

W

cpu

f

+ T

mem

, for f < f

h

(12)

T

h

, for f � f

h

(13)

where, W
cpu

and T

mem

are defined in Table III, and T

h

is the execution time at frequency f

h

. Let T
l

be the execution
time at frequency f

l

where f

l

is the minimum frequency at
which the CPU can operate. Parameter � characterizes the
frequency-sensitivity of an application and can be expressed
as:

� =
T

l

� T

h

T

l

(14)

Range of � depends on the frequency range supported by
the CPU vendor. Given the frequency range of (f

l

, f

max

),
�  1 �

f

l

f

max

. Typically, CPU-bound applications have
higher values for � whereas memory-intensive applications
have smaller � values.

Using Eq. 14 and applying boundary conditions, t(f
l

) = T

l

and t(f
h

) = T

h

, to Eq. 12, we get:

W

cpu

=
T

h

�f

l

f

h

(1� �)(f
h

� f

l

)
(15)

T

mem

= T

h

�

T

h

�f

l

(1� �)(f
h

� f

l

)
(16)

2) Frequency as a Function of CPU Power: Although Intel
has not released complete details of how the CPU power
consumption is ensured to be below the user specified CPU
power cap, it has been hinted that it is achieved using a
combination of DVFS and CPU throttling [2], [29].

Let p
l

denote the CPU power corresponding to f

l

, where
f

l

is the minimum frequency the CPU can operate at using
DVFS. To cap power below p

l

(p < p

l

), other architectural-
level mechanisms such as CPU throttling are used. We have
empirically observed that for p < p

l

, the application perfor-
mance degrades significantly even for very small savings in
power. Therefore, we restrict our study to power caps greater
than p

l

. The value of p

l

can be easily determined by setting
the CPU frequency at f

l

. CPU or the package power includes
the power consumption by its various components such as
cores, caches, memory controller, etc. The value of p

l

varies
depending on an application’s usage of these components.
In a CPU-bound application, a processor might be able to
cap power to lower values using DVFS, since only the cores
are consuming power. In contrast, for a memory intensive
application, p

l

might be higher, since the caches and memory
controller are also consuming significant power in addition to
the cores.

The major part of the dynamic CPU power consumption
can be attributed to the cores, on-chip caches and memory
controller. Power consumption of the core, p

core

, is often
modeled as p

core

= Cf

3 + Df , where C and D are some
constants [30]. Power consumption due to cache and memory
accesses is modeled as,

P3
i=1 giLi

+ g

m

M , where, L

i

is
accesses per second to level i cache, g

i

is the cost of a level i
cache access, M is the number of memory accesses per second,
g

m

is the cost per memory access. The total CPU power can
then be expressed as [31]:

p = p

core

+
3X

i=1

g

i

L

i

+ g

m

M + p

base

(17)

where, p

base

is the base/static package power consumption.
Since number of cache and memory accesses is proportional
to the CPU frequency, Eq. 17 can be written as:

p = F (f) = af

3 + bf + c (18)

where a, b, and c are constants. bf corresponds to the cores’
leakage power and power consumption of caches and memory
controller. The term af

3 represents the dynamic power of the
cores, whereas, c = p

base

represents the base CPU power. The
constants a and b are application dependent since the cache and
memory behavior can be different across applications. Eq. 18
can be rewritten as a depressed cubic equation and solved using
Fermat’s Last Theorem to get F�1:

f = F

�1(p) =
3

s
p� c

2a
+

r
(p� c)2

4a2
+

b

3

27a3

+
3

s
c� p

2a
+

r
(p� c)2

4a2
+

b

3

27a3
(19)

A. Strong Scaling Model

An application can be characterized by an average par-
allelism of A. The application’s parallelism remains equal
to A, except for some fraction � of the duration. Available
parallelism is 2A � 1 for �

2 fraction of the duration and just
1 for the remaining �

2 fraction of the duration. We adjust
Downey’s [26] model to satisfy the boundary conditions -
t(1) = T1, and t(n) = T1

A

for n � A, where t(n) is the
application time on n nodes, and T1 is the application time on
a single node. According to Downey’s model, the execution
time, t(n), of an application executing on n nodes can be
modeled as:

t(n) =

8
>>>>>><

>>>>>>:

T1 �
T1�

2A

n

+
T1�

2A
, 1  n  A (9)

�(T1 �
T1
2A)

n

+
T1

A

�

T1�

2A
A < n  2A� 1 (10)

T1

A

, n > 2A� 1 (11)

The first equation in this group represents the range of n

where the application is most scalable i.e. when the number
of nodes is less than A. The application’s scalability declines
significantly once n becomes larger than A because of lack
of parallelism for most of the duration. Finally, for n � 2A,
the execution time t(n) equals T1/A and does not decrease
further. Given application characteristics �, A, and T1, this
model can be used to estimate execution time for any number
of nodes n.

B. Adding Power Awareness to Strong Scaling Model

The effect of changing frequency on the execution time
varies from application to application [27] . In this section, we
model execution time as a function of CPU frequency. Since,
CPU frequency can be expressed as a function of CPU power,
we can finally express execution time as a function to CPU
power.

1) Execution Time as a Function of Frequency: Existing
work [4], [27] indicates that increase in CPU frequency beyond
a certain threshold frequency (let us call it f

h

) does not
reduce the execution time. The value of f

h

depends on the
memory bandwidth being used by the application. For f < f

h

,
execution time depends on the CPU-bounded and memory (off-
chip) bounded work of the application and can thus be modeled
as [5]–[7], [28]:

t(f) =

8
<

:

W

cpu

f

+ T

mem

, for f < f

h

(12)

T

h

, for f � f

h

(13)

where, W
cpu

and T

mem

are defined in Table III, and T

h

is the execution time at frequency f

h

. Let T
l

be the execution
time at frequency f

l

where f

l

is the minimum frequency at
which the CPU can operate. Parameter � characterizes the
frequency-sensitivity of an application and can be expressed
as:

� =
T

l

� T

h

T

l

(14)

Range of � depends on the frequency range supported by
the CPU vendor. Given the frequency range of (f

l

, f

max

),
�  1 �

f

l

f

max

. Typically, CPU-bound applications have
higher values for � whereas memory-intensive applications
have smaller � values.

Using Eq. 14 and applying boundary conditions, t(f
l

) = T

l

and t(f
h

) = T

h

, to Eq. 12, we get:

W

cpu

=
T

h

�f

l

f

h

(1� �)(f
h

� f

l

)
(15)

T

mem

= T

h

�

T

h

�f

l

(1� �)(f
h

� f

l

)
(16)

2) Frequency as a Function of CPU Power: Although Intel
has not released complete details of how the CPU power
consumption is ensured to be below the user specified CPU
power cap, it has been hinted that it is achieved using a
combination of DVFS and CPU throttling [2], [29].

Let p
l

denote the CPU power corresponding to f

l

, where
f

l

is the minimum frequency the CPU can operate at using
DVFS. To cap power below p

l

(p < p

l

), other architectural-
level mechanisms such as CPU throttling are used. We have
empirically observed that for p < p

l

, the application perfor-
mance degrades significantly even for very small savings in
power. Therefore, we restrict our study to power caps greater
than p

l

. The value of p

l

can be easily determined by setting
the CPU frequency at f

l

. CPU or the package power includes
the power consumption by its various components such as
cores, caches, memory controller, etc. The value of p

l

varies
depending on an application’s usage of these components.
In a CPU-bound application, a processor might be able to
cap power to lower values using DVFS, since only the cores
are consuming power. In contrast, for a memory intensive
application, p

l

might be higher, since the caches and memory
controller are also consuming significant power in addition to
the cores.

The major part of the dynamic CPU power consumption
can be attributed to the cores, on-chip caches and memory
controller. Power consumption of the core, p

core

, is often
modeled as p

core

= Cf

3 + Df , where C and D are some
constants [30]. Power consumption due to cache and memory
accesses is modeled as,

P3
i=1 giLi

+ g

m

M , where, L

i

is
accesses per second to level i cache, g

i

is the cost of a level i
cache access, M is the number of memory accesses per second,
g

m

is the cost per memory access. The total CPU power can
then be expressed as [31]:

p = p

core

+
3X

i=1

g

i

L

i

+ g

m

M + p

base

(17)

where, p

base

is the base/static package power consumption.
Since number of cache and memory accesses is proportional
to the CPU frequency, Eq. 17 can be written as:

p = F (f) = af

3 + bf + c (18)

where a, b, and c are constants. bf corresponds to the cores’
leakage power and power consumption of caches and memory
controller. The term af

3 represents the dynamic power of the
cores, whereas, c = p

base

represents the base CPU power. The
constants a and b are application dependent since the cache and
memory behavior can be different across applications. Eq. 18
can be rewritten as a depressed cubic equation and solved using
Fermat’s Last Theorem to get F�1:

f = F

�1(p) =
3

s
p� c

2a
+

r
(p� c)2

4a2
+

b

3

27a3

+
3

s
c� p

2a
+

r
(p� c)2

4a2
+

b

3

27a3
(19)

Time	
 as	
 a	
 funcDon	
 of	
 power	
 and	
 number	
 of	
 nodes	
 	

q  n:	
 number	
 of	
 nodes	

q  A:	
 Average	
 Parallelism	

q  	
 σ	
 :	
 duraWon	
 of	
 parallelism	
 A	

q Wcpu:	
 CPU	
 work	

q  Tmem:	
 memory	
 work	

q  Th	
 :	
 	
 	
 minimum	
 exec	
 Wme	
 	

q  pcore:	
 core	
 power	

q  gi:	
 cost	
 level	
 I	
 cache	
 access	

q  Li:	
 #level	
 I	
 accesses	

q  gm:	
 cost	
 of	
 mem	
 access	

q M:	
 #mem	
 accesses	

q  pbase:	
 idle	
 power	

Power	
 Aware	
 Resource	
 Manager	
 (PARM)	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 12	

SCHEDULER	

JOB	
 QUEUE	

JOB	
 PROFILER	

PASS	
 MODEL	

EXECUTION	

FRAMEWORK	

	

q  SHRINK/EXPAND	
 JOBS	

q  APPLY	
 POWER	
 CAPS	

	

JOB	
 ARRIVAL	
 JOB	

TERMINATION	

TRIGGERS	

Scheduler:	
 Integer	
 Linear	
 Program	
 FormulaWon	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 13	

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

Fig. 1: A high level overview of PARM

scaling power aware model described in § V. The scheduler’s
decisions are fed as input to the execution framework which
implements/enforces them by launching new jobs, shrink-
ing/expanding running jobs, and/or setting the power caps on
the nodes.

The scheduler is triggered whenever a new job arrives or
when a running job ends or abruptly terminates due to an
error or any other reason (‘Triggers’ box in Figure 1). At each
trigger, the scheduler tries to re-optimize resource allocation
to the set of pending as well as currently running jobs with
the objective of maximizing overall throughput. Our scheduler
uses both CPU power capping and moldability/malleability
features for throughput maximization. We formulate this
resource optimization problem as an Integer Linear Program
(ILP). The relevant terminology is described in Table I. Our
scheduling scheme can be summarized as:
Input: A set of jobs that are currently executing or are
ready to be executed (J) with their expected execution time
corresponding to a set of resource combinations (n, p), where
n 2 N

j

and p 2 P

j

.
Objective: Maximize data center throughput.
Output: Allocation of resources to jobs at each trigger event,
i.e., identifying the jobs that should be executed along with
their resource combination (n,p).

A. Integer Linear Program Formulation

We make the following assumptions and simplifications in
the formulation:

• All nodes allocated to a given job operate at the same power.
• We do not include cooling power of the data center in our

calculations.
• Job characteristics do not change significantly during the

course of its execution. By relaxing this assumption we can
benefit from the different phases in an application. However,
that is out of the scope of this study.

• The network power consumption stays constant. It is a rea-
sonable assumption since network power does not fluctuate
much for most interconnect technologies.

• Expected wall clock time represents a good estimate of the
actual execution time that the scheduler uses for decision
making.

• W

base

, that includes power for all the components of a node
other than the CPU and memory subsystems, is assumed to
be constant.

Objective Function
X

j2J

X

n2N

j

X

p2P

j

w

j

⇤ s

j,n,p

⇤ x

j,n,p

(1)

Select One Resource Combination Per Job
X

n2N

j

X

p2P

j

x

j,n,p

 1 8j 2 I (2)

X

n2N

j

X

p2P

j

x

j,n,p

= 1 8j 2 I (3)

Bounding total nodes
X

j2J

X

p2P

j

X

n2N

j

nx

j,n,p

 N (4)

Bounding power consumption
X

j2J

X

n2N

j

X

p2P

j

(n ⇤ (p+W

base

))x
j,n,p

 W

max

(5)

Disable Malleability (Optional)
X

n2N

j

X

p2P

j

nx

j,n,p

= n

j

8j 2 I (6)

Fig. 2: Integer Linear Program formulation of PARM scheduler

TABLE I: Integer Linear Program Terminology

Symbol Description
N total number of nodes in the data center
J set of all jobs
I set of jobs that are currently running
I set of jobs in the pending queue
J set of jobs which have already arrived

and have not yet been completed i.e they
are either pending or currently running, J = I [I

N

j

set of node counts on which job j can be run
P

j

set of power levels at which job j should be run or
in other words, the power levels at which job j’s
performance is known

n

j

number of nodes at which job j is currently running
w

j

weighing factor to set job priorities
↵ a constant in w

j

used to tradeoff job fairness/priority vs
data center throughput

x

j,n,p

binary variable, 1 if job j should run
on n nodes at power p, otherwise 0

t

now

current time
t

a

j

arrival time of job j

W

base

base machine power that includes everything
other than CPU and memory

t

j,n,p

execution time for job j running on n

nodes with power cap of p
s

j,n,p

strong scaling power aware speedup of application j

running on n nodes with power cap of p

• A job once selected for execution is not stopped until its
completion, although the resources assigned to it can change
during its execution.

• All jobs are from a single user (or have the same priority).
This is assumed just to keep the focus of the paper on other
issues. This assumption can be very easily relaxed by setting
w

j

proportional to the user/job-queue priority.

Scheduling problems are framed as ILPs and ILPs are NP-hard
problems. Maximizing throughput in the objective function
requires introducing variables for the start and end time of jobs.
These variables make the ILP computationally very intensive
and thus impractical for online scheduling in many cases.

Scheduler:	
 ObjecWve	
 FuncWon	

q Maximizing	
 throughput	
 makes	
 ILP	
 opWmizaWon	
 infeasible	

q Maximize	
 sum	
 of	
 power-­‐aware	
 speedup	
 of	
 selected	
 jobs:	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 14	

Therefore in the objective function, instead of maximizing
the overall throughput of all the jobs currently in queue, we
propose a greedy objective function that maximizes the sum of
the power-aware speedup (described later) of the jobs selected
for immediate execution. This objective function improves the
job throughput while keeping the ILP optimization computa-
tionally tractable for online scheduling.

We define the strong scaling power aware speedup of a job
j as follows:

s

j,n,p

=
t

j,min(N
j

),min(P
j

)

t

j,n,p

(7)

where s

j,n,p

is the speedup of job j executing using resource
combination (n, p) with respect to its execution with resource
combination (min(N

j

),min(P
j

)). Objective function (Eq. 1)
of the ILP maximizes the sum of the power aware speedups
of the jobs selected for execution at every trigger event. This
leads to improvement in FLOPS/Watt (or power efficiency,
as we define it). Improved power efficiency implies better
job throughput (results discussed in § VI,§ VII). Oblivious
maximization of power efficiency may lead to starvation for
jobs with low strong scaling power aware speedup. Therefore,
to ensure fairness, we introduced a weighing factor (w

j

) in the
objective function, which is defined as follows:

w

j

= (trem
j,min(N

j

),min(P
j

) + (t
now

� t

a

j

))↵ (8)

w

j

artificially boosts the strong scaling power aware speedup
of a job by multiplying it by the job’s completion time, where
completion time is the sum of the time elapsed since job’s
arrival and the job’s remaining execution time with resource
combination (min(N

j

),min(P
j

)) i.e. (trem
j,min(N

j

),min(P
j

)) .
The percentage of a running job completed between two
successive triggers is determined by the ratio of the time
interval between the two triggers and the total time required
to complete the job using its current resource combination.
Percentage of the job that has been completed so far can then
be used to compute t

rem

j,min(N
j

),min(P
j

). The constant ↵ (↵ � 0)
in Eq. 8 determines the priority given to job fairness against
its strong scaling power aware speedup i.e. a smaller value
of ↵ favors job throughput maximization while a larger value
favors job fairness. We now explain the constraints of the ILP
formulation (Figure 2):

• Select one resource combination per job (Eq. 2,3): x

j,n,p

is a binary variable indicating if job j should run using
resource combination (n, p). This constraint ensures that at
most one of the variables x

j,n,p

is set to 1 for any job
j. The jobs which are already running (set I) continue
to run although they can be assigned a different resource
combination (Eq. 3). The jobs in the pending queue (I),
for which at least one of the variables x

j,n,p

is equal to 1
(Eq. 2), are selected for execution and moved to the set of
jobs currently running (I).

• Bounding total nodes (Eq. 4): This constraint ensures that
the number of active nodes do not exceed the maximum
number of nodes available in the overprovisioned data
center.

• Bounding power consumption (Eq. 5): This constraint en-
sures that power consumption of all the nodes does not
exceed the power budget of the data center.

• Disable Malleability (Eq. 6): To quantify the benefits of
malleable jobs, we consider two versions of our scheduler.
The first version supports only moldable jobs and is called
noSE (i.e. no Shrink/Expand). The second version allows

TABLE II: Different versions of PARM

Acronym Description
noMM Jobs are neither Moldable nor Malleable
noSE Jobs are moldable but not malleable
wSE Jobs are both moldable and malleable

TABLE III: Power Aware Strong Scaling Model Terminology

Symbol Description
A Average parallelism in the application
� fraction of the duration when application parallelism

is not A, parallelism is 2A� 1 for �

2 fraction and 1 for
�

2 fraction of the duration
T1 Application execution time on 1 node
f CPU Frequency
f

h

Threshold frequency beyond which application
execution time does not reduce

f

l

/f
min

Minimum CPU frequency supported by vendor
f

max

Maximum CPU frequency supported by vendor
T

l

Execution time at CPU frequency f

l

T

h

Execution time at CPU frequency f

h

W

cpu

on-chip workload in terms of CPU cycles
T

mem

Time for off-chip work in the application that is unaffected
by CPU frequency

both moldable and malleable jobs and is called as wSE (i.e.
with Shrink/Expand). Malleability can be disabled by using
Eq. 6. This constraint ensures that number of nodes assigned
to running jobs does not change during the optimization
process. However, it allows changing the power allocated to
running jobs. In real-world situations, the jobs submitted to a
data center will be a mixture of malleable and non-malleable
jobs. The scheduler can apply Eq. 6 to disable malleability
for non-malleable jobs. In addition to the noSE and wSE,
we also measure the performance of noMM (no Moldability
and Malleability) version of PARM in which the jobs are
neither moldable nor malleable. In this version, besides job
selection, the only degree of freedom available to PARM is
the CPU power allocated to the nodes of the selected jobs.
The three versions of the PARM are summarized in Table II
for ease of reference.

V. POWER AWARE STRONG SCALING
PERFORMANCE MODEL

PARM’s optimal resource allocation decisions depend on
the availability of jobs performance data. Performance data
corresponding to a large number of resource combinations
(n, p) can be crucial to the quality of solution PARM pro-
vides. Since exhaustive profiling can be impractical for large
number of resource combinations, we need a model to predict
job performance. One of the significant contributions of our
work is the proposed performance model that can predict an
application’s performance for any given resource combination
(n, p). We call it a Power Aware Strong Scaling performance
model or PASS model. The model parameters are specific to
the application and the input dataset with which the application
will be executed. Applying mathematical regression to applica-
tion’s profile data for different resource combinations enables
PASS to estimate important power characteristics. PASS model
extends Downey’s [26] strong scaling model by making it
power aware. Table III gives the terminology used in this
section.

Power	
 Aware	
 Resource	
 Manager	
 (PARM)	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 15	

SCHEDULER	

JOB	
 QUEUE	

JOB	
 PROFILER	

PASS	
 MODEL	

EXECUTION	

FRAMEWORK	

	

q  SHRINK/EXPAND	
 JOBS	

q  APPLY	
 POWER	
 CAPS	

	

JOB	
 ARRIVAL	
 JOB	

TERMINATION	

TRIGGERS	

Experimental	
 Setup	

q  ApplicaWons	

Ø Memory-­‐intensive	

§  Jacobi	
 and	
 Wave2D	

Ø  ComputaWon-­‐intensive	

§  LeanMD	

Ø Mixed	

§  AMR	
 and	
 Lulesh	

q  Testbed	

q  38-­‐node	
 Intel	
 Sandy	
 Bridge	

q  6	
 physical	
 cores,	
 16GB	
 RAM	
 	

q Power	
 capping	
 using	
 RAPL	

q CPU	
 power	
 cap	
 range	
 [25-­‐95]W	

	

q  Job	
 Dataset	

q  	
 β	
 corresponds	
 to	
 CPU	
 sensiWvity	

q  SetL:	
 Mix	
 of	
 apps	
 with	
 average	
 β=0.1	

q  SetH:	
 Mix	
 of	
 apps	
 with	
 average	
 β=0.27	

q  Power	
 Budget	

q  CPU	
 power	
 levels={30,	
 32,	
 34,	
 39,	
 45,	
 55}W	

q  Node	
 power	
 consumpWon=	
 116W	

q  Power	
 Budget	
 =	
 3000W	

q  #nodes	
 in	
 tradiWonal	
 data	
 center	
 =	
 28	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 16	

EsWmaWng	
 Performance	
 using	
 PASS	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 17	

3) Execution Time as Function of CPU power & Number
of Nodes: To express t in terms of p, we use Eq. 19 to replace
f , f

l

, and f

h

in Eqs. 12, 15, 16. To obtain the PASS model,
that estimates execution time as a function of n and p, we
combine our power aware model with the strong scaling model
described in § V-A, by replacing T

h

in Eqs. 12, 13, 15, 16 with
t(n) from Eqs. 9, 10, 11.

VI. EXPERIMENTAL RESULTS

In this section, we first describe our experimental setup
that includes applications, testbed, and job datasets. Next, we
obtain the application characteristics using the PASS perfor-
mance model and finally compare the performance of different
versions of PARM with SLURM. PARM can be used in
conjunction with most parallel programming models. While
programming models such as CHARM++ can benefit by using
wSE scheme that uses job malleability, other models like MPI,
can use the noSE scheme to benefit from power awareness
and job moldability. Usage of PARM is not restricted to data
centers with focus on running large number of applications
simultaneously. It can even be used in data centers where
performance of running very small number (or just 1) of large-
scale applications is critical. For example, while running just 1
large job, PARM optimizer will determine the optimal number
of nodes and the cpu power cap of the nodes, on which the
job should be executed for optimal performance.

A. Applications

We used five applications, namely, Wave2D, Jacobi2D,
LeanMD, Lulesh [32], and Adaptive Mesh Refinement or
AMR [33]. These applications have different CPU and memory
usage:

• Wave2D and Jacobi2D are 5-point stencil applications that
are memory-bound. Wave2D has higher FLOPS than Ja-
cobi2D.

• LeanMD is a computationally intensive molecular dynamics
application.

• CPU and memory usage of Lulesh and AMR lies in between
the stencil applications and LeanMD.

B. Testbed

We conducted our experiments on a 38-node Dell Pow-
erEdge R620 cluster (which we call the Power Cluster). Each
node contains an Intel Xeon E5-2620 Sandy Bridge with 6
physical cores at 2GHz, 2-way SMT with 16 GB of RAM.
These machines support on-board power measurement and
capping through the RAPL interface [34]. The CPU power
for our testbed can be capped in the range [25� 95]W , while
the capping range for memory power is [8� 35]W .

C. Obtaining Model Parameters of Applications

Application characteristics depend on the input type, e.g.,
grid size. We fix the respective input types for each ap-
plication. Each application needs to be profiled for some
(n, p) combinations to obtain data for curve fitting. A single
time step (iteration) of an application is sufficient to get the
performance for a given resource combination. For applications
having time steps (iteration) in order of milliseconds, the
cost of profiling several resource combinations is negligible
compared to the overall execution time of the application.
Each time step (iteration) will include the different phases of

30 35 40 45 50 55 60
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

CPU power (W)

P
o

w
e

r−
a

w
a

re
 s

p
e

e
d

u
p

LeanMD
AMR
Lulesh
Wave2D
Jacobi2D

Fig. 3: Modeled (lines) and observed (markers) power aware speedups
of the applications at 20 nodes

an application such as IO, communication, solvers, etc. and
therefore the overall characteristics of the job can be captured
in a step/iteration. This approach works best for iterative
applications and other applications whose characteristics do
not change significantly over time, which is true for majority
of the scientific applications.

We use linear and non-linear regression tools provided by
MATLAB to determine the application parameters by fitting
our performance model proposed in § V to the sampled perfor-
mance data obtained by running the parallel applications on 20
nodes. The obtained parameter values for all the applications
are listed in Table IV and are discussed here:

• The parameter c (CPU base power) lies in the range [13�
14]W for all applications

• p

l

was 30W for LeanMD and 32W for rest of the applica-
tions. For LeanMD, it is possible to cap the CPU power to
a lower value just by decreasing the frequency using DVFS.
This is because LeanMD is a computationally intensive
application and therefore most of the power is consumed by
the cores rather than caches and memory controller. On the
contrary, for other applications, CPU throttling kicks in at
a higher power level because of their higher cache/memory
usage.

• value of p

h

lies in the range of [37 � 54]W for the
applications under consideration.

• value of � lies in the range [0.08 � 0.40]. Higher value of
� means higher sensitivity to CPU power.

• Wave2D and Jacobi2D have the largest memory footprint
that results in high CPU-cache-memory traffic. Therefore
the value of b is high for these two applications.

Figure 3 shows the modeled (lines) as well as the observed
(markers) power-aware speedups for all applications with
varying CPU power cap at 20 nodes. Power-aware speedup
is calculated with respect to the execution time at p = p

l

and
the same number of nodes. LeanMD has the highest power-
aware speedup whereas Jacobi2D has the lowest.

D. Power Budget

We assume a power budget of 3300W to carry out experi-
ments using our Power Cluster. Although the vendor-specified
TDP of CPU and memory of the Dell nodes was 95W and
35W, respectively, the actual power consumption of CPU and

Model	
 Parameters	

PARM	
 Performance	
 Results	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 18	

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g

e
 c

o
m

p
le

tio
n

 t
im

e
 (

m
in

s)

SLURM
noMM
noSE
wSE

(a) Average completion time

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

in
s)

SLURM
noMM
noSE
wSE

(b) Average response time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SetL SetH
 0

 10

 20

 30

 40

 50

A
ve

ra
ge

 n
um

. o
f n

od
es

A
ve

ra
ge

 C
P

U
 p

ow
er

 (W
)

Avg. nodes noMM
Avg. nodes noSE
Avg. nodes wSE

Avg. CPU power noMM
Avg CPU power noSE
Avg CPU power wSE

(c) Average nodes and average power per node

Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

p

n

f

⇥

3
p

n

f

⇥

3
p

n

f

) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
3
p

n

f

⇥

3
p

n

f

⇥

n

t

2
3
p
n

f

. For load balance, the data in memory
(m

j

MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

t

c

=
(mj

n

f

�

m

j

n

t

) ⇤ n
f

2 ⇤ b ⇤ n
2
3
f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.

Average	
 CompleWon	
 Wmes	

Descrip(on	

q  noMM:	
 without	
 Malleability	
 and	
 Moldability	

q  noSE:	
 	
 	
 	
 with	
 Moldability	
 but	
 no	
 Malleability	

q wSE:	
 	
 	
 	
 	
 	
 with	
 Moldability	
 and	
 Malleability	

Performance	

q  32%	
 improvement	
 with	
 nMM	
 over	
 SLURM	

q  13.9%	
 improvement	
 with	
 noSE	
 over	
 noMM	

q  7.5%	
 improvement	
 with	
 wSE	
 over	
 noSE	

q  1.7X	
 improvement	
 in	
 throughput	

Large	
 Scale	
 ProjecWons	

q SLURM	
 simulator	
 vs	
 PARM	
 simulator	

q Modeling	
 cost	
 of	
 shrinking	
 and	
 expansion	
 of	
 jobs	

q Boot	
 Wmes	

q CommunicaWon	
 cost	
 for	
 data	
 transfer	

q Total	
 cost	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 19	

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

SLURM
noMM
noSE
wSE

(a) Average completion time

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
in

s)

SLURM
noMM
noSE
wSE

(b) Average response time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SetL SetH
 0

 10

 20

 30

 40

 50

A
ve

ra
ge

 n
um

. o
f n

od
es

A
ve

ra
ge

 C
P

U
 p

ow
er

 (W
)

Avg. nodes noMM
Avg. nodes noSE
Avg. nodes wSE

Avg. CPU power noMM
Avg CPU power noSE
Avg CPU power wSE

(c) Average nodes and average power per node

Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

p

n

f

⇥

3
p

n

f

⇥

3
p

n

f

) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
3
p

n

f

⇥

3
p

n

f

⇥

n

t

2
3
p
n

f

. For load balance, the data in memory
(m

j

MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

t

c

=
(mj

n

f

�

m

j

n

t

) ⇤ n
f

2 ⇤ b ⇤ n
2
3
f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g

e
 c

o
m

p
le

tio
n

 t
im

e
 (

m
in

s)

SLURM
noMM
noSE
wSE

(a) Average completion time

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

in
s)

SLURM
noMM
noSE
wSE

(b) Average response time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SetL SetH
 0

 10

 20

 30

 40

 50

A
ve

ra
ge

 n
um

. o
f n

od
es

A
ve

ra
ge

 C
P

U
 p

ow
er

 (W
)

Avg. nodes noMM
Avg. nodes noSE
Avg. nodes wSE

Avg. CPU power noMM
Avg CPU power noSE
Avg CPU power wSE

(c) Average nodes and average power per node

Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

p

n

f

⇥

3
p

n

f

⇥

3
p

n

f

) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
3
p

n

f

⇥

3
p

n

f

⇥

n

t

2
3
p
n

f

. For load balance, the data in memory
(m

j

MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

t

c

=
(mj

n

f

�

m

j

n

t

) ⇤ n
f

2 ⇤ b ⇤ n
2
3
f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.

SetL SetH
0

50

100

150

200

250

300

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

in
s
)

SLURM
noMM
noSE
wSE

(a) Average completion time

SetL SetH
0

50

100

150

200

250

300

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 (

m
in

s
)

SLURM
noMM
noSE
wSE

(b) Average response time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SetL SetH
 0

 10

 20

 30

 40

 50

A
ve

ra
ge

 n
um

. o
f n

od
es

A
ve

ra
ge

 C
P

U
 p

ow
er

 (
W

)

Avg. nodes noMM
Avg. nodes noSE
Avg. nodes wSE

Avg. CPU power noMM
Avg CPU power noSE
Avg CPU power wSE

(c) Average nodes and average power per node

Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

p

n

f

⇥

3
p

n

f

⇥

3
p

n

f

) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
3
p

n

f

⇥

3
p

n

f

⇥

n

t

2
3
p
n

f

. For load balance, the data in memory
(m

j

MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

t

c

=
(mj

n

f

�

m

j

n

t

) ⇤ n
f

2 ⇤ b ⇤ n
2
3
f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.

Large	
 Scale	
 ProjecWons	

Experimental	
 Setup	

q Job	
 Datasets	

Ø  Intrepid	
 job	
 traces	

Ø 3	
 subsets:	
 Set	
 1,	
 Set	
 2,	
 Set3	

Ø 1000	
 jobs	

q ApplicaWon	
 CharacterisWcs	

Ø Model	
 parameters	
 chosen	

randomly	
 from	
 range	

defined	
 by	
 computaWonally	

and	
 memory	
 intensive	

apps	

q Node	
 Range	
 for	
 Moldable/
Malleable	
 jobs	

Ø min	
 nodes	
 =	
 θ*max(N)	

	
 θ	
 ε[0.2,	
 0.6]	

q Power	
 Budget	

Ø 40,960	
 nodes	
 -­‐>	
 4.75MW	

Ø CPU	
 power	
 levels	

={30,33,36,44,50,60}W	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 20	

Large	
 Scale	
 ProjecWons	

Performance	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 21	

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g

e
 c

o
m

p
le

tio
n

 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(a) Set1

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g

e
 c

o
m

p
le

tio
n

 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(b) Set2

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g

e
 c

o
m

p
le

tio
n

 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(c) Set3

Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (� = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (� = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (� = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (� = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (� = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (� = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960

 0

 20

 40

 60

 80

 100

 120

 140

0.28 0.98 1.28 1.48
 0

 200

 400

 600

 800

 1000

 1200

 1400

A
ve

rg
ar

e
C

om
pl

et
io

n
Ti

m
e

(m
in

s)

M
ax

 C
om

pl
et

io
n

Ti
m

e
(m

in
s)

α

Average
Max

Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (↵)

of CPU power levels (P
j

) are increased from 2 to 8. For
example, |P

j

|= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |P

j

| goes from 1 to 6 and the improvement
stops as |P

j

| is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimate an applications

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8
 0

 200

 400

 600

 800

 1000

 1200

A
ve

rg
ar

e
C

om
pl

et
io

n
Ti

m
e

(m
in

s)

M
ax

 C
om

pl
et

io
n

Ti
m

e
(m

in
s)

Number of Power Levels

Average
Max

Fig. 7: Effect of increasing the number of power levels (|P
j

|) on the
average and maximum completion time of Set 1 (� = 0.5). There is
negligible improvement in performance after 6 power levels

power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at
exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels
of caches on application performance may not be proportional
to their power consumption. In our future work, we plan to
add this additional degree of freedom to PARM, which is the
ability to dynamically enable/disable caches at various levels.
We also plan to provide rich support for user priorities in
PARM. Thermal behavior of CPUs can significantly affect the
reliability of a machine [41] as well as the cooling costs of
the data center [42]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.

q  Arrival	
 Wmes	
 mulWplied	
 by	
 γ	

q  Gives	
 diversity	
 in	
 job	
 arrival	
 rates	

Descrip(on	

q  baseline:	
 SLURM	
 scheduling	

q  noSE:	
 	
 	
 	
 with	
 Moldability	
 but	
 no	
 Malleability	

q wSE:	
 	
 	
 	
 	
 	
 with	
 Moldability	
 and	
 Malleability	

5.2X	
 speedup	
 with	
 wSE!	

Comparison	
 with	
 Naïve	
 Overprovisioning	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 22	

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(a) Set1

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(b) Set2

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(c) Set3

Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (� = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (� = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (� = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (� = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (� = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (� = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960

 0

 20

 40

 60

 80

 100

 120

 140

0.28 0.98 1.28 1.48
 0

 200

 400

 600

 800

 1000

 1200

 1400

A
ve

rg
ar

e
C

om
pl

et
io

n
Ti

m
e

(m
in

s)

M
ax

 C
om

pl
et

io
n

Ti
m

e
(m

in
s)

α

Average
Max

Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (↵)

of CPU power levels (P
j

) are increased from 2 to 8. For
example, |P

j

|= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |P

j

| goes from 1 to 6 and the improvement
stops as |P

j

| is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimate an applications

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8
 0

 200

 400

 600

 800

 1000

 1200

A
ve

rg
ar

e
C

om
pl

et
io

n
Ti

m
e

(m
in

s)

M
ax

 C
om

pl
et

io
n

Ti
m

e
(m

in
s)

Number of Power Levels

Average
Max

Fig. 7: Effect of increasing the number of power levels (|P
j

|) on the
average and maximum completion time of Set 1 (� = 0.5). There is
negligible improvement in performance after 6 power levels

power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at
exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels
of caches on application performance may not be proportional
to their power consumption. In our future work, we plan to
add this additional degree of freedom to PARM, which is the
ability to dynamically enable/disable caches at various levels.
We also plan to provide rich support for user priorities in
PARM. Thermal behavior of CPUs can significantly affect the
reliability of a machine [41] as well as the cooling costs of
the data center [42]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.

Tradeoff	
 between	
 Throughput	
 and	
 Job	
 Fairness	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 23	

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(a) Set1

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(b) Set2

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

baseline
noSE
wSE

(c) Set3

Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (� = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (� = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (� = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (� = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (� = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (� = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960

 0

 20

 40

 60

 80

 100

 120

 140

0.28 0.98 1.28 1.48
 0

 200

 400

 600

 800

 1000

 1200

 1400
A

ve
rg

ar
e

C
om

pl
et

io
n

Ti
m

e
(m

in
s)

M
ax

 C
om

pl
et

io
n

Ti
m

e
(m

in
s)

α

Average
Max

Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (↵)

of CPU power levels (P
j

) are increased from 2 to 8. For
example, |P

j

|= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |P

j

| goes from 1 to 6 and the improvement
stops as |P

j

| is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimate an applications

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8
 0

 200

 400

 600

 800

 1000

 1200

A
ve

rg
ar

e
C

om
pl

et
io

n
Ti

m
e

(m
in

s)

M
ax

 C
om

pl
et

io
n

Ti
m

e
(m

in
s)

Number of Power Levels

Average
Max

Fig. 7: Effect of increasing the number of power levels (|P
j

|) on the
average and maximum completion time of Set 1 (� = 0.5). There is
negligible improvement in performance after 6 power levels

power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at
exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels
of caches on application performance may not be proportional
to their power consumption. In our future work, we plan to
add this additional degree of freedom to PARM, which is the
ability to dynamically enable/disable caches at various levels.
We also plan to provide rich support for user priorities in
PARM. Thermal behavior of CPUs can significantly affect the
reliability of a machine [41] as well as the cooling costs of
the data center [42]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.

Objective function multiplier: ωα	

CONCLUSIONS/TAKEAWAYS	

Conclusion	

q  Significant	
 improvement	
 in	
 throughputs	

Ø  Power-­‐aware	
 characterisWcs	
 (PASS	
 model)	

Ø  CPU	
 power	
 capping	

Ø  Overprovisioning	

q  SophisWcated	
 ILP	
 scheduling	
 methodology	
 useful	
 for	
 resource	
 assignment	

q  AdapWve	
 runWme	
 system	
 further	
 increases	
 benefits	
 by	
 allowing	

malleability	
 	

q  Non-­‐malleable	
 jobs	
 also	
 benefit	

Future	
 Work	

q  Enable/disable	
 caches	

q  Thermal	
 constraints	

Ø  To	
 improve	
 system	
 reliability	
 and	
 improve	
 cooling	
 costs	

q  Rich	
 support	
 for	
 user	
 prioriWes	

3/4/15	
 Power-­‐Aware	
 Job	
 Scheduling	
 24	

THANK	
 YOU!	

	

POWER-­‐AWARE	
 JOB	
 SCHEDULING	

Maximizing	
 Data	
 Center	
 Performance	
 Under	
 Strict	
 Power	
 Budget	

Osman	
 Sarood,	
 Akhil	
 Langer,	
 Abhishek	
 Gupta,	
 Laxmikant	
 Kale	

	

Parallel	
 Programming	
 Laboratory	

Department	
 of	
 Computer	
 Science	

University	
 of	
 Illinois	
 at	
 Urbana-­‐Champaign	

	

29th	
 April	
 2014	

	

	

