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Major Challenges to Achieve Exascale

JEnergy and Power Challenge
JdMemory and Storage Challenge
JdConcurrency and Locality Challenge

JResiliency Challenge

Kogge, Peter, et al. "Exascale computing study: Technology challenges in achieving exascale systems." (2008).
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Major Challenges to Achieve Exascale
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Kogge, Peter, et al. "Exascale computing study: Technology challenges in achieving exascale systems." (2008).

3/4/15 Power-Aware Job Scheduling 3



Data Center Power

How is data center power need calculated?
Jusing Thermal Design Power (TDP) of nodes

However, TDP is hardly reached!!

Solution
 constrain power consumption of nodes

d Overprovisioning - Use more nodes than conventional
data center for the same power budget



Distribution of Node Power Consumption
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Power distribution for BG/Q

processor on Mira

O 76% by CPU/Memory

A No good mechanism for
controlling other power
domains

Pie Chart: Sean Wallace, Measuring Power Consumption on IBM Blue Gene/Q
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Constraining CPU/Memory Power

POWER6"™
BUILT ON

Intel Sandy Bridge
JRunning Average Power Limit (RAPL) library

»measure and set CPU/memory power
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Application Performance with Power
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Problem Statement

Maximizing Data Center Performance Under Strict
Power Budget

Data center capabilities and job features
( Power capping ability
 Overprovisioning

J Moldability (Optional)

J Malleability (Optional)
» Charm++

» Dynamic MPI



Power Aware Resource Manager (PARM)
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JOB PROFILER

JdMeasure job performance at various scales
and cpu power caps

JdPower Aware Strong Scaling (PASS) Model
» Predict job performance at any (n, p)



Power Aware Strong Scaling (PASS) Model

Time vs Scale

Downey’s strong scalin
Y & & 4 p_,.: core power
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Time as a function of power and number of nodes



Power Aware Resource Manager (PARM)

JOB PROFILER

>

EXECUTION

PASS MODEL SCHEDULER \ FRAMEWORK
T O SHRINK/EXPAND JOBS
 APPLY POWER CAPS
JOB QUEUE
R
\ —
\ S o—
TRIGGERS JOB ARRIVAL 108

TERMINATION




Scheduler: Integer Linear Program Formulation

Objective Function
D D D Wik Simp *Timp
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Scheduler: Objective Function

d Maximizing throughput makes ILP optimization infeasible
J Maximize sum of power-aware speedup of selected jobs:

tj,min(N;),min(P;)

Sj,m,p = )
7,1,



Power Aware Resource Manager (PARM)
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Experimental Setup

J Applications J Job Dataset
» Memory-intensive O B corresponds to CPU sensitivity
" Jacobiand Wave2D O SetL: Mix of apps with average p=0.1
» Computation-intensive O SetH: Mix of apps with average $=0.27
= LeanMD
» Mixed
= AMR and Lulesh
d Testbed d Power Budget
1 38-node Intel Sandy Bridge O CPU power levels={30, 32, 34, 39, 45, 55}W
O 6 physical cores, 16GB RAM O Node power consumption= 116W
O Power capping using RAPL U Power Budget = 3000W

O CPU power cap range [25-95]W O #nodes in traditional data center = 28



Estimating Performance using PASS

Model Parameters

Application a b p px B
LeanMD 1.65 7.74 30 54 [0.40
AMR 245 6.57 32 54 |0.33
Lulesh 2.63 836 32 54 |0.30
Wave2D 3.00 10.23 32 42 |0.16
Jacobi2D 1.54 10.13 32 37 [0.08
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[ noMM

Il wSE

[ 1noSE

SetL

SetH

Description

O noMM: without Malleability and Moldability
L noSE: with Moldability but no Malleability
O wSE:  with Moldability and Malleability

Performance

0 32% improvement with nMM over SLURM
0 13.9% improvement with noSE over noMM
0 7.5% improvement with wSE over noSE

O 1.7X improvement in throughput



Large Scale Projections

(JSLURM simulator vs PARM simulator

(J Modeling cost of shrinking and expansion of jobs
JBoot times

tp(in seconds) = (ny — nys) * 0.01904 + 72.73

L Communication cost for data transfer

(G R ey
c 2
3
Z*b*nf

JTotal cost
tse — tc + tb



Large Scale Projections
Experimental Setup

1 Job Datasets
» Intrepid job traces
» 3 subsets: Set 1, Set 2, Set3
» 1000 jobs

1 Application Characteristics

» Model parameters chosen
randomly from range
defined by computationally
and memory intensive

apps

(1 Node Range for Moldable/
Malleable jobs

» min nodes = 8*max(N)
0 £[0.2, 0.6]

(J Power Budget
» 40,960 nodes -> 4.75MW

» CPU power levels
={30,33,36,44,50,60}W



Large Scale Projections
Performance

Description
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O noSE: with M

M scheduling
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O wSE:  with Moldability and Malleability
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Arrival time scaling factor (y)

(a) Setl

rrival times multiplied by y

L Gives diversity in job arrival rates

700H - baseline

Average completion time (mins)
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(c) Set3

5.2X speedup with wSE!
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Comparison with Naive Overprovisioning

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960




Tradeoff between Throughput and Job Fairness
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CONCLUSIONS/TAKEAWAYS

Conclusion

O Significant improvement in throughputs
» Power-aware characteristics (PASS model)
» CPU power capping
» Overprovisioning
[ Sophisticated ILP scheduling methodology useful for resource assignment

O Adaptive runtime system further increases benefits by allowing
malleability

d Non-malleable jobs also benefit

Future Work

 Enable/disable caches

O Thermal constraints
» To improve system reliability and improve cooling costs

O Rich support for user priorities
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