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  and	
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  Challenge	
  
q Resiliency	
  Challenge	
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Exascale	
  in	
  
20MW!	
  

Kogge,	
  Peter,	
  et	
  al.	
  "Exascale	
  compuWng	
  study:	
  Technology	
  challenges	
  in	
  achieving	
  exascale	
  systems."	
  (2008).	
  

Power	
  consumpWon	
  for	
  Top500	
  



Data	
  Center	
  Power	
  
How	
  is	
  data	
  center	
  power	
  need	
  calculated? 	
  	
  

q using	
  Thermal	
  Design	
  Power	
  (TDP)	
  of	
  nodes	
  

However,	
  TDP	
  is	
  hardly	
  reached!!	
  
	
  
	
  
SoluWon	
  
q constrain	
  power	
  consumpWon	
  of	
  nodes	
  
q Overprovisioning	
  -­‐	
  Use	
  more	
  nodes	
  than	
  convenWonal	
  
data	
  center	
  for	
  the	
  same	
  power	
  budget	
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DistribuWon	
  of	
  Node	
  Power	
  ConsumpWon	
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Pie	
  Chart:	
  Sean	
  Wallace,	
  Measuring	
  Power	
  ConsumpWon	
  on	
  IBM	
  Blue	
  Gene/Q	
  

Power	
  distribuWon	
  for	
  BG/Q	
  
processor	
  on	
  Mira	
  
q  76%	
  by	
  CPU/Memory	
  
q  No	
  good	
  mechanism	
  for	
  

controlling	
  other	
  power	
  
domains	
  

	
  
	
  
	
  



Constraining	
  CPU/Memory	
  Power	
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Intel	
  Sandy	
  Bridge	
  
q Running	
  Average	
  Power	
  Limit	
  (RAPL)	
  library	
  

Ø measure	
  and	
  set	
  CPU/memory	
  power	
  



ApplicaWon	
  Performance	
  with	
  Power	
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(20x32,10)	
  	
  

(12x44,18)	
  	
  

Configura7on	
  	
  
(n	
  x	
  pc,	
  pm	
  )	
  

Performance	
  of	
  LULESH	
  at	
  different	
  configuraWons	
  

pc:	
  CPU	
  power	
  cap	
  
Pm:Memory	
  power	
  cap	
  

q  ApplicaWon	
  performance	
  does	
  not	
  
improve	
  proporWonately	
  with	
  
increase	
  in	
  power	
  cap	
  

q  Beher	
  is	
  to	
  run	
  on	
  larger	
  number	
  
of	
  nodes	
  each	
  capped	
  at	
  lower	
  
power	
  level	
  



Problem	
  Statement	
  	
  
	
  

Maximizing	
  Data	
  Center	
  Performance	
  Under	
  	
  Strict	
  
Power	
  Budget	
  

	
  
Data	
  center	
  capabiliWes	
  and	
  job	
  features	
  
q Power	
  capping	
  ability	
  
q Overprovisioning	
  
q Moldability	
  (OpWonal)	
  
q Malleability	
  (OpWonal)	
  

Ø Charm++	
  
Ø Dynamic	
  MPI	
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Power	
  Aware	
  Resource	
  Manager	
  (PARM)	
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SCHEDULER	
  

JOB	
  QUEUE	
  

JOB	
  PROFILER	
  
PASS	
  MODEL	
  

EXECUTION	
  
FRAMEWORK	
  

	
  
q  SHRINK/EXPAND	
  JOBS	
  
q  APPLY	
  POWER	
  CAPS	
  

	
  

JOB	
  ARRIVAL	
   JOB	
  
TERMINATION	
  

TRIGGERS	
  



JOB	
  PROFILER	
  

q Measure	
  job	
  performance	
  at	
  various	
  scales	
  
and	
  cpu	
  power	
  caps	
  

q Power	
  Aware	
  Strong	
  Scaling	
  (PASS)	
  Model	
  	
  
Ø Predict	
  job	
  performance	
  at	
  any	
  (n,	
  p)	
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Power	
  Aware	
  Strong	
  Scaling	
  (PASS)	
  Model	
  

Time	
  vs	
  Scale	
  
Downey’s	
  strong	
  scaling	
  

Time	
  vs	
  Frequency	
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Frequency	
  vs	
  Power	
  

t = F(n,A,σ )

A. Strong Scaling Model

An application can be characterized by an average par-
allelism of A. The application’s parallelism remains equal
to A, except for some fraction � of the duration. Available
parallelism is 2A � 1 for �

2 fraction of the duration and just
1 for the remaining �

2 fraction of the duration. We adjust
Downey’s [26] model to satisfy the boundary conditions -
t(1) = T1, and t(n) = T1

A

for n � A, where t(n) is the
application time on n nodes, and T1 is the application time on
a single node. According to Downey’s model, the execution
time, t(n), of an application executing on n nodes can be
modeled as:

t(n) =

8
>>>>>><

>>>>>>:

T1 �
T1�

2A

n

+
T1�

2A
, 1  n  A (9)

�(T1 �
T1
2A )

n

+
T1

A

�

T1�

2A
A < n  2A� 1 (10)

T1

A

, n > 2A� 1 (11)

The first equation in this group represents the range of n

where the application is most scalable i.e. when the number
of nodes is less than A. The application’s scalability declines
significantly once n becomes larger than A because of lack
of parallelism for most of the duration. Finally, for n � 2A,
the execution time t(n) equals T1/A and does not decrease
further. Given application characteristics �, A, and T1, this
model can be used to estimate execution time for any number
of nodes n.

B. Adding Power Awareness to Strong Scaling Model

The effect of changing frequency on the execution time
varies from application to application [27] . In this section, we
model execution time as a function of CPU frequency. Since,
CPU frequency can be expressed as a function of CPU power,
we can finally express execution time as a function to CPU
power.

1) Execution Time as a Function of Frequency: Existing
work [4], [27] indicates that increase in CPU frequency beyond
a certain threshold frequency (let us call it f

h

) does not
reduce the execution time. The value of f

h

depends on the
memory bandwidth being used by the application. For f < f

h

,
execution time depends on the CPU-bounded and memory (off-
chip) bounded work of the application and can thus be modeled
as [5]–[7], [28]:

t(f) =

8
<

:

W

cpu

f

+ T

mem

, for f < f

h

(12)

T

h

, for f � f

h

(13)

where, W
cpu

and T

mem

are defined in Table III, and T

h

is the execution time at frequency f

h

. Let T
l

be the execution
time at frequency f

l

where f

l

is the minimum frequency at
which the CPU can operate. Parameter � characterizes the
frequency-sensitivity of an application and can be expressed
as:

� =
T

l

� T

h

T

l

(14)

Range of � depends on the frequency range supported by
the CPU vendor. Given the frequency range of (f

l

, f

max

),
�  1 �

f

l

f

max

. Typically, CPU-bound applications have
higher values for � whereas memory-intensive applications
have smaller � values.

Using Eq. 14 and applying boundary conditions, t(f
l

) = T

l

and t(f
h

) = T

h

, to Eq. 12, we get:

W

cpu

=
T

h

�f

l

f

h

(1� �)(f
h

� f

l

)
(15)

T

mem

= T

h

�

T

h

�f

l

(1� �)(f
h

� f

l

)
(16)

2) Frequency as a Function of CPU Power: Although Intel
has not released complete details of how the CPU power
consumption is ensured to be below the user specified CPU
power cap, it has been hinted that it is achieved using a
combination of DVFS and CPU throttling [2], [29].

Let p
l

denote the CPU power corresponding to f

l

, where
f

l

is the minimum frequency the CPU can operate at using
DVFS. To cap power below p

l

(p < p

l

), other architectural-
level mechanisms such as CPU throttling are used. We have
empirically observed that for p < p

l

, the application perfor-
mance degrades significantly even for very small savings in
power. Therefore, we restrict our study to power caps greater
than p

l

. The value of p

l

can be easily determined by setting
the CPU frequency at f

l

. CPU or the package power includes
the power consumption by its various components such as
cores, caches, memory controller, etc. The value of p

l

varies
depending on an application’s usage of these components.
In a CPU-bound application, a processor might be able to
cap power to lower values using DVFS, since only the cores
are consuming power. In contrast, for a memory intensive
application, p

l

might be higher, since the caches and memory
controller are also consuming significant power in addition to
the cores.

The major part of the dynamic CPU power consumption
can be attributed to the cores, on-chip caches and memory
controller. Power consumption of the core, p

core

, is often
modeled as p

core

= Cf

3 + Df , where C and D are some
constants [30]. Power consumption due to cache and memory
accesses is modeled as,

P3
i=1 giLi

+ g

m

M , where, L

i

is
accesses per second to level i cache, g

i

is the cost of a level i
cache access, M is the number of memory accesses per second,
g

m

is the cost per memory access. The total CPU power can
then be expressed as [31]:

p = p

core

+
3X

i=1

g

i

L

i

+ g

m

M + p

base

(17)

where, p

base

is the base/static package power consumption.
Since number of cache and memory accesses is proportional
to the CPU frequency, Eq. 17 can be written as:

p = F (f) = af

3 + bf + c (18)

where a, b, and c are constants. bf corresponds to the cores’
leakage power and power consumption of caches and memory
controller. The term af

3 represents the dynamic power of the
cores, whereas, c = p

base

represents the base CPU power. The
constants a and b are application dependent since the cache and
memory behavior can be different across applications. Eq. 18
can be rewritten as a depressed cubic equation and solved using
Fermat’s Last Theorem to get F�1:

f = F

�1(p) =
3

s
p� c

2a
+

r
(p� c)2

4a2
+

b

3

27a3

+
3

s
c� p

2a
+

r
(p� c)2

4a2
+

b

3

27a3
(19)
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Time	
  as	
  a	
  funcDon	
  of	
  power	
  and	
  number	
  of	
  nodes	
  	
  

q  n:	
  number	
  of	
  nodes	
  
q  A:	
  Average	
  Parallelism	
  
q  	
  σ	
  :	
  duraWon	
  of	
  parallelism	
  A	
  

q Wcpu:	
  CPU	
  work	
  
q  Tmem:	
  memory	
  work	
  
q  Th	
  :	
  	
  	
  minimum	
  exec	
  Wme	
  	
  

q  pcore:	
  core	
  power	
  
q  gi:	
  cost	
  level	
  I	
  cache	
  access	
  
q  Li:	
  #level	
  I	
  accesses	
  
q  gm:	
  cost	
  of	
  mem	
  access	
  
q M:	
  #mem	
  accesses	
  
q  pbase:	
  idle	
  power	
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JOB	
  QUEUE	
  

JOB	
  PROFILER	
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EXECUTION	
  
FRAMEWORK	
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  JOBS	
  
q  APPLY	
  POWER	
  CAPS	
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  ARRIVAL	
   JOB	
  
TERMINATION	
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`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
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Profiler"

Strong"Scaling"
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Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

Fig. 1: A high level overview of PARM

scaling power aware model described in § V. The scheduler’s
decisions are fed as input to the execution framework which
implements/enforces them by launching new jobs, shrink-
ing/expanding running jobs, and/or setting the power caps on
the nodes.

The scheduler is triggered whenever a new job arrives or
when a running job ends or abruptly terminates due to an
error or any other reason (‘Triggers’ box in Figure 1). At each
trigger, the scheduler tries to re-optimize resource allocation
to the set of pending as well as currently running jobs with
the objective of maximizing overall throughput. Our scheduler
uses both CPU power capping and moldability/malleability
features for throughput maximization. We formulate this
resource optimization problem as an Integer Linear Program
(ILP). The relevant terminology is described in Table I. Our
scheduling scheme can be summarized as:
Input: A set of jobs that are currently executing or are
ready to be executed (J ) with their expected execution time
corresponding to a set of resource combinations (n, p), where
n 2 N

j

and p 2 P

j

.
Objective: Maximize data center throughput.
Output: Allocation of resources to jobs at each trigger event,
i.e., identifying the jobs that should be executed along with
their resource combination (n,p).

A. Integer Linear Program Formulation

We make the following assumptions and simplifications in
the formulation:

• All nodes allocated to a given job operate at the same power.
• We do not include cooling power of the data center in our

calculations.
• Job characteristics do not change significantly during the

course of its execution. By relaxing this assumption we can
benefit from the different phases in an application. However,
that is out of the scope of this study.

• The network power consumption stays constant. It is a rea-
sonable assumption since network power does not fluctuate
much for most interconnect technologies.

• Expected wall clock time represents a good estimate of the
actual execution time that the scheduler uses for decision
making.

• W

base

, that includes power for all the components of a node
other than the CPU and memory subsystems, is assumed to
be constant.

Objective Function
X

j2J

X

n2N

j

X

p2P

j

w

j

⇤ s

j,n,p

⇤ x

j,n,p

(1)

Select One Resource Combination Per Job
X

n2N

j

X

p2P

j

x

j,n,p

 1 8j 2 I (2)

X

n2N

j

X

p2P

j

x

j,n,p

= 1 8j 2 I (3)

Bounding total nodes
X

j2J

X

p2P

j

X

n2N

j

nx

j,n,p

 N (4)

Bounding power consumption
X

j2J

X

n2N

j

X

p2P

j

(n ⇤ (p+W

base

))x
j,n,p

 W

max

(5)

Disable Malleability (Optional)
X

n2N

j

X

p2P

j

nx

j,n,p

= n

j

8j 2 I (6)

Fig. 2: Integer Linear Program formulation of PARM scheduler

TABLE I: Integer Linear Program Terminology

Symbol Description
N total number of nodes in the data center
J set of all jobs
I set of jobs that are currently running
I set of jobs in the pending queue
J set of jobs which have already arrived

and have not yet been completed i.e they
are either pending or currently running, J = I [ I

N

j

set of node counts on which job j can be run
P

j

set of power levels at which job j should be run or
in other words, the power levels at which job j’s
performance is known

n

j

number of nodes at which job j is currently running
w

j

weighing factor to set job priorities
↵ a constant in w

j

used to tradeoff job fairness/priority vs
data center throughput

x

j,n,p

binary variable, 1 if job j should run
on n nodes at power p, otherwise 0

t

now

current time
t

a

j

arrival time of job j

W

base

base machine power that includes everything
other than CPU and memory

t

j,n,p

execution time for job j running on n

nodes with power cap of p
s

j,n,p

strong scaling power aware speedup of application j

running on n nodes with power cap of p

• A job once selected for execution is not stopped until its
completion, although the resources assigned to it can change
during its execution.

• All jobs are from a single user (or have the same priority).
This is assumed just to keep the focus of the paper on other
issues. This assumption can be very easily relaxed by setting
w

j

proportional to the user/job-queue priority.

Scheduling problems are framed as ILPs and ILPs are NP-hard
problems. Maximizing throughput in the objective function
requires introducing variables for the start and end time of jobs.
These variables make the ILP computationally very intensive
and thus impractical for online scheduling in many cases.
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Therefore in the objective function, instead of maximizing
the overall throughput of all the jobs currently in queue, we
propose a greedy objective function that maximizes the sum of
the power-aware speedup (described later) of the jobs selected
for immediate execution. This objective function improves the
job throughput while keeping the ILP optimization computa-
tionally tractable for online scheduling.

We define the strong scaling power aware speedup of a job
j as follows:

s

j,n,p

=
t

j,min(N
j

),min(P
j

)

t

j,n,p

(7)

where s

j,n,p

is the speedup of job j executing using resource
combination (n, p) with respect to its execution with resource
combination (min(N

j

),min(P
j

)). Objective function (Eq. 1)
of the ILP maximizes the sum of the power aware speedups
of the jobs selected for execution at every trigger event. This
leads to improvement in FLOPS/Watt (or power efficiency,
as we define it). Improved power efficiency implies better
job throughput (results discussed in § VI,§ VII). Oblivious
maximization of power efficiency may lead to starvation for
jobs with low strong scaling power aware speedup. Therefore,
to ensure fairness, we introduced a weighing factor (w

j

) in the
objective function, which is defined as follows:

w

j

= (trem
j,min(N

j

),min(P
j

) + (t
now

� t

a

j

))↵ (8)

w

j

artificially boosts the strong scaling power aware speedup
of a job by multiplying it by the job’s completion time, where
completion time is the sum of the time elapsed since job’s
arrival and the job’s remaining execution time with resource
combination (min(N

j

),min(P
j

)) i.e. (trem
j,min(N

j

),min(P
j

)) .
The percentage of a running job completed between two
successive triggers is determined by the ratio of the time
interval between the two triggers and the total time required
to complete the job using its current resource combination.
Percentage of the job that has been completed so far can then
be used to compute t

rem

j,min(N
j

),min(P
j

). The constant ↵ (↵ � 0)
in Eq. 8 determines the priority given to job fairness against
its strong scaling power aware speedup i.e. a smaller value
of ↵ favors job throughput maximization while a larger value
favors job fairness. We now explain the constraints of the ILP
formulation (Figure 2):

• Select one resource combination per job (Eq. 2,3): x

j,n,p

is a binary variable indicating if job j should run using
resource combination (n, p). This constraint ensures that at
most one of the variables x

j,n,p

is set to 1 for any job
j. The jobs which are already running (set I) continue
to run although they can be assigned a different resource
combination (Eq. 3). The jobs in the pending queue (I),
for which at least one of the variables x

j,n,p

is equal to 1
(Eq. 2), are selected for execution and moved to the set of
jobs currently running (I).

• Bounding total nodes (Eq. 4): This constraint ensures that
the number of active nodes do not exceed the maximum
number of nodes available in the overprovisioned data
center.

• Bounding power consumption (Eq. 5): This constraint en-
sures that power consumption of all the nodes does not
exceed the power budget of the data center.

• Disable Malleability (Eq. 6): To quantify the benefits of
malleable jobs, we consider two versions of our scheduler.
The first version supports only moldable jobs and is called
noSE (i.e. no Shrink/Expand). The second version allows

TABLE II: Different versions of PARM

Acronym Description
noMM Jobs are neither Moldable nor Malleable
noSE Jobs are moldable but not malleable
wSE Jobs are both moldable and malleable

TABLE III: Power Aware Strong Scaling Model Terminology

Symbol Description
A Average parallelism in the application
� fraction of the duration when application parallelism

is not A, parallelism is 2A� 1 for �

2 fraction and 1 for
�

2 fraction of the duration
T1 Application execution time on 1 node
f CPU Frequency
f

h

Threshold frequency beyond which application
execution time does not reduce

f

l

/f
min

Minimum CPU frequency supported by vendor
f

max

Maximum CPU frequency supported by vendor
T

l

Execution time at CPU frequency f

l

T

h

Execution time at CPU frequency f

h

W

cpu

on-chip workload in terms of CPU cycles
T

mem

Time for off-chip work in the application that is unaffected
by CPU frequency

both moldable and malleable jobs and is called as wSE (i.e.
with Shrink/Expand). Malleability can be disabled by using
Eq. 6. This constraint ensures that number of nodes assigned
to running jobs does not change during the optimization
process. However, it allows changing the power allocated to
running jobs. In real-world situations, the jobs submitted to a
data center will be a mixture of malleable and non-malleable
jobs. The scheduler can apply Eq. 6 to disable malleability
for non-malleable jobs. In addition to the noSE and wSE,
we also measure the performance of noMM (no Moldability
and Malleability) version of PARM in which the jobs are
neither moldable nor malleable. In this version, besides job
selection, the only degree of freedom available to PARM is
the CPU power allocated to the nodes of the selected jobs.
The three versions of the PARM are summarized in Table II
for ease of reference.

V. POWER AWARE STRONG SCALING
PERFORMANCE MODEL

PARM’s optimal resource allocation decisions depend on
the availability of jobs performance data. Performance data
corresponding to a large number of resource combinations
(n, p) can be crucial to the quality of solution PARM pro-
vides. Since exhaustive profiling can be impractical for large
number of resource combinations, we need a model to predict
job performance. One of the significant contributions of our
work is the proposed performance model that can predict an
application’s performance for any given resource combination
(n, p). We call it a Power Aware Strong Scaling performance
model or PASS model. The model parameters are specific to
the application and the input dataset with which the application
will be executed. Applying mathematical regression to applica-
tion’s profile data for different resource combinations enables
PASS to estimate important power characteristics. PASS model
extends Downey’s [26] strong scaling model by making it
power aware. Table III gives the terminology used in this
section.



Power	
  Aware	
  Resource	
  Manager	
  (PARM)	
  

3/4/15	
   Power-­‐Aware	
  Job	
  Scheduling	
   15	
  

SCHEDULER	
  

JOB	
  QUEUE	
  

JOB	
  PROFILER	
  
PASS	
  MODEL	
  

EXECUTION	
  
FRAMEWORK	
  

	
  
q  SHRINK/EXPAND	
  JOBS	
  
q  APPLY	
  POWER	
  CAPS	
  

	
  

JOB	
  ARRIVAL	
   JOB	
  
TERMINATION	
  

TRIGGERS	
  



Experimental	
  Setup	
  

q  ApplicaWons	
  
Ø Memory-­‐intensive	
  

§  Jacobi	
  and	
  Wave2D	
  
Ø  ComputaWon-­‐intensive	
  

§  LeanMD	
  
Ø Mixed	
  

§  AMR	
  and	
  Lulesh	
  

q  Testbed	
  
q  38-­‐node	
  Intel	
  Sandy	
  Bridge	
  
q  6	
  physical	
  cores,	
  16GB	
  RAM	
  	
  
q Power	
  capping	
  using	
  RAPL	
  
q CPU	
  power	
  cap	
  range	
  [25-­‐95]W	
  
	
  

q  Job	
  Dataset	
  
q  	
  β	
  corresponds	
  to	
  CPU	
  sensiWvity	
  
q  SetL:	
  Mix	
  of	
  apps	
  with	
  average	
  β=0.1	
  
q  SetH:	
  Mix	
  of	
  apps	
  with	
  average	
  β=0.27	
  

q  Power	
  Budget	
  
q  CPU	
  power	
  levels={30,	
  32,	
  34,	
  39,	
  45,	
  55}W	
  
q  Node	
  power	
  consumpWon=	
  116W	
  
q  Power	
  Budget	
  =	
  3000W	
  
q  #nodes	
  in	
  tradiWonal	
  data	
  center	
  =	
  28	
  

3/4/15	
   Power-­‐Aware	
  Job	
  Scheduling	
   16	
  



EsWmaWng	
  Performance	
  using	
  PASS	
  

3/4/15	
   Power-­‐Aware	
  Job	
  Scheduling	
   17	
  

3) Execution Time as Function of CPU power & Number
of Nodes: To express t in terms of p, we use Eq. 19 to replace
f , f

l

, and f

h

in Eqs. 12, 15, 16. To obtain the PASS model,
that estimates execution time as a function of n and p, we
combine our power aware model with the strong scaling model
described in § V-A, by replacing T

h

in Eqs. 12, 13, 15, 16 with
t(n) from Eqs. 9, 10, 11.

VI. EXPERIMENTAL RESULTS

In this section, we first describe our experimental setup
that includes applications, testbed, and job datasets. Next, we
obtain the application characteristics using the PASS perfor-
mance model and finally compare the performance of different
versions of PARM with SLURM. PARM can be used in
conjunction with most parallel programming models. While
programming models such as CHARM++ can benefit by using
wSE scheme that uses job malleability, other models like MPI,
can use the noSE scheme to benefit from power awareness
and job moldability. Usage of PARM is not restricted to data
centers with focus on running large number of applications
simultaneously. It can even be used in data centers where
performance of running very small number (or just 1) of large-
scale applications is critical. For example, while running just 1
large job, PARM optimizer will determine the optimal number
of nodes and the cpu power cap of the nodes, on which the
job should be executed for optimal performance.

A. Applications

We used five applications, namely, Wave2D, Jacobi2D,
LeanMD, Lulesh [32], and Adaptive Mesh Refinement or
AMR [33]. These applications have different CPU and memory
usage:

• Wave2D and Jacobi2D are 5-point stencil applications that
are memory-bound. Wave2D has higher FLOPS than Ja-
cobi2D.

• LeanMD is a computationally intensive molecular dynamics
application.

• CPU and memory usage of Lulesh and AMR lies in between
the stencil applications and LeanMD.

B. Testbed

We conducted our experiments on a 38-node Dell Pow-
erEdge R620 cluster (which we call the Power Cluster). Each
node contains an Intel Xeon E5-2620 Sandy Bridge with 6
physical cores at 2GHz, 2-way SMT with 16 GB of RAM.
These machines support on-board power measurement and
capping through the RAPL interface [34]. The CPU power
for our testbed can be capped in the range [25� 95]W , while
the capping range for memory power is [8� 35]W .

C. Obtaining Model Parameters of Applications

Application characteristics depend on the input type, e.g.,
grid size. We fix the respective input types for each ap-
plication. Each application needs to be profiled for some
(n, p) combinations to obtain data for curve fitting. A single
time step (iteration) of an application is sufficient to get the
performance for a given resource combination. For applications
having time steps (iteration) in order of milliseconds, the
cost of profiling several resource combinations is negligible
compared to the overall execution time of the application.
Each time step (iteration) will include the different phases of
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Fig. 3: Modeled (lines) and observed (markers) power aware speedups
of the applications at 20 nodes

an application such as IO, communication, solvers, etc. and
therefore the overall characteristics of the job can be captured
in a step/iteration. This approach works best for iterative
applications and other applications whose characteristics do
not change significantly over time, which is true for majority
of the scientific applications.

We use linear and non-linear regression tools provided by
MATLAB to determine the application parameters by fitting
our performance model proposed in § V to the sampled perfor-
mance data obtained by running the parallel applications on 20
nodes. The obtained parameter values for all the applications
are listed in Table IV and are discussed here:

• The parameter c (CPU base power) lies in the range [13�
14]W for all applications

• p

l

was 30W for LeanMD and 32W for rest of the applica-
tions. For LeanMD, it is possible to cap the CPU power to
a lower value just by decreasing the frequency using DVFS.
This is because LeanMD is a computationally intensive
application and therefore most of the power is consumed by
the cores rather than caches and memory controller. On the
contrary, for other applications, CPU throttling kicks in at
a higher power level because of their higher cache/memory
usage.

• value of p

h

lies in the range of [37 � 54]W for the
applications under consideration.

• value of � lies in the range [0.08 � 0.40]. Higher value of
� means higher sensitivity to CPU power.

• Wave2D and Jacobi2D have the largest memory footprint
that results in high CPU-cache-memory traffic. Therefore
the value of b is high for these two applications.

Figure 3 shows the modeled (lines) as well as the observed
(markers) power-aware speedups for all applications with
varying CPU power cap at 20 nodes. Power-aware speedup
is calculated with respect to the execution time at p = p

l

and
the same number of nodes. LeanMD has the highest power-
aware speedup whereas Jacobi2D has the lowest.

D. Power Budget

We assume a power budget of 3300W to carry out experi-
ments using our Power Cluster. Although the vendor-specified
TDP of CPU and memory of the Dell nodes was 95W and
35W, respectively, the actual power consumption of CPU and
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Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

p

n

f

⇥

3
p

n

f

⇥

3
p

n

f

) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
3
p

n

f

⇥

3
p

n

f

⇥

n

t

2
3
p
n

f

. For load balance, the data in memory
(m

j

MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

t

c

=
(mj

n

f

�

m

j

n

t

) ⇤ n
f

2 ⇤ b ⇤ n
2
3
f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.
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Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m
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MB, has to expand from n
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nodes to n
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nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3
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. For load balance, the data in memory
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MB) will be distributed equally amongst the n
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nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):
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where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.
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Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3
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) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
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. For load balance, the data in memory
(m
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MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):
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where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.
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nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m
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MB, has to expand from n
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nodes to n
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nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3
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) interconnected through a 3D
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. For load balance, the data in memory
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Hence, the communication cost for the data transfer can be
expressed as (secs):
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where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.
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Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (� = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (� = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (� = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (� = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (� = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (� = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960
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Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (↵)

of CPU power levels (P
j

) are increased from 2 to 8. For
example, |P

j

|= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |P

j

| goes from 1 to 6 and the improvement
stops as |P

j

| is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimate an applications
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Fig. 7: Effect of increasing the number of power levels (|P
j

|) on the
average and maximum completion time of Set 1 (� = 0.5). There is
negligible improvement in performance after 6 power levels

power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at
exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels
of caches on application performance may not be proportional
to their power consumption. In our future work, we plan to
add this additional degree of freedom to PARM, which is the
ability to dynamically enable/disable caches at various levels.
We also plan to provide rich support for user priorities in
PARM. Thermal behavior of CPUs can significantly affect the
reliability of a machine [41] as well as the cooling costs of
the data center [42]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.
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Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (� = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (� = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (� = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (� = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (� = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (� = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960
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Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (↵)

of CPU power levels (P
j

) are increased from 2 to 8. For
example, |P

j

|= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |P

j

| goes from 1 to 6 and the improvement
stops as |P

j

| is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimate an applications
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Fig. 7: Effect of increasing the number of power levels (|P
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|) on the
average and maximum completion time of Set 1 (� = 0.5). There is
negligible improvement in performance after 6 power levels

power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at
exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels
of caches on application performance may not be proportional
to their power consumption. In our future work, we plan to
add this additional degree of freedom to PARM, which is the
ability to dynamically enable/disable caches at various levels.
We also plan to provide rich support for user priorities in
PARM. Thermal behavior of CPUs can significantly affect the
reliability of a machine [41] as well as the cooling costs of
the data center [42]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.



Tradeoff	
  between	
  Throughput	
  and	
  Job	
  Fairness	
  

3/4/15	
   Power-­‐Aware	
  Job	
  Scheduling	
   23	
  

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

 

 

baseline
noSE
wSE

(a) Set1

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

 

 

baseline
noSE
wSE

(b) Set2

0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

Arrival time scaling factor (γ)

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e
 (

m
in

s)

 

 

baseline
noSE
wSE

(c) Set3

Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (� = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (� = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (� = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (� = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (� = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (� = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960
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Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (↵)

of CPU power levels (P
j

) are increased from 2 to 8. For
example, |P

j

|= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |P

j

| goes from 1 to 6 and the improvement
stops as |P

j

| is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimate an applications
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Fig. 7: Effect of increasing the number of power levels (|P
j

|) on the
average and maximum completion time of Set 1 (� = 0.5). There is
negligible improvement in performance after 6 power levels

power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at
exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels
of caches on application performance may not be proportional
to their power consumption. In our future work, we plan to
add this additional degree of freedom to PARM, which is the
ability to dynamically enable/disable caches at various levels.
We also plan to provide rich support for user priorities in
PARM. Thermal behavior of CPUs can significantly affect the
reliability of a machine [41] as well as the cooling costs of
the data center [42]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.
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