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Many parallel applications need dynamic load balancing during the course of their execution because of dynamic variation in the computational load. An ideal load balancer is one that can achieve
perfect load balance, while doing minimal data migration (i.e. is communication minimizing), is highly scalable to large number of processors and does not have large memory footprint. None of the
existing load balancing algorithms - centralized, hybrid, and distributed algorithms — satisfy the criterion of an ideal load balancer. We propose a novel tree-based fully distributed algorithm that is
an ideal load balancing algorithm when the work units are homogeneous. We evaluate its performance on Mira and Blue Waters and compare it with several existing load balancing strategies.
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3. Prepare for Downward Pass (first called at root and then called recursively on children)
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4. Do Downward Pass (Migration decisions and migrations take place in this step)
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CENTRALIZED AND HIERARCHICAL ALGORITHMS (randomization keeps list sizes and number of messages per process small)

Problem Statement
Develop a scalable distributed load balancer that can distribute the work-
units equally amongst processors while minimizing data communication
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