Optimal Distributed Load Balancing Algorithm for Homogeneous Work Units

Akhil Langer (4" year PhD Student) :: Laxmikant (Sanjay) Kale (Advisor) PPI PARALLEL

Department of Computer Science, University of lllinois at Urbana-Champaign i PROGRAMMING
lA3| | ABORATORY

Many parallel applications need dynamic load balancing during the course of their execution because of dynamic variation in the computational load. An ideal load balancer is one that can achieve
perfect load balance, while doing minimal data migration (i.e. is communication minimizing), is highly scalable to large number of processors and does not have large memory footprint. None of the
existing load balancing algorithms - centralized, hybrid, and distributed algorithms — satisfy the criterion of an ideal load balancer. We propose a novel tree-based fully distributed algorithm that is
an ideal load balancing algorithm when the work units are homogeneous. We evaluate its performance on Mira and Blue Waters and compare it with several existing load balancing strategies.

MOTIVATION PROPOSED TREE BASED ALGORITHM

1. Initialization (one-time)

Adaptive Mesh Refinement (AMR) simulations constitute significant portion O Construct spanning tree of processors with any branching factor

of many of the world’s supercomputers usage

Computational Climate Mantle 2. Upward Pass ..
SEIGEEEE Fluid Dynamics ST Modeling Turbulence Convection Modeling d Wait for subtree load messages from child processors

?‘I J d subtree load = my_load + 2(child subtree load) 2 s B

d Send subtree load to parent processor
http://web.mit-edu/astmphSiCS/ http://www.cfd4aircraft.com/int_conf/IC3/ http://www.

3. Prepare for Downward Pass (first called at root and then called recursively on children)
(J Compute child subtree loads after Ib

: : : Supplier Information
Mesh is restructured very frequently, typically every two steps Call “Prepare for Downward Pass” on children ngmcesf#
Frequent refining and coarsening creates load imbalance across processes d If subtree load before |b > subtree load after |b 0 #work-units to be supplied
| A === ool [~ Feegetoad | » | am a work supplier subtree d Is process itself the supplier?
L L Higniim = =il - Temem el » Wait for receivers information
e o 3500wt If subtree load before Ib < subtree load after Ib Receiver Information
il sl et e > | am a work receiver subtree - Processt | .
: : : : L #work-units to be received
» Wait for suppliers information . .
mu > P1:10| SR SRS SRR ST DR S — [Is process itself the receiver?
= 0 5 10 15 20 25 30 35 (] Do Downward Pass
mesh restructuring iteration number

4. Do Downward Pass (Migration decisions and migrations take place in this step)
[Tag itself and child subtrees as work receiver/supplier
d “Matchmaking” -- assign suppliers to receivers
1 If root process of work supplier subtree is itself the supplier, and
root process of work receiver subtree is itself the receiver,
then ask supplier to initiate work transfer
(d Randomly send either receivers list to suppliers, or suppliers list to receivers

CENTRALIZED AND HIERARCHICAL ALGORITHMS (randomization keeps list sizes and number of messages per process small)

Problem Statement
Develop a scalable distributed load balancer that can distribute the work-
units equally amongst processors while minimizing data communication

Centralized PERFORMANCE EVALUATION

Approach: Assign load from Testbeds
overloaded processors to under- _)

loaded processors

Average Overloaded Under-loaded
load processes processes

T T
= i i
MPUTING

Fi

Cray XE6/XK7

]
[ER

SUSTAINED PETASCALE CO

Disadvantages: Significant overhead, O(p) data structures, O(p) time :
IBM BG/Q

. . PowerPC A2 1.6GHz AMD 6276 Interlagos 2.45 GHz
Hierarchical 16 cores, 4 hardware threads per core 16 FPU cores

Time per step with various load balancing strategies

N . load balancing Level O
® Object

1 4 .)
10" — ‘ ‘ | ‘ ‘ ‘ | 35% improvement
-Loilccj) Eslancing Strategy over NO LB
[Centralized LB 28% improvement
, B Distributed LB over Gossip B
Hl Optimized Parallel Prefix LB
Level 1 Lo° | Trie LB | \ /
4 o N\
— | y 95% reduction in
_ migrations over
Parallel Prefix LB
OO0 OO0 Level 2 1075k ak 8k 16k 32k 64k 128k 256k
.. number of processes
Load Balancing Overhead Number of Migrations

loa

time per step (seconds)

bala

10° — ‘ ‘ — ‘ ‘ ‘ ‘
_ Load (I?alancl:ingcI Strategy 300000t (mmmm Parallel Prefix LB
H 2 @ Centralized LB 0
Approach Dlsadvan.tages | % = Centralized IE £ 250000 . Tree LB
(d Create subgroup of processes 1 Excessive data collection at lower level g BEE Opt Parallel Prefix LB g
. . : o BN Tree LB = 200000}
[Collect load information at root of each subgroup [Work done at multiple levels E :
. 10 | . C
d Higher levels receive aggregate info J Requires manual tuning for subgroup size 2 g 120000
. . - 2 £
d Higher levels deliver decision at aggregate level or number of levels i 2 100000
Q ©
kS I S 50000}
o
10° 2k 4k 8k 16k 32k 64k 128k 256k 2k 4k 8k 16k 32k 64k 128k 256k
number of processes number of processes
DlSTRl BUTED ALGOR'TH MS AMR3D Strong Scaling on MIRA AMR3D Strong Scaling on Blue Waters
A~ . - [— Obtained Speedu -- ldeal Speedu _ aine eedu __ ea eedu
DIﬁUSIO" GOSSI p Pa ra I IEI PrEﬁx ~—+ Max Mesh Igepth i 10 ~—+ Max Mcgsh DeT)th =8 — 322 Me:hslgeptdh i 10 — :\(/:Ilaxll\i:sh ?Deith =9
»—+ Max Mesh Depth =9 »—+ Max Mesh Depth =7 16

0.5} 0.5}

0.25 Bz

time per step (seconds)
time per step (seconds)

0.125¢

0.125¢

0.0625| 0.0625}

256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 256 512 1k 2K 4k 8k 16k 32k
number of processes number of processes

Uniform grid equivalent size (when max-depth = 10) = 549,755,813,888 zones

A4 V

Decisions based on localized load Gossip protocol to propagate load Obtain task’s global id using 57% parallel efficiency at 256k processes 67% parallel efficiency at 32k processes
information e.g. near neighbor information followed by parallel prefix, assign to process
probabilistic transfer of work Optimization: Subtract global CONTRIBUTIONS
units minimum load o N : L : :
S — (d Communication minimizing optimal distributed load balancing algorithm:
0 Perfect load balance » Minimal migration of work units, 95% improvement over parallel prefix load balancer
Disadvantages: Disadvantages: Disadvantages: » Very sr.nal{ memoryfootprimf— maX|mum.I|st Size of 13 at 128k processors |
0 Improve load balance rather 0 Multiple attempts to obtain 0 Excessive data migration > Fgll){ c-jlstr/buted -'O(Ic.)g p)? time complexity, assurmng O(log p) memory footprint
than obtain global balance target processor of a load 3 Excessive network power > Significant reduction o netwprk power consumption
O Multiple iterations to converge U User specified balance %age consumption, congestion i P(?rformance Co'm.parl'son Wl,th MBS Gy stra.tegles _ _
) Glory oMo EameE 0 No guarantees on load balance High Parallel Efficiencies achieved for strong scaling of 3D Adaptive Mesh Refinement
References
1. Harshitha, et. Al. A Distributed Dynamic Load Balancer for Iterative Applications. SC 13. 4.). Lifflander et al. Persistence-based Load Balancers for Iterative Overdecomposed Applications.
2. G.Zheng, et al. Periodic Hierarchical Load Balancing for Large Supercomputers. [JHPCA, 2011. HPDC, 2012.

3. A. Corradi, et al. Diffusive Load Balancing Policies for Dynamic Applications. IEEE Concurrency, 1999. 5. Langer, et al. Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement. SBAC-PAD 2012.

