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Current Challenges

* Energy, power and reliability!

o 235 billion kWh (2% of total US electricity
consumption) in 2010

e 20 MW target for exascale

e MTBF of 35-40 minutes for exascale machine!

1. Peter Kogge, ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems
3



Agenaa

e Applying thermal restraint to

 Remove hot spots and reduce cooling
consumption’

e Improve and hence performance?
e Operation under strict budget
» Optimizing a single application?

 Maximizing throughput of the entire data center having
multiple jobs?

1. Pre-Preliminary exam work
2. Post-Preliminary exam work



Thermal Restraint

Reducing Cooling Energy Consumption

Publications

Osman Sarood, Phil Miller, Ehsan Totoni, and Laxmikant V. Kale. "Cool’ Load Balancing for High Performance
Computing Data Centers. IEEE Transactions on Computers, December 2012,

Osman Sarood and Laxmikant V. Kale. Efficient "“Cool Down’ of Parallel Applications. PASA 2012.
Osman Sarood, and Laxmikant V. Kale. A "Cool’ Load Balancer for Parallel Applications. Supercomputing’11 (SC’'11).

Osman Sarood, Abhishek Gupta, and Laxmikant V. Kale. Temperature Aware Load Balancing for Parallel Application:
Preliminary Work. HPPAC 2011.



Power Utilization Efficiency
(PUE) In 2012

Average PUE of your largest data center:
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PUEs for HPC Data Centers

Supercomputer PUE
Earth Simulator! 1.55
PUE Total Facility Energy
~ IT Equipment Energy Tsubame?2.0 1.31/1.46
ASC Purple? 1.67
Jaguars 1.58

 Most HPC data centers do not publish cooling
costs

* PUE can change over time

1. Wu-chen Feng, The Green500 List: Encouraging Sustainable Supercomputing
2. Satoshi Matsuoka, Power and Energy Aware Computing with Tsubame 2.0 and Beyond
3. Chung-Hsing Hsu et. al., The Energy Efficiency of the Jagmar Supercomputer



Cooling Power (kW)

Tsubame’s Cooling Costs

Cooling costs generally depend:
On the environment (ambient temperature)
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http://tsubame.gsic.titech.ac.jp/

HOt Spots

HPC Cluster Temperature Map, Building 50B room 1275, LBNL

Can software do anything to
reduce cooling energy and
formation of hot spots?

1. Dale Sartor, General Recommendations for High Performance Computing Data Center Energy Management
Dashboard Display (IPDPSW 2013) 9



"Cool’ Load Balancer

Uses Dynamic Voltage and Frequency Scaling (DVFS)
Specify temperature range and sampling interval

Runtime system periodically checks processor
temperatures

Scale down/up frequency (by one level) if
temperature exceeds/below maximum threshold at
each decision time

Transfer tasks from slow processors to faster ones
Using Charm++ adaptive runtime system
Details in dissertation

10



Average Core Temperatures in Check

CRAC set-point = 25.6C Temperature range: 47C-49C

Cluster Average Temperature (32 nodes)

Jacobi2D -
Allowed range -

Temperature (C)

100 150 200

Execution Time (seconds)

* Avg. core temperature within 2 C range

* Can handle applications having different
temperature gradients

11



Benefits of Cool’ Load Balancer
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Thermal Restraint
Improving Reliability and Performance

Post-Preliminary Exam Work

Publications

« Osman Sarood, Esteban Meneses, and Laxmikant V. Kale. A "Cool’ Way of Improving the Reliability of HPC Machines.
Supercomputing’13 (SC’13).



-ault tolerance In present
day supercomputers

* Earlier studies point to per socket Mean Time
Between Failures (MTBF) of 5 years - 50 years

 More than 20% of computing resources are wasted
due to failures and recovery in a large HPC center?

 Exascale machine with 200,000 sockets Is
predicted to waste more than 89% time in failure/
recovery?

1. Ricardo Bianchini et. al., System Resilience at Extreme Scale, White paper

2. Kurt Ferreira et. al., Evaluating the Viability of Process Replication Reliability for Exascale Systems, Supercomputing’11 14



Tsubame?2.0 Failure Data’

Component MTBF

Core Switch  65.1 days

e [subame?2.0 failure rates reck 86.9 daye

Edge Switch  17.4 days

 Compute failures are much frequent U 289days

Compute Node 15.8 hours

e High failure rate due to increased temperatures
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Isubame Fault Analysis
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http://tsubame.gsic.titech.ac.jp/

CPU Temperature and MTBF

* 10 degree rule: MTBF halves (failure rate doubles) for
every 10C increase in temperature’
« MTBF (m) can be modeled as:

—bsT
m=Axe

where ‘A’, ‘b’ are constants and '’ IS processor
femperature
* A single failure can cause the entire machine to fail,
hence MTBF for the entire machine (M) is defined as:
1

N 1
D=1 o

M =

1. Wu-Chun Feng, Making a Case for Efficient Supercomputing, New York, NY, USA

17



Related Work

* Most earlier research tocusses on improving fault
tolerance protocol (dealing efficiently with faults)

* Our work focusses on increasing the MTBF
(reducing the occurrence of faults)

* Our work can be combined with any fault tolerance
porotocol

18



Distribution of Processor
Temperature

* 5-point stencil application (Wave2D from Charm++ suite)

» 32 nodes of our Energy Cluster!

* Cool processor mean: 59C, std deviation: 2.17C

7

| ICool Processors
I Hot Processors

6

w pey (8

Number of processors

no

1

%0 55 60 6'5 70 75 8‘0 85
1. Thanks to Prof. Tarek Abdelzaher for allowing us to use the Energy Cluster

19



Estimated MIBF - No
Temperature Restraint

e Using observed max temperature data and per-socket MTBF of 10
years (cool processor mean: 59C, std deviation: 2.17C)

, -0.069T7 M =
 Formula for M: m = 160 x e SN 1
n=1 mnq
7 T T T 60
[ ]Cool Processors
B Hot Processors 55
6r i
)
& enl
o 5 o 50
2 o)
@ D 45)
(O]
g 4| =
Q o
- S 40
5 3 [
2 & 35t
S —
o] (@)
z 2 @ 30}
|_
=
1 | —‘ I 257 .
| | | | | 20 | | | | | | |
45 50 55 60 65 70 75 80 85 50 55 60 65 70 75 80
Processor temperature ( °C) Maximum allowed temperature ( °C)

20



Estimated MTBF - Removing
Hot Spot

* Using measured max temperature data for cool
processors and 59C (same as average
temperature for cool processors) for hot processors
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cstimated M1 BF -
Temperature Restraint

* Using randomly generated temperature data with
mean: 50C and std deviation: 2.17C (same as cool
processors from the experiment)
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Recap

e Restraining temperature can improve the estimated
MTBF of our Energy Cluster

* Qriginally (No temperature control): 24 days

 Removing hot spots: 32 days

* Restraining temperature (mean 50C): 58 days
* How can we restrain processor temperature”?

* Dynamic Voltage and Frequency Scaling (DVFS)°>?

5. Reduces both voltage and frequency which reduces power consumption resulting in temperature to fall
23



Restraining Processor
Temperature

Extension of "Cool’ Load Balancer
Specity temperature threshold and sampling interval
Runtime system periodically checks processor temperature

Scale down/up frequency (by one level) if temperature exceeds/
below maximum threshold at each decision time

Transfer tasks from slow processors to faster ones
Extended by making it communication aware (details in paper):

» Select objects (for migration) based on the amount of
communication it does with other processors

24



Improving MTBF and Its
Cost

e Temperature restraint comes along DVFS induced slowdown!

* Restraining temperature to 56C, 54C, and 52C for Wave2D
application using Cool’ Load Balancer

How helpful is the improvement in MTBF considering its cost?

Timing Penalty
(%)

Threshold (C) MTBF (days)

56 36 0.5
54 40 1.5
52 43 4

Timing penalty calculated based on the run where all processors run at maximum frequency
25



Performance Model

1 = TSolvc + TChcck:point + TRccovcr + TRcsta'r't

e Execution time (T): sum of useful work, check
pointing time, recovery time and restart time

* [femperature restraint;

e decreases MTBF which in turn decreases check
pointing, recovery, and restart times

* |ncreases time taken by useful work

20



Performance Model

Symbol Description

T Total execution time

Useful work

check point time

W
i Check point period
O
R Restart time
M

slowdown

T = Tsoive + TC’heck:point + TRecover + TRestart

W T (T7+6 T
T = Wi 2 _q1)s R
. +( . ) "M ( > )+ M

1. J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps

27



Model Validation

Experiments on 32-nodes of Energy Cluster

To emulate the number of failures in a 700K socket machine, we utilize a
scaled down value of MTBF (4 hours per socket)

Inject random faults based on estimated MTBF values using ‘kill -9’
commanad

Three applications:
e Jacobi2D: 5 point-stencil

» LULESH: Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics

» Wave?2D: finite difference for pressure propagation

28



Model Validation

* Baseline experiments:
* Without temperature restraint

« MTBF based on actual temperature data from
experiment

 [emperature restrained experiments:

« MIBF calculated using the max allowed
temperature

29



Reduction In Execution Time

 Each experiment was longer than 1 hour having at

least 40 faults

* Inverted-U curve points towards a tradeoff between
timing penalty and improvement in MTBF

=g

&

N

=

" 2.14X

Reduction in execution time (%)

N a D o«

ﬁo

ieox 142X

1.86X

Model
Experiment |1

1.23X

46 48 50 52
Max allowed temperature (C)

(a) Lulesh

1.07X ;

54

Reduction in execution time (%)

-
o
-

N

- _Model < | 2.00X 1.74X - - -Model
14; . Experiment |1 LM( gy s 1.52% Experiment |1
0 [ g — - ) -:"."._,_‘ *
| 1.93X . 1.46X £ 1212 30X e 132X
[ - | —t
10 2 10| "\
S 1.28X 3 | + . RN
gl ¢ s Iimes improvementin \_ |
6t c of MIBF over baseline |\
2.21X S
4+ NI = 4r
1.11X g ‘
2! B 2}
m |
a4 46 48 50 52 54 a2 a4 a5 a8 50 52

Max allowed temperature (C)

(b) Wave2D

Max allowed temperature (C)

(c) Jacobi2D

Reduction in time calculated compared to baseline case with no temperature control

30



Improvement in Machine
Efficiency

e Our scheme improves utilization beyond 20K sockets compared to baseline
e For 340K socket machine:
« Baseline: Efficiency < 1% (un operational)

* Our scheme: Efficiency ~ 21%
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Predictions for Larger
Machines

* Per-socket MTBF of 10 years

* Optimum temperature thresholds
40
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Power Constraint

Improving Performance of a Single Application

Publications

« Osman Sarood, Akhil Langer, Laxmikant V. Kale, Barry Rountree, and Bronis de Supinski. Optimizing Power Allocation to CPU
and Memory Subsystems in Overprovisioned HPC Systems. IEEE Cluster 2013.



What's the Problem?

Theoretical peak performance (FLOPS)
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Overprovisioned Systems’

Example
 \What we currently do: 10 nodes @ 100 W (TDP)
20 nodes @ 50 W

 Assume each node consumes Thermal Design Point
(TDP) power

* What we should do (overprovisioning):

e Limit power of each node and use more nodes than
a conventional data center

e Overprovisioned system: You can't run all nodes at
max power simultaneously

1. Patki et. al., Exploring hardware overprovisioning in power-constrained, high performance computing, ICS 2013
35



Where Does Power Go?

 Power distribution for BG/Q
processor on Mira

 CPU/Memory account for
over /6% power

 No good mechanism of
controlling other power
domains

1. Pie Chart: Sean Wallace, Measuring Power Consumption on IBM Blue Gene/Q
36
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Power Capping - RAPL

* Running Average Power Limit (RAPL) library

e Uses Machine Specific Registers (MSRs) to:
— measure CPU/Memory power
— set CPU/memory power caps

* Can report CPU/memory power consumption at
millisecond granularity



Problem Statement

Optimize the numbers of nodes (n ), the CPU
power level (pc) and memory power level (pm )
that minimizes execution time (t ) of an application
under a strict power budget (P ), on a high
performance computation cluster with p b as the
base power per node i.e. determine the best
configuration (n x {pc, Pm})



Applications and Testbed

» Applications

* Wave2D: computation-intensive finite differencing
application

 LeanMD: molecular dynamics simulation program
 LULESH: Hydrodynamics code
 Power Cluster
» 20 nodes of Intel Xeon E5-2620
* Power capping range:
 CPU:25-95W
e Memory: 8-38W



Profiling Using RAPL

Profile configurations (n x pc, pm )
20 I 1 | 1 1 1

rofile £ 5xp,.8)
rofile for
n: Num of nodes . (5xp_,18)
pc: CPU power cap 16} " (12xp_.8)
pm: Memory power cap g (12x p_,10)

o (12 X P, ,18)
n: {5,12,20} £ 12} ) (20x p_.8)
pb: {28,32,36,44,50,55} = . (20 x P, ,10)
Pm: 18,10,18} g . (12x44 18) (20x p,_,18)
Pb. 38 Lﬁ i *+
Tot. power = ® 0 (20x32,10)
N * (Pc+ Pm + Pb) S )

4- Q G0 b .
®: .

0 400 800 1200 1600 2000 .2400
Total power (W)
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Can We Do Better?

* More profiling (Expensive!)
* Using interpolation to estimate all possible
combinations



Interpolation - LULESH
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Evaluation

* Baseline configuration (no power capping):
(ny x TDP.,TDP,,)

where n; = P
* = |\ +TDP. +TDP,,

* Compare:
— Profiling scheme: Only the profile data

— Interpolation Estimate: The estimated execution time using
interpolation scheme

— Observed: Observed execution for the best configurations




Speedups Using Interpolation

Base case: Maximum allowed nodes working at TDP (max) power
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Optimal CPU/Memory Powers

CPU/Memory powers for different power budgets:
* M: observed power using our scheme
* B: observed power using the baseline
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Optimal Configurations
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Power Constraint

Optimizing Data Center Throughput having Multiple Jobs

Publications

« Osman Sarood, Akhil Langer, Abhishek Gupta, Laxmikant Kale. Maximizing Throughput of Overprovisioned HPC Data Centers
Under a Strict Power Budget. IPDPS 2014 (in submission).

47



Data Center Capabillities

* Overprovisioned data center
 CPU power capping (using RAPL)

 Moldable and malleable jobs

48



Moldability and Malleability

Moldable jobs
» Can execute on any number of nodes within a specified range
* Once scheduled, number of nodes can not change
Malleable jobs:
e Can execute on any number of nodes within a range
 Number of nodes can change during runtime
« Shrink: reduce the number of allocated nodes
 Expand: increase the number of allocated nodes

49



The Multiple Jobs Problem

Given a set of jobs and a total power budget,
determine:

e subset of jobs to execute
e resource combination (n x p¢) for each job

such that the throughput of an overprovisioned
system Is maximized

50



Framework

Resource Manager

Scheduler Execution framework
: _,| Schedule
Strong Scaling Power Jobs (ILP) » Launch Jobs/
Aware Module \ Shrink-Expand
Queue \ Ensure Power Cap
7
. / N\
N

Triggers

Job Ends

51




Throughput

* ljnp: Execution time for job °j’, operating on "n’
nodes each capped at p’ watts

e Strong scaling power aware speedup for a job '/,
allocated n nodes each operating under p’watts

t.’}',min(Nj ),;min(P;)

Sjnp = ‘.
jn,p

* Define throughput as the sum of strong scaling
power aware speedups of all jobs scheduled at a
particular scheduling time

52



Scheduling Policy (ILP

Objective Function

DD D Sinp*Tinp Starvation!

JEJT nEN; pEP;

Select One Resource Combination Per Job

Y ) ziap <l Vjel

ne ‘,\rj pPE P)

YY) jnp=1 VieZ

ne€N; pEP;

Bounding total nodes

> D 2 nTinp<N

JET pEP; nEN;

Bounding power consumption

Z Z Z (n ¥ (p + Wbase))xj,n,p < Wma;r:

JEJ ne!\'] PEP)

Disable Malleability (Optional)

Z Z NTjinp = N; Viel

neN; peP;
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Making the Objective
Function rair

Assigning a weight to each job '/’

Objective Function

w] — (tS,cTZZn(NJ),mzn(PJ) + (tnmu T t?))a y: yj Y: Wj; *Sjn,p *Tjn,p

JjET neEN; pEP;

ts arrival time of job '/’

tnow : current time at present scheduling decision

rTem

jmin(N;)min(P;) . remaining time for job j ' executing
at minimum power operating at lowest power level
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Framework

Strong Scaling Power Resource Manager

Aware Module

@Scheduler Execution framework
Profile Table

Schedule

Jobs (ILP) » Launch Jobs/
Shrink-Expand

Model T \\ P
Job Characteristics Queue \‘ Ensure Power Cap
Database /

/

~ / AN

N

Triggers Job Ends
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Power Aware Model

e Estimate exe. time for a given number of nodes n’
for varying CPU power "p’

* Express execution time (f) as a function of
frequency (f)

* Express frequency (f) as a function of package/
CPU power (p)

* Express execution time (f) as a function of
package/CPU power (p)
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Power Aware Strong Scaling

 Extend Downey's strong scaling model
* Build a power aware speedup model

 Combine strong scaling model with power aware
model

* (Given a number of nodes 'n" and a power cap for
each node p’, our model estimates execution time
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Fitting Power Aware Model

to Application Profile

Varying CPU power
for 20 nodes
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Power Aware Speedup and
Parameters

1-8 ! T w T
Estimated Parameters o~ LeanMD
Application a b p pau o] 1.70H AMR 4
LeanMD 1.65 7.74 30 54 0.40 Lulesh z
ean 65 T D¢ P
AMR 245 6.57 32 54 0.33 1.6 Wave2D g
Lulesh 263 836 32 514 0.30 Jacobi2D o
Wave2D 3.00 1023 32 42 0.16
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8
o 1.4f
Q /
%) e )
1.3} /
Speedups based on execution g/
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11/ ;
C_"f// r:‘:/ 1 1 | |
1130 35 40 45 50 55
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Approach (Summary)

@ Strong Scaling Power Resource Manager
Aware Module
@Scheduler Execution framework
Profile Table >
Schedule
T Jobs (ILP) »  Launch Jobs/
Model T \\ Shrink-Expand
Job Characteristics Queue \< Ensure Power Cap
Database /
N 7 AN

N

Triggers Job Ends
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Experimental Setup

Comparison with baseline policy of SLURM

Using Intrepid trace logs (ANL, 40,960 nodes,
163,840 cores)

3 data sets each containing 1000 jobs
Power characteristics: randomly generated

Includes data transfer and boot time cost for shrink/
expand
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Experiments: Power Budget
(4.75 MW)

e Baseline policy/SLURM: using 40,960 nodes
operating at CPU power 60W, memory power 18W,
and base power 38W. SLURM Simulator’

* noSE: Our scheduling policy with jobs.
CPU power <=60W, memory power 18W and base

power 38W, nodes > 40,900 nodes

 WISE: Our scheduling policy with
.e. shrink/expand. CPU power

<=60W, memory power 18W and base power 38W,
nodes > 40,960 nodes

1. A. Lucero, SLURM Simulator 62




Vletrics

 Response time: Time interval between arrival and
start of execution

 Completion time: response time + execution time

 Max completion time: Largest completion time for
any |ob in the set
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Changing Workload
Intensity (7 )

* Impact of increasing job arrival rate
 Compressing data set by a factor 7Y

 Multiplying arrival time of each job in a set with
v € [0.2 — 0.8]
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Speedup
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Speedup compared to baseline SLURM 65



Comparison With Power
Capped SLURM

* |ts not just overprovisioning!

e WiSE compared to a power capped SLURNM policy
using over provisioning for Set2

 Cap CPU powers below 60W to benefit from
overprovisioning

CPU power cap 30 40 50 60

Speedup 432 1.8 233 5.25
Avg number of nodes 50332 42486 39700 37956
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Tradeoft Between Fairness
and Throughput

9000 90000
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Varying Number of Power
Levels

Increasing number of power levels:
e Increase cost of solving ILP

* Improve the average or max completion time
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Major Contributions

Use of DVFES to reduce cooling energy consumption
« Cooling energy savings of up to 63% with timing penalty between 2-23%
Impact of processor temperature on reliability of an HPC machine
* Increase MTBF by as much as 2.3X
Improve machine efficiency by increasing MTBF
* Enables machine to operate with 21% efficiency for 340K socket machine (<1% for baseline)
Use of CPU and memory power capping to improve application performance
e Speedup of up to 2.2X compared to case that doesn’t use power capping
Power aware scheduling to improve data center throughput

» Both our power aware scheduling schemes achieve speedups up to 4.5X compared to baseline
SLURM

Power aware modeling to estimate an application’s power-sensitivity
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Varying Amount of Profile Data

P I :
I 112 Points
180 Points
ol R |EEE320Points
1.6_. —— a's s el alme s e s e e a e e e e e e e R
3
©
o))
&
1)) 1.4} | || || M |...... |
1‘2-. —— S ---BEIBN.-. .. - R
1

800 1000 1200 1400 1600 1800 2000
Total power budget (W)

 Observed speedups using different amount of profile data
* 112 points suffice to give reasonable speedup
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Blue Waters Cooling

Blue Waters Inlet Water
Temperature for Different Rows

Row 1

63F 62F
63F 63F
63F 64F

65F 65F
68F 68F

69F 69F
70F 69F

Row 7
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