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48 GB/s, 1-2 µs 40 GB/s, 1-3 µs 150 GB/s, 0.8 µs

420 GB/s, 1-2 µs

Higher Bandwidth!
Lower Latency!

Fewer hops
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WHY STUDY NETWORK 
PERFORMANCE?

Peak bandwidth and latency are never obtained in 
presence of congestion!

High raw bandwidth does not guarantee 
proportionate observed performance!

Topology, job interference, I/O!

Find the next generation topology !

Savings are proportionate to core-count
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QUANTIFYING IMPACT

!

!

!

!

!

!

Mapping via logical 
operations in Rubik!

What about others 
mappings?!

How far are we from the 
best performance?!

Which is the best 
performing mapping?
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PERFORMANCE 
PREDICTION METHODS
Theoretically: NP hard!

Simulations: too slow!

Few days to simulate one use case*!

Real runs: very expensive!

Application/allocation                                       
specific information
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*Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two- level direct networks. In Proceedings of 2011 International 
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, 76:1–76:11.

2012 2013
Intrepid 4.16M 0.73M

Mira 0.17M 7.67M

Total 4.33M 8.40M

13 million core hours!
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Figure 1: Performance variation with prior metrics. A large variation in performance is observed for the same value of the metric in
all three cases.

In Section 2, we describe the common metrics used in literature and
motivate the need for more precise metrics. Sources of contention
on torus networks, methodology for collecting hardware counters
data, and new proposed metrics are discussed in Section 3. The
benchmarks and supervised learning techniques used in the paper
and the measures of prediction success are described in Section 4.
In Sections 5, 6, 7, we present results using prior metrics, new met-
rics and their combinations. We conclude our work in Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to evaluate task
mappings offline. Let us assume a guest graph, G = (Vg, Eg)

(communication graph between tasks in a parallel application) and
a host graph, H = (Vh, Eh) (network topology of the parallel ma-
chine). M defines a mapping of the guest graph, G on the host
graph, H . The earliest metric that was used to compare the effec-
tiveness of task mappings is dilation [3, 12]. Dilation for a mapping
M can be defined as,

dilation(M) = max

ei2Eg
di(M) (1)

where di is the dilation of the edge ei for a mapping M . Dilation of
an edge ei is the number of hops between the end-points of the edge
when mapped to the host graph. This metric aims at minimizing the
length of the longest wire in a circuit [3]. We will refer to this as
maximum dilation to avoid any confusion. We can also calculate
the average dilation per edge for a mapping as,

average dilation-per-edge(M) =

P
ei2Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “expected” dila-
tion for an edge and “average” dilation for a mapping [11]. Their
definition of expected dilation for an edge can be reduced to equa-
tion 1 above by assuming that messages are only routed on shortest
paths, which is true for the IBM Blue Gene and Cray XT/XE fam-
ily (if all nodes are in a healthy state). The average dilation metric,
as coined by Hoefler and Snir, is a weighted dilation and has been
previously referred to as the hop-bytes metric by Sadayappan [9] in
1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted sum of
the edge dilations where the weights are the message sizes. Hop-
bytes can be calculated by the equation,

hop-bytes(M) =

X

ei2Eg

di(M)⇥ wi (3)

where di is the dilation of edge ei and wi is the weight (message

size in bytes) of edge ei.

Hop-bytes gives an indication of the overall communication traffic
being injected on to the network. We can derive two metrics based
on hop-bytes: the average number of hops traveled by each byte on
the network,

average hops-per-byte(M) =

P
ei2Eg

di(M)⇥ wi
P

ei2Eg
wi

(4)

and the average number of bytes that pass through a hardware link,

average bytes-per-link(M) =

P
ei2Eg

di(M)⇥ wi

|Eh|
(5)

The former gives an indication of how far each byte has to travel
on average. The latter gives an indication of the average load or
congestion on a hardware link on the network. They are derived
metrics (from hop-bytes) and all three are practically equivalent
when used for prediction. In the rest of the paper, we use average
bytes-per-link.

Another metric that indicates congestion on network links is the
maximum number of bytes going through any link on the network,

maximum bytes(M) = max

li2Eh

(

X

ej2Eg |ej=)li

wj) (6)

where ej =) li represents that edge ej in the guest graph goes
through edge (link) li in the host graph (network). Hoefler and
Snir use a second metric in their paper [11], worst case congestion,
which is the same as equation 6 above.

We conducted a simple experiment with three of these metrics de-
scribed above – maximum dilation, average bytes-per-link and max-
imum bytes on a link to analyze their correlation with application
performance. Figure 1 shows the communication time for one it-
eration of a two-dimensional halo exchange versus the three met-
rics in different plots. Although the coefficient of determination
values (R2, metric used for prediction success) are high, there is
a significant variation in the y-values for different points with the
same x-value. For example, in the maximum bytes plot (right), for
x = 6e9, there are mappings with performance varying from 20 to
50 ms. These variations make predicting performance using simple
models with a reasonably high accuracy (±5% error) difficult. This
motivated us to find new metrics and ways to improve the correla-
tion between metrics and application performance.

2D-Halo: predicting performance using a 
linear regression model for prior features
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SUPERVISED LEARNING: 
OVERVIEW

Collect/generate data and summarize!

Build models: train performance prediction based on 
independent features!

Predict and correlate
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MESSAGE LIFE CYCLE!
ON BLUE GENE/Q
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Injection FIFO !
Contention

Link Contention

Receive Buffer !
Contention

Reception FIFO!
Contention

Memory!
Contention

Memory!
Contention
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A PMPI based BG/Q-Counter collection module!

Packets sent on links in specific                          
directions: A, B, C, D, E!

deterministic, dynamic!

Packets received on a link!

Packets in buffers

INPUT FROM !
NETWORK COUNTERS
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INPUT FROM 
SIMULATION

Simulate the injection mechanism!

Selection of memory injection FIFO!

Mapping of memory FIFO to network injection 
FIFO!

Simulate routing to obtain hops/dilation
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INPUT DATA
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Indicator! Source!! Derived from

Bytes on links Counters! Sent chunks

Buffer length Counters! #Packets in buffers

Delay per link Counters #Packets in buffers/ 
#received packets

Dilation! Analytical Shortest path routing 

FIFO length Analytical Based on PAMI
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BUILDING MODEL

Derive features from the raw data on entities, e.g. average bytes on links!

Create a database of derived features and performance; we have used 100 
mappings!

33% mappings generated randomly!

33% using Rubik!

Rest are based on better performing mappings!

Select two-third entries as training set:!

Derived features are independent variables!

Performance is a dependent variable
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BUILDING MODEL

The training set is used to create a model for prediction!

Remaining entries from the database are used as the test set 
- derived features as input!

Prediction is compared with observed values!

Experimented with a large number of algorithms - linear, 
bayesian, SVM, near-neighbors, etc.!

!
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http://scikit-learn.org

http://scikit-learn.org
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 LEARNING ALGORITHM
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X[0] <= 0.0082 X[0] <= 0.2857
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Decision trees Randomized forest of trees

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.	
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HOW TO JUDGE A 
PREDICTION

Rank Correlation Coefficient (RCC): fraction of the 
number of pairs of task mappings whose ranks are in 
the same partial order in predicted and observed 
performance list!

!

Absolute Correlation!

!

Higher is better!
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(b) Random forests

Figure 3: Example decision tree and random forests generated using scikit.

by the input features. Each color in the figure is a leaf region of one
of the decision trees in the random forest generated by fitting the
training set. The white circles are the test set being predicted. To
predict the target for these unseen samples, every decision tree is
traversed to find the right leaf node that provides a possible tar-
get value. Having obtained a set of possible target values from the
decision trees, they are combined to provide the predicted value.

4.4 Metrics for prediction success
The goodness or success of the prediction function (also referred
to as the score) can be evaluated using different metrics depend-
ing on the definition of success. Our main goal is to compare the
performance of two mappings and determine the correct ordering
between the mappings in terms of performance. Hence, we focus
on a rank correlation metric for determining success but we also
present results for a metric that compares absolute values.
Rank Correlation Coefficient (RCC): Ranks are assigned to map-
pings based on their position in two sorted sets (by execution times
for observed and predicted performance). RCC is defined as the
ratio of the number of pairs of task mappings whose ranks were
in the same partial order in both the sets to the total number of
pairs. In statistical parlance, RCC equals the ratio of the number
of concordant pairs to that of all pairs (Kendall’s Tau [1]). For-
mally speaking, if observed ranks of tasks mappings are given by
{x1, x2, · · · , xn}, and the predicted ranks by {y1, y2, · · · , yn},
we define RCC as:

concord ij =

8
><

>:

1, if xi >= xj & yi >= yj

1, if xi < xj & yi < yj

0, otherwise

RCC =

⇣ X

0<=i<n

X

0<=j<i

concordij
⌘
/(

n(n� 1)

2

)

Absolute Correlation (R2): To predict the success for absolute
predicted values, we use the coefficient of determination from statis-
tics, R-squared,

R2
(y, ŷ) = 1�

P
i(yi � ŷi)

2

P
i(yi � ȳ)2

where ŷi is the predicted value of the ith sample, yi is the corre-
sponding true value, and

ȳ =

1

nsamples

X

i

yi

5. PERFORMANCE PREDICTION OF COM-
MUNICATION KERNELS

In this section, we present predictions for the execution times of
communication kernels (Section 4.2) for different task mappings.

5.1 Performance variation with mapping
Figure 4 presents the execution times for the three benchmarks for
four message sizes – 8 bytes, 512 bytes, 16 KB and 4 MB. These
sizes represent the amount of data exchanged between a pair of
MPI processes. For example, for 2D Halo, this number is the size
of a message sent by an MPI process to each of its four neighbors
in 2D. For a particular message size, a point on the plot represents
the execution time (on the y-axis) for a mapping (on the x-axis).

For 2D Halo, Figure 4(a) shows that for small messages such as 8
and 512 bytes, mapping has an insignificant impact. As the mes-
sage size increases to 16 KB, in addition to an increase in the run-
time, we observe up to a 7⇥ difference in performance for the best
mapping in comparison to the worst mapping (note the log scale
on the y-axis). Similar variation is seen as we further increase the
message size to 4 MB. For a more communication intensive bench-
mark, 3D Halo, we find that mapping impacts performance even for
messages of size 512 bytes (Figure 4(b)). As we further increase
the communication in Sub A2A, the effect of task mapping is seen
even for the 8-byte messages as shown in Figure 4(c).

In the sections below, we do not present predictions for the cases
where the performance variation due to mapping is statistically in-
significant: 8- and 512-byte results in case of 2D Halo and 8-byte
results in case of 3D Halo.

5.2 Prior features
We begin with showing prediction results using prior metrics/ fea-
tures (described in Section 2) and quantify the goodness of the fit
or prediction using RCC and R2 (Section 4.4).
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mark, 3D Halo, we find that mapping impacts performance even for
messages of size 512 bytes (Figure 4(b)). As we further increase
the communication in Sub A2A, the effect of task mapping is seen
even for the 8-byte messages as shown in Figure 4(c).
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RESULTS: SETUP

Three communication kernels!

Five-point 2D stencil!

14-point 3D stencil!

All-to-all over sub-communicators!

Four message sizes to span MPI and routing 
protocols
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PRIOR FEATURES

Entities!
Bytes on a link!
Dilation!

Derivation Methods !
Maximum!
Average !
Sum
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Figure 1: Performance variation with prior metrics. A large variation in performance is observed for the same value of the metric in
all three cases.

In Section 2, we describe the common metrics used in literature and
motivate the need for more precise metrics. Sources of contention
on torus networks, methodology for collecting hardware counters
data, and new proposed metrics are discussed in Section 3. The
benchmarks and supervised learning techniques used in the paper
and the measures of prediction success are described in Section 4.
In Sections 5, 6, 7, we present results using prior metrics, new met-
rics and their combinations. We conclude our work in Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to evaluate task
mappings offline. Let us assume a guest graph, G = (Vg, Eg)

(communication graph between tasks in a parallel application) and
a host graph, H = (Vh, Eh) (network topology of the parallel ma-
chine). M defines a mapping of the guest graph, G on the host
graph, H . The earliest metric that was used to compare the effec-
tiveness of task mappings is dilation [3, 12]. Dilation for a mapping
M can be defined as,

dilation(M) = max

ei2Eg
di(M) (1)

where di is the dilation of the edge ei for a mapping M . Dilation of
an edge ei is the number of hops between the end-points of the edge
when mapped to the host graph. This metric aims at minimizing the
length of the longest wire in a circuit [3]. We will refer to this as
maximum dilation to avoid any confusion. We can also calculate
the average dilation per edge for a mapping as,

average dilation-per-edge(M) =

P
ei2Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “expected” dila-
tion for an edge and “average” dilation for a mapping [11]. Their
definition of expected dilation for an edge can be reduced to equa-
tion 1 above by assuming that messages are only routed on shortest
paths, which is true for the IBM Blue Gene and Cray XT/XE fam-
ily (if all nodes are in a healthy state). The average dilation metric,
as coined by Hoefler and Snir, is a weighted dilation and has been
previously referred to as the hop-bytes metric by Sadayappan [9] in
1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted sum of
the edge dilations where the weights are the message sizes. Hop-
bytes can be calculated by the equation,

hop-bytes(M) =

X

ei2Eg

di(M)⇥ wi (3)

where di is the dilation of edge ei and wi is the weight (message

size in bytes) of edge ei.

Hop-bytes gives an indication of the overall communication traffic
being injected on to the network. We can derive two metrics based
on hop-bytes: the average number of hops traveled by each byte on
the network,

average hops-per-byte(M) =

P
ei2Eg

di(M)⇥ wi
P

ei2Eg
wi

(4)

and the average number of bytes that pass through a hardware link,

average bytes-per-link(M) =

P
ei2Eg

di(M)⇥ wi

|Eh|
(5)

The former gives an indication of how far each byte has to travel
on average. The latter gives an indication of the average load or
congestion on a hardware link on the network. They are derived
metrics (from hop-bytes) and all three are practically equivalent
when used for prediction. In the rest of the paper, we use average
bytes-per-link.

Another metric that indicates congestion on network links is the
maximum number of bytes going through any link on the network,

maximum bytes(M) = max

li2Eh

(

X

ej2Eg |ej=)li

wj) (6)

where ej =) li represents that edge ej in the guest graph goes
through edge (link) li in the host graph (network). Hoefler and
Snir use a second metric in their paper [11], worst case congestion,
which is the same as equation 6 above.

We conducted a simple experiment with three of these metrics de-
scribed above – maximum dilation, average bytes-per-link and max-
imum bytes on a link to analyze their correlation with application
performance. Figure 1 shows the communication time for one it-
eration of a two-dimensional halo exchange versus the three met-
rics in different plots. Although the coefficient of determination
values (R2, metric used for prediction success) are high, there is
a significant variation in the y-values for different points with the
same x-value. For example, in the maximum bytes plot (right), for
x = 6e9, there are mappings with performance varying from 20 to
50 ms. These variations make predicting performance using simple
models with a reasonably high accuracy (±5% error) difficult. This
motivated us to find new metrics and ways to improve the correla-
tion between metrics and application performance.
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NEW FEATURES

Entities!
Buffer length (on intermediate nodes)!
FIFO length (packets in injection FIFO)!
Delay per link (packets in buffer/packets received)!

Derivation methods!
Average Outliers (AO)!
Top Outliers (TO)
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HYBRID FEATURES

Combine multiple metrics to complement each other!

Some combinations!
H1: avg bytes + max bytes + max FIFO!
H3: avg bytes + max bytes + avg buffer + max 
FIFO!
H4: avg bytes + max bytes + avg buffer TO!
H5: avg bytes TO + avg buffer TO + avg delay AO 
+ sum hops AO + max FIFO
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Figure 7: Prediction success based on hybrid features from Table 3. We obtain RCC and R2 values exceeding 0.99 for 3D Halo and
Sub A2A. Prediction success improves significantly for 2D Halo also.

0.93 to 0.975 and 0.955 for the 16 KB and 4 MB message sizes
respectively. For the more communication intensive benchmarks,
we obtained R2 values as high as 0.99 in general. Hence, the use
of hybrid features not only predicts the correct pairwise ordering
of mapping pairs but also does so with high accuracy in predicting
their absolute performance.

5.5 Summary
Figure 8 presents the scatter-plot of predicted performance for the
three benchmarks for the 4 MB message size. On the x-axis are the
task mappings sorted by observed performance, while the y-axis
is the predicted performance. The feature set H3: avg bytes, max
bytes, avg buffer, max FIFO was used for these predictions. It is
evident from the figure that an almost perfect ordering is achieved
for all three benchmarks.

Figure 9 shows the prediction success for the three benchmarks on
65,536 cores of BG/Q. From all the previously presented features
(prior, new and hybrid), we selected the ones with the highest RCC
scores for 16,384 cores, and present only those in this figure. We
obtain significant improvements in the prediction scores using hy-

brid features for prediction in comparison to single features such as
max bytes and avg bytes TO. For Sub A2A, RCC improved by 14%
from 0.86 to 0.98 , with a RCC value of 1.00 for both 512 bytes
and 4 MB message sizes. For 2D Halo and 3D Halo, an improve-
ment of up to 8% was observed in the prediction success. Similar
trends were observed for R2 values.

6. COMBINING ALL TRAINING SETS
In the previous section, we presented high correlation for predict-
ing performance of the three benchmarks. For the prediction of
individual benchmarks, the training and testing sets were generated
from the 84 different mappings of the same benchmark for a par-
ticular message size on a fixed core count. In this section, we relax
these requirements, and explore the space where the training and
testing sets are a mix of different benchmarks, message sizes and
core counts.

6.1 Combining samples from different kernels
We first explore the use of training and testing sets that are a combi-
nation of all three benchmarks and both 16 KB and 4 MB message
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RESULTS!
ABSOLUTE PERFORMANCE
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COMBINING 
BENCHMARKS
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PREDICTING FOR 64K 
CORES USING 16K CORES
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RESULTS: PF3D
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RESULTS: PF3D
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SUMMARY

Communication is not just about peak latency/
bandwidth!

Simultaneous analysis of various aspects of network 
is important!

Complex models are required for accurate prediction!

There are patterns waiting to be identified!
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FUTURE WORK

More applications!!

More metrics!

Weighted analysis!

Offline prediction of entities!

!

!
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Questions?


