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SUPERCOMPUTERS

48 GB/s, 12 microsec 40 Gp/s, 1-3 microsec

Larger Bandwidth
Lower Latency

Fewer hops
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WHY STUDY NETWORK
PERFORMANCE?

Peak bandwidth and latency are never realized in
presence of congestion

High raw bandwidth does not guarantee
proportionate observed performance

Blue Gene vs Cray’s Gemini
Savings are proportionate to core-count

Most importantly, as a graduate student, I do what I
am asked to do!
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OQUANTIFYING IMPACT

Execution time for different mappings of pF3D

Default Map N
Best Map (1

Mapping via logical
operations in Rubik

What about others
mappings?
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How far are we from
the best?

2048 4096 8192 16384 32768 65536 A. Bhatele, et al Mapping applications with collectives over sub-communicators on torus
networks. In Proceedings of the ACM/IEEE International Conference for High Performance
Number of cores Computing, Networking, Storage and Analysis, SC ’12. IEEE Computer Society, Nov. 2012
(to appear). LLNL-CONF-556491.
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ALTERNATIVES

* Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two- level direct networks. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, 76:1-76:11.
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ALTERNATIVES

Theoretically: NP hard
Simulations: too slow

15 days to simulate one use case”

2012 2013
Intrepid | 4.16M 0.73M

Application/allocation Mira | 0.I7M | 7.67M
specific information Total | 4.33M | 8.40M

| 3 million core hours!

* Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two- level direct networks. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, 76:1-76:11.

Real runs: very expensive
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HEURISTICS - KNOWN
METRICS
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2D-Halo: predicting performance using a
linear regression model for known metrics
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SUPERVISED LEARNING

Collect/ generate data and summarize

Build models: train performance prediction based on
independent metrics

Predict

Thursday, June 27, 13



SUPERVISED LEARNING

Collect/ generate data and summarize

Build models: train performance prediction based on
independent metrics_

Predict
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Mappings sorted by actual execution times

2D Halo Predicted e 2D Halo Observed ===-
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COMMUNICATION
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COMMUNICATION
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COMMUNICATION
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NETWORK COUNTERS OF
BLUEGENE/Q

A PMPI based BGQ-Counter collection module

Packets sent on links in specific
directions: A, B, C, D, E

deterministic, dynamic

Packets received on a link

Packets in buffers ——
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ANALYTICAL TOOL

Simulate the injection mechanism
Selection of memory injection FIFO

Mapping of memory FIFO to network injection
FIFO
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ANALYTICAL TOOL

Simulate the injection mechanism
Selection of memory injection FIFO

Mapping of memory FIFO to network injection
FIFO

Simulate routing to obtain hops/dilation
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Collect raw data - various entities, e.g. bytes on a
link, and the observed performance.
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SUPERVISED LEARNING

Collect raw data - various entities, e.g. bytes on a
link, and the observed performance.

Derive metrics from the raw data on entities, e.g.
average of bytes on links.

Create a database of derived metrics and
performance; we have used 100 mappings.

Select two-third entries as training set; includes
derived metrics and performance.
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The training set is used to create a model for
prediction
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SUPERVISED LEARNING

The training set is used to create a model for
prediction

Remaining entries from the database are used as the
test set - only derived metrics.

Prediction is compared with observed values.

Experimented with a large number of algorithms -
linear, bayesian, SVM, near-neighbors etc.

) learn http://scikit-learn.org
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SUPERVISED LEARNING

Decision trees

X[1] <=0.4295

unm.."l
"0y,
X][0] <=0.2857

4

X[0] <=0.0082
llllh""
"'lilm

X[0] <=0.1905

2
y 4
£
£
£
y-4
£
=
=

X[1] <=0.0077

Y
V
,////

leaf

X[1] <=0.0212

\\\\\\
\\\\
\\\\
\\\‘
\\\\
\\\\
\\\\
\ay

Rest of the tree

Thursday, June 27, 13



SUPERVISED LEARNING

Decision trees Randomized forest of trees

Decision surfaces of a random forest
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HOW TO JUDGE A
PREDICTION

Rank Correlation Coefficient (RCC): fraction of the
number of pairs of task mappings whose ranks are in
the same partial order in predicted and observed
performance list . {1’ if; >=a; &y >=

1, ifz;, <z; &yi <y
0, otherwise

RCC = ( y: S: concordij) /( n(n2— 1))

O0<=1<n 0<=3<1

Absolute Correlation

RQ(yag) =1-

2

(i — i)
y)?

Higher the better!

Thursday, June 27, 13 14



RESULTS

Three communication kernel
Five-point 2D stencil
14-point 3D stencil
Sub-communicator all-to-all

Four message sizes to span MPI and routing
protocols
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KNOWN METRICS

Entities
Bytes on a link

Dilation

Derivation Methods

Maximum

Average

Sum Maximum bytes on a link
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RESULTS
KNOWN METRICS

Rank correlation coefficient

DX X

2D-Halo 3D-Halo Sub-A2A

max dilation =1 avg bytes 2223 max bytes B2

Thursday, June 27, 13 17



RESULTS
KNOWN METRICS

Rank correlation coefficient

max bytes is

good, but
Incorrect in
10% cases

DX X

2D-Halo 3D-Halo Sub-A2A

max dilation =1 avg bytes 2223 max bytes B2
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NEW METRICS

Entities
Buffer length (on intermediate nodes)
FIFO length (packets in injection FIFO)

Delay per link (packets in buffer/packets received)
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NEW METRICS

Entities
Buffer length (on intermediate nodes)
FIFO length (packets in injection FIFO)

Delay per link (packets in buffer/packets received)

Derivation methods

Average Outliers (AO)
Top Outliers (TO)
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RESULTS
NEW METRICS

Rank correlation coefficient

Absolute performance correlation

2D-Halo 3D-Halo Sub-A2A

max dilation =1 avg buffer EE=23 avg bytes AO E23
avg bytes 221 avg buffer TO 220 avg bytes TO 2220
max bytes BEEXX  sum dilation AO 1
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HYBRID METRICS

Combine multiple metrics to complement each other
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HYBRID METRICS

Combine multiple metrics to complement each other

Some combinations

avg bytes + max bytes + max FIFO

avg bytes + max bytes + avg buffer + max FIFO

avg bytes + avg buffer + avg delay AO + sum hops

avg bytes TO + avg butfer TO + avg delay TO +
sum hops
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RESULTS
HYBRID METRICS

Rank correlation coefficient
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RESULTS
HYBRID METRICS

Rank correlation coefficient
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RESULTS - TREND

~~
(7]
N
Q
(@}
[
(4]
e
o
T
()]
o
O
Q
=
.U
O
()]
[ S
(a1

10 15 20 25 30 10 15 20 25 30 10 15 20 25

Sorted mappings Sorted mappings Sorted mappings

2D Halo 3D Halo Sub A2A

Thursday, June 27, 13 22



RESULTS
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RESULTS

Rank correlation coefficient

Combining
all benchmarks

Thursday, June 27, 13 24



RESULTS

Rank correlation coefficient

Combining
all benchmarks

Rank correlation coefficient

Predicting performance

on 65,536 cores using
16,384 cores data for training
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RESULTS - PF3D

Rank correlation coefficient

Absolute performance correlation
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RESULTS - PF3D

Rank correlation coefficient Al Geei) (B2 eerts),

Absolute performance correlation
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SUMMARY

Communication is not just about peak latency/

bandwidth

Simultaneous analysis of various aspects of network
1S important

Complex models are required for accurate prediction

There are patterns waiting to be identified!
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FUTURE WORK

More applications!
More metrics
Weighted analysis

Offline prediction of entities
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FUTURE WORK

More applications!
More metrics
Weighted analysis

Offline prediction of entities

Questions?

Thursday, June 27, 13 27



28

Thursday, June 27, 13 28



