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Motivation

⌅ Structured parallel programming (e.g. async-finish) idioms have
proliferated

I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel TBB, Cilk,
X10

⌅ Work stealing is often used to schedule them:
I Well-studied dynamic load balancing strategy
I Provably efficient scheduling
I Understandable bounds on time and space
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Tracing

⌅
Where and when each task executed

⌅ Captures the order of events and is effective for online and offline
analysis

⌅ Challenges
I The size may limit what can be feasibly analyzed
I It may perturb the application’s execution making it impractical

⌅ Applications
I Replay
I Performance analysis
I Data-race detection, retentive stealing, . . .
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Trace Sizes Using the STEAL TREE
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Approach

⌅ For async-finish programs tracing individual tasks is not feasible
I Often these programs expose far more concurrency than the number of

threads
F Fine granularity
F Sheer number of tasks

⌅ Rather than trace individual tasks, exploit the structure of the
scheduler to coarsen the events traced

⌅ We identify key properties of two scheduling policies:
I Help-first: expose more concurrency by expanding tasks in the current

scope before executing a task
I Work-first: depth-first traversal of the code (Cilk)
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Example async-finish Program

 fn() {
    s1;
    async {  
      s5;
      async w;
      s6;
    }
    s2;
    finish {
      s7;
      async x;
      s8;
      async y;
      s9;
      async z;
      s10;
    }
    s3;
    async {  s11; }
    s4;
}
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Example async-finish Program

Sequential Block

Asynchronous Task

Finish Scope

Root of Computation

Continuation

 fn() {
    s1;
    async {  
      s5;
      async w;
      s6;
    }
    s2;
    finish {
      s7;
      async x;
      s8;
      async y;
      s9;
      async z;
      s10;
    }
    s3;
    async {  s11; }
    s4;
}
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Help-first Scheduling Policy

⌅ Enqueue all asyncs in the current level until a finish is reached

s1 s2

steal end

local end

level

{ 1

Snapshot of Execution DequeExample Program

 fn() {
    s1;
    async {  
      s5;
      async w;
      s6;
    }
    s2;
    finish {
      s7;
      async x;
      s8;
      async y;
      s9;
      async z;
      s10;
    }
    s3;
    async {  s11; }
    s4;
}

s3 s3
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Help-first Scheduling Policy

⌅ Enqueue all asyncs in the current level until a finish is reached

steal end

local end

level

{ 1

Snapshot of Execution DequeExample Program
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      async y;
      s9;
      async z;
      s10;
    }
    s3;
    async {  s11; }
    s4;
}
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Help-first Scheduling Policy

⌅ Enqueue all asyncs in the current level until a finish is reached

steal end

local end

level

{ 1

Snapshot of Execution DequeExample Program
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      s5;
      async w;
      s6;
    }
    s2;
    finish {
      s7;
      async x;
      s8;
      async y;
      s9;
      async z;
      s10;
    }
    s3;
    async {  s11; }
    s4;
}
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Help-first Scheduling Policy
! Observation

⌅ Theorem (5.8 in the paper):
I

The tasks executed and steal operations encountered in each working

phase can be fully described by (a) the level of the root in the total

ordering of the steal operations on the victim’s working phase, and (b)

the number of tasks and step of the continuation stolen at each level.
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Help-first Scheduling Policy
! With levels and counters

steal end

local end

Snapshot of Execution Deque
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Help-first Scheduling Policy
! A steal occurs (annotated c2)

c2

Snapshot of Execution Deque
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Help-first Scheduling Policy
! Another steal occurs (annotated c2); STEAL TREE before the steal

Snapshot of Execution Deque
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Help-first Scheduling Policy
! Another steal occurs (annotated c2); STEAL TREE after the steal

Snapshot of Execution Deque
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Help-first Scheduling Policy
! Another steal occurs (annotated c3); STEAL TREE after the steal

Snapshot of Execution Deque
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Help-first Scheduling Policy
! Another steal occurs (annotated c4); STEAL TREE after the steal

Snapshot of Execution Deque
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Work-first Scheduling Policy

⌅ Theorem (6.3 in the paper):
I

The tasks executed and steal operations encountered in each working

phase can be fully described by (a) the level of the root in the total

ordering of the steal operations on the victim’s working phase, and (b)

the step of the continuation stolen at each level.
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Implementation

⌅ Shared-memory
I Cilk (work-first)
I Results on POWER7 (64 cores, 128 hyper-threaded)

⌅ Distributed-memory
I Work stealing using active messages
I Implemented and evaluated for both work-first and help-first
I Results on Titan at ORNL (Cray XK6)
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Empirical Results
! Shared and distributed memory

Shared-memory

Benchmark Configuration

AllQueens nq = 14, sequential cutoff 8
Heat nt = 5, nx = 4096, ny = 4096

Fib n = 43
FFT n = 67108864

Strassen n = 4096
NBody iterations = 15, nbodies = 8192

Cholesky n = 2048, z = 20000
LU n = 1024

Matmul n = 3000

Distributed-memory

AQ nq = 19, sequential cutoff 10
SCF 128 beryllium atoms, chunk size 40
TCE C[i, j, k, l]+ = A[i, j, a, b] ⇤B[a, b, k, l]

O-blocks 20 14 20 26, V-blocks 120 140 180 100
PG 13K sequences
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Execution Time Ratio
! Shared-memory
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Execution Time Ratio
! Distributed-memory
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Storage Overhead
! Shared-memory
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Storage Overhead
! Distributed-memory
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Utilization Graphs
! Cilk LU
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Applications
! Two distinct contexts

⌅ Data-race detection: Scalable and precise dynamic datarace

detection for structured parallelism (Raman et al., [PLDI’12])
⌅ Retentive stealing: Work stealing and persistence-based load

balancers for iterative overdecomposed applications (Lifflander et al.,
[HPDC’12])
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Data-race Detection

⌅ As the program executes, the DPST (dynamic structure program tree)
is built in parallel (see the PLDI’12 paper)

I Used to determine the relationships between async and finish
statements

I The DPST is traversed determine if two tasks may execute in parallel

the LCA (lowest common ancestor) must be found
I This involves traversing up the DPST, until the common ancestor is

found
⌅ Applying the STEAL TREE:

I Use the STEAL TREE to shorten the LCA traversal
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DPST Traversal Percent Reduction
! Using the STEAL TREE
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Concluding Remarks

⌅ Framework for compactly tracing work stealing schedulers
⌅ Applications

I Performance analysis
I Data-race detection
I Retentive stealing
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