
Steal Tree: Low-Overhead Tracing of
Work Stealing Schedulers

Jonathan Lifflander*, Sriram Krishnamoorthy†, Laxmikant V. Kale*
{jliffl2, kale}@illinois.edu, sriram@pnnl.gov

*University of Illinois Urbana-Champaign
†Pacific Northwest National Laboratory

June 19, 2013

Motivation

⌅ Structured parallel programming (e.g. async-finish) idioms have
proliferated

I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel TBB, Cilk,
X10

⌅ Work stealing is often used to schedule them:
I Well-studied dynamic load balancing strategy
I Provably efficient scheduling
I Understandable bounds on time and space

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 2 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers2 / 29

Tracing

⌅
Where and when each task executed

⌅ Captures the order of events and is effective for online and offline
analysis

⌅ Challenges
I The size may limit what can be feasibly analyzed
I It may perturb the application’s execution making it impractical

⌅ Applications
I Replay
I Performance analysis
I Data-race detection, retentive stealing, . . .

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 3 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers3 / 29

Trace Sizes Using the STEAL TREE

 0

 1

 2

 3

 4

 5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

K
B

/C
or

e

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 4 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers4 / 29

Approach

⌅ For async-finish programs tracing individual tasks is not feasible
I Often these programs expose far more concurrency than the number of

threads
F Fine granularity
F Sheer number of tasks

⌅ Rather than trace individual tasks, exploit the structure of the
scheduler to coarsen the events traced

⌅ We identify key properties of two scheduling policies:
I Help-first: expose more concurrency by expanding tasks in the current

scope before executing a task
I Work-first: depth-first traversal of the code (Cilk)

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 5 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers5 / 29

Example async-finish Program

 fn() {
 s1;
 async {
 s5;
 async w;
 s6;
 }
 s2;
 finish {
 s7;
 async x;
 s8;
 async y;
 s9;
 async z;
 s10;
 }
 s3;
 async { s11; }
 s4;
}

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 6 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers6 / 29

Example async-finish Program

Sequential Block

Asynchronous Task

Finish Scope

Root of Computation

Continuation

 fn() {
 s1;
 async {
 s5;
 async w;
 s6;
 }
 s2;
 finish {
 s7;
 async x;
 s8;
 async y;
 s9;
 async z;
 s10;
 }
 s3;
 async { s11; }
 s4;
}

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 7 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers7 / 29

Help-first Scheduling Policy

⌅ Enqueue all asyncs in the current level until a finish is reached

s1 s2

steal end

local end

level

{ 1

Snapshot of Execution DequeExample Program

 fn() {
 s1;
 async {
 s5;
 async w;
 s6;
 }
 s2;
 finish {
 s7;
 async x;
 s8;
 async y;
 s9;
 async z;
 s10;
 }
 s3;
 async { s11; }
 s4;
}

s3 s3

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 8 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers8 / 29

Help-first Scheduling Policy

⌅ Enqueue all asyncs in the current level until a finish is reached

steal end

local end

level

{ 1

Snapshot of Execution DequeExample Program

 2 { s7 s8 s9 s10

s1 s2 s3 s3

 fn() {
 s1;
 async {
 s5;
 async w;
 s6;
 }
 s2;
 finish {
 s7;
 async x;
 s8;
 async y;
 s9;
 async z;
 s10;
 }
 s3;
 async { s11; }
 s4;
}

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 9 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers9 / 29

Help-first Scheduling Policy

⌅ Enqueue all asyncs in the current level until a finish is reached

steal end

local end

level

{ 1

Snapshot of Execution DequeExample Program

 2

 3 {

{
z

s7 s8 s9 s10

s1 s2 s3 s3

 fn() {
 s1;
 async {
 s5;
 async w;
 s6;
 }
 s2;
 finish {
 s7;
 async x;
 s8;
 async y;
 s9;
 async z;
 s10;
 }
 s3;
 async { s11; }
 s4;
}

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 10 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers10 / 29

Help-first Scheduling Policy
! Observation

⌅ Theorem (5.8 in the paper):
I

The tasks executed and steal operations encountered in each working

phase can be fully described by (a) the level of the root in the total

ordering of the steal operations on the victim’s working phase, and (b)

the number of tasks and step of the continuation stolen at each level.

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 11 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers11 / 29

Help-first Scheduling Policy
! With levels and counters

steal end

local end

Snapshot of Execution Deque

 l : c
level counter

level

{ 1

 2

 3 {

{
z

s7 s8 s9 s10
 2:0

 1:0

s1 s2 s3 s3
 1:1 1:0 1:1

 2:0 2:1 2:2
 2:1

 2:2

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 12 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers12 / 29

Help-first Scheduling Policy
! A steal occurs (annotated c2)

c2

Snapshot of Execution Deque

 l : c
level counter

level

{ 1

 2

 3 {

{
z

s7 s8 s9 s10

s1 s2 s3
 1:0 1:1

 2:0 2:1 2:2

steal end

local end

 2:0

 1:0

s3
 1:1

 2:1

 2:2

c2

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 13 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers13 / 29

Help-first Scheduling Policy
! Another steal occurs (annotated c2); STEAL TREE before the steal

Snapshot of Execution Deque

c1
 1:0

Steal Tree

c2

 l : c
level counter

level

{ 1

 2

 3 {

{
z

s7 s8 s9 s10

s1 s2 s3
 1:0 1:1

 2:0 2:1 2:2

steal end

local end

 2:0

 1:0

s3
 1:1

 2:1

 2:2

c2 2:0

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 14 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers14 / 29

Help-first Scheduling Policy
! Another steal occurs (annotated c2); STEAL TREE after the steal

Snapshot of Execution Deque

c1

c2

 1:1

 1:0 1:0

Steal Tree

c2

 l : c
level counter

level

{ 1

 2

 3 {

{
z

s7 s8 s9 s10

s1 s2 s3
 1:0 1:1

 2:0 2:1 2:2

steal end

local end

 2:0

 1:0

s3
 1:1

 2:1

 2:2

c2 2:0

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 15 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers15 / 29

Help-first Scheduling Policy
! Another steal occurs (annotated c3); STEAL TREE after the steal

Snapshot of Execution Deque

c1

c2

 1:2

 1:0 1:0

Steal Tree

c2

 l : c
level counter

level

{ 1

 2

 3 {

{
z

s7 s8 s9 s10

s1 s2 s3
 1:0 1:1

 2:0 2:1 2:2

steal end

local end

c3

c3
 2:0

s3
 1:1

 2:1

 2:2

c3
 1:1 1:0

 2:0

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 16 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers16 / 29

Help-first Scheduling Policy
! Another steal occurs (annotated c4); STEAL TREE after the steal

Snapshot of Execution Deque

c1

c2

 1:2

 1:0 1:0

Steal Tree

c2

 l : c
level counter

level

{ 1

 2

 3 {

{
z

s7 s8 s9 s10

s1 s2 s3
 1:0 1:1

 2:1 2:2

steal end

local end

c4

c3

 2:0

 2:1

 2:2

c3
 1:1 1:0

c4

 2:0

 2:1

c4
 2:0

 1:0

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 17 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers17 / 29

Work-first Scheduling Policy

⌅ Theorem (6.3 in the paper):
I

The tasks executed and steal operations encountered in each working

phase can be fully described by (a) the level of the root in the total

ordering of the steal operations on the victim’s working phase, and (b)

the step of the continuation stolen at each level.

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 18 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers18 / 29

Implementation

⌅ Shared-memory
I Cilk (work-first)
I Results on POWER7 (64 cores, 128 hyper-threaded)

⌅ Distributed-memory
I Work stealing using active messages
I Implemented and evaluated for both work-first and help-first
I Results on Titan at ORNL (Cray XK6)

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 19 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers19 / 29

Empirical Results
! Shared and distributed memory

Shared-memory

Benchmark Configuration

AllQueens nq = 14, sequential cutoff 8
Heat nt = 5, nx = 4096, ny = 4096

Fib n = 43
FFT n = 67108864

Strassen n = 4096
NBody iterations = 15, nbodies = 8192

Cholesky n = 2048, z = 20000
LU n = 1024

Matmul n = 3000

Distributed-memory

AQ nq = 19, sequential cutoff 10
SCF 128 beryllium atoms, chunk size 40
TCE C[i, j, k, l]+ = A[i, j, a, b] ⇤B[a, b, k, l]

O-blocks 20 14 20 26, V-blocks 120 140 180 100
PG 13K sequences

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 20 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers20 / 29

Execution Time Ratio
! Shared-memory

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AllQueens Heat Fib FFT Strassen NBody Cholesky LU Matmul

M
ea

n
 e

x
ec

u
ti

on
 t

im
e

ra
ti

o 2 Threads
4 Threads
8 Threads

16 Threads

32 Threads
64 Threads
96 Threads

120 Threads

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 21 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers21 / 29

Execution Time Ratio
! Distributed-memory

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

M
ea

n
 e

x
ec

u
ti

o
n
 t

im
e

ra
ti

o 2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 22 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers22 / 29

Storage Overhead
! Shared-memory

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

AllQueens Heat Fib FFT Strassen NBody

K
B

/
T

h
re

a
d

2 Threads
4 Threads
8 Threads

16 Threads
32 Threads
64 Threads
96 Threads

120 Threads

 0

 10

 20

 30

 40

 50

 60

Cholesky LU Matmul

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 23 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers23 / 29

Storage Overhead
! Distributed-memory

 0

 1

 2

 3

 4

 5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

K
B

/C
or

e

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 24 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers24 / 29

Utilization Graphs
! Cilk LU

 0

 20

 40

 60

 80

 100

0 0.1445 0.289 0.4334 0.5779 0.7224 0.8669 1.0113 1.1558 1.3003 1.4448 1.5892 1.7337 1.8782 2.0227 2.1671 2.3116 2.4561 2.6006 2.745 2.8895

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 25 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers25 / 29

Applications
! Two distinct contexts

⌅ Data-race detection: Scalable and precise dynamic datarace

detection for structured parallelism (Raman et al., [PLDI’12])
⌅ Retentive stealing: Work stealing and persistence-based load

balancers for iterative overdecomposed applications (Lifflander et al.,
[HPDC’12])

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 26 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers26 / 29

Data-race Detection

⌅ As the program executes, the DPST (dynamic structure program tree)
is built in parallel (see the PLDI’12 paper)

I Used to determine the relationships between async and finish
statements

I The DPST is traversed determine if two tasks may execute in parallel

the LCA (lowest common ancestor) must be found
I This involves traversing up the DPST, until the common ancestor is

found
⌅ Applying the STEAL TREE:

I Use the STEAL TREE to shorten the LCA traversal

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 27 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers27 / 29

DPST Traversal Percent Reduction
! Using the STEAL TREE

 0

 20

 40

 60

 80

 100

AllQueens LU Heat NBody MatmulP
er

ce
n
t

R
ed

u
ct

io
n
 D

P
S
T

 T
ra

v
er

sa
ls

2 Threads
4 Threads
8 Threads

16 Threads
32 Threads
64 Threads
96 Threads

120 Threads

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 28 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers28 / 29

Concluding Remarks

⌅ Framework for compactly tracing work stealing schedulers
⌅ Applications

I Performance analysis
I Data-race detection
I Retentive stealing

Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers ⌥ Jonathan Lifflander ⌥ 29 / 29 Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers29 / 29

