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Abstract—Many real-world planning problems require search-
ing for an optimal solution in the face of uncertain input.
One approach to is to express them as a two-stage stochastic
optimization problem where the search for an optimum in one
stage is informed by the evaluation of multiple possible scenarios
in the other stage. If integer solutions are required, then branch-
and-bound techniques are the accepted norm. However, there has
been little prior work in parallelizing and scaling branch-and-
bound algorithms for such problems.

In this paper, we explore the parallelization of a two-stage
stochastic integer program solved using branch-and-bound. We
present three design variations and describe the factors that
shaped our quest for scalability. Our designs seek to increase
the exposed parallelism while delegating sequential linear pro-
gram solves to existing libraries. We evaluate the scalability of
our designs using sample aircraft allocation problems for the
US airfleet. These problems greatly incentivize short times to
solution.

Unlike typical, iterative scientific applications, we encounter
some very interesting characteristics that make it challenging
to realize a scalable design. The total amount of computation
required to find optima is not constant across multiple runs.
This challenges traditional thinking about scalability and parallel
efficiency. It also implies that reducing idle time does not imply
quicker runs. The sequential grains of computation are quite
coarse. They display a wide variation and unpredictability in
sizes. The structure of the branch-and-bound search tree is
sensitive to several factors, any of which can significantly alter the
search tree causing longer times to solution. We explore the causes
for this fragility and evaluate the trade-offs between scalability
and repeatability.

Our attempts result in strong scaling to hundreds of cores for
the small, sample datasets that we use. We believe our experiences
will feed usefully into further research on this topic.

Optimization problems are of real-world relevance, often
with multi-million dollar consequences. However, real-world
problems often have a level of uncertainty in inputs, environ-
mental factors, objectives etc. that should influence the optimal
solution. Stochastic optimization captures this uncertainty by
formulating problems as two-stage (or multi-stage) models
that propose candidate solutions and evaluate them across a
spectrum of potential scenarios.

In this paper we present our quest for the scalable, parallel
solution of stochastic optimization problems. Specifically, we
are interested in problems that require integer solutions, and
hence, interested in Branch-and-Bound (BnB) approaches.
BnB, a common, well-studied approach to finding optima for
integer programs is notoriously hard to parallelize. Addition-

ally, there has been little prior work in parallelizing or scaling
two-stage, stochastic integer programs.

Our work is set in the context of a US airfleet manage-
ment problem where aircraft are allocated to missions under
uncertain cargo movement demands (II). However, the parallel
scaffolding and the techniques we have developed are relevant
elsewhere too.

We structure this paper in the form of a narrative that
describes our findings and how they motivate successive mod-
ifications to our parallel designs. Once past the introductory
sections (I–III), we discuss factors that influence the design
of a parallel, stochastic integer program (IV). This sections
makes for interesting reading and presents some of the factors
that set this problem apart from typical computational science
applications. We pick a programming model that enables
the expression and management of the available parallelism
(V). Finally, in sections VI–VIII, we present the motivations,
structure and performance of each design.

I. BACKGROUND

In two-stage stochastic optimization using Benders decom-
position, candidate solutions are generated in Stage One (Stg1)
(Eq. 1) and they are evaluated in Stage Two (Stg2) for
every scenario. Stg2 (Eq. 1) provides feedback to Stg1 in
the form of cuts, which are used by the Stg1 to improve
the candidate solution. The process iterates unless no better
candidate solutions can be found.

minCx+

K∑
k=1

pkθk s.t.Ax ≤ b,

In the objective function(1), x corresponds to the candidate
solution, C is the cost coefficient vector, θ = {θk|k = 1, ..., k}
is the vector of Stg2 costs for the k scenarios and pk are the
probability of occurrence of scenario k,

θk = min qk
T y s.t.Wy ≤ hk − Tkx

Stochastic programming problems specify problem data as
a probability distribution. While most research on stochastic
programs assumes that the decision variables are continuous,
our problem is made harder by the fact that some of the
decision variables are integer-valued.



Louveaux and Schultz [1], Sahinidis [2], in the broader
context of decision-making under uncertainty, give excellent
overviews of stochastic integer programming problems. Much
of the research on two-stage stochastic integer programs is
concentrated on the calculation of the stage two value function
(e.g. [1]). This is particularly challenging when the Stg2
problem has integer decision variables. In our case, the integer
variables are confined to Stg1 of the problem which makes
the problem theoretically easier, but still requires the use of
enumerative search techniques such as the BnB method. The
common method to solve such problems is an extension of
the L-shaped method used to solve stochastic linear programs.
This method by Laporte and Louveaux [3] is called the integer
L-shaped method. We use a multi-cut variant of this method.

II. CASE STUDY: MILITARY AIRCRAFT ALLOCATION

The motivation and context for our study of stochastic
integer programs comes from an airfleet management task
performed by the US Air Mobility Command. The division
manages a large fleet of aircraft that are assigned to cargo
and personnel movement missions. These missions operate
under varying demands and experience sudden changes. The
objective is to plan for an upcoming time period by accounting
for the uncertainty in upcoming demands and to allocate
aircraft to missions such that the overall costs of short-
term aircraft leases or undelivered cargo is minimized. The
uncertainty in demands definitely puts this problem in the class
of stochastic programs. Integer solutions are required because
aircraft need to be dedicated completely to individual missions.

We use small, but representative datasets that model this
problem. The datasets are classified based on the number of
time periods (typically, days) in the planning window and the
number of possible scenarios that need to be evaluated to
account for the uncertainty. In this work, we primarily use
the 3t and 5t datasets with 120 possible scenarios in Stg2. For
context, the 5t dataset has approximately 250 integer variables
in the Stg1 Integer Program (IP), 1.6M variables in the Stg2
Linear Program (LP), and about 1M Stg2 constraints when
evaluating 120 Stg2 scenarios.

III. PRIOR WORK

Examples of the uses of stochastic integer programming
can be found in literature. Bitran et al [4] model production
planning of style goods as a stochastic mixed integer program.
Dempster et al [5] consider heuristic solutions for a stochastic
hierarchical scheduling problems. A comprehensive listing of
work on stochastic IPs can be found here [6].

Large scale solvers for mixed integer programs have been
studied by a number of authors [7], [8]. The difficulty in
achieving high efficiencies has been documented. Kale et al
[9] have studied the challenges of dynamic load balancing in
parallel tree search implementations. Gurobi [10] has a state-
of-the art mixed integer program solver that exploits multi-core
architectures. However, Koch et al in [8] observe that Gurobi
suffers from poor efficiency (typically about 0.1) as it scales
from 1 to 32 threads, the reason being that the number of BnB

vertices needed to solve an instance varies substantially with
different number of threads.

To the best of our knowledge, large-scale optimization of
stochastic integer optimization has not been systematically
studied. PySP [11], [12] is a generic decomposition-based
solver for large-scale multistage stochastic mixed-integer pro-
grams. It provides a Python based programming framework for
developing stochastic optimization models. For the solution of
the stochastic programs, it comes with parallel implementa-
tions of algorithms such as Rockafellar and Wets’ progressive
hedging. These tend to be heuristic algorithms that require
substantial parameter tuning. To the extent of our knowledge,
the computational and scaling behavior of this framework have
not been explored and the solver suffers from poor parallel
efficiency because of MIP solve times. Escudero et al [13] note
that MIP Solvers such as CPLEX [14] do not provide solution
for even toy instances of two stochastic integer programs in a
viable amount of time.

IV. DESIGN CONSIDERATIONS

A. Coarse-Grained Decomposition

In our designs, we choose to delegate sequential LP so-
lutions to an existing optimization library. This allows us
to leverage the expertise encapsulated in these highly tuned
libraries and focus on the parallelization and accompanying
artifacts. Hence, the fundamental unit of sequential compu-
tation in our designs is a single linear program solve. This
results in very coarse grains and has profound consequences
that have shaped our experiences and this narrative.

B. Solver Libraries Maintain Internal State

Unlike other numerical libraries, LP solvers maintain inter-
nal state across calls. This state represents a characterization
of the feasible space of solutions for the previous problem
that they solved, and also information about the last solution
that was found. Most usage scenarios for such solvers involve
iterating over a problem with repeated calls to the library.
Typically, each call supplies only mildly modified inputs as
compared to the previous invocation. In such cases, the search
for an optimum can be greatly sped up by starting from the
previous solution or by reusing the previous characterization
of the search space. Hence, it is highly advisable to retain
this internal state across calls as it greatly shortens the time to
solution. This is known as a “warm” start or “advanced” start.

The two-stage optimization problems of interest to us follow
this pattern too. There are many iterations (rounds) to converge
to a solution. In one stage, each iteration only modifies a
few constraints on the feasible search space. In the other, the
coefficient matrix maintained by the solver remains the same,
and only the right-hand sides of all the constraint equations
are modified across calls. A more detailed discussion on the
impact of advanced starts can be found in [15].

Hence, its quite desirable to (a) allow all the solver library
instances in the parallel execution to maintain state across
calls and, (b) to maintain an affinity between the solvers
and the problems that they work on across iterations. It is
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Fig. 1. A simple parallelization scheme that only exploits the readily available
concurrency of evaluating multiple scenarios exhibits serial bottlenecks, and
scaling limited by Amdahl’s law. Results are for a 10t dataset with 1000
scenarios; and were obtained on the cluster Abe (dual quad-core 2.33GHz
Intel Clovertowns nodes with GigE).

desirable to pick a parallel programming paradigm that will
permit encapsulating and managing multiple solver instances
per processor.

C. Exposing and Interleaving Nested Parallelism

Two-stage stochastic IPs have a natural expression as a two-
stage software structure. The first stage proposes candidate
solutions and the second stage evaluates multiple scenarios
that helps refine the solution from the first stage.

In earlier work [15], we focused on a simple iterative,
master-worker design that tapped the readily available par-
allelism in Stg2 by evaluating multiple possible scenarios
simultaneously. This captured much of the low-hanging, easily
exploitable parallelism. However, the master-worker design
was quickly limited by the serial bottleneck of performing
Stg1 computations, as demonstrated in Figure 1.

The objective in our earlier attempt was the solution of
a stochastic LP. However, the current objective is to solve
stochastic IPs; which involves proposing candidate integer
solutions in the first stage by solving IPs. This will magnify the
serial bottleneck of the master-worker design so much that it
becomes a completely untenable design. Thus, it is imperative
to expose more parallelism than available in a simple master-
worker decomposition.

Instead of delegating the whole IP to a sequential library,
we decompose and parallelize the BnB search required to find
integer solutions. BnB proceeds by branching on fractional
parts of a solution and restricting each branch to disjoint
portions of the search space, until gradually all components
in the solution are integerized. This yields a tree where each
vertex has one additional constraint imposed on the feasible
space of solutions than its parent. We find a solution to this
additionally constrained two-stage stochastic LP at this vertex,
and then continue to branch. The stochastic LP at each vertex
permits evaluating each of the multiple scenarios in parallel.
Additionally, the BnB search for integer solutions permits
exploring the disjoint portions of the search space in parallel.
This nested parallelism has to be exploited for any reasonable

Dataset Name Stg1 Memory
Usage (MB)

Stg2 Memory
Usage Per
Scenario (MB)

3t 50 10
5t 110 15
10t 230 30
15t 950 45

TABLE I
MEMORY USED BY ONE INSTANCE OF THE GUROBI LIBRARY FOR STG1

AND STG2 OF SAMPLE DATASETS.

scalability.
A relevant observation that influences processor utilization

is the mutual exclusivity of the two stages. For a given vertex,
Stg1 cannot proceed while it is waiting for feedback from
Stg2, and Stg2 is necessarily dependent on Stg1 for each
new candidate solution. Ensuring high utilization of compute
resources will therefore require interleaving the iterative two-
stage evaluation of multiple BnB vertices.

D. Naive Stage One Parallelization is Limited by Memory

Each vertex in the BnB tree iterates through multiple rounds
of Stg1 and Stg2 till it converges to a solution for the
constraints at that vertex. When it converges to a solution,
there are three possible outcomes for the fate of the vertex:
(a) the solution components are all integers, in which case the
vertex is said to be an incumbent. No further processing is
required for the vertex, and the cost of the solution represents
a floor that has to be bettered by other vertices to be considered
candidates for optima; (b) the solution components still have
fractions, but the cost of the solution is already worse than a
known incumbent. In this case the vertex is “pruned”, meaning
its descendents are not explored any further; (c) the solution
components still have fractions, and the cost of the solution
still warrants exploring the subtree beneath the vertex for
possible integer solutions. In this case additional branching
constraints are imposed on the vertex to further integerize the
solution, and the resulting child vertices are explored further.

The lowest levels of the BnB tree that have not been pruned
constitute the “front” of exploration. The number of vertices
on this front at any given instant represents the maximum
available concurrency in exploring the tree. Each vertex on this
front represents a unique combination of branching constraints.
Since each vertex goes through multiple iterations (rounds), it
is desirable to exploit warm starts for each vertex. This can
be achieved by assigning one solver instance for each vertex
that is currently being explored. However, LP solvers have
large memory footprints. The memory usage required for a
single LP solver instance for the sample datasets of the aircraft
allocation case study are shown in Table I. This implies that the
number of solver instances can be substantially smaller than
the number of vertices in a large BnB search tree. Hence, this
first approach to parallelizing the Stg1 BnB is limited by the
available memory.

The actual subset of vertices on the front that are currently
being explored are known as “active” vertices. The parallel de-
sign should account for the memory usage by solver instances,



Fig. 2. LP solves, which are the smallest unit of computation, display sizeable
variation in time to solution. This variation is not predictable too. Hence, the
blocks of sequential computation do not display any persistent performance
behavior that can be exploited. This plot shows a sample execution profile
(on several processors) of evaluating multiple Stg2 scenarios for candidate
Stg1 solutions. Colored bars represent an LP solve, while white stretches
are idle times on that processor. Each processor (horizontal line) is assigned
a specific Stg2 scenario, and evaluates multiple candidate solutions from
Stg1 one after the other. Some loose synchronization is introduced so that
every vertical grouping of bars represent the times taken for the evaluation of
different scenarios for the same candidate solution from Stg1. We observe a
wide variation and no persistence, both across scenarios and across candidate
solutions. This illustrates the shortcomings of a static decomposition of the
available work across processors.

carefully manage the number of active vertices, and expose as
much parallelism as permitted by memory constraints.

E. Unpredictable Grain Sizes

Delegating the LPs to a library causes a very coarse-grained
execution profile. We observe sizeable variation in the time
taken for an LP. This is true for both Stg1 and Stg2 LPs.
Additionally, we do not observe any persistence in the time
taken for LP solves. A single Stg1 LP for a given vertex may
take widely varying times as a result of the addition of a few
cuts from Stg2. Likewise, we do not observe any persistence
in Stg2 LP solve times either across different scenarios for a
given Stg1 candidate solution, or for the same scenario across
different candidate solutions. An illustrative execution profile
is presented in Figure 2.

This complete unpredictability implies that a static a pri-
ori partition of work across different compute objects (or
processors) will not ensure high utilization of the compute
resources. The utter lack of persistence in the sizes of the
sequential grains of computation also precludes the use of any
persistence-based dynamic load balancing solutions. Hence,
our designs explore pull-based or stealing-based load balanc-
ing techniques to ensure utilization. To avoid idle time, a
parallel design must maintain pools of available work that can
be doled out upon pull requests.

F. Varying Amounts of Available Parallelism

The BnB tree exposes a varying amount of parallelism
as the search for an optimum progresses. The search starts
with a single vertex (the tree root) being explored. More
parallelism is gradually uncovered in a ramp-up phase, as
each vertex branches and creates two new vertices. However,
once candidate integer solutions are found, the search tree

can be pruned to avoid unnecessary work. For large enough
search trees, there is usually a middle phase when there are
a large, but fluctuating number of vertices on the exploration
front depending on branching and pruning rates. Towards the
end, as solutions close to optima are found, pruning starts to
dominate and the front of exploration shrinks rapidly. This
tends to reduce the tree to a few strands, that finally shrinks
to one path leading to the optimum. Any parallel design has
to necessarily cope with, and harness these varying levels of
available concurrency.

G. Better Utilization 6= Better Performance

Due to the varying degrees of parallelism and the unpre-
dictable grain sizes, the primary metric of performance of
such an application is the time to solution. For many high
performance computing applications, load balance ensures
minimal overall compute resource idle time, and hence results
in better performance by maximizing the rate of computations.
However, parallel, BnB search confounds such thinking. In-
deed, reducing idle time by eagerly exploring as much of the
tree as possible might be counter-productive by using compute
resources for exploring sub-trees that might have been easily
pruned later.

V. PROGRAMMING MODEL

The designs that we discuss here are implemented in
an object-based, sender-driven parallel programming model
called Charm++ [16], [17] . Charm++ is a runtime-assisted
parallel programming framework based on C++. Programs are
designed using C++ constructs by partitioning the algorithm
into classes. Charm++ permits elevating a subset of the classes
and methods into a global space that spans all the processes
during execution. Parallel execution then involves interacting
collections of objects, with some objects and methods being
invoked across process boundaries. Data transfer and messag-
ing are all cast in the form of such remote method invocations.
Such method invocations are always one-sided (only sender
initiates the call), asynchronous (sender completes before
receiver executes method), non-blocking (sender’s side returns
before messaging completion) and also do not return any
values (remote methods are necessarily of void return type).
Charm++ supports individual instances of objects, and also
collections (or chare arrays of objects). Some features of
Charm++ that enable the designs discussed in this paper:

a) One-sided messaging: helps express and exploit the
synchronization-free parallelism found in parallel BnB. Ex-
tracting performance in a bulk synchronous programming
model can be quite challenging.

b) Object-based expression: of designs facilitate the easy
placement and dynamic migration of specific computations on
specific processors. It also permits oversubscribing processors
with multiple objects to hide work-starvation of one with
available work in another.

c) Non-blocking reductions: for any required data collec-
tion, notifications etc avoids any synchronization that could be
detrimental to performance. A programming model well suited



to such problems, should unlock all the available parallelism
without bridling it with synchronization constructs.

d) Prioritized execution: allows us to simply tag mes-
sages with appropriate priorities and allow the Charm++
runtime system to pick the highest priority tasks from the
available pool.

VI. DESIGN 1-A:
VERTICES SHARE CONSTRAINTS ON FEASIBLE SPACE

A. Design Motivations

1) Vertices in Stg1 Can Share State: While the set of
branching constraints for each vertex are unique to it, the
characterization of the feasible space in the form of cuts from
Stg2 is not. The addition of a branching constraint influences
the candidate allocations that are generated in Stg1. These, in
turn, only affect the right hand sides in the Stg2 LPs, which
simply alters the objective function in Stg2. The dual polytope
(which is the characterization of the feasible space) of the Stg2
LPs for all scenarios remains unchanged. Indeed, regardless
of the vertex in the BnB tree, the dual polytope for any Stg2
problem remains constant. This implies that the dual optimal
solutions obtained in Stg2 for a candidate solution from the
Stg1 LP of a given vertex, are all valid dual extreme points for
any vertex in the BnB tree. Hence, the Benders cuts that are
generated from the Stg2 LPs remain valid irrespective of the
branching constraints imposed on a vertex. This implies two
facts that can both be exploited in the program design: 1) each
vertex of the BnB tree can inherit the Benders cuts from its
parent vertex. 2) cuts generated from evaluating scenarios for
a given vertex are also valid for all vertices in the BnB tree.

This forms the core principles underlying our first design.
Since every cut generated from the evaluation of any scenario
in Stg2 for any vertex is valid across the whole BnB tree, we
share the cuts across vertices wherever possible. The concur-
rent evaluation of multiple BnB vertices generates a large set
of cuts, which should greatly accelerate the characterization of
the feasible space; and hence shortens the number of iterations
required for any vertex to converge.

Since cuts can be shared across vertices, two vertices only
differ in the branching constraints unique to them. By applying
this delta of branching constraints, a Stg1 LP solver instance
can be reused to solve a Stg1 LP from another vertex. Solver
libraries typically expose API to add / remove constraints.
Hence, it becomes possible to reuse a single solver instance
to interleave the exploration of multiple BnB vertices. We can
simply remove constraints specific to the vertex that was just
in a Stg1 LP solve, and reapply constraints specific to another
vertex that is waiting for such a Stg1 solve. This permits
exploring more vertices than the available number of solver
instances, and also retains the ability to exploit warm starts
for each Stg1 LP solve.

The reasoning presented here also implies that the same
Stg2 solver instance can be used to evaluate multiple scenarios
across multiple vertices. Hence, our first design aims to
maintain a few library solver instances for Stg1 and Stg2
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Fig. 3. Schematic for design 1-A. Enables cut sharing across vertices of the
BnB tree

respectively, and interleave the LPs for multiple vertices on
these solvers.

B. Parallel Structure

The considerations described earlier lead to a two-stage
design with two primary collections of interacting compute
objects that host solver instances. There are also a few other
objects required for orchestrating the execution (Figure 3). The
overall parallel structure is described here.

1) Stg1 Tree Explorers: A collection of compute objects
(chare array in Charm++) explore the BnB tree in parallel.
Each Tree Explorer hosts an instance of the Gurobi LP library.
However, each object stores and explores several vertices. The
vertices are divorced from the library instance by separately
storing the set of branching constraints specific to each vertex.
Every object maintains a set of private vertex queues to
manage the vertices in different stages of their lifespan. When
the LP library completes a solve, the next vertex is picked
from a “ready” queue. This queue is prioritized according to
the search policy (depth-first, most-promising-first, etc). The
delta of branching constraints between the previously solved
vertex and the currently picked vertex is applied to the LP
library to reconstruct the Stg1 LP for that picked vertex. The
Stg1 LP is then solved to yield a new candidate solution for the
current vertex. This candidate solution is sent for evaluation
against the set of Stg2 scenarios and the vertex is moved to
a “waiting” queue. The compute object repeats the process as
long as there are vertices waiting to be solved in the ready
queue. Vertices move back from the waiting queue into the
ready queue when the cuts from evaluating all the scenarios
for the generated candidate allocation are sent back to the Tree
Explorer. When a vertex “converges”, that is, when the optimal
fractional solution to the stochastic LP described by the vertex
is found, it is “retired” by either pruning it or branching further.

The number of Tree Explorer objects is far lesser than
the number of vertices in the search tree. We also find from
experiments that it is sufficient for the number of such Tree



Fig. 4. Execution traces that demonstrate vertex migration in the ramp-up
phase. Work, as it becomes available is distributed to more Tree Explorers.
The first two processors in the traces (with execution events colored yellow)
host Tree Explorers. The traces also illustrate the benefits of maintaining cut
locality. The traces on the top half of the figure demonstrate the time required
for a migrated vertex to converge while building up a collection of cuts at the
new Tree Explorer. The traces in the bottom half demonstrate the shortened
walltime to convergence when the cuts are migrated too. The migration and
convergence events are marked with black dots for clarity. The short red stretch
in the execution profile with cut migration represents the migrated cuts being
applied to the local LP solver instance.

Explorers to be a small fraction of the number of processors
in a parallel execution.

Cuts generated from a scenario evaluation can be used in
all the Stg1 LPs. However, we have found that this results in
a deluge of cuts added to the Stg1 library instances. In earlier
work [15], we have observed a strong correlation between the
number of cuts added to a library instance and the time taken
for the LP solve. Hence, instead of sharing the cuts across the
entire BnB tree, we share cuts only across vertices hosted by
a single Tree Explorer. Cuts generated from the evaluation of
a candidate solution are hence messaged directly to the solver
hosting the corresponding vertex. However, the collection of
cuts accumulated in a library instance continues to grow as
more vertices are explored. Since some of these cuts might
no longer actively constrain the polytope, but may only be
loose constraints, these can be safely discarded. We implement
bookkeeping mechanisms that track the activity of cuts and
retires cuts identified as having low impact (longest-unused,
most-unused, combination of the two, etc). This maintains a
fixed window of recent cuts that are slowly specialized to the
collection of active vertices sharing that library instance. The
impact of cut retirement on solve times is illustrated in [15].

2) Stg2 Manager and the Vertex Queue: Candidate solu-
tions from the Tree Explorers are sent to a Stg2 Manager
object. The raison d’etre for this object is the unpredictability
of the Stg2 LP solve times. This object helps implement a pull-
based work assignment scheme across all Scenario Evaluators.
To do this, it maintains a fair queue of such candidate
solutions and orchestrates the evaluation of all scenarios for
each candidate. In order to remain responsive and ensure the
quick completion of pull requests, the object is placed on its
own dedicated core and other compute objects (which invoke,
long, non-preempted LP solves) are excluded from that core.

Since even the Stg1 LP solve times display some variation,
each Tree Explorer can produce candidate solutions at differ-
ing rates. The Stg2 Manager ensures that each Tree Explorer
gets an equal share of Stg2 evaluation resources by picking
candidates from Tree Explorers in round-robin fashion.

3) Stg2 Scenario Evaluators: Akin to the Tree Explorers,
the Scenario Evaluators are a collection of compute objects

each of which hosts an LP instance. They request the Stg2
Manager for candidate Stg1 solutions and evaluate these
solutions for one or more scenarios. Upon evaluation, they
send the generated cuts directly back to the Tree Explorer
that hosts the specific BnB vertex. Since the solve times are
typically much larger than the time for the roundtrip messaging
required to obtain a candidate solution from the Manager
object, this ensures good utilization of the processors hosting
Scenario Evaluators, and also balances the scenario evaluation
workload across all the Stg2 compute objects.

The total number of Stg2 LPs is the product of the number
of candidate allocations and the number of scenarios. There
are some interesting choices in how these LPs are assigned to
different Scenario Evaluators. Similar scenarios could be clus-
tered together into packets of work based on the assumption
that their optima would lie in the same neighborhood of the
dual polytope. A single compute object could then evaluate
all the scenarios in the cluster, exploiting warm starts to the
fullest. LPs could also be grouped based on the candidate
solution they are evaluating. A discussion of the effects of
such clustering and warm starts can be found in [15].

C. Work Distribution and Load Balancing

As described earlier, we observe three primary phases in
BnB search: the ramp-up, middle and ramp-down phases.
During the ramp-up and ramp-down phases there is insufficient
parallelism available, and we need techniques to exploit any
additional concurrency as soon as it becomes available. We
achieve this by migrating vertices across Tree Explorers. In
the middle phase, typically there is abundant work to be
done. However, due to the unpredictability of solve times
its difficult to pick a good balance between Stg1 and Stg2
compute resources. We combat this by automatically adjusting
this balance based on collected performance statistics. Both
these techniques are described in this section. The required
capabilities are implemented as part of a Stg1 Manager object.
Again, for the sake of responsiveness, compute objects are
excluded from the core that hosts the Stg1 Manager.

1) Vertex Migration: BnB starts at a root vertex and ends at
a vertex that represents the optimum. In the neighborhood of
both these end points, there is either insufficient branching, or
aggressive pruning. Both result in fewer vertices than available
Tree Explorers, resulting in potentially idle Tree Explorers.
Idle Tree Explorers can also occur in the middle phase if a Tree
Explorer prunes all the vertices that it owned. To automatically
exploit any parallelism as it becomes available, and keep
all Tree Explorers busy with useful work, we implement a
mechanism loosely similar to work stealing.

We employ a single work request mechanism in all sit-
uations when a Tree Explorer finds that it has no vertices
to explore. The object then registers a request with the
Stg1 Manager. The Stg1 Manager periodically collects load
information from all the Tree Explorers, and hence can identify
the most overloaded object. Here load can refer to the (total or
unexplored) number of vertices that are owned. The Manager
then instructs the migration of one or more vertices from the



Fig. 5. Execution traces from a few relevant processors of a larger execution that captures the adaptive shrink / expand of the number of Tree Explorers to
maximize rate of vertex exploration. Each processor is a horizontal line in the execution traces. Blue bars represent Tree Explorer computations, while pink bars
represent Scenario Evaluator computations. Based on the performance and exploration throughput statistics, the number of processors hosting Tree Explorers is
automatically adjusted. The impact of such reassignment can be observed in the “before-and-after” processor utilization profiles. Both plot utilization during a
small portion (25-50s) of the overall execution and are obtained on 128 processors. The first profile is before the dynamic adjustment kicks in, and shows just
two processors hosting Tree Explorers, while the second shows increased utilization because a greater number of processors (8) are automatically dedicated
to hosting Tree Explorers. Such introspective adjustment occurs periodically throughout the execution.

overloaded object to the idle object. These vertices are used
to seed a new sub-tree of exploration at the idle object. This
mechanism successfully doles out any available units of work
to idle Tree Explorers and keeps them occupied as far as
possible.

As described earlier, each Tree Explorer gradually special-
izes its collection of cuts for the currently active vertices.
However, a migrated vertex moves to a Tree Explorer whose
collection of cuts is tailored to exploring a different region
of the BnB tree. Our experiments reveal that this results in
significantly more rounds for the newly busy Tree Explorer
object to converge to a solution for the migrated vertex.
The walltime to convergence on the migrated vertex is even
greater than it would have been without the migration, making
the scheme counter-productive. This is especially true when
migrations occur during the ramp-down phase when there is
not much benefit to reconstructing a specialized collection of
cuts.

In order to maintain the locality of the cuts to the region
of the tree being explored, we also implement mechanisms to
migrate the collection of cuts along with the migrated vertex.
The idle Tree Explorer discards all its existing cuts and loads
the newly received cuts into its library instance. We observe
that this greatly accelerates convergence on newly acquired
vertices, and restores the benefits of vertex migration. Vertex
migration, and the benefit of cut migration are illustrated in
Figure 4.

2) Automatically Adjusting Stg1-Stg2 Processor Allocation:
The program starts with an initial user-specified number of
active Stg1 and Stg2 objects. The number of Tree Explorers
determines how many Stg1 LP solves can happen concurrently,
while the the number of Scenario Evaluators determines how
many Stg2 scenarios can be evaluated concurrently. Setting the
number of Tree Explorers too low might not explore vertices
fast enough to keep all the Scenario Evaluators busy. Setting
it too high might generate and push candidate solutions into
Stg2 Manager’s queues faster than can be drained by all the
Scenario Evaluators. This will cause a high turnaround time
for the cuts from each candidate solution to return to its

Tree Explorer object; resulting in either Tree Explorers idling,
or causing a breadth-first search because the Tree Explorers
start exploring more and more vertices while they wait for
a response from Stg2. Since the amount of parallelism varies
over time, it is quite difficult to predict a good balance that will
achieve the highest rate of exploration of BnB tree vertices.

We automate this process by using measured performance
statistics to decide whether the number of Tree Explorers need
to be adjusted. The Stg1 Manager object periodically collects
data from all the Tree Explorers. Non-blocking reductions
(available in Charm++) permit such reductions to proceed
without imposing an implicit synchronization barrier on the
inherently unsynchronized Tree Explorers. The collected data
includes vertex queue lengths, average LP solve times, idle
times on processors hosting compute objects etc. This data
is used to compute the LP solve rates in Stg1 and Stg2,
and eventually a decision on whether there are sufficient
processors allocated to explore the BnB tree. Any decision on
the number of processors to shrink / expand the Stg1 resources
by, is followed by spawning the appropriate compute objects
on these processors. The newly launched compute objects
then use the existing work request mechanisms (Stg1 vertex
migration or Stg2 pull requests) to get work. We observe that
this automation significantly boosts processor utilization and
increases the rate at which the tree is explored (Figure 5).

D. Performance and Analysis
Figure 6 shows the performance of this design for the 5t∗

dataset. All performance data in this plot is using one Tree
Explorer. Its worth remembering that, although a single Tree
Explorer object may not yield the fastest vertex exploration
rates, it does not preclude a parallel exploration of the tree
because each solver can interleave the exploration of several
vertices. However, we deliberately constrain the number of
Tree Explorers to illustrate noteworthy performance charac-
teristics.

The large variation in performance at any given scale is
evident from the plot. The performance data presented here
are the result of several iterations of design improvements and
tuning. This includes much of the design discussed thus far:



pull-based work distribution; adaptive processor redistribution;
vertex and cut migrations to shorten the ramp-up and ramp-
down phases; several studies of cut locality, the impact of
cut sharing, cut retirement windows etc. Owing to space
constraints, we do not present the performance data for each
of these individual design iterations, but only the end results.
However, despite observing some scalability, the results are
not encouraging because of the large variations across multiple
identically configured runs.

VII. DESIGN 1-B:
ENSURING A GLOBALLY PRIORITIZED SEARCH

A. Design Motivations

The large variation in performance that we observe with the
previous design is of concern. Our next explorations attempt
to understand and mitigate this. We discuss two phenomena
to motivate the second design.

Our experiments prior to implementing adaptive Stg1-Stg2
resource distribution showed that sometimes the number of
Tree Explorers overwhelmed the available Stg2 resources.
This resulted in long turnaround times for any candidate
solution that was sent to Stg2 for evaluation; causing each
Tree Explorer to start exploring as many vertices as possible
to remain busy during this long turnaround period. This
further inundated Stg2 with more work, eventually leading to
a breadth-first search on the tree. The time to solution in such
cases is enormously worse and is tenable only for the smallest
of problems.

Even with an adaptive adjustment of the number of Tree
Explorers, we noticed that even small increases in this number
caused wide performance fluctuations. To study the sensitivity
to the number of Tree Explorers, we performed an illustrative
experiment that shaped our hypothesis for this design. We
gradually stepped to a higher number of Tree Explorers as
we increased the scale of execution. We conducted multiple
trials of this experiment and the results are plotted in Figure 7.
Despite ensuring that there were always sufficient compute
resources for the Stg2 portion of the computation, we noticed
some very pathological scaling behavior. Adding more Tree
Explorers was markedly counter-productive.

However, we did observe some scaling when using just one
Tree Explorer. This led us to the suspicion that fragmenting
the BnB search across multiple Tree Explorers was somehow
degrading performance.

Each Tree Explorer explores BnB tree without feedback
from, or interaction with, others. This is equivalent to frag-
menting the BnB tree into as many pieces as Tree Explorers
and then performing each subtree search separately. Each of
these individual subtree searches then adaptively explores as
many vertices as required to ensure high utilization. Each Tree
Explorer locally follows the appropriate search strategy that
was requested (depth-first, most-promising vertex-first, etc).
However, there is no global coordination that enforces this
search policy across all Tree Explorers. The second design
stems from this realization and seeks to ensure that all Tree
Explorers spend their time on the next most globally important
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Fig. 7. Performance of design 1-A with gradually increasing number of Tree
Explorers at each scale. We observe that the performance is sensitive to the
number of Tree Explorers and that adding more Tree Explorers is markedly
counter-productive. This is despite ensuring reasonable turnaround times from
the Stg2 compute resources. The results, combined with those from Figure 6
seem to imply that fragmenting a global view of the BnB tree is counter-
productive. Results are for the same 5t∗ dataset as used in Figure 6.

vertices that are available for exploration. Consistently explor-
ing the most interesting portions of the search tree might make
the best use of the available Tree Explorers.

B. Parallel Structure

There are several means to ensure a globally prioritized
search, so that all the Tree Explorers collectively explore the
most interesting portions of the BnB tree, rather than simply
partitioning the tree amongst themselves. We pick a relatively
simple solution that trades cut locality for global prioritization,
and is sufficient for the scales at which we test our designs.

Our design simply introduces a global “ready” queue of
BnB vertices that is prioritized according to the search policy.
Any Tree Explorer that is idling can pull a vertex from
this global queue and start exploring it. Upon branching,
both child vertices are pushed back into the global queue



Num processors Average Min Max

60 474.88 291.53 653.22
120 306.27 60.79 478.36
240 544.27 269.07 903.21

TABLE II
DESIGN 1-B STILL EXHIBITS PERFORMANCE VARIATION. DATA BASED ON

FIVE TRIALS WITH 3T DATASET.

and the currently most important vertex is pulled for further
exploration. This global ready queue is naturally embedded
in the Stg1 Manager object. Vertices pulled from the global
queue alternate between local “ready” and “pending” queues
private to each Tree Explorer. Partially explored vertices in
the local ready queue are given preference over those in the
global ready queue.

The fair-share policy for sharing Stg2 compute resources
across Tree Explorers is also replaced with a policy that
prioritizes the Stg2 evaluations for the most important vertices.
The design aspires to ensure that the most important vertices
are always explored the fastest, in hope that this will quickly
lead to an integer solution that will help prune the tree.

The description of cut sharing in section IV explicitly states
that cuts are valid across the entire BnB tree. This design
exploits that to the fullest by permitting vertices to be pulled
by solvers which have an unrelated collection of cuts. The
cost of enabling a global work pool is that cut locality is not
maintained any more.

A central global work queue is a questionable choice for
ensuring a global steering of the BnB search. The obvious
objection in a parallel execution context is that requiring all
Tree Explorers to pull work from a single Stg1 Manager object
can cause scaling bottlenecks. However, this concern is easily
assuaged by a few observations. A relatively small number
of Tree Explorers can generate enough candidate solutions
to keep the Stg2 compute resources highly utilized. Hence
the number of Tree Explorers will be too small to cause a
performance bottleneck at the Stg1 queue. The coarse-grained
Stg1 LP solves that necessarily separate two pulls by the same
Tree Explorer from the global queue will also prevent the
bottleneck. Finally, transitioning from a single global queue
to a hierarchical queue is possible, but worth considering only
in the case of evident bottlenecks.

Its worth noting that this design introduces a symmetry
between the two stages. Both stages now maintain a global
pool of work, and each compute object requests a manager
object for units of work.

C. Performance and Analysis

Table II presents results we obtained from multiple trials
of solving a 5t dataset at different scales. We observe that the
large variation in performance persists. We also observe no dis-
cernible scaling when we increase the number of processors.
This variation persists despite ensuring a globally enforced
search policy. To investigate we plotted the BnB trees from
two identically configured trials on a very small dataset. These
trees are plotted in Figure 8 and demonstrate that despite a
global work queue there is a large variation in the actual search

tree. This obviously affects the amount of work done until a
solution is found, and hence the time to solution.

VIII. DESIGN 2:
IN SEARCH OF REPEATABILITY AND SCALABILITY

A. Design Motivations

Design 1-B demonstrates that enforcing a global search
policy is insufficient in maintaining consistent search trees
across multiple trials. The experiments also demonstrate that
identically configured trials can yield vastly different search
trees. We summarize a set of diagnostic experiments that we
constructed to isolate the cause(s) of this variation.

If we momentarily ignore the Stg2 component of the for-
mulation, there is one significant difference between a regular
BnB search and the designs for tree exploration proposed thus
far. This is the fact that the vertices in our designs share state.
The Tree Explorers, which are responsible for exploring the
BnB tree, have to necessarily (memory constraints) hold and
explore several vertices during any span of time.

a) Diagnostic Experiment 1: As a first experiment, we
isolate the vertices from each other in the following manner.
We modify the Tree Explorers from the previous design and
constrained them to operate on just one vertex at a time. While
a candidate solution for that vertex is undergoing Stg2 evalu-
ation, the Stg1 object simply idles. It makes another request
for a vertex only when the current vertex has converged. The
other modification is to ensure that LP library instances do not
port state across solves for two different vertices. To realize
this, we store a dump of all the cuts generated for the root
vertex, reset the library instance and reload this same set
of cuts whenever a Tree Explorer starts working on a new
vertex. These actions completely eliminate the sharing of cuts
across vertices and ensure that each vertex starts with the
same deterministic characterization of the feasible space of
solutions. However, experiments reveal that we still observe
some variation across multiple identical trials.

We furthered the previous reasoning and proposed the
hypothesis that sharing state in the Scenario Evaluators could
affect the cuts that were generated for a candidate solution.
Since, the Stg2 LP is degenerate, it has several possible
solutions. A different start point could cause the LP to
converge to a different solution. This would lead to different
cuts being generated. Hence, the cuts for any given candidate
solution potentially depended on the internal state of the LP.
This meant that even if a vertex started with a deterministic
collection of cuts, the cuts that were generated during its
lifetime were influenced by the Stg2 LP solves of other
vertices.

b) Diagnostic Experiment 2: A second experiment evalu-
ated this hypothesis, by isolating even the scenario evaluations
for a candidate solution from other Stg2 computations. Since
this was purely diagnostic, we achieved this by inserting reset
calls to the Stg2 LP library instances. This greatly increased
the solve times, but ensured that each candidate solution
was evaluated devoid of any external influences. Experiments
revealed that the combination of the above two modifications



Fig. 8. The Branch-and-Bound trees from two identically configured executions of the same 5t dataset. The trees from the two trials area significantly
different and explain the large variation in performance across trials. Triangles represent integer solutions (incumbents), while the vertices are colored by the
value of bound
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resulted in the same (or very similar) search trees being
generated across multiple trials.

These findings illustrate that a large part of the variation
in search trees is simply because of the sharing of cuts and
solver internal states. This motivates our final design.

B. Parallel Structure

The final design that we present is again obtained as a set of
modifications to our previous design. We isolate computations
to gain repeatability, and then oversubscribe objects to proces-
sors to combat the ensuing idle time. The set of modifications
required atop the previous design are described below.

1) Isolated Tree Explorers: The new design seeks to isolate
vertex explorations in a manner similar to that described in
the diagnostic experiments. Tree Explorers are constrained to
explore only one vertex at a time. Whenever a new vertex is
picked, the library instance is reset and reloaded with a known

collection of cuts from an ancestor vertex. When the vertices
are waiting on Stg2 feedback, the Tree Explorer idles. The
processors dedicated to exploring the tree are oversubscribed
by placing multiple Tree Explorers on each. The Charm++
runtime automatically overlaps idle time in one object with
computation in another object by invoking any objects which
are ready to compute. In the situation when multiple objects on
a processor are ready to compute, execution is prioritized ac-
cording to the search policy. This is indicated to the Charm++
runtime by tagging the messages with a priority field. This
field can be an integer (depth-first), a fraction (bounds / cost),
or a bitvector that identifies the vertex.

2) Cut Dump Manager: Our diagnostic experiments simply
stored a dump of the cut collection from the root vertex and
used that as a starting point for every vertex. However, this
potentially repeats a lot of avoidable Stg1–Stg2 rounds to
regenerate all the cuts that would have been generated by
vertex’s ancestors. This would dilate the time taken for a single
vertex to converge. Our experiments do demonstrate that this
is the case. Hence, in order to mitigate the effects of isolation
we attempt to share cuts; but share them in a deterministic
manner.

We precompute the available memory on the system and
corral a portion of it for storing dumps of cut collections.
Whenever a vertex converges, we extract its collection of
cuts from the library instance and store it in the available
memory. The dump is tagged with the bitvector id of the
vertex. Whenever an immediate child of this vertex is picked
for exploration, the parent’s cut collection is retrieved and
applied to the library instance. This should significantly offset
the detrimental effects of isolating vertices. Once both children
of a vertex are explored, the parent’s dump is discarded.
Hence, at any given time, the number of cut dumps stored is
a linear function of the number of vertices on the front. The
cut collection dumps are managed by a third chare collection
called the Cut Manager. Objects of this collection are not
placed on processors with Tree Explorers in order to keep
them reasonably responsive to requests.
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3) Isolated Scenario Evaluators: In order to isolate the
Stg2 computations for each candidate solution, we dedicate
a collection of Scenario Evaluators to each Tree Explorer. We
remove the Stg2 Manager object and its pool of candidate
solutions. Instead each Tree Explorer object interacts directly
with its collection of Scenario Evaluators. We place these
multiple collections of Scenario Evaluators on the same subset
of processors. Idle time in one is overlapped with computation
in another. The execution of Stg2 computations for the most
important vertices are again achieved by simply tagging the
messages with the priorities of the corresponding vertices.

C. Performance and Analysis

In Figure 10, we plot the performance of a 3t dataset at
different execution scales and with different number of Tree
Explorers. Each point is the average of multiple trials. Two
observations are apparent. First, the amount of variation across
multiple trials of a single configuration is significantly lower

Dataset Name Design 1-B Design 2

3t 0.053 0.442
5t 1.037 2.613

TABLE III
THE IMPACT OF CUT SHARING ON AVERAGE STG1 LP SOLVE TIMES (S)

than in the previous designs. However it has not vanished
completely. Second, the number of Tree Explorers at any given
execution scale has a significant effect on the performance.
However, with the reduced performance variation, it is now
possible to reason about this effect. Expectedly, increasing the
number of Tree Explorers too much inundates Stg2 with work
and deteriorates performance. We have also ascertained that
the concurrent execution of several Stg1 LPs on the same
compute node of the machine increases the individual solve
times because of memory bandwidth limitations.

Figure 11 presents the performance of this design when
strong scaling several datasets. The data points represent the
average times across multiple trials of the best performing
configuration at each scale. The design is able to successfully
deliver better performance at increasing core counts. For
instance, the 3t-240 dataset scales perfectly from 30 to 120
cores, and then with an efficiency of 50% from 120 to 480
cores. We observe similar efficiencies for the other 3t dataset.

The behavior of the 5t dataset in the scaling experiments is
of some concern. Again contrary to conventional wisdom, the
larger dataset does not seem to scale better. However, scaling
is limited by depth of the optimal vertex in the tree. The
length of the path from the root to the optimal vertex defines
a lower bound on the critical path length. The exploration
of the path leading to the optimum cannot be parallelized
further. For some datasets, we believe that the discovery of
the optimum leads to all remaining vertices being pruned and
hence, causes the optimal vertex to define the critical path in
the computation. This places a lower bound on the time to
solution and limits scaling.

Finally we evaluate the impact of isolating vertices in Stg1
at the expense of cut sharing. Figure 12 plots a histogram of
the number of rounds taken by different vertices to converge.
We compare the convergence behavior for: (a ) design 1-
A, where cuts are shared within a Tree Explorer, and cut
locality is ensured (b ) design 1-B, where cuts are shared, but
cut locality is sacrificed for global prioritization (c ) design
2 without the Cut Manager, where Stg1 solves always start
from the root vertex cuts (d ) design 2, where vertices are
isolated, but cut dumps restore some cut sharing and locality.
The original design permits vertices to converge in the fewest
rounds because of the very good cut locality. Design 1-B
takes more rounds to converge on vertices, as it sacrifices
locality. The third plot shows the worst convergence behavior
because it sacrifices both cut sharing and locality. This variant
performs a lot of needless computation in regenerating cuts.
The final design, which restores limited amounts of cut sharing
and locality produces repeatable search trees, and displays
convergence behavior only slightly worse than design 1-B.
Thus the final design, in comparison to the original, trades
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Fig. 12. Number of rounds to explore a vertex. Histogram. From left: design 1-A; design 1-B; design 2 without cut manager; design 2 with cut manager

extra computation for repeatability.
Table III shows the average Stg1 LP solve times for design

1-B and 2. We observe that the solve times are significantly
larger for the final design. This implies that even if vertices
take approximately the same number of rounds to converge in
both designs, cut sharing across vertices helps find candidate
solutions in lesser time. Hence the total Stg1 walltime required
for a vertex to converge is lesser for design 1-B.

The previous histogram and table attempt to convey that the
final design potentially suffers dilated times to solution in or-
der to gain repeatability. However, we have insufficient data to
make this claim with greater confidence. The choice between
designs may depend on the application usage situations.

IX. SUMMARY

We have presented three designs for a parallel, stochastic
integer program using Branch-and-Bound. Our designs are
the result of an evolutionary exploration and possess differ-
ing strengths. However, the need for scalable solutions to
stochastic integer programs is best met by the third of our
designs, which presents both repeatability and scalability. The
design demonstrates sufficient scaling, and yields solutions in
incrementally faster times upto 960 cores of a dual hex-core,
2.67 GHz, Intel Xeon cluster. We believe these are noteworthy
results for strong scaling such an unconventional problem.

However, there is still a significant need for characterizing
the parallel behavior of stochastic integer programs; and for
further research into scalable techniques for solving them. We
feel our experiences and findings are a useful addition to the
literature and can seed further work in this direction.
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