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Abstract
Work stealing is a popular approach to scheduling task-parallel pro-
grams. The flexibility inherent in work stealing when dealing with
load imbalance results in seemingly irregular computation struc-
tures, complicating the study of its runtime behavior. In this paper,
we present an approach to efficiently trace async-finish parallel pro-
grams scheduled using work stealing. We identify key properties
that allow us to trace the execution of tasks with low time and space
overheads. We also study the usefulness of the proposed schemes
in supporting algorithms for data-race detection and retentive steal-
ing presented in the literature. We demonstrate that the perturbation
due to tracing is within the variation in the execution time with 99%
confidence and the traces are concise, amounting to a few tens of
kilobytes per thread in most cases. We also demonstrate that the
traces enable significant reductions in the cost of detecting data
races and result in low, stable space overheads in supporting re-
tentive stealing for async-finish programs.

Categories and Subject Descriptors D.2.5 [Software]: Software
Engineering—Testing and Debugging; D.3.3 [Software]: Pro-
gramming Languages—Language Constructs and Features

Keywords work-stealing schedulers; tracing; async-finish paral-
lelism

1. Introduction
The increase in number of processor cores anticipated in both com-
modity and high-end systems has motivated the study of dynamic
task parallelism. The structured parallel programming idioms sim-
plify performance-portable programming and tackle problems re-
lated to frequent synchronization on large-scale systems.

Work stealing is a well-studied dynamic load balancing strategy
with several useful characteristics—composability, understandable
space and time bounds, provably efficient scheduling, etc. [5]. Sev-
eral programming models support dynamic task parallelism us-
ing work stealing, including OpenMP 3.0 [3], Java Concurrency
Utilities [11], Intel Thread Building Blocks [14], Cilk [5, 6], and
X10 [15]. While several properties have been proven about work
stealing schedulers, their dynamic behavior remains hard to ana-
lyze. In particular, the flexibility exhibited by work stealing in re-
sponding to load imbalances leads to less structured mapping of
work to threads, complicating subsequent analysis.
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In this paper, we focus on studying work stealing schedulers
that operate on programs using async and finish statements—the
fundamental concurrency constructs in modern parallel languages
such as X10 [15]. In particular, we derive algorithms to trace work
stealing schedulers operating on async-finish programs.

Tracing captures the order of events of interest and is an effec-
tive approach to studying runtime behavior, enabling both online
characterization and offline analysis. While useful, the size of a
trace imposes a limit on what can be feasibly analyzed, and per-
turbation of the application’s execution can make it impractical at
scale. Tracing individual tasks in an async-finish program is a pro-
hibitive challenge due to the fine granularity and sheer number of
individual tasks. Such programs often expose far more concurrency
than the number of computing threads to maximize scheduling flex-
ibility.

In this paper, we derive algorithms to efficiently trace the exe-
cution of async-finish programs. Rather than trace individual tasks,
we exploit the structure of work stealing schedulers to coarsen
the events traced. In particular, we construct a steal tree: a tree of
steal operations that partitions the program execution into groups of
tasks. We identify the key properties of two scheduling policies—
help-first and work-first [9]—that enables the steal tree to be com-
pactly represented.

In addition to presenting algorithms to trace and replay async-
finish programs scheduled using work stealing, we demonstrate the
usefulness of the proposed algorithms in two distinct contexts—
optimizing data race detection for structured parallel programs [13]
and supporting retentive stealing without requiring explicit enumer-
ation of tasks [12].

The following are the primary contributions of this paper:

• identification of key properties of work-first and help-first
schedulers operating on async-finish programs to compactly
represent the stealing relationships;
• algorithms that exploit these properties to trace and replay

async-finish programs by efficiently constructing the steal tree;
• demonstration of low space overheads and within-variance per-

turbation of execution in tracing work stealing schedulers;
• reduction in the cost of data race detection using an algorithm

that maintains and traverses the dynamic program structure
tree [13]; and
• retentive stealing algorithms for recursive parallel programs,

while prior work required explicitly enumerated task collec-
tions [12].

2. Background and Related Work
2.1 Async-Finish Parallelism
An async statement identifies the associated statement as a task,
the basis unit of concurrent execution. A task identified by the



async statement can be executed in parallel with the enclosing
task, referred to as the parent task. A finish statement identifies
the bounds of concurrency. All computation enclosed by a finish
statement, including nested concurrent tasks, are required to com-
plete before any statement subsequent to the finish can be executed.

This async-finish parallelism model, supported in X10, enables
both fully strict and terminally strict computations. In fully strict
computations, exemplified by Cilk, a finish statement implicitly
encloses all execution in a task, requiring all tasks transitively
nested within a task to complete before it returns. The async-finish
model extends the fully strict model by supporting escaping asyncs,
allowing a task to return before its nested concurrent tasks need to
complete.

2.2 Work Stealing Schedulers
We shall assume that the computation begins with a single task and
terminates when the task and its descendents complete execution.
Concurrent tasks can be executed in parallel by distinct threads
or processes. Each thread maintains a local deque of tasks and
alternates between two phases until termination. In the working
phase, each thread executes tasks from its local deque. When no
more local work is available, a thread enters the stealing phase to
steal from a victim’s deque. A stealing thread (a thief) attempts to
steal a task until work is found or termination is detected. The thief
pushes the stolen task onto its local deque and enters a new working
phase. Each thread pushes and pops tasks from the local end of its
deque, while the thief steals from the other end (steal end) of the
victim’s deque.

We consider two scheduling policies (outlined in Figure 1) for
async-finish programs identified by Guo et al. [9]. In the work-
first policy, a thread, upon encountering an async or a finish
statement, pushes the currently executing task onto the deque and
begins to execute the nested task identified. A thief can steal the
partially-executed task (a continuation) once it is pushed onto the
deque. In the absence of steal operations, this policy mirrors the
sequential execution order and has been shown to exhibit efficient
space and time bounds.

In the help-first policy, the working thread continues to execute
the current task, pushing any encountered concurrent tasks onto
the deque. Encountering a finish statement, the current task’s
continuation is pushed onto the deque to complete processing of
the tasks nested within the finish scope. Finish scopes constrain the
help-first scheduler, requiring the tasks in the finish scope to be
processed before tasks sequentially following the finish scope can
be spawned. This scheduling policy was shown to speedup work
propagation by Guo et al. [9].

2.3 Tracing and Performance Analysis
Several papers have noted for work-first schedulers that steals can
be recorded for the purposes of maintaining series-parallel relation-
ships using the SP-hybrid algorithm—for data-race detection [4,
10] and for optimizing transactional memory conflict detection [2].
However, these do not provide a general tracing algorithm and re-
quire a global lock to store “threads” of work. We provide a gen-
eral tracing algorithm that does not require global synchronization
or locking. We are not aware of any prior work on tracing the more
complex help-first scheduling policy. The limitations of the prior
work in tracing work stealing schedulers is evidenced by the fact
that some of the most recent work on data-race detection for async-
finish programs [13] does not exploit the steal relationship—a ben-
eficial approach that we demonstrate later in this paper.

Work stealing has typically been studied empirically (e.g., [1,
12]). Tallent and Mellor-Crummey [16] presented blame shifting
to relate lack of parallel slack in work stealing to code segments.

@async(Task t, Cont this):
deque.push(t);

@finish(Task t, Cont this):
deque.push(this);
process(t);

@taskCompletion:
t = deque.pop();
if(t) process(t);
//else this phase ends

@steal(Cont c, int victim):
c=attemptSteal(victim);

(b) Help-first scheduler

@async(Task t, Cont this):
deque.push(this);
process(t);

@finish(Task t, Cont this):
deque.push(this);
process(t);

@taskCompletion:
//same as help first minus
//some finish scope mgmt

@steal(int victim):
//same as help−first

(a) Work-first scheduler

Figure 1. Basic actions in the two scheduling policies

They assume global information about the number of active and
idle workers.

3. Notation
We define a continuation step (or simply step) to be the dynamic
sequence of instructions with no interleaving async, finish, at,
or when statements. Each continuation step will be executed by
exactly one thread and cannot be migrated between threads during
execution.

A continuation is the portion of execution, in terms of continua-
tion steps, reachable from a given continuation step. In other words,
a continuation represents the remainder of the execution that begins
with the given continuation step. A task is a continuation marked
by an async or finish statement, representing all steps executed
in the task. In shared-memory environments, all continuations of a
task occupy the same storage and transform the state from one step
to the next. The term continuation is used in places where a task is
used, except when we intend to specifically distinguish a task from
a continuation. A partial continuation is a continuation that repre-
sents a proper subset of the computation represented by a task.

A task is said to spawn another task when the task’s execution
encounters an async statement. Without changing program seman-
tics, we treat a finish statement synonymously with a finish
async. Thus a finish statement leads to the spawning of a task as
well. All child tasks spawned from a given task are referred to as
siblings and are ordered from left to right. We also refer to a task’s
left and right siblings, if they exist.

Each task is associated with a level. The initial task in a working
phase is at level 0. A level of a spawned task is one greater than that
of the spawning task.

4. Problem Statement
An example async-finish program is shown in Figure 2a. In the
figure, s1, s2, etc. are continuation steps. Tasks spawned using
async statements need to be processed before the execution can
proceed past the immediately enclosing finish statement. async
statements that are not ordered by a finish statement (e.g., the
async statements enclosing s5 and s9) can be executed in any
order. The objective is to compactly track the execution of each
continuation step.

The execution in each worker is grouped into phases with each
phase executing continuation steps in a well-defined order, starting
from a single continuation. In each working phase, the computation
begins with a single continuation step and involves the execution
of all steps reached from the initial step minus the continuations
that were stolen. The tracing overheads (space and time) can be



fn() {
s1;
async { s5; async x; s6; }
s2;
async {
s7;
async { s9; async x; s10;

async x; s11; .. }
s8;..
}
s3;
async { s12; finish {s13;..}..}
s4;
}

(a) async-finish program

S1 S2 S3

S5 S12 f... S7 ... ...

S4

S13 ...

deque

steal
end

local
end S5S7f

(b) Help-first

S1 S2 S3

S5 S6 S7 S8 ...

S9 S10 S11 ...

...

deque

steal
end

local
end

S3S8S11

(c) Work-first

Figure 2. An example async-finish parallel program and a snapshot of its execution. Legend: > represents the root task; ⊥ represents a
sequential task; a circle represents a step; a diamond represents an async statement; a hexagon represents a finish statement; ‘..’ represents
a continuation; an arrow represents a spawn relationship; a rectangular box represents a task; and the shaded region represents the region that
is stolen. The deque depicted at the bottom has a steal end that is accessed by thieves and a local end that is accessed by the worker thread.

significantly reduced if the steps executed in each working phase
can be compactly represented.

Note the difference in the stealing structure between the work-
first and help-first schedulers in Figure 2. While continuations
stolen in the work-first schedule seem to follow the same structure
across all the levels shown, the help-first schedule can produce
more complicated steal relationships. This distinction is the result
of the difference in the scheduling actions of the two policies—
especially when an async statement encountered, as shown in
Figure 1. The challenge is to identify the key properties of help-
first and work-first scheduling policies to compactly identify the the
leafs of the tree of steps rooted at the initial step in each working
phase.

5. Tracing Help-First Schedulers
Under help-first scheduling, spawned tasks are pushed onto the
deque, while the current task is executed until the end or a finish
scope is reached. Children of task spawned by async statements
are in the same finish scope as the parent. Encountering a finish
statement, the current task’s continuation is enqueued onto the
deque and the spawned task in the new finish scope is immediately
executed. When all the tasks nested within the finish statement
have been processed, the finish scope is exited and the execution
of the parent task is continued, possibly spawning additional tasks.
We refer the reader to Guo et al. [9] for the detailed algorithm.

Figure 2b shows a snapshot of the help-first scheduling of the
program in Figure 2a. The steps in the outermost task, represented
by fn()—s1, s2, s3, and s4—are processed before any other
steps.

OBSERVATION 5.1. Two tasks are in the same immediately enclos-
ing finish scope if the closest finish scope that encloses each of them
also encloses their common ancestor.

LEMMA 5.2. A task at a level is processed only after all its younger
siblings in the same immediately enclosing finish scope are pro-
cessed.

Proof. A work-first scheduler enqueues the spawned tasks from
the start of the task’s lexical scope. The spawned tasks are en-
queued onto the deque with the newer child tasks enqueued closer

to the local-end than the older ones. The child tasks are enqueued
until the executing task completes or a finish statement is en-
countered. Tasks under the encountered finish statement are im-
mediately processed and the execution continues with enqueuing
tasks spawned using the async statement. This property, combined
with the fact that tasks popped from the local end are immediately
processed, requires all younger siblings of a task to be processed
before it can be processed. ut

LEMMA 5.3. A task is stolen at a level only after all its older
siblings in the same immediately enclosing finish scope are stolen.

Proof. Recall that all async statements in a task are in the same
immediately enclosing finish scope, and finish statements intro-
duce new finish scopes.

1. Consider the case when two async statements in a task have no
intervening finish statement. In this case, the corresponding
tasks are pushed onto the deque with the older sibling first. Thus
the older sibling is stolen before the younger sibling.

2. Now consider the case where siblings in the same immediate
finish scope are separated by one of more intervening finish
statements. In particular, consider the execution of the follow-
ing sequence of statements in a task: async n; ... finish p; ...
async m. Tasks n and m are in the same immediately enclos-
ing finish scope, while task p is not. Task n is first enqueued
onto the deque. When the finish statement is processed, the
current task’s continuation c is then pushed onto the deque with
the worker immediately processing statement p. At this point,
if a steal occurs, n and c are at the steal end of the deque fol-
lowed by tasks spawned from p. Hence, all older siblings (n
and c) in the same immediately enclosing finish scope will be
stolen before tasks generated from p. The execution proceeds
past the finish statement only after all the tasks nested by p
are complete. Once they are executed, the continuation of the
current task c is dequeued (unless it was stolen) and task m is
enqueued on top of n in the deque. The execution now devolves
onto case 1 and the older sibling is stolen before the younger.

ut



LEMMA 5.4. At most one partial continuation is stolen at any level
and it belongs to the last executed task at that level.

Proof. A task’s partial continuation is enqueued only when it
encounters a finish statement. Consider such a task. When the
task is being processed, its parent’s continuation is in the deque, or
it has completed processing. Based on lemma 5.2, all the parent’s
younger siblings have been processed. Hence, the queue has the
parent’s older siblings followed by a possible partial continuation
of the parent followed by this task’s older siblings, then this task.
By lemma 5.3, this task’s partial continuation will not be stolen
until all the parent’s older siblings are stolen. By lemma 5.2 all
younger siblings of this task, if any, have been processed at this
point. Thus the deque only has the partial continuation’s children,
all of which are at levels higher than this task. After this task’s
partial continuation is stolen, all subsequent tasks will be at higher
levels, making this task the last one at this level. ut

LEMMA 5.5. All tasks and continuations stolen at a level l are
immediate children of the last task processed at level l − 1.

Proof. We first prove by contradiction that the all tasks stolen at
a given level are children of the same parent task. Let two stolen
tasks at a given level be children of distinct parent tasks. Let ta
be the lowest common ancestor of of these tasks, and t1 and t2 be
the immediate children of ta that are ancestors of the two tasks of
interest. t1 and t2 are thus sibling tasks. Without loss of generality,
let t1 be the older sibling. By lemma 5.2, t2 is processed before
t1. By lemma 5.3, t1 is stolen before any descendent of t2 can be
stolen. Thus no descendent of t1 can be enqueued if a descendent
of t2 is stolen, resulting in a contradiction: either the steals will be
at different levels because descendents of t1 cannot be enqueued,
or they will be children of the same parent task.

We now prove that the parent task q of all tasks stolen at level
l is the last task processed at level l − 1. Let t be any task at level
l− 1 that is not q. By lemma 5.2, task t must be an older sibling of
the parent task q. From lemma 5.3, any task t must be stolen before
q. By the above proof, any task with a higher level y must be a child
of the same parent task. We now show by contradiction that y must
be a child of q, the last task processed at level l − 1. If y is a child
of some task t, then t is currently being processed. By lemma 5.2,
q is processed before t. q has not been processed, hence we have a
contradiction. ut

LEMMA 5.6. The parent q of the tasks stolen at level l + 1 is a
sibling of the tasks stolen at level l.

Proof. We prove this by contradiction. By lemma 5.5, q is last task
processed on level l. By lemma 5.2, all younger tasks on level l
have been processed. If q is not a sibling of the tasks stolen at level
l, q could not have been processed. Thus the stolen tasks at level
l + 1 could not have been created, resulting in a contradiction.

ut

LEMMA 5.7. The parent of the tasks stolen at level l + 1 is either
the immediate younger sibling of the last stolen task at level l, or
the immediate younger sibling of the last stolen task at level l in the
same immediately enclosing finish scope.

Proof. From lemmas 5.4, 5.5, and 5.6, the last task in the same
immediately enclosing finish scope that is executed is the closest
younger sibling of stolen task that is in the same enclosing finish
scope. Thus the last task executed at that level is either the imme-
diate right sibling of the last stolen task, say t1, or the closest right
sibling in the immediate enclosing finish scope, say t2. When both
are identical, the outcome is clear. When they are distinct, the im-

mediate younger sibling of the last stolen task is in a distinct finish
scope. If the finish statement is stolen, no further tasks can be
processed that are not descendents of this statement, making t1 the
last executed task. If the finish statement is not stolen, no de-
scendent tasks of this statement can be stolen, making t2 the last
executed task. ut

THEOREM 5.8. The tasks executed and steal operations encoun-
tered in each working phase can be fully described by (a) the level
of the root in the total ordering of the steal operations on the vic-
tim’s working phase, and (b) the number of tasks and step of the
continuation stolen at each level.

Proof. The tasks stolen at a level can be determined from the
number of tasks stolen at that level and the identification of these
tasks’ parent (by lemma 5.7) (transitively until level 0 which has
just one task). The position of the partial continuation stolen at
a level can be determined from the fact it is the last processed
task at a given level (lemma 5.4) and from the number of tasks
stolen at that level in the same finish scope as the parent. Together
with the step information tracking, this uniquely identifies all stolen
continuations. ut

Illustration. A snapshot of execution under the help-first work
stealing policy is shown in Figure 2b. Steps s1, s2, s3, s4, and s11
have been executed. Because s13 is encountered in a finish scope,
s12 spawns the task starting with step s13 and continues recursive
execution before continuing the execution past the finish scope.
Meanwhile, the deque consists of tasks s5, s7, and the continuation
past the finish scope, represented by f, and were stolen. Note that
the help-first scheduler steals from left-to-right when stealing full
tasks, and right-to-left (similar to a work-first scheduler) when
stealing a partial continuation.

The subtrees executed in each working phase form a steal tree.
The root of the tree is the subtree that includes the main continua-
tion that began the program. Each child is a subtree stolen from the
victim’s subtree. Each node in the steal tree contains information
about the continuations stolen from it, bounding the actual steps
executed in that subtree. Each edge in the steal tree contains infor-
mation about the position of the steal from the parent subtree.

6. Tracing Work-First Schedulers
Under work-first scheduling, spawning a task involves pushing
the currently executing step’s successor onto the deque, with the
execution continuing with the first step in the spawned task.

The continuation that starts the working phase is at level 0, re-
ferred to as the root continuation. Tasks spawned by continuations
at level l are at level l+1. The work-first scheduling policy results in
exactly one continuation at levels 0, . . . , l− 1, where l is the num-
ber of continuations in the deque. We observe the tasks spawned
during a working phase and prove that there is at most one steal
per level, and a steal at all levels 0, . . . , l − 1 before a task can be
stolen at level l. This allows us to represent all the steals for a given
working phase as a contiguous vector of integers that identify the
continuation step stolen at each level, starting at level 0.

OBSERVATION 6.1. The deque, with l tasks in it, consists of one
continuation at levels 0 through l − 1 with 0 at the steal-end and
the continuation at level i spawned by the step that precedes the
continuation at level i− 1.

The execution of the work-first scheduler mirrors the sequential
execution. The task executing at level l is pushed onto the deque
before spawning a task at level l + 1. Thus the deque corresponds
to one path from the initial step to the currently executing task in
terms of the spawner-spawnee relationship.



LEMMA 6.2. When a continuation is stolen at level l (a) at least
one task has been stolen at each level 0 through l − 1, (b) no
additional tasks are created at level l.

Proof. The first part follows from observation 6.1 and the structure
of the deque—because stealing starts from the steal-end tasks at
levels 0 through l − 1 must stolen before level l.

We prove the second part by induction. Consider the base case
when the root of the subtree is the only continuation at level 0 in
the deque. After the root of the subtree is stolen, no continuation
exists at level 0 to create another task at level 1. Let the lemma be
true for all levels 0, . . . , l. When a continuation at level l is stolen,
no further tasks can be created at level l. Now consider the lemma
for level l+1. After a steal at level l, no further tasks can be created
at level l+1. Once the current continuation at level l+1 is stolen,
no subsequent tasks are created at level l + 1. ut

THEOREM 6.3. The tasks executed and steal operations encoun-
tered in each working phase can be fully described by (a) the level
of the root in the total ordering of the steal operations on the vic-
tim’s working phase, and (b) the step of the continuation stolen at
each level.

Proof. By lemma 6.2, steal operations on a victim are totally
ordered, implying that each task stolen from a victim during distinct
working phase is at a unique level. Because no additional tasks
can be created at that level (again by lemma 6.2), the step of the
continuation stolen at that level is sufficient to uniquely identify it.

ut

These observations allow the steal points to be maintained in a
contiguous array. The size of the array corresponds to the number
of steals in this working phase, and the value at position l in the
array corresponds to the index of the continuation stolen at level
l. The stolen continuations can be identified to absolute or relative
indices. Absolute indices—counting the number of steps executed
in this phase at each level—does not effectively support retentive
stealing, as explained later. We employ relative indices, with the
value at index l corresponding to the number of steps executed in
the last task executed at this level. Note that the last task executed
at level l is a child of a predecessor step of the continuation stolen
at level l − 1. Given there is only one task at level 0, we store the
number of steps by this worker for this initial step.

Illustration. A snapshot of execution under the work stealing
scheduler is shown in Figure 2c. The thread began execution from
step s1 and has completed execution of s1, s2, s5, s6, s7, s9,
and s10. It is currently executing the task spawned by s10 with
the the deque consisting of steps s3, s8, and s11—bottom to top.
These steps have been created but not yet processed. During some
point in the execution, these tasks have been stolen by thieves. The
steal order is s3, s8, followed by s11. Note that the execution in
the work-first scheduling policy is left-to-right, while the steals are
right-to-left.

7. Tracing and Replay Algorithms
We now present the algorithms for tracing and replay based on
the properties identified for help-first and work-first schedulers. in
Sections 5 and 6. These properties simplify the state to be managed
to trace and replay both schedulers. The algorithms rely on some
state in addition to the basic scheduler actions. This shared state is
shown as C++-style pseudo-code in Figure 3.

Every continuation and task has an associated ContinuationHdr
that stores the level and step. When a new working phase is started
or an async or finish is encountered, the bookkeeping keeps
track of the current level for each continuation. Each working phase

that is executed by a worker maintains the state shown in Working-
PhaseInfo as part of the trace. A worker’s trace is an ordered list of
working phases it has executed so far, retained as one WorkerState-
Hdr object per worker. The root task of the entire computation is not
stolen and its victim is set to -1. Each continuation’s step is tracked
as an integer and is updated on each async or finish statement.

7.1 Tracing
The tracing algorithms augment the steal operation to track the
steal relationship and construct the steal tree. From the earlier
discussion, we know that, unlike work-first schedulers, help-first
schedulers allow multiple tasks to be stolen at each level. Thus for
tracing a help-first scheduler, we store the number of tasks stolen at
each level:

struct HelpFirstInfo : WorkingPhaseInfo {
vector<int> nTasksStolen; //num. tasks stolen at each

level, init to 0
};

When a continuation is stolen under help-first scheduling, the
thief marks the steal in the victim’s HelpFirstInfo. The HelpFirstInfo
for the current working phase on the victim can only be accessed by
a single thief, and hence requires no synchronization. myrank is the
thief thread’s rank. Note that just the number of stolen tasks at each
level and the partial continuation’s step is sufficient to reconstruct
all information about the tasks executed in a given working phase.

@steal(Cont c, int victim, int myrank):
// c is the continuation stolen by the thief
if c.step == 0: // this is a full task

wsh[victim].wpi.back().nTasksStolen[c.level] += 1;
else: //this is a partial continuation

wsh[victim].wpi.back().stepStolen[c.level] = c.step;
wsh[victim].wpi.back().thieves.push back(myrank);
WorkingPhaseInfo phase;
phase.victim = victim;
wsh[myrank].wpi.push back(phase);

When a continuation is stolen under work-first scheduling, the
following marks the steal in the victim’s WorkingPhaseInfo. For the
work-first policy, the actions required are less complex because at
most one task can be stolen per level.

@steal(Cont c, int victim, int myrank):
wsh[victim].wpi.back().stepStolen[c.level] = c.step;
wsh[victim].wpi.back().thieves.push back(myrank);
WorkingPhaseInfo phase;
phase.victim = victim;
wsh[myrank].wpi.push back(phase);

Note that none of these actions require additional synchroniza-
tions, and all the tracing overhead incurred is on the steal path.

7.2 Replay
The collected traces include timing information, which allows the
traces to be replayed. During replay, each thread executes the
working phases assigned to it in order. Whenever a stolen task is
spawned, rather than adding it to the deque, the corresponding thief
is informed of its creation. Each thread executes its set of subtrees
at the same time point as in the original run, after ensuring that the
given subtree’s root task has been spawned by the corresponding
victim. The creation of the initial task in working phase indicates
that all dependences before a task in that working phase have been
satisfied.

During replay, each task tracks whether its children could have
been stolen in the trace, i.e., the task is at the frontier, using the
following additional field in the ContinuationHdr:



struct ContinuationHdr {
int level; //this task’s async level
int step; //this continuation’s step
};
struct Task : ContinuationHdr { ... };
struct Cont : ContinuationHdr { ... };
struct WorkingPhaseInfo {
int victim; // victim stolen from
vector<int> stepStolen; //step stolen at

each level, init to −1
vector<int> thieves; // list of thieves
};

struct WorkerStateHdr {
//state for each working phase
vector<WorkingPhaseInfo> wpi;
};

WorkerStateHdr wsh[NWORKERS]; //one
per worker

//initializing computation’s first task
@init(Task initialTask):

initialTask.victim=−1;//victim set to −1

//start of working phase with continuation c
@startWorkingPhase(Cont c):

c.level = 0; // level of starting frame

//spawning task t when executing task ‘this’
@async(Task t, Cont this):

t.level=this.level+1;
t.step=0; this.step+=1;

//spawning task t in new finish scope when
executing task ’this’

@finish(Task t, Cont this):
t.level = this.level + 1; this.step += 1;

Figure 3. Common data structures and level management for all algorithms

struct ReplayContinuationHeader : ContinuationHdr {
bool atFrontier; // could any of its children have been

stolen, initially false
};

When a worker encounters a task that was stolen, it marks it
as stolen and notifies (in shared-memory) or sends (in distributed
memory) the task to the thief. When a thread starts the execution
of a working phase, it waits for the initial task to be created by the
victim. The worker with the initial task for the entire computation
begins execution, identifying the initial task as being at the frontier.

markStolen(Task t):
// enqueue ’t’ for sending or directly send to the next thief

in current working phase info’s thieves
// drop ’t’ from execution on this worker

@startWorkingPhase(WorkingPhaseInfo wpi):
// get initial task from wpi.victim, if wpi.victim>=0

@init(Task initialTask, int myrank):
if(wsh[myrank].wpi[0].victim == −1):

initialTask.atFrontier = true;

The above actions are used to replay traces from both help-first
and work-first schedulers.

When help-first traces are replayed, the number of child tasks
spawned by each task in the same finish scope is tracked by aug-
menting the following to the HelpFirstInfo structure.

struct HelpFirstReplayInfo : HelpFirstInfo {
vector<int> childCount; //num children for current

executing task
};

// at the beginning of execution of a task
@taskEntry(Task this, int myrank):

wsh[myrank].childCount[this.level + 1] = 0;

A task spawned by an async statement is marked as being at the
frontier if it is the immediate younger sibling of the last child task
stolen from this task. When the executing task is at the frontier and
the child count is less than the number of tasks stolen at the next
level, the spawned task is marked as stolen. A task spawned by a
finish statement can mark the executing task as stolen as well. If
the partial continuation of the finish statement is not stolen, none
of its descendents is stolen either.

@async(Task t, Continuation this, int myrank,
WorkingPhaseInfo current wpi):

t.level = this.level + 1; t.step=0; this.step+=1;
if this.atFrontier:

if wsh[myrank].childCount[t.level] < current wpi.
stealCount[t.level]:

markStolen(t);
else if wsh[myrank].childCount[t.level] == current wpi.

stealCount[t.level]:
t.atFrontier = true;

wsh[myrank].childCount[t.level] += 1;

@finish(Continuation t, Continuation this, int myrank,
WorkingPhaseInfo current wpi):

// t does not contribute to calculation of childCount
t.level = this.level+1;
if this.atFrontier:
if this.step == wsh[myrank].stepStolen[this.level]:

markStolen(this); // continuation of this after spawning
the finish

t.atFrontier = true; // only child of stolen parent is
−− also at frontier

if wsh[myrank].childCount[t.level] < current wpi.
stealCount[t.level]:

assert(wsh[myrank].childCount[t.level] ==
current wpi.stealCount[t.level]−1);

markStolen(t);

When replaying work-first traces, the primary action is deter-
mining whether a task is at a frontier. When an async or finish
statement is encountered, the following actions are executed:

@async(Task t, Cont this, int myrank):
t.level = this.level+1; t.step=0; this.step += 1;
if this.atFrontier:
if this.step == wsh[myrank].stepStolen[this.level]:

markStolen(this);
t.atFrontier = true;

@finish(Task t, Cont this, int myrank):
//same action as for async(t, this, myrank)

7.3 Space Utilization
The space overhead can be quickly computed from the data struc-
tures employed in the algorithms. In the following formulæ, bh and
bw describe the total number of bytes required to trace help-first
and work-first schedulers, respectively:

bh =

n∑
i=0

v(1 + si) + si(m+ k) (Total bytes for help-first)

bw =

n∑
i=0

v(1 + si) + sim (Total bytes for work-first)

where n is the total number of working phases, v is the number
of bytes required for a thread identifier, si is the number of steals
in a working phase, m is the number of bytes required for a step



identifier, and k is number of bytes required to store the maximum
number of tasks at a given level.

For Figures 5 and 7 that graph the storage required, we use
integers to store the thread and step identifiers, and assume that the
maximum number of tasks spawned at a given level does not exceed
the size of an integer: k = m = v = sizeof(int) = 4 bytes.

8. Applications
8.1 Data-race Detection for Async-Finish Programs
Raman et al. [13] perform data race detection by building a dy-
namic program structure tree (DPST) at runtime that captures the
relationships between async and finish instances. The async
and finish nodes in the tree are internal and the leaves are step
nodes that represent a step (same as the continuation step in this pa-
per) in the program execution where data accesses may occur. The
DPST is built dynamically at runtime by inserting nodes into the
tree in parallel. Raman et al. present a DPST implementation that
exploits the tree structure to insert nodes into the DPST in parallel
without synchronization in O(1) time. Here, we summarize the key
cost factors in that implementation and refer readers to Raman et
al. [13] for the full description.

To detect races, if an application performs a data access during
a step, a reference to the step is stored in shadow memory so other
steps that read/write this same address can reference it. If two steps
access the same memory address, the structure of the tree is used
to determine if these steps can possibly execute in parallel for any
possible schedule. Conflicting access to the same memory location
by concurrent steps is detected as a data race.

Two steps can execute concurrently, identified as satisfying the
dynamically-may-happen-in-parallel relationship, if their lowest
common ancestor (LCA) in the DPST tree is an async node. Each
memory location is associated with two steps that read the location
and one that last wrote that location. The two read operations form
the extremal bounds of a DPST sub-tree that contains all concur-
rent reads to the memory location since the last synchronization
point. Rather than comparing with every step performing a read,
a step performing a write-operation might be flagged as causing a
data race if it can execute concurrent with the three steps whose
reads and writes are being tracked. Data-race detection for read op-
erations is similar but also involves operations to track the extremal
bounds of the sub-tree of concurrent reads.

It can be seen that computing the lowest common ancestor
(LCA) of two steps in computing the dynamically-may-happen-in-
parallel relation is a performance critical operation, invoked sev-
eral times for each read and write operation. In particular, finding
the LCA is among the most expensive parts of the data-race detec-
tion. The DPST creation takes constant time and requires no syn-
chronization and updating the memory address locations atomically
only happens when a memory address is written or read and the step
is higher in the tree than the previous steps that read. On the other
hand, computing the LCA between two steps involves walking the
DPST from the two steps to their parent, with the cost proportional
to the number of edges walked. Because the DPST contains the
entire async-finish tree, it may be very deep if the application is
fine-grained, leading to very expensive LCA calculations.

We observe that the steal tree can be used to partition the DPST
based on the steal relationships. In particular, it can be seen that
the LCA of two steps in distinct working phases is the LCA of the
initial steps of the two working phases. Exploiting this additional
structural information allows us to bypass potentially large portions
of the tree when traversing upward to locate the LCA. We relate a
step/async/finish in the DPST with the steal tree as we create the
DPST. For each node (step, async, or finish) in the DPST a
pointer is added to store the working phase it belongs to. If a step

accesses data, a reference to that step may be stored in the shadow
memory. We compute and track the absolute level of the initial
task executed in each working phase, referred to as the depth of
the subtree executed in that working phase. The algorithm below
shows how we traverse the tree when two steps accessing the same
memory address are executed in different working phases. If the
depths of the subtrees are different, we traverse up the deeper one.
If they are equal we traverse up both until the depths are different or
the ancestors of both steps are in the same working phase subtrees.
Once we are in the same subtree, we invoke the LCA method in [13]
on the initial tasks of the two subtrees.

subtreeLCA(Cont s1, Cont s2):
while(s1 and s2 are in different subtrees):
while(s1 subtree depth != s2 subtree depth):
if (s1 subtree depth < s2 subtree depth):

s1 = initial task in s1’s working phase
else:

s2 = initial task in s2’s working phase
if((s1 subtree depth == s2 subtree depth) &&

(s1 and s2 in different subtrees)):
s1 = initial task in s1’s working phase
s2 = initial task in s2’s working phase

return LCA(s1,s2) //Raman et al.’s algorithm

8.2 Retentive Stealing for Async-Finish Programs
Iterative applications that have identical or slowly evolving charac-
teristics are said to exhibit the principle of persistence [18]. Such
applications can be incrementally rebalanced based on performance
profiles gathered from prior iterations. Lifflander et al. [12] ex-
ploited the property of persistence to improve the scalability of
work stealing in iterative applications. In their approach to load
balancing, each worker begins an iteration with the a collection of
tasks executed by it in the previous iteration. This was shown to sig-
nificantly improve parallel efficiency as the iterations progressed, in
some cases from about 10% to about 90%.

Async-finish programs that exclusively exploit recursive paral-
lelism have similar performance challenges. First, the slow propa-
gation of work from the single initial task available at the beginning
of the computation incurs significant ramp-up time. While help-first
scheduling ameliorates some of the performance challenges, the
challenges remains. Second, expanding from a single initial task
for every iteration discards the application information on persis-
tence.

While retentive stealing presented by Lifflander et al. [12] can
address these issues, their approach was presented in the context
of explicit enumeration of tasks to enable retentive stealing. This
not only increases the storage overhead, but is also infeasible when
intervening finish statements are involved. The key insight in
enabling retentive stealing is to allow the execution in each worker
to begin with the working phases in the previous iteration, while
also allowing work stealing to improve load balance. We observe
that retentive stealing can be applied to recursive parallel programs
by building on the replay algorithms presented earlier. In particular,
we explain the extensions to the replay algorithms to allow stealing
of tasks from a working phase being replayed.

During normal execution, a worker can execute a stolen task
to completion barring synchronization constraints imposed by the
finish statement. However, a working phase being replayed com-
pletes execution when all the tasks in that phase are complete. In
particular, the tasks at the frontier of a working phase need to be dis-
tinguished from other tasks. When stealing from a working phase,
we therefore check whether the stolen task is at the frontier. In ad-
dition to the replay actions, a steal operation correctly identifies the
steps represented by the stolen continuation, which can be extracted
from the WorkingPhaseInfo structure. A task can be at the frontier,
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Shared-memory

Benchmark Configuration

AllQueens nq = 14, sequential cutoff 8
Heat nt = 5, nx = 4096, ny = 4096

Fib n = 43
FFT n = 67108864

Strassen n = 4096
NBody iterations = 15, nbodies = 8192

Cholesky n = 2048, z = 20000
LU n = 1024

Matmul n = 3000

Distributed-memory

AQ nq = 19, sequential cutoff 10
SCF 128 beryllium atoms, chunk size 40
TCE C[i, j, k, l]+ = A[i, j, a, b] ∗B[a, b, k, l]

O-blocks 20 14 20 26, V-blocks 120 140 180 100
PG 13K sequences

Table 1. Benchmark configurations.

i.e., its descendents stolen in the current working phase, only if its
parent is at the frontier. Thus a thief stealing a step not at the frontier
can execute all tasks reachable from that step. When a stolen task is
at the frontier, the WorkingPhaseInfo structure associated with vic-
tim’s current working phase is also copied. This allows the thief to
ensure that it does not execute steps reachable from the stolen con-
tinuation past the work represented by the victim’s working phase.
The calculations that use the task’s level to determine the frontier
during replay are adapted to take into account the level of the stolen
task in the victim’s working phase.

In this approach, steals of tasks not at frontier just steal the step
information and incur the same cost as a steal during normal ex-
ecution. Steals at the frontier, also need to copy the frontier in-
formation from the victim’s working phase, and thus incur greater
data movement overhead on distributed-memory systems. Stealing
from working phases to enable retentive stealing can also lead to
working phase “fragmentation”, potentially increasing the number
of working phases and hence the storage overhead as the iterations
progress. In section 9, we show that these overheads do not ad-
versely impact performance and the storage required stays well be-
low the amount required to explicitly enumerate all tasks.

9. Experimental Evaluation
The shared-memory experiments were performed on a POWER 7
system composed of 128 GB of memory and a quad-chip module
with eight cores per chip running at 3.8 GHz and supporting four-
way simultaneous multi-threading. The distributed-memory exper-
iments were performed on the OLCF Cray XK6 ‘Titan’, an 18688-
node system with one AMD sixteen-core 2.2GHz ‘Bulldozer’ pro-
cessor and 32GB DDR3 memory per node.

The implementations were compiled with GCC 4.4.6 on the
POWER 7 and PGI 12.5.0 on Titan. The distributed-memory
benchmarks used MPI (MPICH2 5.5.0) for communication. We
implemented the tracing algorithms for shared-memory systems in
Cilk 5.4.6, and distributed-memory versions using the implemen-
tation in [12]. We tried to reproduce the configurations used by
Lifflander et al. [12] in their distributed-memory experiments.

9.1 Tracing on Shared-Memory Systems
We evaluated seven of the example benchmarks in the Cilk suite
and have added two more—NBody and AllQueens; the configura-
tions are shown in Table 1. AllQueens is a variant of the NQueens

Cilk benchmark that searches for all valid board configurations
rather than just one. The NBody benchmark is from the “Computer
Language Benchmarks Game” suite [8]; we have parallelized the
benchmark by spawning a task per nbody calculation and using
synchronization between iterations for the n-body updates.

For these nine benchmarks, we graph the ratio of execution time
with our tracing versus the execution time without tracing in Fig-
ure 4. Each bar is the ratio of the mean of 15 runs with and with-
out tracing for each benchmark and the error bars are the standard
error in the difference of means at 99% confidence, using a Stu-
dent’s t-test [7]. This figure shows that our tracing overhead is low
and within the run-to-run variability on the machine. We performed
these same comparisons on another shared-memory architecture
(an AMD x86-64 system) and observed the same trend: low over-
head but high variability between runs.

Figure 5 shows the storage overhead in KB/thread that was
incurred with tracing as we strong-scale the nine Cilk benchmarks.
The error bars represent the standard deviation from a sample of 15
runs. For all the runs the standard deviation is low, demonstrating
that different random stealing schedules do not significantly impact
storage overhead. To make the trends more visible, we graph six
of the benchmarks that have less overhead on the left and three
on the right that have more overhead with different y-axis. For the
first few scaling points all the benchmarks increase in storage per
thread, but this increase scales sub-linearly (note that the threads
are doubled each time, except for the 96-thread point) with thread
count. This graph demonstrates that our storage requirements are
small, grow slowly with thread count, and have low variation even
with differing schedules. The total storage overhead continues to
increase with thread count, reflecting the fact that increasing thread
counts increases the number of steals. Despite this increase, we
observe that the total trace size, even on 120 threads, is small
enough to be analyzed on a commodity desktop system.

The traces were replayed to determine the utilization across
time. Some of the results are shown in Figure 8. These plots,
quickly computed from the traces, show the variation in executing
identical iterations of Heat on 120 threads and the significant under-
utilization when running LU even at moderate thread counts.

9.2 Tracing on Distributed-Memory Systems
For distributed-memory, we evaluate four benchmarks with two
different scheduling strategies to measure the execution time and
storage overhead that our tracing incurs (the configurations are
shown in Table 1). The AllQueens (AQ) benchmark is a distributed-
memory variant of the AllQueens benchmark. When the depth of
recursion exceeds a threshold the benchmark executes an opti-
mized sequential kernel. SCF and TCE are computational chem-
istry benchmarks designed by Lifflander et al. [12]. PG is a work
stealing implementation of the pair-wise sequence alignment ap-
plication designed by Wu et al. [17]. We refer the readers to the
corresponding papers for details.

We execute the four benchmarks under both work-first and help-
first scheduling policies. Figure 6 shows the ratio of execution time
with tracing versus the execution time without tracing. For all the
configurations, the overhead is low and mostly within the error
bars, which represent the standard error in the difference of means
at 99% confidence, using a Student’s t-test. Some of the variation
is due to obtaining a different job partition on the machine between
runs (most likely the reason a couple points execute faster with
tracing).

Figure 7 shows the storage overhead in KB/core that we incur
with our tracing schemes. Note that for all the configurations except
for AQ-WF, the overhead is less than 75 KB/core and is constant
or decreases with core count. At 32,000 cores the total storage
for the traces, assuming 75 KB/core, is 2.3 GB, which would
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Figure 10. Retentive stealing using our tracing algorithms on recursive specification of the SCF benchmark on Cray XK6 Titan.
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allow performance analysis to be performed easily on a shared-
memory machine or a medium-scale work station. The AQ-WF
configuration shows a somewhat different trend because the grain
size for AQ is very fine and the WF scheme reduces parallel slack
compared to the HF scheme.

9.3 Optimizing Data-Race Detection
For several benchmarks in Cilk, we show in Figure 9 the percent
reduction of tree traversals achieved by exploiting the subtree in-
formation to bypass traversing regions of the tree. For the Heat
benchmark we observe over a 70% reduction in tree traversals; for
Matmul around 50–60% reduction; for NBody over 30% reduction;
for LU around a 40–50% reduction; and for AllQueens around a
20–30% reduction. The general trend is that increasing the thread
count partitions the tree more, causing a further reduction in the
number of tree traversals required. Depending on the structure, fur-
ther segmentation beyond some point may not be beneficial if the
LCA is high up in the tree. Heat has this behavior where the best
partitions are few and high up in the tree, with further segmentation
causing an increase in tree traversals.

9.4 Retentive Stealing
We evaluated retentive stealing for the two iterative distributed-
memory benchmarks: Self-Consistent Field (SCF) and Tensor Con-
traction Engine (TCE) (retentive stealing is not applicable for the
others). In Figures 10a and 11a we show the scaling behavior of
both benchmarks after several warm-up iterations and then running
them 10 iterations to convergence with retentive stealing. The help-
first and work-first schemes scale almost perfectly and the scaling
results are comparable to the result in [12]. We graph the full task
enumeration scheme used in that paper as TCE-Enum and SCF-
Enum. We are able to reproduce this result without incurring the
overhead of enumerating every task and storing them. For SCF,
fully enumerating the tasks requires 20.7 KB/core on 2K cores; for
TCE, full enumerating the tasks requires 8.3 KB/core on 2K cores.
For both benchmarks, the steal tree uses significantly less storage
per core compared to enumerating all the tasks. For instance, on
2K cores of SCF with help-first scheduling we only require 0.34
KB/core to store the traces; this decreases to 0.26 KB/core on 32K
cores.

Also, our queue size is bounded by d (where d is the depth
of the computational tree) for the work-first scheme or bd (where
b is the branching factor) for the help-first scheme. With explicit
enumeration the queue size is bounded by the number of tasks,
which may require signification memory overhead.

In Figures 10b, 10c, 11b and 11c we graph the amount of
storage per core required over time for retentive stealing because
steals in subsequent iterations cause more partitioning of the work.
We observe that the convergence rate is application- and scale-
dependent. For the SCF benchmark, the convergence rate increases
with scale under strong scaling as the benchmark approaches the
limits of its concurrency. We thus anticipate the storage overhead
to remain constant or increase very slowly for such an iterative
application at large scales. TCE appears to be very well-behaved,
with subsequent iterations causing almost no increase in storage
overhead.

10. Conclusions
The widespread use of work stealing necessitates the development
of mechanisms to study the behavior of individual executions. The
algorithms presented in this paper to efficiently construct steal trees
enable low overhead tracing and replay of async-finish programs
scheduled using work-first or help-first work stealing schedulers.

We demonstrated the broader applicability of this work, beyond
replay-based performance analysis, by demonstrating its usefulness

in optimizing data race detection and extending the class of pro-
grams that can employ retentive stealing. As future work, we are
considering the use of these tracing algorithms to construct skele-
tons for dynamic task-parallel programs that help study the stealing
and execution structure of complex applications without requiring
an understanding of the detailed domain-specific operations.

Acknowledgments
This work was supported in part by the U.S. Department of En-
ergy’s (DOE) Office of Science, Office of Advanced Scientific
Computing Research, under award number 59193, and by Pacific
Northwest National Laboratory under the Extreme Scale Comput-
ing Initiative. This research used resources of the Oak Ridge Lead-
ership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science under Contract No.
DE-AC05-00OR22725. We thank Vivek Sarkar and Raghavan Ra-
man for discussions on their data-race detection algorithm [13].

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of

work stealing. Theory of Computing Systems, 35(3):321–347, 2002.
ISSN 1432-4350.

[2] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in trans-
actional memory. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming, PPoPP ’08,
pages 163–174, 2008.
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