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Stochastic Programming

Linear Program (LP)

Cost minimization under constraints
min cx

st. Ar <bxeR"
In many real-world applications - A, b, ¢ are unknown
@ e.g. agricultural planning, investment decisions, transportation, etc.

@ but known probabilistic distributions

Stochastic Program

divide into certain and uncertain parameters
Scenario: a particular realization of the uncertain parameters

min et + Es[qsys)
s.t. Ax =0,
Tsx +Wsys = hs, s=1,...,8
z2>0,ys >0, s=1..,8
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Introduction

I

Military Aircraft Allocation

MISSTION:

“Provide airlift, air refueling, special air mission,
nd dical tii US.
US Air Mobility Command (AMC) and aeromedical evacuation for V.S. forces,
handles fleet of 1300 aircrafts:

@ Worldwide Airlift

@ Worldwide Air-Refueling
@ Aeromedical Evacuation
o

Presidential and DV
Support

Civil Reserve AirFleet
(CRAF)
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Military Aircraft Allocation

Myriad possible outcomes confound decision support, e.g. aircraft breakdowns,
weather, natural disasters, conflicts, etc.

Planning Month Allocations:
/T AriftWingA

Training A 4 4 4
Channel A& 4

Execution Month Realizations (Wing A)
Ensuing Month
T,
Contingency 4 4
Special 4 44

NS T

6% Probability
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g Training 4 4 4

([ AriftwingZ ) 7% Probability

Training  EEER Trainin;

Channe! EEEEREREN 9 4444
Contingency 4 4
Special
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Channel A ®

Contingency 4 4
Special 4+ 44

I

The Tanker Airlift Control Center (TACC) must reconcile diverse uncertainy
predicting monthly aircraft allocation

when
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Introduction

Military Aircraft Allocation

Sample Model Sets (120 scenarios)

| Model Name | Num variables | Num constraints |

3t 1076655 668640
5t 1663785 1064280
10t 3069330 1988640
15¢ 4157835 2805000
30t 7957950 5573400

Available in Stochastic MPS Format (SMPS) at http://charm.cs.uiuc.edu/jetAlloc

Documentation: http://www.mitre.org/work/tech_papers/2012/11_5412/
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Introduction

Solving as a Linear Program (Extensive Formulation)

Optimization time using Simplex and Interior Point Methods (IPM) of Gurobi optimizer (1 processor)
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Introduction

Problem Statement

Efficient parallelization of the two-stage stochastic programs
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Introduction

Two-stage Stochastic Programs

@ Stage 1 - strategic decisions
e Aircraft allocation - mission, location, day
@ Stage 2 - operational decisions
o Aircraft scheduling - meeting mission demands

S
min cr + Zpst(x)
s=1
s.t. Ax <b

where, Qs(z) = min{qsy|Wsy < hs — Tz}, s=1...5
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Introduction

Benders Decomposition

S
min cz + Z psbs

s=1
s.t. Az < b
Egx+0s <eg

Linear Program

stgl variable values feedback
cuts

z 0s > 75 (hs — Tx)

min gsy
stWy < hsg —Tzx*

Linear Program
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Parallel Design

Parallel Design

Implementation

@ Charm++1! as the parallel programming framework
e express computation as interacting collection of objects
e one-sided communication and asynchronous computation
@ Delegate individual LP solves to highly optimized LP library
e.g. Gurobi®

lcharm.csuiuc.edu
Kale et.al. Migratable Objects + Active Messages + Adaptive Runtime = Productivity + Performance. A
Submission to 2012 HPC Class Il Challenge.

2 .
www.gurobi.com
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Parallel Design

Parallel Design

@ Stage 1 Solver

o Allocation Generator
@ Stage 2 Solver

e Scenario Evaluator
e Communicator

o Work Allocator
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Parallel Design

Parallel Design

StglSolver

cuts

allocation

eénaxios, Allocations
Stg2Solver

I

Stg2Solver
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Advanced Starts

@ Start from a prespecified basis
and solution

@ saves computation of initial
feasible basis

» optimal X i i
solution @ number of simplex iterations
depends on distance from
% *2 optimal solution

picture borrowed from " Mysteries in Linear Programming”, K. Fukuda = = [l =

na
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Stage 1 Optimization

Optimizing Stage 1

Advanced Starts

Start from basis of the optimal solution of the previous iteration

_ 1'6 == with advanced start
O e with fresh start

econ

00 10 20 30 70 50
round number

Faster Stage 1 LP solves with advanced start
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Stage 1 Optimization

Optimizing stage 1

Memory Footprint

120, : : : : 5000
| -- stgl memory usage
100¢ [mm stg 1 solve times

14000

stage 1 solve time(s)
stage 1 memory usage(MB)

200 300 400 s
round number

Increasing Memory Footprint with iteration Number

o (w1 =
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Optimizing Stage 1
Curbing Solver Memory Footprint
Active cuts - cuts that influence the final result of the optimization
Cut Usage Rate =

num rounds in which cut is active

num rounds since its generation

I
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Stage 1 Optimization

Optimizing Stage 1

Curbing Solver Memory Footprint
Active cuts - cuts that influence the final result of the optimization

num rounds in which cut is active

Cut Usage Rate = - - -
num rounds since its generation

o

1

number of cuts (log scale)

0.4 0.
cut usage rate

Cut usage rate is very low for large fraction of the cuts
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Stage 1 Optimization

Optimizing Stage 1
Cut Retirement

Discard Cuts with low usage rate whenever total number of cuts exceed a configurable

threshold
120, 5000
— w/o cut retirement
100 — with cut retirement 40003
2 9]
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Stage 1 Optimization

Optimizing Stage 1
Cut Retirement
Discard Cuts with low usage rate whenever total number of cuts exceed a configurable

threshold

120, 5000
— w/o cut retirement
— with cut retirement

100

4000

80

60

40|

stage 1 solve time(s)

2

“Wwwm fif bl w000

100 200 300 400 500
round number

57% improvement
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Stage 1 Optimization

Optimizing Stage 1

Effect of cut-window

max number of cuts = (cut-window)*(number of scenarios)

1 2000 2000
+—_time to solution 1400f +— time to solution
[mmm # OT rounds]
800f 1200]
9 1500 _ o 1500 _
© 600 S ° S
5 1000 % 5 800 1000 &
] £ o £
2 400 5 £ 600 5
£ £ ] £
£ 500 < 400 500
200f
| | I 200|
on = o ]
EEY 3 = 8
cut window cut window
(a) 5 time period model (b) 10 time period model
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Parallel Desig Stage 1 Optimization Optimization

Optimizing Stage 1
Evaluating Cut-Retirement Strategies
Least Frequently Used (LFU)

num rounds in which cut is active

Cut Usage Rate = - - -
num rounds since its generation

Least Recently Used (LRU)

LRU _Score = Last active round for the cut

Least Recently/Frequently Used (LRFU)?

LRFU_Score = Z F(tbase — ti)
i=1
Memory andztime consuming!!

Approximation, F(z) = (%)M(p > 2),

St = F(0) + F(8)Sts,_1,0 = th —tr—1

2C.S. Kim. LRFU: A Spectrum of Policies that Subsumes the Least Recently Used and Least Frequently Used
Policies. |EEE Transactions on Computers, 50(12), 2001
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Stage 1 Optimization

Optimizing Stage 1

Evaluating Cut-Retirement Strategies

time (in seconds)

IS
2
5
e

'S
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Performance of different cut scoring strategies for 5 and 10 time period model
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Optimizing Stage 2

Stage 2 constitutes significant fraction of total computation
Dual polytope remains the same
Use advanced start

o
@ Evaluate similar scenarios in succession
o

Cluster scenarios into equal sized clusters

I Langer, Venkataraman, Palekar, Kale, Baker
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Stage 2 Optimization

Optimizing Stage 2

The Scenario Clustering Algorithm

r, Venkataraman, Palekar, Kale, Bak

Algorithm 1 The Scenario Clustering Algorithm

Input

Demand set for scenario i (i = 1,2, ....,n)
number of clusters
utpul

k equally sized clusters of scenarios
Algorithm
{label, centroids} = kMeans({ Dy, Dy, Ds. ..., D}, k)
IdealClusterSize = 3
size; = size of cluster i
{Identify Oversized clusters}
O = {c € Clusters | size, > IdealClusterSize}
{Identify Undersized clusters}
U = {c € Clusters | size. < IdealClusterSize}
S: set of adjustable points
for c € O do
Find (size; — IdealClusterSize) points in cluster ¢ that
are farthest from centroid, and add them to the set &
end for
while size(S) > 0 do
Find the closest pair of cluster ¢ € (U) and point p € S
Add p to cluster ¢
Remove p from &
if size, == IdealClusterSize then
Remove ¢ from U
end if
end while

12N Ge
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Stage 2 Optimization

Optimizing Stage 2

Scenario Clustering Performance
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Results

Results
A Note: Variation Across ldentical Runs

# of rounds
time to solution

number of rounds
time(in se

HNMINO~NOOOHNMSINGN
RS R R e

run number
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Results

Results

A Note: Variation Across ldentical Runs

Variability across identical runs
— time to solution @ scenario assignment upon work
requests

@ variable message latencies, LP solve
times

time(in se

@ simplex starts from previous basis

number of rounds

@ identical scenario evaluations yields
different cuts

HNMINO~OOOHANMS
SRSl

run num
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Results

Results
Scalability

8192

Model Name
4096 +— 10t (120scen) |
e 5t (1000scen)
== 3t (1000scen)|]

N
=}
a
©

1024
512 10x(125.0%) |

256

time to solution (in seconds)

64 8x(25.9%)

o

12 24 48 96 192
number of cores

o (w1 =
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Future Work
@ C(lustering

e based on critical missions

@ Scenario Based Decomposition
e Solve with subset of scenarios in parallel

o Lagrangean Decomposition

e combine cuts and solve with full set of scenarios
e stage 1 bottleneck

e decompose using lagrangean relaxation
I
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