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Abstract

In the last several years, there has been an increased interest in using various accelerator technologies in the

realm of high performance computing (HPC). Some of these technologies include the Cell processor (Cell),

many integrated cores (MIC), the single chip cloud (SCC), field programmable gate arrays (FPGAs), and

graphics processing units (GPUs). Considerable effort has been put forth in harnessing the computing power

of these technologies for more general purpose programming. However, making use of these technologies is

typically considered hard for various reasons, including their parallel nature and the architecture-specific

details involved in programming them.

In this work, we would like to explore (1) how the various pieces of accelerator hardware can be abstracted

within a programming model and (2) how an underlying runtime system can assist programmers in making

use of accelerators. In other words, how can we make accelerators more accessible to programmers and allow

them to focus on the problem at hand, rather than focusing on the hardware itself? What role can/should

runtime systems play in making accelerator technologies more accessible to programmers?
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Chapter 1

Introduction

1.1 Send in the Cores

In the not so distant past, each successive generation of a processor saw an increase in clock frequency.

This, along with other architectural enhancements, increased the serial performance of single threaded

applications running on commodity processors year after year. However, this trend came to a halt as

the associated power and cooling requirements became unreasonable. As power and cooling costs placed

ceilings on processor frequencies, the number of transistors that can be placed on a die has continued to

increase [20]. Historically, the additional transistors available with each generation of processor were typically

used to increase the serial performance of individual cores. Over time, this general approach began seeing

diminishing returns, with increasingly complicated mechanisms requiring more transistors while providing

relatively smaller benefits. Within the last decade, the trend of focusing on the serial performance of a

single thread has, to some degree, been reduced. Instead, processor designers have begun using these extra

transistors for creating more cores on a single die. This is not to say that single thread performance is no

longer important. Rather, there is a recognition that parallelism must be embraced if hardware designs are

to continue pushing the performance of processors to higher and higher levels in the face of current power

limitations. As a result of this shift, most commodity processors now include multiple cores, with research

designs containing (or considering) tens, hundrends, and even thousands of cores [44, 43, 50, 25, 90, 15].

Thus began the multicore era.

1.2 Heterogeneity

Moving beyond just the simple duplication of cores to create multicore processors, some specialized hardware

designs went a step further by introducing heterogeneity. Specialized hardware designs typically include even

more cores than commodity designs, with the individual cores typically being fairly simple in comparison

(e.g. in-order pipelines, simple or no branch prediction, etc.). In addition to simply increasing the number
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of cores, other architecture specific features are usually included within specialized designs, such as direct

memory access (DMA) controllers and specialized memories.

Examples of such specialized hardware includes graphics processing units (GPUs) [94], the Cell processor

(Cell) [84], many integrated core (MIC) (based on the previous Larrabee design [90]), field programmable

gate arrays (FPGAs) [73], single chip cloud (SCC) [26, 22], Intel Sandy Bridge [95], AMD Fusion [31], and

others. Throughout this document, we will collectively refer to the specialized components of these processors

and/or devices as “accelerators.” Naturally, the exploration of these specialized architectures, along with

their success in accelerating certain types calculations, has further lead to the exploration of heterogeneous

clusters. Several supercomputers built within the last several years have utilized accelerators to augment the

computational power of the cluster’s host cores, including Roadrunner at Los Alamos National Lab (LANL)

[59, 7], Forge at the National Center for Supercomputing Applications (NCSA) [78], HokieSpeed at Virginia

Polytechnic Institute [70], Cray XK6 [30], Tianhe-1A at the National Supercomputing Center in Tianjin

[47], and the list goes on. In fact, several heterogeneous systems have begun showing up on both the Top500

[76] and the Green500 [21] cluster rankings. In June of 2008, the Roadrunner cluster, which includes Cell

processors, was the first supercomputer to achieve a sustained flop rate of greater than one petaflop/s for the

LINPACK benchmark [57, 76]. The latest Top500 list (November 2011, at the time of this writing) includes

39 heterogeneous supercomputing clusters, which is more than double the number a year prior (17 clusters

in November of 2010) and over five times the number two years prior (7 clusters in November 2009). Of

the top 50 systems on the current Top500 list, 8 systems include accelerators. Of the top 50 systems on the

current Green500 list, 29 systems include accelerators.

One way in which heterogeneity has been explored is through the inclusion of specialized hardware

in an otherwise standard computing node. The most well-known example of this is the use of graphics

processing units (GPUs). GPUs were originally introduced as specialized hardware designed specifically to

accelerate video and graphics processing. However, as the flop rates of these specialized processors began

increasing, programmers writing computationally intensive applications began searching for ways to exploit

these specialized processors [88, 71, 18]. Currently, this trend has become more mainstream through the use

of programming languages/models designed to target such specialized hardware, such as CUDA [80], OpenCL

[40], and OpenACC [82]. Designers of specialized hardware have embraced general purpose computing on

specialized hardware, in so far as some hardware mechanisms are being included in the hardware designs that

wouldn’t otherwise be required by the computations that the specialized hardware was originally intended

for, such as IEEE floating-point support within general purpose GPUs (GPGPUs), which is not generally
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required for graphics.1

1.2.1 Advantages of Heterogeneous Systems

Generally speaking, there are two main advantages to using accelerators, and thus heterogeneous systems:

flop rates and power usage. First, the peak theoretical flop rates of accelerators are typically higher than

the flop rates of standard hardware cores. For example, all of the cores in the Cell processor (which will be

described later in section 2.1), regardless of core’s type, actually have the same peak flop rate. However,

because the specialized cores are smaller, there are more of them per die, and thus provide more flops in

aggregate. As such, depending on how one decides to do the flop rate comparison, one could correctly come

to either conclusion. For our purposes, we say that the accelerator cores in aggregate provide a higher peak

flop rate. The same holds true of CUDA-based GPUs, which have more functional units per streaming

multiprocessor (SM), but slower clock speeds. As a result, SMs are more or less comparable to commodity

host cores in terms of their peak flop rates. A modern Intel Sandy Bridge host core can perform 16 flops per

cycle, for a peak flop rate of 48 Gflop/s with a clock speed of 3.0 GHz [24, 69]. A Fermi SM can execute 64

flops per cycle, for a peak flop rate of 96 Gflop/s with a clock speed of 1.5 GHz (a factor of 2 greater than a

host core). However, also note that GPGPU cores place some restrictions on the code making use of them,

such as requiring the use of a SIMD execution model, and are not well-suited for all types of calculations.

One should be very cautious about making a direct comparison of these fairly different archtectures as it

is not a straight forward comparison, especially if one also considers harder to quantify factors such as

programmability and portability of the resulting code. That said, once again, the simple GPGPU cores are

smaller and designed to be used in large groups, giving them a higher peak flop rate in aggregate. Currently,

host processors typically include 4-6 cores, while GPGPUs include 14-16 SMs, creating peak flop rate for

GPGPUs that is approximately a factor of 8 greater than host processors (the actual clock speeds and core

counts vary between specific processor models).

Second, the flop per Watt ratio is typically lower for accelerators and/or heterogeneous systems when

compared to standard commodity cores. At the high-end, we can see this reflected within the top 10 systems

listed on the Green500 list over the past several years, as shown in table 1.1. Note that ties are allowed

within the Green500 list, allowing more than 10 systems to occupy the top 10 ranks. The Green500 list

is released twice annually, once in November (N) and once in June (J). The column headings for table 1.1

indicate the date of the list by month (letter) and year (20xx, where xx represents the number). Table 1.1

1Please note that some consider the term GPGPU to be a bit of a misnomer, implying that GPGPUs are well-suited for any
type of calculation. This is not the case, as GPGPU designs tend to be well-suited to particular types or classes of calculations.
Throughout this document, we will use the term GPGPU, with the understanding that GPGPUs may not be well-suited for
all types of computation.
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N11 J11 N10 J10 N09 J09 N08 J08
Cell 3 3 6 6 4 7 3

GPGPU (nVidia) 4 2 4 2
GPGPU (ATI) 1 2 1 1
GRAPE-DR 1 1 1
Accelerator 5 7 9 8 8 5 7 3

Total Systems 10 10 11 10 14 13 14 11

Table 1.1: Number of supercomputers including accelerators on the top 10 systems on the Green500 list by
year [21].

shows that, for the last four years, clusters that include accelerator technologies make up at least half the

top 10 systems each year, with the exception of June 2009 and June 2008. We also point out that of the

clusters that do include accelerators, the great majority of those clusters either include Cell processors or

GPGPUs.

In smaller systems, the inclusion of accelerators into otherwise standard multicore systems may increase

the flop rate to power ratio, allowing applications to perform more work per unit energy. For example, the

inclusion of one or more GPGPUs within a workstation can significantly increase the peak flop rate provided

by the workstation (as previously pointed out by the peak flop rate comparisons above). The power of a

modern Sandy Bridge processor is on the order of 95W (“high-end desktop” version) [95]. As a point of

comparison, the power usage of a Fermi-based M2070 Computing Module from NVIDIA is approximately

225W [29]. Note that the power increase is less than the peak flop rate increase. However, again, a direct

comparison is not truly fair, since the characteristics of these processors are fairly different and since the

power usage of specific models vary. Additionally, there is the question of programmability and how far

programmers are required to (or willing to) go in order to achieve a significant portion of the peak flop

rates provided by any architecture (i.e. the portion of the peak flop rate that is commonly achieved using

standard practices, rather than what many refer to as heroic efforts). We will return to this topic in section

8.4.

1.2.2 Challenges of Heterogeneous Systems

In addition to the advantages presented by accelerators and heterogeneous systems, there are also several

challenges that come along with using such systems. The clearest challenge of heterogeneous systems is

realized by any programmer as they begin to write application code for such systems. Put simply, writing

application for a heterogeneous system is often noticeably more difficult when compared to writing appli-

cation code for a homogeneous system. There are a variety of reasons for this, some of which are more

or less true depending on the particular system in question. In the case of the Cell processor, data move-
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ment between the general cores and the specialized cores must be done explicitly within the application

code itself. Further, the accelerator cores within the Cell processor have specialized scratchpad memories

which the programmer must also explicitly manage as data is streamed through the accelerator cores. In

the case of GPGPUs, data must often be aggregated explicitly by application code, in addition to explic-

itly being transfered to and from the accelerator device by the application code. This is required so that

the throughput-oriented GPGPUs have a sufficiently large collection of data parallel tasks to execute, as

required by their execution models (more on this below). The explicit manipulation of application data

required by accelerators is less than ideal for two reasons. First, it decreases the portability of application

code by making the code more architecturally specific. Further, the code used to accomplish this explicit

data movement commonly needs to be interleaved throughout the application code. This interleaving of

architecture specific code throughout the application code not only makes the code less portable by its mere

presence, but also complicates any porting effort by making the architecture specific code harder to isolate

from the application code. Note that interleaving is as much a requirement for performance reasons, as it is

a requirement of the programming models themselves.

Another challenge of accelerators is that accelerators also tend to have a particular execution model tied

to the design of the hardware. The Cell processor is designed to be well-suited for stream processing, while

GPGPUs are designed to be well-suited for SIMD processing. As a result, it is often the case that the

structure of a given application must be manipulated by the programmer manually, at least to some degree,

as to reflect the execution model of the given accelerator that the programmer is targeting. The warping of

the application model to a more specific hardware model tends further complicate the process of porting an

application to another platform for reasons similar to those discussed in the previous paragraph.

1.3 The Scope of This Work

Processor and system architects find themselves with an interesting balancing act on their hands. Having

more simpler cores (i.e. more functional units and thus shifting focus towards overall throughput, rather

than solely focusing on serial performance) can make more efficient use of transistor counts and power

(i.e. higher Gflop/s and Gflop/s per Watt rates via increasing the overall throughput of the processor, but

not necessarily decreasing the latency of any given calculation). On the other hand, serial performance

is also quite important for many applications and typically increases with heavier cores that devote more

transistors to speculation, out-of-order processing, and so on. Specialized hardware can perform certain

types of calculations with high levels of performance, but general cores are still required to handle the wide
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variety of computing tasks that might be encountered. This is particularly true of applications that have

many branches, indirect memory accesses, and/or irregular data structures. It’s not hard to begin seeing

how a mixture of core types may be advantageous for some applications where the overall workload will vary.

However, as the variety of cores increases in a given system, the burden on the programmer also grows by

complicating the process of writing codes that make use of all the different cores. Examples of complexities

that typically arise include architecture differences between the cores, execution model differences, load

balancing issues, explicit data movement between the various cores, and the inclusion of architecture specific

code throughout the application code (i.e. portability).

Despite their difficulties, with their higher performance to power ratios, it’s not unreasonable to think

that heterogeneous systems will become more commonplace. As this occurs, we would like to retain ease of

programming and portability. If possible, we would also like to have a runtime system handle many aspects

of a parallel heterogeneous application for the programmer, leaving the programmer to focus on the problem

they wish to solve, rather than the more focused task of implementing a particular algorithm on a particular

hardware configuration. In other words, it would be advantageous if we could use a single programming

model to program all of the cores, relieving the programmer of the burden of learning multiple programming

models, interfacing those models, learning specific details of the hardware, and so on. While we do not

believe that all of the difficulties of heterogeneous systems can be masked from programmers, it is the goal

of this work to understand some of the ways in which the programming model and runtime system can at

least partially ease such burdens on programmers. At the same time, knowing that our abstractions will not

solve all of the issues that programmers face when programming heterogeneous systems, we do not want our

approach to get in the way of programmers accomplishing what they want to accomplish, even if that means

stepping outside the bounds of our abstractions from time to time. For example, as part of our approach

we include a SIMD abstraction called SIMDIA (see section 3.2.2) that programmers can use to help make

SIMDized code in a more portable manner. However, the functionality of SIMDIA is continually growing and

may not be appropriate for all situations (yet or ever). As such, we provide a mechanism for programmers

to easily check what supported platform their code is being compiled for and include architecture specific

code if required.

Since there is a significant amount of knowledge and work that goes into adding support for a particular

type of accelerator into our abstraction, we must necessarily restrict ourselves to only a small subset of

the available accelerator technologies in existence today. In particular, we chose to include support for the

Cell processor and CUDA-based GPGPUs. The remainder of this document will focus on applying our

approach to these accelerators. It should be noted that we have already done some initial exploration for
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supporting many integrated core (MIC) technologies from Intel within our approach, but current restrictions

surrounding this technology stop us from discussing it as part of this document. As such, support for MIC

is still considered to be future work at this point in time.

There are two reasons for choosing to support the Cell processor and GPGPUs within our approach.

First, both of these accelerator technologies have been used in production clusters and commercial hard-

ware systems, and thus it is fair to say that both of these accelerator technologies have managed to reach

mainstream usage at some point in the recent past (last 6 years). Other accelerator technologies, such as

FPGAs, still have relatively limited scopes of application in their usage outside of research systems. Note

that we are not trying to say that research systems do not have impact, but rather we just want to point out

the popularity of the Cell processor and GPGPUs for a variety of applications relative to other techologies.

Further, as previously pointed on in section 1.2.1, both Cell processors and GPGPUs have appeared as

components in some of the top supercomputers in the world according to both the Top500 and Green500

lists.

A second reason to choose both the Cell processor and CUDA-based GPGPUs as accelerator technolo-

gies to support is because they are quite different from one another, as well as being fairly different from

commodity host cores. As such, demonstrating that the same programming model extensions and runtime

system modifications can be applied to both types of accelerator technologies demonstrates a certain amount

of flexibility and generality in our approach. In particular, host cores tend to make use of several (1-32)

relatively long-lived threads (i.e. it is common for a thread to exist throughout the entire lifetime of an ap-

plication’s execution when using pthreads [79] or similar models). The Cell processor streams data through

a set of on-die, specialized cores with limited amounts of working memory. GPGPUs make use of thousands

of very light-weight, short-lived threads in a highly data parallel manner (i.e. a SIMD execution model).

1.3.1 Considering the Cell Processor

The Cell processor has been incorporated into several clusters, including the Condor, Roadrunner, QPACE,

Cerrillos, and MariCel clusters. Playstation 3s (PS3s), which also contain Cell processors, have also been

used within smaller clusters, since PS3s are less expensive when compared to typical cluster nodes. Despite

these successes, the Cell has seen limited adoption relative to other accelerator technologies, most notably

GPGPUs. However, we still consider the Cell to be relevant in the study of heterogeneous systems for a few

reasons. First, if history is to be a teacher, architectures that more closely resemble commodity hardware

tend to be preferred to specialized hardware as long as performance is comparable. Commodity hardware is

well understood and requires no architecture specific code to be included within application code. Second,
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of the popular contemporary accelerator architectures, Cell is unique in that it has scratchpad memories

(referred to as “local stores”). That is, the programmer has complete control over (and responsibility for)

the memory used by the Synergistic Processing Elements (SPEs), giving the programmer a degree of control

over the data’s location and movement that is not seen in other accelerator architectures (see section 2.1).

Third, Cell represents a case where the host cores are similar to the accelerator cores (i.e. the code execution

and performance characteristics of various core types can be reasoned about in a similar manner, though

there are important differences). This is unlike GPGPUs, since GPUs are programmed using a different,

more-restrictive execution model (i.e. SIMD). The Cell is also unlike GPGPUs in that all the Cell’s cores,

regardless of type, are on the same die and communicate through an on-die network. Though, recently, we

are beginning to see graphics processing units being incorporated on the same die as host cores, including

recent processor designs from Intel [96] and AMD [17], removing the need to transfer data off-die and/or

requiring separate address spaces be used by the various cores. With these considerations in mind, we believe

that exploring various aspects of heterogeneous systems using Cell processors remains an interesting and

relevant area of exploration, despite the Cell’s recent decline in popularity.

Background information related to the Cell processor will be discussed in section 2.1. The initial ap-

plication of our approach to the Cell processor using static load balancing will be discussed in chapter 4.

Throughout the remainder of this document, the term “accelerator device,” when used in reference to Cell

processors, will refer to the set of all physical SPE cores available to application code for the particular ver-

sion of the Cell processor being discussed. Note that different versions of the Cell processor have a different

number of physical SPE cores. The PPE cores will be referred to as the “host cores.” These PPE and SPE

cores will be described further in section 2.1.

1.3.2 Considering GPGPUs

Unlike the Cell, which is decreasing in popularity, GPUs are becoming increasingly popular. This is par-

ticularly true for programmers writing applications that require high Gflop/s rates, since GPUs currently

provide the highest peak flop rates of any accelerator technology. As we have already mentioned, this added

performance comes at the cost of being highly specialized. In particular, GPGPUs target calculations that

exhibit a high degree of data parallelism. This is a result of being originally designed to handle heavy graphic

workloads, which are themselves highly data parallel in nature. While the architecture of the Cell processor

is closer to commodity processors, the higher peak performance offered by GPUs is enticing and should not

be ignored. With both the opportunities and challenges in mind, we include GPGPUs as one of the target

platforms for our work.
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Background information about GPGPUs will be covered in section 2.2. Chapters 5 and 6 will cover some

of our more recent efforts involving GPGPUs.

1.4 Contributions of this Work

In this work, we will demonstrate the use of a message-driven object-oriented programming model on various

hardware architectures, including host cores, Cell processors, and CUDA-based GPGPUs. In particular, the

Charm++ programming model will be extended to include accelerated entry methods (see section 3.2.1) and

SIMDIA (see section 3.2.2). The intent of including these extensions within Charm++ is to create a unified

programming model in which a programmer can express their application code using a single programming

model, regardless of the hardware used to execute the application, and thus provide portability. Further, we

wish to explore the use of a message-driven (i.e. similar to event-driven) programming model to program

both Cell processors and GPGPUs. For GPGPUs in particular, one does not typically think of using non-

data-parallel programming models to express application code that targets accelerators.

By taking advantage of the portability provided by a unified programming model, we also plan to explore

various ways in which an active, adaptive, and intelligent runtime system can assist the application, and thus

the programmer. By performing a variety of tasks automatically (or perhaps with some minimal guidance),

the runtime system can actively perform various tasks that a programmer would otherwise be responsible for

supporting explicitly within the application code. A runtime system can help address a variety of concerns

shared by a wide variety of applications, ranging from high-level tasks such as dynamic load balancing and

fault tolerance support, through very detail-oriented and tedious tasks such as endian correction. The two

main areas of focus related to runtime system support will revolve around load balancing (see chapters 4

and 5) and data management (see chapter 6).
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Chapter 2

Background

This chapter will review background material that will help the reader better understand the following

chapters. There are three main topics that will be covered. First, an overview of the Cell Broadband Engine

Architecture (CBEA, or simply “Cell”) will be given. The Cell architecture is one of the target architectures

that this work targets. Second, an overview of CUDA-based general purpose graphics processing units

(GPGPUs) will be given. These GPGPU devices are also a target of our work. Third, an introduction to

the Charm++ programming model will be given. This work builds upon the Charm++ programming model

and runtime system, so an understanding of how Charm++ operates is important in understanding how our

approach operates.

2.1 The Cell Broadband Engine Architecture (CBEA or Cell)

The Cell Broadband Engine Architecture (CBEA), commonly referred to simply as Cell, was jointly de-

veloped by IBM, Toshiba, and Sony [51]. The architecture was popularized with the inclusion of the Cell

processor in Sony’s Playstation 3 (PS3), but has also been included in other products, including the QS20

and QS22 blade servers from IBM, along with the SpursEngine from Toshiba. IBM designed a supercom-

puter cluster which included Cell Processors, named Roadrunner, which is located at Los Alamos National

Laboratory (LANL). In June of 2008, the Roadrunner cluster topped the Top500 list and was the first

supercomputer to achieve a sustained rate of 1 Pflop/s while executing the Linpack benchmark. Based

on the Green500 list from the same month, the top 3 systems, in terms of their flop rate per Watt, were

also Cell-based systems, providing further support for the idea that heterogeneous systems are one possible

avenue for creating power-efficient, large-scale computing systems.1
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Figure 2.1: Architecture overview of the Cell Processor.

2.1.1 Architecture

The CBEA defines two types of processing cores, the Power Processing Element (PPE) and the Synergistic

Processing Element (SPE) [51, 41]. Please refer to figure 2.1 for an overview of the Cell architecture. Note

that figure 2.1 does not include all components of the Cell processors, just the components related to this

work. Both types of cores are located within a single processor, though in different ratios depending on the

particular processor in question.

Generally speaking, the PPE can be thought of as a standard core similar to those included in many

commodity multicore processors. In particular, the PPE has direct access to system memory via load/store

instructions and full support for virtual memory. The system memory is accessed through a cache hierarchy,

similar to other commodity processors.

Unlike the PPEs, the SPEs are specialized cores. In particular, the SPEs are designed to execute

computationally intensive code. Typical hardware implementations of the CBEA include several SPEs per

PPE. For example, the Cell processors in the IBM blade systems include 1 PPE and 8 SPEs [27], the Sony

Playstation 3 includes 1 PPE and 7 SPEs (though, one is dedicated to the OS, so it is effectively 6 SPEs for

1http://www.green500.org/lists/2008/06/top/list.php

11



application code) [65, 19], and the SpursEngine includes 1 PPE and 4 SPEs [42].

While the SPEs resemble typical multicore processor cores in many ways, there are several important

differences that are worth noting. First, SPEs do not have direct access to system memory. Instead, each

SPE has a dedicated scratchpad memory, called the local store, which is accessed via load/store instructions

issued by the SPE’s pipeline. Local stores are 256KB in size and must contain all data required by the SPE,

including the application code, the stack, and the heap. The programmer has complete control over the local

store (e.g. dereferencing NULL (0x00) is a valid operation on an SPE). Second, each SPE also has a direct

memory access (DMA) engine that is used to move data back and forth between system memory and the

SPE’s local store. The DMA transactions are issued directly by the application code, leaving the programmer

to explicitly interleave DMA related code throughout their application. Well established techniques, such as

tiling, code overlays, and streaming, can make use of the DMA engine to overcome the challenge of having

such a small amount of physical memory per SPE. However, the task of implementing such techniques is left

to the programmer and/or library developers. Third, the ISA of the SPEs is not identical to the PPE. As

such, code that is compiled for the PPE will not execute on the SPE, and vice versa. Instead, the SPE code is

compiled separately and then embedded into the PPE executable. Using functions provided in the Cell SDK,

the programmer can then transfer the embedded SPE executable down to an SPE’s local store and initiate

the execution of that executable on the given SPE. Fourth, the different ISAs also result in different SIMD

extensions provided by each core. While having different ISAs has only a limited effect on the programmer

when compiling the C/C++ code for either the PPE or the SPE, the different SIMD extensions require

different intrinsics to be used by the programmer, depending on which core they are targeting. Further, the

types of instructions supported by each SIMD extension are not identical [51].

Each of the cores, regardless of type, are connected to one another via an on-chip network called the

Element Interconnect Bus (EIB). Other components, including memory controllers and I/O components, are

also connected to the cores via the EIB. The EIB is a bi-directional ring network, with a peak bandwidth of

204.8 Gbytes/s [58].

2.1.2 The Offload API

As part of this work, we developed the Offload API to help ease the burden of programming the Cell Processor

[61, 62]. The basic idea behind the Offload API is to allow the programmer to stream work requests (think

chunks of work) to the SPEs. In particular, there should be several active work requests per SPE at any

given moment. This allows the SPE runtime to overlap the computation of a ready-to-execute work request

with the data transfers of other work requests moving data into and out of the same SPE. This overlap of
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computation with data transfers helps to hide the latency of the data transfers themselves.

To make use of the Offload API, the programmer provides a set of offloaded functions, each of which

takes a programmer-specified number of input and output data buffers (i.e. each buffer can be specified

as input and/or output). These functions define the calculations that are available for offloading, from the

point-of-view of the PPE. The programmer explicitly creates work requests on the PPE by filling in an

associated data structure. Each work request is associated with one of these functions and a number of data

buffers, as required by the specific offloaded function. Once the work request is finished being created (code

and data specified), the work request is issued to the Offload API. Eventually, at some point in the future,

the work request will complete and a programmer specified callback function is called on the PPE to notify

the application that any output data that was generated by the work request is ready. The application code

can take further actions, such as sending messages, from within the callback function.

As application code issues work requests to the Offload API, the work requests are distributed evenly

across the SPEs. Once assigned to a specific SPE, the data associated with a given work request is transferred

to the SPE’s local store by the SPE’s DMA engine. Once all of the data has been transferred to the SPE, the

work request is queued for execution. After execution, the output data is transferred back to system memory.

Once the output data has been copied to system memory (i.e. is available to the PPE) the Offload API

calls the programmer specified callback function. Except for issuing the work request, which occurs directly

from within an entry method, and the execution of the callback function, which occurs in-between entry

method executons, all of the operations associated with a work request are asynchronous to the application

code executing on the PPE (host core). Note, that the explicit use of the Offload API is only required if a

Charm++ application does not make use of the programming model extensions discussed in chapter 3.

2.2 CUDA-Based GPGPUs

Graphic processing units (GPUs) were originally designed to handle the large amount of number crunching

associated with real-time graphics for computer games and other graphic intensive applications. However,

as the technologies associated with GPUs have matured over time, they have also been extended into

more general purpose computations (i.e. not just graphics). This is where the term general purpose GPU

(GPGPU) originated from. Some consider this term to be a bit of a misnomer, since it suggests that GPUs are

appropriate for all types of computing tasks. In reality though, GPGPUs work very well at accelerating some

types of computations (i.e. computations with very regular data structures, regular memory access patterns,

and that are highly data parallel in nature) and are not particularly well-suited for others (i.e. computations
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with irregular data structures, irregular or indirect memory access patterns, or are not particularly data

parallel in nature).

In this work, we will focus on CUDA-based GPGPUs in particular. In using the phrase “CUDA-based

GPGPUs,” we simply mean a GPGPU that can be programmed using the CUDA programming model

[80]. There is no technical reason that these particular types of GPGPUs were chosen over any other.

The decision mainly stems from existing infrastructure related to CUDA within Charm++ (i.e. the GPU

Manager, previously known as the Hybrid API, as described in section 2.2.2) [93, 55], mixed with the

limited time and resources to build the required infrastructure for several types of GPGPUs by the time of

this writing. In other words, CUDA-based GPGPUs are simply the first type of GPGPUs supported within

the context of our work, but are not the only type that could be supported.

2.2.1 Architecture

CUDA-based GPGPUs are fairly different from conventional host processors. Most notably, there are many

more hardware threads available to the programmer, and subsets of those threads are executed in a single

instruction multiple data (SIMD) manner. Before describing how the threads operate relative to one another,

we first give the reader an overview of the architecture itself. In particular, we will be describing the Fermi

architecture/generation of CUDA-based GPGPUs since these are the type of GPGPUs that we will using

in later chapters for conducting experiments [28].

Figure 2.2 gives an overview of CUDA-based GPGPUs based on the Fermi architecture. Note that the

Fermi architecture actually has more components than shown in figure 2.2. However, figure 2.2 covers the

portions of the architecture that are relevant to our work. Overall, there are many relatively small cores,

each of which is capable of executing a single hardware thread. These cores are grouped together into sets

of 32 cores which, along with additional resources, are collectively referred to as a streaming multiprocessor

(SM). Each SM has a set of resources that are shared/divided amongst the various threads that are executing

on the SMs, depending on the exact resource in question. 32 software threads are grouped together into

sets called warps, with several warps being resident on an SM at any given moment. The exact number

of warps an SM can contain depends on the amount of resources that warp requires. Since the resources

of an SM are fixed (defined by the particular hardware implementation), the more resources each warp

requires, such as registers, shared memory, and so on, the fewer the number of warps that will be able to

fit on a given SM at the same time. The threads within the warp are executed using a single instruction

multiple data (SIMD) execution model. That is, all of the threads within the warp share the same instruction

stream, and the threads within a given warp execute in lockstep with one another. Branches within the
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Figure 2.2: Architecture overview of a CUDA-based GPGPU.
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instruction stream are handled by causing a subset of the threads to become inactive (think, “executing

the instructions, but not committing the results of those instructions” or predication) during the portions

of the instruction stream that a particular thread does not need to execute. For example, if at least one

thread needs to execute the true block associated with an if statement, then all of the threads within the

block will executed the true block. The threads that did not evaluate the if statement’s condition to be true

will be marked as inactive during the duration of the if statement’s true block. In situations where some

threads are active and some are inactive, the threads are referred to as being divergent. Threads within a

warp being divergent is problematic since it causes hardware cores associated with inactive threads to go

unused (i.e. not performing useful work from the point-of-view of the application) as long as those threads

remain inactive. This SIMD execution model is a result of the hardware design of GPGPUs. Any application

executing code on a GPGPU (of this nature) must adhere to this execution model. The accelerator device

as a whole, is made up of several SMs, with current high-end models containing on the order of 16 SMs per

device. Across the various generations of hardware, the number of cores has been varied, along with the

number of SMs per GPGPU.

Another characteristic of GPGPU hardware is that the threads from one warp can be swapped with the

threads in another resident warp within a single cycle. This allows for the instruction latencies experienced

within one warp to be overlapped with the execution of instructions from another warp. The overall effect of

this fast context switch is that the function units within the cores remain busy for a larger number of cycles

(assuming multiple warps per SM). What would otherwise be gaps or bubbles in a core’s pipeline cause by

data dependencies between instructions from one warp’s instruction stream are filled in by instructions from

another warp’s instruction stream, allowing the application to reach a higher percentage of the accelerator

device’s peak flop rate that it would otherwise be able to achieve if only a single warp were active per SM.

To take advantage of this hardware characteristic, the application typically needs to decrease the granularity

of the work associated with each hardware thread, along with keeping the amount of resources required per

thread at a minimum, so that the number of warps per SM is maximized (the number of warps per SM is

referred to as occupancy). The greater the number of warps per SM, the greater the chance that at least

one warp is not stalled on a data dependency, and thus, the greater the chance that an instruction can be

issued from one of the warps in the current cycle (i.e. the functional units are kept busy).

However, the SIMD execution model, the fine granularity of the threads, and the separate address space

(i.e. device memory) presents extra burden on the programmer. The separate address space is likely a

burden that may (or may not, depending on the model of GPGPU being used) be an issue. Some modern

processor designs are beginning to include the host processor and the GPGPU cores on a single die, giving
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both direct access to and a coherent view of system memory (i.e. the same address space). The other two

issues, SIMD execution model and thread granularity, in the most general sense, tend to force programmers

to create two versions of their code, one version for the host cores and one version for the accelerator device.

Otherwise, the programmer’s code is not portable between various platforms. There are, of course, ways

around this through the use of various third party libraries and/or the use of programming models designed

to abstract these hardware differences away from the application code. Our approach will be discussed in

chapter 3.

This description of GPGPU architecture is only intended to provide the reader with a high-level overview

of the architecture. There are many resources from a variety of sources providing information related to

GPGPUs [80, 28, 94].

2.2.2 GPU Manager

The GPU Manager [93, 55, 49] serves a purpose similar to the purpose the Offload API serves for the Cell

processors, which is to allow programmers to easily offload pieces of work to the accelerator device. Like the

Offload API, the programmer creates work requests. There is a one-to-one correspondence between work

requests and CUDA kernel invocations, which means the granularity of a work request is much greater for

the GPU Manager compared to work requests within the Offload API.

The programmer is responsible for writing the actual CUDA kernels. As a result, the code needs to

be duplicated by the programmer if using the GPU Manager directly, one copy for the host core and one

copy for the GPGPU. In addition to the kernel functions, the programmer also has to write a kernel select

function. The kernel select function is called on the host core by the GPU Manager as input data for a given

work request becomes ready for use on the device. The kernel select function does the work of invoking the

kernel’s execution on the GPGPU device.

To issue a work request, the programmer fills in a data structure describing the work request from within

the application code. The data structure includes all the information required by the GPU Manager to

perform the work request on the GPGPU, including but not limited to, which kernel is to be executed,

pointers to the data associated with the kernel execution, and a callback function to be called once the

kernel has finished executing (i.e. the output data is available to the host core). Similar to the Offload

API, each kernel is assigned a unique number, which is specified during work request creating and used by

the kernel select function to invoke the appropriate device kernel. Once the work request’s data structure

has been filled out, the programmer issues the work request to the GPU Manager, referred to as enqueuing

the work request. At some point in time after the work request has been issued, the GPU Manager will
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begin transferring the input data required by the work request from system memory to the GPGPU’s device

memory. Upon completion of the input data transfer, the GPU Manager calls the kernel select function

provided by the application programmer. Using the unique kernel index originally specified in the work

request’s data structure, the kernel select function invokes the CUDA kernel associated with the index. At

this point, the kernel is executed on the GPGPU. Once the kernel completes, the output data is transferred

back to system memory. Finally, after the output data has successfully been transferred back to system

memory, the GPU Manager triggers the callback function that is associated with the work request. The

GPU Manager performs each of these tasks associated with a work request (i.e. transferring input/output

data and executing the kernel) asynchronously with the code executing on the host core, with the exception

of enqueuing the work request (which occures from within an entry method) and the execution of the

callback function (which occurs between entry method executions). This overall process, when applied to

multiple work requests, allows the GPU Manager to pipeline the work requests through the GPGPU device,

overlapping data transfers with computation on the device.

2.3 Charm++ Basics

The Charm++ programming model is an object-based message-driven parallel programming model [52].

Applications written in Charm++ make use of an adaptive runtime system that controls and modifies the

execution of the application. Charm++ has been in use for approximately 20 years and has been used to

write several production codes. As such, it is a mature programming model that has a variety of features

for application developers to take advantage of. Charm++ is implemented as a collection of C++ libraries

which are linked to Charm++ applications. In addition to the libraries, Charm++ makes use of a tool called

charmxi to generate various pieces of code which serve a variety of roles.

There are three programming constructs at the heart of the Charm++ programming model: chare

objects, entry methods, and messages. Chare objects, also called chares for short, can be thought of as

special C++ objects. Like standard C++ objects, chares have member variables and member functions.

However, unlike C++ objects, chare objects also have entry methods (explained below) and can migrated

between the host cores available to an application (assuming a Pack-UnPack routine has been created for

them, as discribed below). Chare objects can be created and deleted dynamically as an application executes.

Entry methods are special member functions that are asynchronously invoked. That is, when an asyn-

chronous function is invoked on a chare object, it returns immediately and with no return value from the

point-of-view of the calling code. At some point in the future, the entry method will be executed on the
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target chare object. The invocation of entry methods is how concurrency is expressed within the application

code. Like member function in C++, entry methods have a parameter list, allowing values to be passed

from the caller to the target. From the point-of-view of any given chare object, the chare may receive more

than one entry method invocation at the same time. Should this happen, the messages are executed on

the chare object in a serial manner, each from start to finish without interruption. As such, there at most

one entry method executing on a given chare object at a time, so the number of chare objects within a

Charm++ application bounds the amount of parallelism that is achievable within an application. Further,

entry methods only have access to the member variables within the chare object they are executing on and

to the variables in the message object that triggered their execution (i.e. the parameters passed to the entry

method from the caller). These factors remove the need to have locks protecting member variables accessed

by more than one entry method in a given chare class.

Charm++ applications make use of a concept referred to as over-decomposition or virtualization, which

basically refers to the idea of having multiple chare objects per physical processing element (PE). The

underlying Charm++ runtime system will map the chare objects to the PEs available to an application.

In most cases, there are many more objects than there are physical processing elements, and thus, any

given PE will have many chare objects mapped to it at any given moment. When programmers write their

applications, they write the program as though each chare object has its own PE (and thus write their code

independently of the actual number of PEs). However, in reality, several chare objects will be time-sharing

a single PE. On any given PE, only a single entry method will be executing at any given moment, and it

will complete without interruption.

As entry methods are invoked and messages are created, the Charm++ runtime system routes the

messages to the PE that contains the target chare object. Each PE has a message queue that queues all

of the messages that target chare objects that are located on the given PE. This leads to the automatic

overlap of communication and computation. As some chare objects on the given PE are waiting to have

messages arrive, other objects will have messages waiting to be executed in the PE’s message queue. This

helps keep each of the PEs busy all of the time, maximizing the utilization of the processing elements by

the program, along with the amount of parallelism realized at any given moment. Of course, the amount of

parallelism realized by the application also relies on how the application is structured. However, this overlap

of communication and computation that results from over-decomposition and the nature of the Charm++

programming model influences the programmer to write their application in such a way as to maximize the

amount of parallelism.

Charm++ also makes use of Pack-UnPack (PUP) routines, which are used to serialize and deserialize the
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state of an object (or any data structure with an associated PUP routine) into and out of data buffers. One

use of PUP routines is to pack and unpack the content of a chare object into and out of message objects.

As an application executes, the Charm++ runtime system can measure the load of each of the PEs and

associate the work being performed to each of the chare objects. If the workloads of the various PEs are

unbalanced, the runtime system can use the PUP routines to migrate chare objects between the PEs in an

attempt to balance the overall workload across all of the PEs. Exactly how the runtime system decides

which chare objects are to be migrated between which PEs is determined by a load balancing strategy.

There are several load balancing strategies included within the Charm++ runtime system that decide when

to migrate objects using a variety of schemes, such as greedy-based algorithms, and using various pieces

of information, such as which objects communicate with one another and the topology of the network

connecting the processing elements [12]. Programmers can also define application specific strategies that

take application-specific knowledge into account. PUP routines also enable a variety of other features within

the Charm++ runtime system, including automatic checkpointing and various fault tolerance mechanisms.

Automatic checkpointing can be achieved by migrating all of the chare objects and pending messages to disk

via the PUP routines, effectively saving the state of the application. Fault tolerance can also be achieved

by duplicating chare objects on multiple PEs (object checkpointing with message logging) to be used for

recovery in the event that one of the PEs (or an entire node) suffers a unrecoverable hardware fault. If such

a fault occurs, the runtime system can simply recreate the past state of any chare object that has been lost

and replay the messages that were sent to it since its last checkpoint [75].

This is only a basic introduction to the main concepts behind the Charm++ programming model and

the Charm++ runtime system, with particular emphasis on features relevant to this work. More details can

be found at http://charm.cs.illinois.edu/.

2.3.1 Interface Files

In addition to the standard C++ source files and header files, Charm++ also introduces interface files.

Essentially, one can view the interface files as being similar to header files (conceptually speaking), but

only including the portions of the application that make use of Charm++ programming model constructs.

Interface files indicate which C++ classes represent chares, chare arrays, groups, and so on. Further, within

each class, the programmer also uses the interface files to identify which member functions are also entry

methods. Interface files are specific to Charm++. The requirement to include interface files in addition to

the header files is a direct result of the Charm++ programming model being implemented as a library that

is linked to Charm++ applications.
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During the compilation process, a Charm++ specific tool called charmxi is used to process the interface

files provided by the programmer. Charmxi is a source-to-source translator that reads in the contents of

the interface files associated with a Charm++ application and generates additional code. The additional

code serves a variety of purposes, including the creation of proxy and index classes for each type of chare,

code related to serializing and deserializing the passed parameters of entry methods, and so on. Generally

speaking, the code generated by charmxi provides the necessary hooks required by the runtime system to call

into application code, and vice versa, which simplifies the application code. In this work, the charmxi tool

is used to generate code related to the programming model extensions we have introduced into Charm++

(see section 3.3.2).

2.3.2 Projections

Projections [56] is a tool used to visually analyze the performance of Charm++ applications. As a Charm++

application executes, the Charm++ runtime system automatically collects various performance related in-

formation related to the application’s execution. For example, the runtime system tracks the amount of

data being transmitted, the execution times for individual entry methods, which entry methods are being

invoking by which entry methods, and so on. This information is saved into a set of log files (one per host

core) which can then be analyzed using the Projections visualization tool.

Projections includes a wide variety of graphs showing various aspects of an application’s execution. For

the purposes of discussing our approach to incorporating support for accelerator technologies and heteroge-

neous systems within the Charm++ programming model, there is one type of Projections graph that will be

referred to in this document, the timeline. The timeline gives detailed information related to the execution

of a Charm++ program on a per host core basis.

Figure 2.3 breaks down the anatomy of a timeline graph. For each host core (PE) in the application,

there is a set of rows. Time increases from left to right. Within a set of rows, the bottom row represents the

activity on the host core itself (visually speaking, this row is a bit thicker than the others). The remaining

rows (which are visually a little bit thinner) are used to display user events. Since there can only be one

entry method active on the host core at any given moment, per the semantics of the Charm++ programming

model, only a single row is needed to display the entry methods executing on a given host core. However,

user events are added by the programmer and can occur at arbitrary times. There are two types of events,

events that occur instantaneously and events that occur over a period of time with both a starting and

stopping time, referred to as bracketed user events. Since the programmer can start and stop a bracketed

user event at any time, bracketed user events can span one or more entry methods and can overlap with one

21



Figure 2.3: The anatomy of a Projections timeline.

another. As such, multiple rows, as many as is required to display them all clearly, are used to display them

within a timeline graph. The row in which a particular user event appears in is arbitrary, chosen simply for

display purposes so that all user events can be seen by the viewer.

As part of this work, we extend support within the runtime system to collect performance information

related to accelerator devices. This additional data can then be viewed within Projections along with the

host core data to assist with the performance analysis of applications.

22



Chapter 3

Approach

Rather than design a programming model and associated runtime system from scratch, we build upon of

the existing Charm++ programming model and runtime system. First, the reader will be introduced to

the Charm++ programming model in section 3.1. Then, some of the reasons for choosing the Charm++

programming model as the basis for this work be discussed in section 3.1.1. In addition to the advantages,

the drawbacks of using Charm++ as the basis of this work will also be discussed in section 3.1.2.

Once the reasons for choosing Charm++ have been covered, the extensions made to the Charm++ pro-

gramming model as part of this work will be presented. The most significant extension to Charm++ within

the context of this work is the addition of accelerated entry methods (AEMs), which will be discussed in

more detail in section 3.2.1. In addition to the programming model extensions, there are also several runtime

system modifications that have been implemented to support both the programming model extensions and to

ease the burden placed on the programmer when using the extensions. The modifications to the Charm++

runtime system will be covered in section 3.3.

3.1 Building Upon Charm++

The basic ideas behind the Charm++ programming model and runtime system were discussed in section 2.3.

There are several advantages provided by the Charm++ model that suggest it would serve as a good basis

for this work (discussed in section 3.1.1 below). However, beyond just attempting to choose an appropriate

base programming model for our work, Charm++ also serves as a platform where we can explore how a

message-driven (or perhaps more generally, event-driven) programming model can be applied to accelerator

technologies. For example, when one typically thinks of the programming paradigms used for programming

SIMD processors such as modern GPGPUs, one does not typically think of using an event-driven model. The

selection of Charm++ also creates an opportunity to explore how programming models similar to Charm++

(and, obviously, Charm++ itself) could be applied to a variety of hardware architectures with a variety of

characteristics.
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With heterogeneity becoming increasingly common, it is important to explore and understand what

types of programming models can be applied to heterogeneous architectures. Several other approaches have

explored programming models that are explicitly data parallel (see chapter 7). In Charm++, an application

is built upon a set of entry methods (i.e. tasks), chare objects (i.e. entities that store data and on which tasks

can be performed), and the data dependencies between the entry methods (i.e. messages). If some of these

entry methods can have the contents of their function bodies restricted (i.e. just basic code, without system

calls, entry method invocations, etc.), these entry methods would be portable between a greater number

of architectures, such as accelerator cores. As such, these restricted entry methods could be executed on

either the host core or an available accelerator core, giving an underlying runtime system the opportunity

to offload work from the host core to the accelerator core.

More generally speaking, the overall point is to extend the Charm++ programming model in such a way

as to allow the programmer to simply express their application code using a single method of expression. In

other words, the point is to create a unified programming model, instead of using a separate programming

model for the host core with specific subsets of the application code being explicitly offloaded to an available

accelerator, such as using MPI and CUDA. The long term goal of this work is to minimize, if not completely

remove, the barriers between and the ability to differentiate regions of code that will be executed on either

a host core or an accelerator device, or even the type of accelerator device. For example, when using MPI

and CUDA code, it is clear that the CUDA kernels execute on the GPGPU(s) (i.e. versus an SPE on the

Cell) and that the MPI code executes on the host.

Taking this idea forward yet another step beyond the idea of a single, unified programming model,

making the use of the Charm++ runtime system gives us the opportunity to explore how an active runtime

system can positively (or negatively) affect an application. Particularly, given a unified programming model,

the workload of the application becomes flexible in terms of where it could be executed. Using runtime

measurements, a runtime system can apply a load balancing strategy that makes use of that flexibility

to balance the workload between the host cores and the available accelerator devices. The end result is

that a programmer is in a situation where they need only to express their application code using a single,

unified programming model, whether or not an accelerator will actually be available at runtime, but the

programmer is still in a position that their application can take advantage of an available accelerator device

if one is present.

Finally, it is worth noting that the Charm++ programming model and runtime system has been used in

the creation of several production scientific applications, including NAMD [53, 74], ChaNGa [48], OpenAtom

[13], and others. As such, the Charm++ programming model and runtime system are mature, providing a
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proven foundation for our work.

3.1.1 Advantages of Charm++

There are several advantages in using the Charm++ programming model and existing runtime system

infrastructure for the basis of this work. First, an application written in the Charm++ programming model

is naturally broken up into a collection of entry methods (tasks) executing on a large set of chare objects.

Since computations that are typically offloaded to accelerator devices are short-lived and require a fairly

high-degree of parallelism, tasks are a natural fit, assuming there execution can be made to fit with the

execution model of the accelerator itself. Second, the Charm++ programming model presents clear and

natural communication boundaries that can be used as points where the runtime system can take action,

if required. Third, Charm++ already has an existing intelligent, adaptive runtime system infrastructure

that can be built upon. Fourth, within the runtime system, there is a message queue that can be thought

of as a list of ready to execute tasks (i.e. entry methods). Fifth, Charm++ already makes use of the idea

of over-decomposition, which can be useful for hiding latency of various data transfers, whether that data

transfers are internal or external to any given node.

Task-Based Nature of Charm++: The Charm++ programming model is an object-based, message-

driven programming model, as described in section 2.3. The result of the task-based nature of Charm++ is

that there typically are several data independent tasks ready to execute on any given processor at any given

moment (i.e. the contents of the message queue). If some of these tasks are suitable for execution on either

the host or the accelerator device, then the runtime system is in a position where it has a chance to push

data to either the host core or an available accelerator device based on runtime measurements and a given

load balancing strategy. Further, since entry methods (i.e. tasks) typically only access the data contained

within the chare object the entry method is executing on or the data contained within the message that

triggered the entry method (i.e. passed parameter lists), the runtime system is in a situation where the data

that will be accessed by the entry method is identified, and thus, the runtime system is able to proactively

move the data as needed before the execution of the entry method itself. The overall result is that the

execution of the entry methods (tasks) relative to one another is fairly flexible, allowing the runtime system

to map their execution to a variety of devices, including accelerators.

Existing Runtime System: As we have already alluded to, Charm++ applications execute on top of an

adaptive, intelligent runtime system. In this work, we will be making use of the Charm++ runtime system to

assist the programmer in taking advantage of heterogeneous systems. By building upon Charm++, we start

with an existing infrastructure in which to explore techniques for heterogeneous systems. Some examples
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of how an adaptive runtime system may be extended to assist programmers with heterogeneous systems

include assisting with load balancing, adjusting granularity via task splitting or batching, and automatic

modification of application data as it crosses processing element boundaries.

Over-Decomposition: One of the main ideas within the Charm++ programming models is the idea

of over-decomposition (also referred to as processor virtualization or simply virtualization). The idea is

to allow the programmer to write their application as if each chare object has its own physical processing

element. However, in reality, the Charm++ runtime system will map many chare objects to each of the

physical processing elements available to the application, forcing the individual chare objects to time share

the processing element. A benefit of this is that as some chare objects are executing, others are waiting

on messages to arrive, causing an overlap of computation with communication as natural result of over-

decomposition. This overlap is not only useful for hiding network latencies, but also useful for hiding data

movement between a host core and an associated accelerator device. Further, the overlap is useful for hiding

the execution of work on an accelerator device itself. If there are many chare objects on a given processing

element, that processing element can offload some of its work to an accelerator. To hide the latency of this

workload offloading, the host can keep some of the work for itself, overlapping the retained work with the

offloaded work.

A second benefit of over-decomposition is that there are opportunities to batch pieces of work from

separate chares together. For example, CUDA-based GPGPUs use kernels as the unit of work to be offloaded

from the host to the device. Kernels typically have a fairly significant amount of work associated with them

to amortize the cost of overheads associated with issuing the kernel to the device. However, the amount

of work within a single entry method is unlikely to be enough work to required to efficiently execute a

kernel. Because there are typically many chare objects mapped to each of the processing elements within

a Charm++ application, there is an opportunity to flexibly batch accelerated entry methods (i.e. tasks)

invoked on separate chare objects into a single kernel for execution on the GPGPU.

Communication Boundaries: All of the data within a Charm++ application is contained within the

chare objects that make up the application. Data is passed between the chare objects through parameter

lists in entry method invocations, which creates a natural communication boundary between the chare

objects. This boundary gives the runtime system a chance to intercept the data as it is being passed

between the chare objects and modify it as needed within a heterogeneous environment. An example of a

useful operation that the runtime system may provide is adjusting the endianness of data as it passes from

a small-endian architecture to a big-endian architecture, or vice versa. Such modifications are mundane

adjustments that a programmer must account for when targeting a heterogeneous system, but also serve
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as a source of programming errors that can be quite difficult to track down, depending on how such an

error manifests itself. If such an operation could be automated by the runtime system, it would provide

a benefit to the programmer by allowing them to focus on their application code without worrying about

architecture-specific details, and at the same time, removing a possible source of programming errors.

Message Queue: Within the Charm++ runtime system, there is a message queue for each processing

element (more specifically, for each host core). As messages arrive at a given processing element, the messages

are executed one-by-one, time-sharing the host core. Messages are accumulated into this message queue,

which effectively becomes a queue of ready-to-execute tasks. Such a queue potentially gives the runtime

system the ability to look-ahead in time to see what tasks will be executing in the near future. If one or

more of those tasks is destined for an accelerator device, the runtime system has the opportunity to begin

moving data related to the task since it is known that the task will execute in the near future.

3.1.2 Disadvantages of Charm++

Some of the main disadvantages of using Charm++ within the context of this work is that Charm++ is

implemented as a linked library, rather than having Charm++ specific extensions built into a C++ compiler.

This is a disadvantage in the sense that it does not allow data dependency analysis of the application code

to be preformed at compile time. There are a few ways in which such analysis could prove helpful.

Lack of Data Analysis: In cases where a particular piece of data contained within a given chare object

is accessed by multiple entry methods, at least one of them being an accelerated entry method, it might

helpful to know how the entry methods are accessing the data (reading and/or writing). Such information

could then be used by the runtime system in making decisions about where the data associated with an

AEM should be stored (e.g. are AEMs or EMs accessing the data more frequently), what cores (host or

accelerator) are best suited to execute an AEM (i.e. potential costs of data movement compared to the

expected runtime of the AEM invocation as a function of its parameters, when possible), and so on.

Correctness or Enforcement of Feature Use: Another disadvantage that stems from not having a

Charm++ specific compiler, is that some aspects of the programming model extensions cannot be strictly

enforced. For example, there is no compiler to enforce the local parameter’s access keywords (e.g. readonly)

used in the declarations of accelerated entry methods (discussed in later in section 3.2.1). As such, a

programmer could potentially mark a buffer as readonly and then write values into that buffer. The runtime

system will likely not transfer the data back to the associated host buffer, leaving the programmer to

determine why values written by an accelerator did not make it to host memory. Given compiler support,

such access to readonly data buffers could be flagged as errors at compile time.
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Lack of Automatic Device-Specific Code Customization: Another disadvantage of not having a

custom compiler is that the expression of the code within an accelerated entry method cannot be optimized

by a compiler in a device-specific manner. For example, an AEM executing on a GPGPU may be able to

take advantage of the device’s constant memory for local parameters marked as readonly or local variables

marked as const. However, such an optimization would make no sense on an SPE since SPEs do not have

constant memory. As another example, a compiler could view the contents of an AEM and determine if

(and how) it would be safe to automatically convert it to a splittable AEM (see section 3.2.1). In this sense,

lack of compiler support causes our current implementation of accelerated entry methods to be somewhat

limited in providing a truly unifying programming model. Instead, our current implementation limits our

AEMs so that they can only provide basic support to the programmer in terms of the AEM’s function body

(i.e. standard C/C++ code that does not include systems calls, printf statements, and so on).

3.1.3 Our Work Withing the Larger Charm++ Context

With both the advantages and disadvantages of building upon the Charm++ programming model and run-

time system in mind, figure 3.1 presents how this work fits within the greater context of research surrounding

Charm++. Figure 3.1 certainly does not include all of the other abstractions, components, physical hard-

ware support, and so on within Charm++. Rather, the figure is only meant to provide the reader with some

context in which to understand how our work relates to other efforts within Charm++ in general.

At the highest level in figure 3.1, there is ongoing research related to language design, programming

models, and abstractions, collectively referred to as programming abstractions. Each of these programming

abstractions are mapped to a common substrate that provides the base set of mechanisms used to implement

the higher-level abstractions, such as entry methods. The elements within the base set of mechanisms can also

be used directly by programmers (e.g. entry methods and accelerated entry methods), and as such, they are

also included as part of the higher-level programming abstractions provided to programmers. There are too

many such elements to be listed, so only a subset of the elements are listed, such as the various mechanisms

provided by Charm++ and AMPI [46, 54]. Examples of other mechanisms include CCS and CkDirect [14].

As part of this work, we introduce accelerated entry methods to both the programming abstractions and

common substrate levels, giving programmers a way of expressing their application code so that it can be

mapped to available accelerator devices. The elements of the common substrate are implemented on top

of and supported by an active, intelligent, and adaptive runtime system made up of various components,

such as a scheduler, a load balancing framework, fault tolerance management, an accelerator manager,

and so on. As part of this work, we add the accelerator manager component, along with the accelerator
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Figure 3.1: Overview of the runtime system structure, along with programming abstractions.
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manager’s integration and interactions with other components of the runtime system. At the lowest level

is the physical hardware itself and the low-level APIs that directly interact with that hardware. As part of

this work, we add support for accelerator hardware directly into the Charm++ programming model (both

Cell and CUDA-based GPGPUs), along with including a mechanism that allows different builds of the

runtime system (i.e. versions compiled for different architectures) to interact with one another at runtime,

which enables Charm++ applications to execute across a heterogeneous set of host cores. When our work is

considered within this larger context, there are three ways in which other areas of research within Charm++

relates to and interacts with this research, as discussed below.

Addressing Disadvantages: The first way is that other areas of research being explored could po-

tentially address some of the disadvantages of Charm++ in relation to this work (from section 3.1.2). In

particular, there currently is an effort to create a compiled language that encompasses the Charm++ pro-

gramming model called Charj [8]. In particular, Charj presents a path for addressing the disadvantages

of Charm++ mentioned above that directly (or indirectly) follow from the lack of a Charm++ specific

compiler.

Composability (Applications): There are several abstractions that have been created within the

context of the Charm++ programming model, such as multiphased shared arrays [77] and Charisma [45].

Each of these abstractions, along with others, specifically address some aspect of parallel programming in

an attempt to ease programmer burden. As such, there are some situations where a portion of a Charm++

application may be written using one of these abstractions, while other portions of the application may make

use of accelerated entry methods as presented in this work. Generally speaking, the Charm++ programming

model and runtime system support composability of abstractions so that multiple abstractions can be used

within a single application for the portion(s) of the application that each abstraction is appropriate for. In

this sense, our work fits within the set of interoperable abstractions available to Charm++ programmers.

Modularity (Runtime): At the level of the runtime system, functionality is often compartmentalized

with the Charm++ runtime system based on the functionality provided. For example, there are scheduler,

load balancing, and fault tolerance, components or modules, just to name a few, within the Charm++ run-

time system. As part of this work, an accelerator manager (discussed in section 3.3.1) has been added to this

list of components and interacts with the other components of the system in various ways. For example, the

scheduler issues AEMs invocations, which eventually requires input from the accelerator manager indicating

where the AEM should be executed (host or accelerator). Additionally, the scheduler notifies the accelerator

manager when the host core becomes idle or busy. The accelerator manager is also notified of the occurrence

of significant events related to load balancing and fault tolerance so that it can take appropriate actions.
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Figure 3.2: Structure of an accelerated entry method (AEM).

By interacting with the various other components, the accelerator manager extends support for the various

features and services provided by those other components to include hardware configurations that include

accelerator devices.

3.2 Programming Model Extensions

We have added a couple programming model extensions to the Charm++ programming model in order to

support heterogeneous systems. The main programming model extension, which is central to this work,

is the introduction of accelerated entry methods (AEMs). In addition to AEMs, we have also introduced

the SIMD instruction abstraction (SIMDIA), which allows programmers to take advantage of a variety of

SIMD instruction extensions while still allowing their code to remain portable between various hardware

architectures.

3.2.1 Accelerated Entry Methods (AEMs)

One of the main programming model constructs within Charm++ is the entry method construct. Recall that

entry methods are essentially member functions as in C++, except that they are asynchronously invoked

and do not return a value from the point-of-view of the caller. There are a variety of types of entry methods,

with each type introducing a slight variation from the semantics of a standard entry method. For example, a

standard entry method normally executes from start to finish, only returning once it has completed. As such,

another entry method can only execute after the current standard entry method has completed. Threaded

entry methods, however, are capable of suspending mid-execution and yield the processor until another entry

method awakens them. There are also types of entry methods that create other variations to the semantics,

such as being able to return values and skipping ahead in the message queue.

As part of this work, we have introduced accelerated entry methods (AEMs). While we have introduced

AEMs into Charm++ within the context of accelerator support, it should be pointed out that there is

nothing about their structure or nature that is specific to accelerators. As such, AEMs could possibly be

applied in other ways in the future. An AEM is essentially a standard entry method that has been divided
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into two stages. The left half of figure 3.2 illustrates the execution of a standard entry method, which can

be broken down into three main components: a single incoming message triggers the execution of the entry

method, the execution of the entry method’s function body, and zero or more messages being sent as a result

of entry method invocations within the entry method’s function body. The right half of figure 3.2 illustrates

the execution of an accelerated entry method. The main difference is that the body of the entry method is

divided into two stages, the function body and the callback, with an implicit data dependency in between the

two stages to represent any data transfers that might be required if the two stages are executed in different

locations. Additionally, the content of the function body is restricted in that it cannot contain system calls,

invoke other entry methods, etc. The function body is only intended to contain computation code. The

callback stage, on the other hand, may have arbitrary code within it (i.e. it can invoke entry methods, make

system calls, etc.). Essentially, the AEMs play the role of the restricted entry methods mentioned at the

beginning of section 3.1.

Structure

Figure 3.3 illustrates how an accelerated entry method is declared within a Charm++ interface (.ci) file.

There are several differences between the structure of a standard entry method and accelerated entry meth-

ods.

First, in addition to the the passed parameters used by standard entry methods, accelerated entry

methods also declare local parameters. Local parameters are simply a mechanism used to declare which

member variables will be accessed by the function body of the AEM. Additionally, each passed parameter

can be marked with an access modifier that indicates if the member variable will be accessed in a read-only,

read-write, or write-only manner from within the function body. The reason for having the programmer

explicitly list the local parameters in this manner mainly stems from the lack of a Charm++ specific compiler,

which could otherwise analyze the function body and create a list of local member variables accessed within

the AEM’s function body. Since the creation of a Charm++ specific compiler is outside the scope of this

work, the automated creation of the local parameter list is left as future work. There are also other keywords

that can be used in addition to the access modifiers, such as shared and persist. These modifiers, along with

their effects, will be discussed in more detail in chapter 6.

Second, the function bodies of the accelerated entry methods are included within the interface file directly,

rather than being located in a source code file. Again, this requirement is basically a implementation detail

associated with not having a Charm++ specific compiler that could extract the application code from the

C/C++ source file(s) that contain application code. Charm++ does have a tool called charmxi that is
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module myModule {

array [ 1D] myChareArray {

// Constructor
entry myChareArray ( ) ;

// Standard Entry Method
entry void myEntryMethod (

type passedParameter1 , // s c a l a r
type passedParameter2 [ passedParameter1 ] , // array w/ l en g t h s p e c i f i e d
. . .

) ;

// Acce l e ra ted Entry Method
entry [ accel ] void myAccelEntryMethod (

type passedParameter1 ,
type passedParameter2 [ passedParameter1 ] ,
. . .

) [
mod i f i e r : type loca lParameter1 <impl obj−>memberVariable1 >,
mod i f i e r : type loca lParameter2 [ loca lParameter1 ] <impl obj−>memberVariable2 >,
. . .

] {

// . . . Function body code goes here . . . //

} ca l lback func t i on name ;

// . . . o ther entry method d e c l a r a t i o n s f o r t h i s array here . . . //

} ;

// . . . o ther chare , chare array , group , e t c . d e c l a r a t i o n s here . . . //

} ;

Figure 3.3: The basic code structure of an accelerated entry method (AEM) within the context of a Charm++
interface file.
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used to process the interface files. By including the function body of accelerated entry methods into an

application’s interface files, the charmxi tool gains access to the application code and can be used to perform

various tasks, such as code generation, related to AEMs at compile time.

Third, the name of the callback function that will be executed once the function body has completed

is listed at the end of the accelerated entry method declaration (after the function body itself). This

requirement is result of AEMs being executed in two stages, rather than a single stage in the case standard

entry methods. As such, the presence of a Charm++ specific compiler would not remove this requirement.

The callback is used simply as a way of continuing the flow of execution once the AEM has completed.

The callback function can be viewed as a separate entry method that is implicitly invoked (with no passed

parameters) once the function body of the AEM has completed.

Fourth, the charmxi tool creates multiple classes associated with each chare class within the application.

One of these classes is the CkIndex xxxx class, where xxxx is the name of the chare class. Some of the

generated code, particularly the code that relates to the processing of the parameters associated with an

accelerated entry method, is attached to this class. As a result, the programmer is required to declare this

CkIndex xxxx class as a friend (in the generic C++ sense) of the xxxx chare class. Again, the introduction

of a Charm++ specific compiler would be one way of removing this requirement.

More generally speaking, the generated code creates a variety of hooks used by the runtime system, such

as the CkIndex xxxx class and its related member functions, along with generating some processing code

related to the parameters of the entry methods. In the case of accelerated entry methods, the charmxi tool is

also responsible for creating the architecture-specific code related to the function body of the AEM. Section

3.3.2 will go into more detail surrounding the generated code within charmxi.

Within the overall discussion about our approach, we wish to clearly distinguish between instances of

accelerated entry methods and the types of AEMs with an application. For the purposes of this discussion,

an instance or invocation of an AEM refers to the actual execution of an AEM function body (and callback)

on a chare object. Each AEM declaration within the application code refers to a distinctive type of AEM.

We use the term “type” instead of “declaration” since there are actually multiple declarations of each type

of AEM, including the declaration of the AEM within the application code, the generated declaration of the

AEM for the host core, and any additional generated declarations for each type of supported accelerator

devices.
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Figure 3.4: Effects on the DAG resulting from the usage of accelerated entry methods.

General Execution

The overall execution of a Charm++ application can be viewed as a directed acyclic graph (DAG). In this

graph, each node is an instance of an entry method executing (standard, accelerated, or otherwise). The

edges in the DAG represent the data dependencies between the entry methods, realized by the messages

carrying the data (e.g. parameters of the entry methods) between the various processing elements. Section

1 of figure 3.4 shows a portion of one such DAG from a hypothetical Charm++ application.

In section 1 of figure 3.4, the entry methods represented by the nodes are simply standard entry methods.

If the programmer, instead, uses accelerated entry methods for some of the entry methods, the structure of

the DAG remains basically the same. The only difference is that the nodes that represent AEM executions

are actually the execution of the function body directly followed by the execution of the callback (i.e. in two

parts). These nodes are represented by different colors in section 2, when compared to section 1. Note that

only a single node is being used to represent both the function body and the callback of the AEM, since

they are executed one after the other anyway, as previously shown in figure 3.2.

At compile time, the build of the Charm++ runtime system determines what accelerators will be sup-

ported by the Charm++ runtime system and any applications linked to it. For example, if the application is

built and linked against the net-linux-amd64 build of Charm++, then the runtime system will not attempt

to make use of any available accelerator devices. Instead, all accelerated entry methods will be executed
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on the host cores. However, if the net-linux-amd64-cuda build is used, the runtime system will attempt to

make use of any CUDA-based GPGPUs that are available to the application at runtime. In this case, the

AEMs may or may not be executed on the available accelerators, at the discretion of the runtime system.

Typically, a significant fraction of the AEMs will be executed on the accelerators. However, as the host

processors have idle time to spare or are better suited for executing the AEMs within an application, the

runtime system may use the host core(s) to perform a larger fraction of the computation within the AEMs.

In either case, executing on a host core or an accelerator device, the AEMs are still broken up into two

stages, the function body followed by the callback.

Exactly how the runtime decides to execute the accelerated entry methods will depend on which build of

the runtime system is in use by the application. For example, consider section 3a of figure 3.4. In this case,

perhaps the net-linux-cell build of the Charm++ runtime system is in use. With each AEM being treated

as a chunk of work, the runtime system will stream the AEMs through the SPEs on the Cell processor. The

direct memory access (DMA) engines for the SPEs will be used to shuttle data back and forth between the

host core (PPE) and the accelerator cores (SPEs). Building upon the idea of over-decomposition and with

many AEMs active at any given moment, the runtime system has the opportunity to overlap the DMAs

from some AEMs with the execution of other AEMs, effectively hiding a significant fraction of the DMA

latency.

However, if the net-linux-amd64-cuda build of the Charm++ runtime system is in use, the runtime

system may do something entirely different with the execution of the accelerated entry methods. Unlike the

SPEs of the Cell processor, which are designed to have data and work streamed through them, GPGPUs are

designed to work on relatively large amounts of data using a SIMD execution model which utilizes thousands

or tens of thousands of very cheap threads actively working on the same kernel at the same time. When

such an accelerator is available to the application, the Charm++ runtime system may choose to execute

the AEMs in a SIMD-like manner, with one or more GPGPU threads assigned to each instance of an AEM

(see section 3b of figure 3.4). Further, sets of AEMs may be grouped together to form batches in order to

increase the granularity of work offloaded from the host core(s) to the accelerator device(s).

Other accelerator technologies, such as the many integrated cores (MIC) device, may be treated in similar

ways or in yet other ways as support for them is added to Charm++. However, from the point-of-view of

this document, such support is considered future work.
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Triggered AEMs

Accelerated entry methods can also be marked with the triggered keyword as part of their declaration in the

interface file. The triggered keyword essentially serves as a hint to the runtime system that the AEM will

be executed under certain conditions, allowing the runtime system to have more knowledge, and thus make

certain assumptions, during the execution of the application.

In particular, the triggered keyword implies two things. First, that the accelerated entry methods will

be invoked in a one-to-one manner (for a given AEM type) within a give chare collection. Second, all of the

chare objects in the given collection will have the AEM triggered on them before any of them have the same

AEM triggered on them a second time. For example, if the programmer were to declare a chare array (i.e.

a collection) with an AEM as one of the entry methods, then the programmer could mark the AEM as a

triggered AEM as long as the AEM were going to be used in the manner described above. Specifically, all

elements within the array would have the AEM triggered the same number of times throughout the lifetime

of the application, and all of the elements of the chare array will have the AEM triggered before any one

element has the same AEM triggered again.

Knowing that an accelerated entry method of a given type are triggered on a one-to-one basis, the runtime

system is able to more easily reason about the execution of the AEMs. In particular, when a GPGPU is

present, the runtime system will batch AEM invocations together in an effort to increase granularity of work

being offloaded to the GPGPU. If the programmer is able to communicate the intended execution pattern

to the runtime system, then the runtime system will be able to make certain simplifying assumptions as it

batches together the individual AEM invocations. Certainly, the runtime system can batch together AEMs

regardless of whether or not they are triggered. For non-triggered AEMs, however, the runtime system has

no hints about what to expect during an application’s execution and resorts to applying a timeout period

before issuing AEM batches that have not yet reached the maximum batch size. Given a triggered AEM,

the runtime system knows that the number of invocations will be equal to the number of local chare array

elements and thus knows when batches related to a given triggered AEM should be issued.

Splittable AEMs

In some cases, it may be advantageous to decrease the granularity of individual accelerated entry methods

for more efficient execution. A clear example of where this might be advantageous is when the AEMs are

being executed on GPGPUs. GPGPUs are throughput-oriented devices, where thousands or even tens of

thousands of threads are actively executing on single kernel at any given moment. While the AEMs to be

executed are grouped together into one or more kernels to amortize the overhead costs of issuing work to the
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GPGPU, the granularity of any individual AEM invocation may be too large to execute on the GPGPUs

such that one AEM is mapped to one GPGPU thread. Instead, it would be better if a singe AEM could be

executed using many GPGPU threads. Unlike other types of entry methods in the Charm++ programming

model, splittable AEMs are unique in that they require only a single message to trigger the execution of

several independent tasks. That is to say, typically there is a one-to-one relationship between the number

of messages a program sends and the number of entry methods that are executed. Some communication

mechanisms, such as reductions and broadcasts using spanning trees, break this one-to-one relationship,

but it largely holds true. However, in the case of splittable AEMs, a single message can spawn several

independent tasks, which are referred to as splits in the case of splittable AEMs.

Once again, it is up to the runtime system to determine the actual number of splits in which a splittable

AEM will be broken up into at runtime. Within the application code, when the programmer specifies that

a given AEM is splittable, the number of splits is also specified. The number of splits can be a function of

the parameters passed into the entry method. However, the runtime system will ultimately decide whether

or not to actually split the splittable AEM into a collection of smaller tasks. As such, the value specified

by the programmer is treated as a guiding heuristic by the runtime system (essentially a maximum number

of splits, as well as a suggested number of splits). Most likely, the splittable AEM will either be split into

the number of splits specified by the programmer or not split at all. In some cases, the runtime system may

decided to create a number of splits less than the number specified by the programmer, but also greater than

one. Further, as is the case with completely separate entry methods, it is assumed that the individual splits

are data independent of one another and require no synchronization between them. The runtime system

may execute each of the splits one-by-one (serial execution), in parallel with one another, or in a SIMD-like

manner where some of the splits are executed in lockstep relative to one another. Since it is possible that

the individual splits may be executed in parallel with one another, splittable AEMs represent one of the few

cases where the programmer must be diligent in ensuring there are not data dependencies, true or otherwise,

between the splits, which is different from standard entry methods.

Figure 3.5 illustrates the use of splittable accelerated entry methods. The splittable AEM in figure 3.5

performs a simple 5-point stencil calculation on two-dimensional (2D) tile of data. The 2D tile data is

embodied within the one-dimensional (1D) arrays inMatrix and outMatrix, using a row-major data layout

(thus numCols being used as part of the index calculations into both of these arrays). The main thing to

notice within the code example is the declaration of the for loop. Since each element of the tile can be

calculated independently (i.e. no two iterations write to the same element of outMatrix ), there are no data

dependencies between iterations of the for loop and thus the AEM can make use of the splittable keyword.

38



entry [ t r i g g e r e d s p l i t t a b l e ( numElements ) accel ] computeStenc i lT i l e ( ) [
readonly : int numElements <impl obj−>numElements>,
readonly : int numCols <impl obj−>numCols>,
readonly : f loat inMatrix [ numElements ] <impl obj−>inMatrix >,

writeonly : f loat outMatrix [ numElements ] <impl obj−>outMatrix>
] {

// NOTE: For s p l i t t a b l e a c c e l e r a t e d entry methods , the v a r i a b l e s
// ’ s p l i t I n d e x ’ and ’ numSpl i ts ’ are a v a i l a b l e in the func t i on body .

// Since the number o f s p l i t s a c t u a l l y c rea t ed might not match the number
// reque s t ed by the code , i n c l ude a loop t ha t causes t h i s ’ s p l i t ’ to loop
// over a l l o f the matrix e lements as s i gned to i t , wi th e lements be ing
// as s i gned in a s t r a i g h t forward round−rob in manner .
for ( int index = sp l i t I nd e x ; index < numElements ; index += numSplits ) {

// Read t h i s e lement from the input matrix
f loat sum = inMatrix [ index ] ;
int count = 1 ;

// I f not on the top row , add the element d i r e c t l y up
i f ( index >= numCols ) { sum += inMatrix [ index − numCols ] ; count++; }

// I f not on the bottom row , add the element d i r e c t l y be low
i f ( index < numElements − numCols ) { sum += inMatrix [ index + numCols ] ; count++; }

// I f not on the l e f t edge , add the element d i r e c t l y to the l e f t
i f ( index % numCols != 0) { sum += inMatrix [ index − 1 ] ; count++; }

// I f not on the r i g h t edge , add the element d i r e c t l y to the r i g h t
i f ( index % numCols != numCols − 1) { sum += inMatrix [ index + 1 ] ; count++; }

// Write the average to t h i s e lement ’ s index in the output array
outMatrix [ index ] = sum / count ;

} // end f o r ( rowIndex < numRows)

} ca l l ba ck func t i on f o r th i s AEM ;

Figure 3.5: Example code for a splittable accelerated entry method
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In making use of the splittable keyword, the for loop, that would otherwise just loop over the number of

elements (i.e. would simply be for (int index = 0; index ¡ numElements; index++)), must be modified to

account for multiple splits being created by the runtime system. This is accomplished by simply using the

splitIndex and numSplits values, which are defined by the runtime system as the AEM is invoked, as shown

in figure 3.5. Note that the number of splits actually used to execute the AEM is determined at runtime,

as reflected in the for loop’s declaration. If one split is created at runtime, the AEM simply loops over the

elements as a non-splittable version of the AEM would have in the first place. If the maximum number of

splits are created at runtime, each iteration of the loop will be executed by a separate split, meaning that

each split will execute just a single iteration of the for loop, resulting in a small amount of overhead. We

view this overhead as the cost of giving the runtime system the flexibility of determining the number of

splits at runtime. If some number of splits between one and numElements is created at runtime, the for

loop will cause the iterations to be assigned to each split in a round-robin manner. Each split will execute

its assigned iterations, one-by-one.

Note that the round-robin iteration-to-split assignment we have used in figure 3.5 may not be the most

cache friendly assignment scheme possible on a host core because of caching effects, but may be a decent

assignment on a GPGPU device because of memory coalescing effects. As a result, this example also

illustrates a way in which other approaches, such as threaded building blocks (TBB) [87] which provides

abstractions for dividing the iteration space of a parallel-for loop amongst a set of threads, may have an

advantage compared to the current implementation of our approach. However, techniques such as those used

in TBB could be applied within splittable AEMs in the future. As such, we largely see these two approach

as orthogonal efforts that could be applied in unison. Our approach mainly involves taking advantage of

the existence of a parallel-for loop to decrease the granularity of individual tasks, while TBB defines a

way in which the the iterations within an iteration space for a parallel-for loop can be manipulated. If a

TBB-like iteration space mechanism where used within splittable AEMs in the future, the runtime system

may choose a different pattern for moving through the iteration space of the parallel-for loop based on the

target device the AEM invocation is mapped to, such as round-robin if executing on a GPGPU device or

a blocked mapping if executing on a host core. As a side note, since architecture of modern CUDA-based

GPGPUs are becoming more host-core-like some some ways, such as the inclusion of caches in the Fermi

architecture, such iteration-to-split mapping considerations may or may not be a consideration when using

future hardware architectures. Within our current implementation, the programmer may use the predefined

macros for detecting the particular hardware target the AEM is being compiled for to adjust the iteration-

to-split mapping.
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While the clearest example of a situation where splittable accelerated entry methods may be useful

comes from GPGPUs, there are other situations where splittable AEMs may be useful. For example, when

executing an AEM on the host core within a build of the Charm++ runtime system that supports GPGPUs,

the runtime system will divide the execution of the AEM between a few splits. Each of these splits will be

executed one after the other, with control passing back to the runtime system between splits. While this does

not reduce the overall time to execute the work associated with the particular AEM instance, it does reduce

the amount of time between the moments in which the runtime system has access to the host core, and thus

can take actions. Since the host core must take action to both issue kernels and detect their completion

(i.e. making progress calls into the GPU Manager), splitting up AEMs on the host core gives the runtime

system a chance to make those progress calls at a higher frequency that it would otherwise be able to if the

splittable AEMs were not split at runtime (discussed further in section 5.6). Generally speaking, making

use of splittable AEMs on the host core allows the runtime system to be more responsive and reactive when

managing the accelerator resources, as required.

It isn’t hard to imagine using the the splittable accelerated entry methods in other situations as well. For

example, in the case of cores with simultaneous multithreading (SMT) [91], it may be advantageous to create

multiple splits, one per SMT thread on a core that an AEM is assigned to. In this case, such a mapping

may create situations of constructive cache interference amongst the hardware threads executing the splits,

since the splits from the same AEM are likely to access the same memory locations (i.e. the parameters to

the AEM invocation).

3.2.2 SIMD Instruction Abstraction (SIMDIA)

Another challenge faced when writing applications so that they are portable to a variety of cores is expressing

code related to the single-instruction multiple-data (SIMD) instruction extensions, which have become fairly

commonplace in modern commodity hardware. There are several different SIMD instruction extensions that

have been introduced in various processor architectures, including SSE [86] (and more recently AVX [24, 69])

in x86-based processors and AltiVec/VMX [92] in Power-based processors. Not only have SIMD instructions

become commonplace, making use of SIMD instructions has become a requirement for any application that

needs to achieve a significant fraction of a processor’s peak flop rate, since using these instructions is usually

the only way to completely utilize the functional units of a processor pipeline. To understand why, one first

needs to understand how SIMD instructions operate.

SIMD instructions, also known as vector instructions, operate on SIMD registers, also known as vector

registers. SIMD registers are simply registers that contain several values at the same time. The exact number
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Figure 3.6: A comparison of a scalar addition to a SIMD addition.

of values contained within a SIMD register is architecture dependent. As an example, SSE SIMD registers

are 128 bits in size, and thus can contain up to four 32-bit values or up to two 64-bit values. Many SIMD

instructions are similar to the standard scalar instructions, performing mathematical operations such as

addition, subtraction, multiplication, and so on. The difference is that SIMD instructions perform the given

operation on SIMD registers (input and output) and, thus, perform that operation on the values within the

SIMD registers in parallel. Figure 3.6 illustrates how a basic SIMD addition occurs, compared to a scalar

add.

Because various architectures have differing SIMD instructions, the programmer is burdened with ex-

pression their application code in different ways just to perform the same operations as the code is ported

between architectures. To address this issue in the context of heterogeneous systems and the inclusion of ac-

celerator technologies, we have introduced the SIMD instruction abstraction (SIMDIA) within the Charm++

programming model.

There were a few observations that influenced the creation, design, and focus of the SIMD instruction

abstraction (SIMDIA). (1) In many cases, SIMD code does not need to be modified, except in trivial

ways, such as a change in the width of the SIMD register changes. For example, when moving from one

architecture to another, the programmer may have to change the stride of a loop iterator to accommodate

a different SIMD register width. (2) Even though SIMD instruction extensions vary from architecture to

architecture, the extensions are being used to implement the same calculations. As a result, there are

many commonalities between the various SIMD extensions. In particular, mathematical operations are very

similar. (3) However, there are also several operations that tend to differ between the various processor

architectures, which mainly revolve around data operations, such as shuffle instructions. As such, SIMDIA

support is weaker for operations related to data shuffling. However, because the SIMD instruction extensions
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// C = A + B
void addArrays ( f loat ∗A, f loat ∗B, f loat ∗C, int l en ) {

// Ensure A, B, and C are a l i gn ed prope r l y
a s s e r t ( ( ( unsigned int )A) % simdia vecf numElems == 0 ) ;
a s s e r t ( ( ( unsigned int )B) % simdia vecf numElems == 0 ) ;
a s s e r t ( ( ( unsigned int )C) % simdia vecf numElems == 0 ) ;

// Cast the po in t e r s from s ca l a r to v ec t o r t ype s
s imd i a ve c f ∗A vec = ( s imd i a ve c f ∗)A;
s imd i a ve c f ∗B vec = ( s imd i a ve c f ∗)B;
s imd i a ve c f ∗C vec = ( s imd ia ve c f ∗)C;
int l e n v e c = len / simdia vecf numElems ;

// Loop through the elements , adding as many as p o s s i b l e us ing v e c t o r s
for ( int i = 0 ; i < l e n v e c ; i++) {

C vec [ i ] = s imdia vaddf ( A vec [ i ] , B vec [ i ] ) ;
}

// I f l en i s not a mu l t i p l e o f the vec t o r width , add the l a s t few as s c a l a r s
for ( int i = l en ve c ∗ s imdia vecf numElems ; i < l en ; i++) {

C[ i ] = A[ i ] + B[ i ] ;
}

}

Figure 3.7: Example code illustrating the use of SIMDIA

within various processor architectures are being applied to the same set of calculations, it is likely the various

SIMD instructions may begin to converge in the future. Further, common data operations, such as rotating

elements, inserting/removing elements, and so on, can be expressed in SIMDIA even if the underlying SIMD

instruction extension that a given processor uses does not directly support them or use different approaches.

(4) If a mechanism is provided that allows architecture-specific code to be interleaved with the SIMDIA code,

the programmer can still benefit from SIMDIA by using SIMDIA when possible and only being required

to write architecture-specific code when it is truly required. As SIMDIA support grows and/or hardware

implementations converge, such regions will likely be reduced, if not eliminated.

To illustrate the use of SIMDIA, figure 3.7 contains a simple example function. The function, addArrays,

adds the corresponding elements of arrays A and B and places the result into the corresponding element of

array C. All three arrays have len elements. The codes starts by verifying the arrays are properly aligned

to an address that is a multiple of the native vector width. Such an alignment requirement isn’t always

required, however, it is usually beneficial for performance reasons, and thus, usually encouraged, even if

not required. As a side note, the Charm++ distribution provides functions for allocating and deallocating

aligned memory buffers. The next few lines simply cast the scalar pointers passed into the function via

parameters A, B, and C into pointers to vector arrays A vec, B vec, and C vec. Additionally, the value
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len vec is calculated, which because of the integer divide being used, is ’the largest multiple of the vector

width that is less than or equal to len’ divided by ’the native vector width.’ In other words, it’s the maximum

number of non-overlapping vector instructions that can be used in place of the equivalent scalar instructions.

The first for loop proceeds to loop over the arrays, adding a vector width’s worth of elements per iteration

via a single SIMD instruction (an add in the case of the code in figure 3.7). As many of the array elements

are added using the vector instructions. However, the value in len may not be a multiple of the native vector

width, simdia vecf numElems. In such cases, len vec * simdia vecf numElems will be less than len, causing

the second for loop to finish adding the extra elements at the end of the arrays using scalar instructions.

Note that the number of iterations performed in the second for loop will always be less than the native

vector width.

At this point, it should be noted that the way in which the code within figure 3.7 is implemented in a

manner that is similar to how it would be implemented using any particular SIMD instruction extension

within a given hardware architecture. That is, the general way in which the code is written using the

SIMDIA abstraction or any specific SIMD instruction extension that SIMDIA maps to is the same, such as

the two for loops, one for vector instructions followed by one with scalar instructions. Also note that our

immediate goal is to achieve portability for the purpose of creating a unified programming model, not to

necessarily to determine the optimal abstraction SIMD/vector operations.

3.3 Runtime System Modifications

In addition to the extensions to the Charm++ programming model, as described in section 3.2, several

modifications were required within the Charm++ runtime system. The most notable change is the creation

of the accelerator manager and its related components. The actual execution of accelerated entry methods

are controlled by the accelerator manager, whatever that entails given a particular accelerator architecture.

3.3.1 Accelerator Manager

As part of this work, a new component has been introduced into the Charm++ runtime system to help

control and coordinate the execution of accelerated entry method (AEMs). This component is called the

accelerator manager (or AccelManager). The main role of the accelerator manager is to direct the execution

of the accelerated entry methods to either an available accelerator or the host core for the purposes of

load balancing work between the various core types available to an application. To accomplish this task,

the accelerator manager tracks certain performance metrics and uses those metrics in applying various
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accelerator load balancing strategies that specifically focus on balancing the workload between the host

core and its associated accelerator device. Such load balancing strategies will be referred to as accelerator

load balancing strategies within this document and should not be confused with the typical load balancing

strategies included within Charm++.

Performance Measurements

There are currently three performance metrics that are tracked by the accelerator manager: an accelerator’s

busy and idle time, the PE’s busy and idle time, and a periodic measurement.

The first performance metric that is tracked by the accelerator manager is an estimate of an accelerator’s

busy and idle time. An accelerator, or collection of accelerator cores, is said to be busy if there is at least one

accelerated entry method that has been dispatched to the device and has yet to complete. For the purposes

of this definition, “dispatched” means actually issued to the device, or an API/library acting as an interface

to the device, for execution. “Complete” means the moment the accelerator manager becomes aware that

the AEM’s function body has completed, which occurs prior to the callback function being executed. In

cases where AEMs are processed in batches, those AEMs are only considered to be dispatched when the

batch as a whole is dispatched, since prior to that point the accelerator cannot begin executing any of the

AEM invocations within the batch set. A simple counter is used to track the number of outstanding AEMs,

or batches of AEMs when the AEMs are batched. Each time an AEM is dispatched, the counter increments,

and each time an AEM completes, the counter is decremented. Whenever the counter transitions from

zero to one, the accelerator is considered to transition from idle to busy. Whenever the counter transitions

from one to zero, the accelerator is considered to transition from busy to idle. While this is not an exact

measurement of the time it takes for a given piece of code to execute on a given accelerator device, it is a

fairly good measurement of how long a set of AEMs, whether streamed individually or batched into one or

more sets, takes to complete on a given accelerator device from the point of view of the host processor. It is

unlikely that the function relating the number of AEMs issued and the amount of time it takes to complete

them will be linear in nature, especially when executing only a few AEMs. The non-linear relationship is

a result of a variety of factors that are architecture-specific, including the presence of multiple accelerator

cores, context switching between threads on the accelerator itself, and the overlap of data transfers to/from

the accelerator device with code executing on the accelerator. There are also second order effects that

may affect the performance of the accelerator device, such as the presence of a second accelerator device

that somehow shares a resource with the first accelerator device, such as a shared bus located somewhere

between the host and the device. For example, consider the case of a single-socket multicore workstation
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with GPGPUs attached. A limiting factor may be the rate at which data can be pushed through the pins

of the host processor socket, despite the fact that the GPGPUs themselves are located on separate PCI-E

connections. Even worst, perhaps while one process is making use of a given GPGPU, another process comes

along and also begins making use of the same GPGPU, causing the original process to suffer a performance

degradation. For these reasons, we attempt to provide realtime measurements of the accelerator’s busy and

idle times, rather than model the performance. Further, these performance measurements are taken from

the point of view of the host, not only because such measurements might not always be possible on the

device itself, but because measurements taken from the host will include the other effects mentioned above,

such as streaming effects and interference.

The second performance metric that is tracked by the accelerator manager is the host core’s busy and

idle time. The existing Charm++ runtime system already provides a mechanism that notifies application

code as to when the PE transitions from busy to idle, or vice versa. The accelerator manager simply makes

use of this mechanism to accumulate the busy and idle time for the host, as each type of transition occurs.

The third performance metric that can be tracked by the accelerator manager is a periodic measurement.

Unlike the first two measurements which are always enabled, the periodic measurement is disabled by

default. The accelerator manager exposes a public method, takePeriodicSample, that allows application

code to periodically provide a value. If no value is specified, the time between calls to this method is used

by default (useful for timestep-based applications). The load balancing strategies used by the accelerator

manager can then use this information, in conjunction with the busy and idle times discussed above, to

guide decisions about where to execute the AEMs. For example, a strategy may adjust the workload balance

between the host core and the accelerator in an attempt minimize this value. There is also an option in

the accelerator manager to automate this measurement (using time intervals as the value). Enabling this

option will cause the accelerator manager to periodically call this method based on the frequency of AEM

invocations. However, this configuration may not always be effective, particularly in cases where the AEMs

are not invoked at regular intervals, resulting in inaccurate time interval measurements. In any case, a given

accelerator load balancing strategy may make adjustments to the workload distribution between the host

and accelerator core, while using the values provided by the takePeriodicSample function as a way of testing

if those adjustments had a positive or negative effect on the performance of the application.

Accelerator Load Balancing Strategies

There are also several accelerator load balancing strategies that can be applied to Charm++ applica-

tions from within the accelerator manager. While several strategies have already been defined within the
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Figure 3.8: The two tiers of load balancing for heterogeneous systems that include accelerator devices.

Charm++ code base, others can be added fairly easily. This is accomplished by creating a child class of

the abstract base class, AccelStrategy, which will be covered in more detail, along with descriptions of the

accelerator load balancing strategies themselves, in section 5.1.

To be very clear, the accelerator load balancing strategies are not the same as the load balancing strategies

that are typically talked about within the context of the Charm++ load balancing framework. Instead, the

accelerator load balancing strategies are meant to supplement the standard load balancing strategies that are

typically talked about within the context of the Charm++ load balancing framework. At a high level, one

can think of the runtime system having a two tier load balancing system when accelerators are in use (refer

to figure 3.8). The upper tier (figure 3.8(b)) is made up of the existing Charm++ load balancing framework

and is responsible for shifting workloads between the various host cores available to a given application.

In the upper tier, the presence of the accelerator isn’t directly known to the load balancing framework,

but rather the host cores with associated accelerator devices are simply viewed as being “faster” or “more

powerful” compared to cores without accelerator devices. This tier is the load balancing mechanism that

has been traditionally applied to Charm++ applications executing on homogeneous systems. The lower

tier (figure 3.8(a)) is made up of the accelerator load balancing strategies, which are responsible for load

balancing work between a given host core and its associated accelerator device. As was already mentioned,

these strategies will be discussed in further detail in section 5.1.

This division of load balancing into a two tier system is done for a couple of reasons. First, the majority

of clusters in use today do not include accelerator devices of any kind, and as such, are not heterogeneous in

nature. When designing a load balancing strategy, a programmer should be able to focus on the algorithm

the strategy implements, rather that the numerous hardware combinations that might be possible. At a high
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level, a load balancing strategy developer only need be aware that some host cores execute certain pieces of

calculations (i.e. entry methods or tasks) faster than others, without needed to know the underlying cause

of the speedup (i.e. the nature of the hardware itself and why a particular task executes faster on one host

core versus another). In some cases, the underlying cause may be as simple as differences in host core clock

frequencies, the amount of system memory available to each host core, or architecture differences between

the nodes or host cores. In other cases, the cause may be related to the presence of one or more accelerator

devices. The goal is to allow the upper level load balancing strategies to remain very general in nature

and devoid of architecture details. In the case of a homogeneous cluster, the situation a load balancer faces

is then just simplified since all of the host cores (ideally) provide an equal level of performance. Though,

it should be noted that even in the case of a seemingly homogeneous cluster, secondary effects, such as

non-uniform memory access (NUMA) latencies, may in fact cause the cluster to behave as a heterogeneous

cluster to a small degree (i.e. non-uniform performance of the host cores) if those effects are not accounted

for properly (e.g. by mapping tasks to locations near the data those tasks operate on).

Second, the accelerator strategies may have different requirements/challenges associated with them com-

pared to the higher tier load balancing strategies. For example, the application of higher tier load balancing

strategy to moving objects between host cores can be a fairly costly operation, causing a significant delay

in the execution of an application, depending on the strategy used. As such, load balancing between host

cores is typically performed on an infrequent basis. However, in the case of an accelerator being present, it

is important to find a balance between the host core and the accelerator device quickly, especially in cases

where the accelerator device offers a significant performance improvement. As will be shown in chapter 5,

even a small misbalance in the division of work between a host core and an accelerator core can result in

a significant degradation in performance. Further, some accelerator load balancing strategies, such as the

Sampling strategy discussed in section 5.1.3, require several load balancing adjustments to take place before

settling in on a particular balance point. Since the local mapping of AEMs to either the host core or the

accelerator device can be adjusted with little to no overhead, decoupling the two tiers of load balancing

can allow the runtime system to converge on a near optimal balance point in less time. Therefore, the load

balancing between a host core and an accelerator device benefits by occurring at a higher frequency.

There are also a couple of potential downsides to having a multi-tier load balancing mechanism acting

within a Charm++ application. Since the different tiers act independently of one another to a large degree,

there is the potential for feedback cycle to occur which causes a decrease in the performance of the application.

If one tier makes a bad decision, it could cause the other tier to also make a bad decisions, which in turn

causes the first tier to make an even worst decision, and so on. As such, care should be taken when creating
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and applying the load balancing strategies. In particular, it seems as though a best practice is to allow the

lower, higher-frequency tier (i.e. the accelerator strategies) to settle into a stable state between each load

balancing step in the upper-level tier (i.e. the standard load balancing strategies that move chare objects

between host cores). Additionally, having a multi-tier load balancing system means that the upper-tier is

acting without complete knowledge. Instead, the host cores with accelerator devices simply seem to have

higher performance levels that host cores without access to accelerator devices. As we will point out in

section 5.7.1, this can lead to situations where the across host core load balancing strategy is incapable of

making an optimal decision on some platforms.

3.3.2 Architecture-Specific Code Generation

Some generated code is also produced for each of the accelerated entry methods, which works in conjunction

with the accelerator manager. Speaking in general, whenever an interface file is processed by the charmxi

tool, charmxi is generating code that serves as the glue between the runtime system and the application

code. For example, for each of the chare classes (or chare collections) declared within an interface file, some

auxiliary classes are also generated, including the CBase xxxx, CProxy xxxx, and CkIndex xxxx classes,

where “xxxx” is replaced by the name of the chare class. These classes serve a variety of purposes and exist

regardless of whether or not AEMs are being used within the application or not.

As an example, the CProxy xxxx class serves as a proxy for an actual instance of a chare object, or

an instance of an entire chare collection. When a chare object is created, the application code receives

an instance of the chare’s proxy class rather than the chare object itself. This proxy object can then be

transferred between PEs via entry method parameters and used to invoke entry methods on the actual chare

class, regardless of where that chare class physically resides (i.e. on the same core or a different core). To

invoke an entry method on a chare class, one simply invokes that entry method on the proxy object, using

the same entry method name and passing the same parameters as would be used as if the proxy were the

chare object itself. The proxy object then processes the actual data being passed through the parameter

list and interacts with the Charm++ runtime system to initiate the transmission of the message object

containing the parameters.

In a similar manner to standard entry methods, code is generated to help support the execution of

accelerated entry methods. In terms of invoking an accelerated entry method, the process is almost identical

to that of a standard entry method. From the point of view of view of the application code, invoking an

accelerated entry method is exactly the same as a standard entry methods. From the sender’s point-of-view,

the sender simply invokes the AEM on the local copy of the chare’s proxy object, passing in any passed
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Figure 3.9: Overview of the generated code created by charmxi.

parameters required by the AEM, just as would be done with a standard entry method.

On the receiving side, as a message that targets an accelerated entry method is pulled from the message

queue, the chare object is identified and a generated function within the CkIndex xxxx class is used as a

hook for the runtime system to call into the application code. Conceptually, this process is the same for

an AEMs as well. Where the process for standard entry methods and AEMs diverge is the content of the

generated code within CkIndex xxxx. In the case of an AEM, this function is actually broken up into two

stages, a general stage and a device-specific stage. As the names suggest, there is a single version of the

general stage, and there is a different version of the device-specific stage for each of the supported accelerator

devices. First, in the general stage, the parameters are located within the payload of the message and a

request for a decision is made of the accelerator manager. The result of the decision is determined by the

particular accelerator load balancing strategy in use at the moment a decision was requested. The decision

returned by the accelerator manager indicates, amongst other things, to which device the entry method

should be directed (i.e. the host or an available accelerator). At this point, the appropriate version of the

device-specific stage (function) is called, depending on the target device.

The device-specific stage performs any tasks that are necessary to dispatch the execution of the AEM to

the associated device. Obviously the contents of the device-specific stages (functions) are dependent on the
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type of device being used. For example, there is a basic host-specific function which basically just executes

the function body of the AEM, after ensuring any persistent data is available to the host core, and then

immediately calls the associated callback function. In the case of a splittable AEM, the host-specific function

may also break the function body’s execution across a few splits, executing each split one-by-one, and may

perform some task(s) in between the splits, such as progress calls to the libraries being used to interface with

the accelerators. As another example, the CUDA-based GPGPU-specific function uses the GPU Manager

to issue work to the GPGPU, handles persistent data and shared data as required, and batches the AEM

invocation into a batch set. As part of the decision result returned by the accelerator manager, whether or

not the generated code should “issue” or “dispatch” the current batch set is also indicated. If the AEM

invocation is not to be issued, it will be added to the currently accumulating batch set. If the AEM is to be

issued, it will first be added to the currently accumulating batch set and then the batch set as a whole will

be issued to the indicated location. These device-specific functions will be discussed in greater detail below.

Before moving on to discuss the generated code for each type of device, it should be noted that our

approach currently does not include any compile time optimizations for the code included in an accelerated

entry method’s function body. By this, we mean that an AEM’s function body is basically used as is on each

type of device. Any compiler optimizations that are performed by the device-specific compiler (e.g. NVCC

for CUDA-based GPGPUs) will be performed. However, there are no compile time optimizations included

within or approach directly. Such optimizations are considered future work.

Host Core Code

If an AEM is directed to the host core, a generated device-specific function that targets the host core is

invoked. This host function executes the function body of the accelerated entry method directly on the

host core. Immediately after the function body is finished, it invokes the callback associated with the AEM.

This results an accelerated entry method being executed in a way that is very similar to he way in which a

standard entry method is executed.

Typically, if an AEM is splittable, the device-specific function generated for the host processor will not

actually cause the AEM to be split. However, there are some cases where the host core’s device-specific

function may split an AEM. For example, in cases where the library being used to interface with an available

accelerator device requires that a progress function to be periodically called. Long running entry methods

on the host core prevent the runtime system from making these progress calls during the duration of the

entry method. Should the lack of a progress call cause the accelerator device to become idle, then a long

running entry method (task) will be problematic. In the case of splittable AEMs, the runtime system can

51



use the splittable nature of the AEM to help reduce the time between progress calls by creating multiple

splits and issuing them one-by-one, effectively increasing the frequency with which host core control returns

to the runtime system. While the time to execute the individual AEM invocation may increase (depending

on the nature of the splits, cache locality, etc.), the overall performance of the host core and accelerator

device pairing may increase since the host core is more responsive to the accelerator’s needs (discussed in

section 5.6).

In addition to just immediately executing each AEM invocation dispatched to the host core immediately,

the accelerator manager may also indicate that the AEM invocation should be delayed. This is particularly

useful when it is know that more AEM invocations will be dispatched to an accelerator device in the case

of static assignment (will be covered more in section 6.3.3). To accomplish this, another function is called,

who’s purpose is to grab the data required to execute the AEM and queue it within the accelerator manager.

At an appropriate point in the future, the accelerator manager will call a continuation function which will

execute the delayed AEMs using their host-specific function.

Cell Processor Code

In the case of an accelerated entry method being directed to an SPE on the Cell processor, the generated

code makes use of the Offload API to simplify the code generation process. The Offload API allows a user

to specify a function to be executed, the input and output data to that function, and a callback function

that will be called when the output data is available on the host core. Since this functionality already exists

within a library available within the Charm++ runtime system, this work will make use of this library rather

than duplicate the functionality and using the Cell SDK directly. Even though our work can make use of

the Offload API to handle the mechanical details of offloading a function call to one of the SPEs, the code

generation process is still required to map an AEM invocation to a work request (i.e. the code would be

fairly similar to code generated if the SDK were used directly, minus a few additional functionalities provided

by the Offload API).

In a basic sense, the generated Cell-specific code translates the accelerated entry method invocation into

work request, as required by the Offload API. More specifically, there are four pieces of code generated in

relation to each accelerated entry method.

Registration Code (RC): A requirement of the Offload API is that each of the device functions

have a unique index value that can be used to identify the device functions. From the point-of-view of

the Offload API, the assignment of these indexes is left to the application code making use of the Offload

API library. As part of the code generation process for AEMs within charmxi, a registration function is

52



generated that enumerates the accelerated entry methods. There is a single registration function for each

of the Charm++ modules specified within the interface file(s). Additionally, the registration functions of

any external modules specified within the interface file are also invoked within a given module’s registration

function. The registration function of main modules are invoked at the beginning of the application’s

execution, allowing any and all modules that include AEMs to dynamically determine their indexes during

application startup, and thus share the SPEs. The result of the registration process is a lookup table that is

indexed by the AEM’s function indexes (a unique function index value for each AEM) and contains the actual

device function pointers associated with those indexes. This table is then used to implement the lookup

function (funcLookup), also required by the Offload API, which is used by the SPE Runtime executing on

each available SPE to find the appropriate code to execute for each work request issued to the SPE.

Since the registration process occurs during the initialization process of the runtime system, dynamically

assigning identifiers to the accelerated entry methods, the various modules used within an application can

all make use of an attached accelerator device. Further, any module that makes use of AEMs is not required

to be aware of whether or not other modules are also making use of AEMs. This allows for composability

within applications, allowing different portions of an application to be written independently of one another

and eventually linked together.

Host-side Function (HSF): For each accelerated entry method, a host-side function is generated.

The purpose of the host-side function is to setup the work request and issue it to the Offload API. Input

and output data is identified, along with the function index associated with the AEM to be executed on

the device and the callback function to be executed when the work request as been completed. This work

request is then issued to the Offload API, which does the mechanical work of scheduling the work request on

one of the SPEs, transferring the input data, scheduling a call to the generated device function associated

with this AEM, moving the output data back into system memory, and then triggering the callback function

associated with the AEM.

Device-side Function (DSF): For each accelerated entry method, a device-side function is also gener-

ated. This function can be thought of as a wrapper function for the function body of the AEM. It performs

some initial parameter processing in preparation for executing the function body of the AEM, along with

executing the AEM’s function body itself. This function is executed on the SPE device directly, whenever

an AEM invocation is mapped to an available SPE core.

Function Lookup (FL): For the Offload API’s SPE runtime to call into the device function, it requires

a lookup function, called funcLookup. A single global lookup function is generated for each application.

This global lookup function uses the unique function index value associated with each AEM to index into
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the table of device function pointers generated during initialization as part of the AEM registration process

described above. This lookup process is triggered by the SPE runtime (part of the Offload API) after all

of the input data required by the AEM (work request using Offload API terminology) has been transferred

into the local store of the SPE to which the AEM was assigned.

CUDA-Based GPGPU Code

The device-specific function that is generated in the case of CUDA-Based GPGPUs makes use of the GPU

Manager in a manner that is similar to the way in which the device-specific function for the Cell makes use

of the Offload API. The GPU Manager takes care of the mechanical processes of moving data between the

accelerator device and the host core (except in the case of persistent data buffers), triggering the execution

of the generated kernel code when the input data is ready, and calling a specified callback function when

the output data is available within the host core’s memory. In addition to the process of issuing the work

requests, the generated code also performs the batching operations required to increase the granularity of the

work requests. Note that the callback function referred to here is not the callback function specified within

the application code, but rather a generated callback function which, amongst other things, is responsible

for calling the individual application code callbacks associated with the AEMs that were batched together

into a single kernel. The device-specific code for CUDA-based GPGPUs can be broken down into five basic

pieces.

Registration Code (RC): Just as it is with the Cell-specific code, the GPGPU-specific code requires a

unique index to be generated for each of the accelerated entry methods. This is done in a manner consistent

with the Cell-specific code, as described in section 3.3.2.

Host-side Function (HSF): There are two main objectives for the generated host-side code, collecting

multiple AEMs together into batch sets and issuing those batches to the GPU Manager for processing.

First, as an AEM is passed to the host-side code, the host-side code adds the AEM to the current batch

set. If this happens to be the first AEM in the set, the batch set data structures are also initialized. The

data related to the AEM is that packed in to the batch set’s data buffer, along with other values used to

identify the AEM’s data within the buffer and the object on which the AEM is operating. The data buffer

will be covered in more detail in section 6.2.

Once the AEM has been incorporated within the current batch set, the output of the accelerator’s decision

process is used to determine if the current batch set should be dispatched to the device. If so, details of the

batch set are passed to a general function which uses the batch set’s information to create a work request

and issues that work request to the GPU Manager. The GPU Manager is then responsible for transferring
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the input data to the device, triggering the device-side code by calling the kernel select function on the host

core (required by the GPU Manager), transferring the output data back to the host, and finally triggering

the generated kernel-level callback function.

Kernel Select Function (KSF): The GPU Manager requires a kernel selection function, which is

used to select and execute the device-side function (or kernel function in CUDA terms) using the unique

identifier assigned to each AEM. The kernel select function is called by the GPU Manager only after a work

request has been issued to the GPU Manager (host-side function) and the input data associated with that

work request has been transferred to the GPGPU device. This generated function does the work of actually

triggering the kernel on the device itself (i.e. causing the generated device-side function to execute).

Device-side Function (DSF): The device-side function serves the same purpose as was described for

the Cell-specific device-side function in section 3.3.2. This function is the actual kernel function (in CUDA

terminology) that is invoked on the host within the kernel select function and executed on the accelerator

device. When this function is invoked, it starts by calculating a unique thread index for each of the GPGPU

threads associated with the kernel’s execution. This thread index is then used to calculate the element index

and, if applicable, the split index that the given GPGPU thread is responsible for. The element index simply

refers the “array” of chare objects represented by the kernel’s data buffer, with each chare object being one

element in that array. It should be noted, each of these operations (index calculations and parameter lookups)

tend to be quick index calculations taking constant time. In the case of a different number of splits for each

AEM invocation, the element calculation may linear time (in terms of the number of chare objects). As a

batch set is created, it is assumed that all AEMs within the set will have the same number of splits. However,

as the batch set is being filled in, if the runtime system detects that a different number of splits is used for

at least one of the AEMs, this alternate (more expensive) element index calculation that accommodates the

varying number of splits is then used. Using the element index, which is specific to the current batch set, the

GPGPU thread then determines the locations of the various parameters associated with the specific element

it is operating on. With the parameters located, the thread moves on to executing the AEM’s function body

code. Once the function body has completed, a couple of the threads (from the kernel as a whole) are used

to set some diagnostic variables within the batch set’s data buffer. These variables are used for tasks such

as verifying that the kernel code was actually executed, passing an error value back to the host processor

in the event that something goes wrong and/or for debugging purposes, and other tasks as well. Once the

kernel has completed executing and the GPU Manager will transfer the batch set’s data buffer back into

system memory, where the output of the AEM can be accessed by the host core.

Kernel Callback (KCB): Since multiple AEMs are being grouped together in batch sets, with each
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batch set being executed using a single kernel, the GPU Manager will trigger a single callback function when

the batch set has finished processing. However, in terms of the application code, each of the AEMs that

were included within the batch set requires its individual callback function to be called. As a result, a kernel

callback function is generated for each of the AEMs and performs two main tasks. First, it transfers any

output data back into the chare objects associated with the batch set. Second, it triggers the AEM callback

functions on the individual chare objects as specified within the application code.
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Chapter 4

Static Load Balancing

The Cell Processor was the first accelerator for which an implementation of the extensions presented in

section 3.2 were created. This chapter presents a demonstration of our programming model extensions and

runtime system modifications on a cluster that includes both x86-based and Cell-based nodes. To illustrate

an example code executing using our extensions, a simple molecular dynamics (MD) application will be

discussed. The workload contained within the code will be load balanced using a static load balancing

method implemented within the application code. This static load balancing work was only intended as

a first attempt at load balancing, to give us insight into how the process might be automated and what

considerations should be made by the runtime system and load balancing mechanisms within the context of

a heterogeneous cluster. Dynamic load balancing will be discussed in chapter 5.

To demonstrate the programming model extensions and the runtime system modifications that have been

presented in this work, we created a simple molecular dynamics (MD) code that makes use of accelerated

entry methods (AEMs). We choose a simple MD code for a couple of reasons. First, particle interaction

codes are an importance class of codes in HPC. Second, we specifically create a simple molecular dynamics

code so that we can easily isolate cause and effect when analyzing performance. As such, it is not our goal

to demonstrate that we can write an MD code with a high measured flop rate, but rather to demonstrate

the application of our approach and to identify various considerations that should be kept in mind when

applying our approach within the context of Charm++ applications and/or other programming models.

That said, the improvement of the implementation is a continuing process, so we hope to continue increasing

performance in the future beyond what is presented here. Before discussing the application of our extensions

along with the static load balancing scheme, we first describe the application to which they will be applied.

A summary of the work is presented here both for the reader’s reference and because its inclusion helps

give a more complete picture of our approach/work. For a more in-depth discussion of the static load

balancing experiments, please refer to the original publications [63, 64].

Within this chapter, the term “load balancing” will refer to across host core load balancing. All of the

accelerated entry methods will be executed on the accelerator device (i.e. the SPEs within a Cell processor).
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Figure 4.1: The interaction of objects, or flow of data between those objects, in a single timestep of the
simple MD code.

As such, no load balancing between the host cores (PPEs) and the accelerator device is occurring. Chapter

5 will cover dynamic load balancing between host cores and accelerator devices, along with across host core

load balancing, in greater detail.

4.1 Description of Molecular Dynamics Code

The simple molecular dynamics code used in this work is loosely modeled after the nonbonded force com-

putation in the production molecular dynamics code, NAnoscale Molecular Dynamics (NAMD) [53, 74].

However, NAMD makes use of a cutoff based algorithm, while the simple MD code used in this work does

not. Instead, it uses an all-to-all algorithm. As stated above, the regular nature of the all-to-all algorithm

will make isolating the causes of various effects seen in the execution of the application easier to identify. The

simple MD code does not implement all of the force computations that NAMD implements. In particular,

only Coulomb forces are calculated between the particles in the simple MD application.

There are several types of chare objects used within the simple MD code. The overall list of particles

is divided evenly into chare objects called patches. Additionally, there are two types of chare objects that

do force calculation, self compute objects and pair compute objects. See figure 4.1 for an overview of how
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the various objects within the simple MD code interact with one another. There is exactly one self compute

object for each patch objects. The self compute objects take a single list of particles, namely the list of

particles within the corresponding patch object, and calculates the forces between the particles within that

list. There is one pair compute object for each pair of patch objects. The role of the pair compute object is

to calculate the forces that the particles in the first patch induce on the particles in the second patch, and

vice versa. There is one other type of object, the patch proxy objects. Since each host core is likely to have

multiple compute objects that require a given patch object’s particle data, the patches communicate their

particle data to the compute objects through these patch proxy objects. The patch proxy objects are an

application-specific construct and not to be confused with the idea chare object proxies within Charm++

as a whole. For any given patch object, there will be a patch proxy object on each host core. The patch

proxies are implemented via Charm++ groups. This allows a single message to be sent from a patch object

to any remote host core containing one or more compute object that requires that patch object’s particle

data. In a similar manner, only a single message is required when returning the resulting force data from

the host core containing the compute objects (i.e. producing force data) back to the patch object.

While we would like to include the code for the simple MD code to give the reader a more complete

idea of how applications are written using our extensions, there is simply too much code in the simple MD

code to include it all here. However, to give the reader at least a sense of how accelerated entry methods

are used in application code, the accelerated entry method Patch::integrate is shown in figure 4.2. The

integrate function is invoked once all of the force data has been passed back to the patch object for a given

timestep. the integrate function applies the force data calculated by the compute objects to the particles

within a patch object. By the time this function is called, all of the forces from all of the compute objects

that interact with the given patch object have been accumulated into a single list of force vectors, with one

force vector per particle (in particular, f x, f y, and f z in figure 4.2). The integrate function simply loops

through the particles in the patch and applies the forces to the particles, updating both the velocities and

the positions of the particles.

4.2 Heterogeneous Cluster Description

The cluster being used to run the simple MD code in this situation is a cluster comprised of 4 Cell-based IBM

QS20 blade servers (“blades”), 4 Cell-based Playstation 3s (“PS3s”), and a single dual-core x86-based node

(“x86s”). Each blade server contains two Cell processors, each having a single Power Processing Element

(PPE) and 8 Synergistic Processing Elements (SPEs). Both core types have a clock rate of 3.2 GHz and can
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entry [ accel ] void i n t e g r a t e ( ) [
readonly : int numPart ic les <impl obj−>numPartic les >,

readwrite : f loat p x [ numPart ic les ] <impl obj−>part i c l eX >,
readwrite : f loat p y [ numPart ic les ] <impl obj−>part i c l eY >,
readwrite : f loat p z [ numPart ic les ] <impl obj−>par t i c l eZ >,
readonly : f loat p m [ numPart ic les ] <impl obj−>part ic leM >,
readonly : f loat f x [ numPart ic les ] <impl obj−>forceSumX>,
readonly : f loat f y [ numPart ic les ] <impl obj−>forceSumY>,
readonly : f loat f z [ numPart ic les ] <impl obj−>forceSumZ >,

readwrite : f loat v x [ numPart ic les ] <impl obj−>ve loc i tyX >,
readwrite : f loat v y [ numPart ic les ] <impl obj−>ve loc i tyY >,
readwrite : f loat v z [ numPart ic les ] <impl obj−>ve loc i tyZ >

] {

int i ;
s imd i a ve c f d e l t a t ime ve c = s imd ia vspread f (TIME PER STEP) ;

s imd i a ve c f ∗ p x vec = ( s imd i a ve c f ∗) p x ;
s imd i a ve c f ∗ p y vec = ( s imd i a ve c f ∗) p y ;
s imd i a ve c f ∗ p z vec = ( s imd i a ve c f ∗) p z ;
s imd i a ve c f ∗ p m vec = ( s imd i a ve c f ∗)p m ;
s imd i a ve c f ∗ f x v e c = ( s imd i a ve c f ∗) f x ;
s imd i a ve c f ∗ f y v e c = ( s imd i a ve c f ∗) f y ;
s imd i a ve c f ∗ f z v e c = ( s imd i a ve c f ∗) f z ;
s imd i a ve c f ∗ v x vec = ( s imd i a ve c f ∗) v x ;
s imd i a ve c f ∗ v y vec = ( s imd i a ve c f ∗) v y ;
s imd i a ve c f ∗ v z vec = ( s imd i a ve c f ∗) v z ;
const int numPart i c l e s vec = numPart ic les / simdia vecf numElems ;

// For each p a r t i c l e ( v e c t o r ) . . .
for ( i = 0 ; i < numPart i c l e s vec ; i++) {

// Update the v e l o c i t y : v new = v o l d + (F/m) dt
v x vec [ i ] += de l t a t ime ve c ∗ ( f x v e c [ i ] / p m vec [ i ] ) ;
v y vec [ i ] += de l t a t ime ve c ∗ ( f y v e c [ i ] / p m vec [ i ] ) ;
v z ve c [ i ] += de l t a t ime ve c ∗ ( f z v e c [ i ] / p m vec [ i ] ) ;
// Update the p o s i t i o n : p new = p o l d + ( v ) dt
p x vec [ i ] += de l t a t ime ve c ∗ v x vec [ i ] ;
p y vec [ i ] += de l t a t ime ve c ∗ v y vec [ i ] ;
p z vec [ i ] += de l t a t ime ve c ∗ v z vec [ i ] ;

}

// For each p a r t i c l e ( s c a l a r ) . . .
for ( i = numPart i c l e s vec ∗ s imdia vecf numElems ; i < numPart ic les ; i++) {

v x [ i ] += TIME PER STEP ∗ ( f x [ i ] / p m [ i ] ) ;
v y [ i ] += TIME PER STEP ∗ ( f y [ i ] / p m [ i ] ) ;
v z [ i ] += TIME PER STEP ∗ ( f z [ i ] / p m [ i ] ) ;
p x [ i ] += TIME PER STE ∗ v x [ i ] ;
p y [ i ] += TIME PER STE ∗ v y [ i ] ;
p z [ i ] += TIME PER STE ∗ v z [ i ] ;

}
} i n t e g r a t e c a l l b a c k ;

Figure 4.2: Integration code from the simple molecular dynamics code.
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Core Type Peak Gflop/s Memory Type System Memory Access SIMD Extension
x86 14.88 Cache Hierarchy Yes SSE
PPE 25.6 Cache Hierarchy Yes AltiVec
SPE 25.6 Scratchpad No Modified AltiVec

Table 4.1: Differences between the core types in the cluster.

complete up to 8 flops per clock cycle, resulting in a peak rate of 25.6 Gflop/s per core or a total peak rate of

230.4 Gflop/s for an entire blade Cell processor. Each PS3 contains only a single Cell processor, also with a

clock rate of 3.2 GHz. Unlike the blade Cells, the PS3 Cells have only 6 SPEs available to user applications

(there are actually 7 SPEs, but one of them is dedicated to the operating system). Each core has the same

peak flop rate of 25.6 Gflop/s, resulting in a total peak flop rate of 179.2 Gflop/s available to the user for

the entire processor. Each of the x86 cores have a clock speed of 2.0 GHz and are able to complete 8 flops

per clock cycle, giving each x86 core a peak flop rate of 16 Gflop/s and the x86 processor a total peak flop

rate of 32 Gflop/s.

In total, the cluster that we executed the simple MD code on has three different types of processing

cores, x86s, PPEs, and SPEs. Table 4.1 summarizes the differences between the various cores in the cluster.

There are two types of memory configurations, scratchpad memories (local stores in the SPEs) and typical

memory hierarchies containing several levels of cache between the pipeline and system memory (the x86s

and the PPEs). Further, each of the core types presents a separate SIMD extension. The x86 cores use

SSE. The PPE cores use AltiVec/VMX. The SPE cores present a set of instructions that are similar to the

AltiVec instructions on the PPEs, however, the actual set of instructions available differ. More generally

speaking, the instruction sets differ between the SPE and PPE cores (i.e. not just the SIMD instructions),

even though these core are located within the same processor chips.

4.3 Results

To ensure that the results are presented clearly, this section is broken down into several sub-sections. First,

we establish a performance baseline by executing the simple MD code on a single x86 processor and on a

single Cell processor. From there, we will move on to scale the application using homogeneous sets of nodes.

To be clear, the nodes will internally be heterogeneous (i.e. using Cell processors), but the nodes themselves

will be identical to one another. This simplifies load balancing in that each node should receive an equal

amount of work. Finally, we will execute the application on a heterogeneous set of nodes, making use of all

the nodes in the heterogeneous cluster.

Please note that the same application code is being used in all cases, despite the differences between
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the various cores that will be used, demonstrating that the extensions in this work do increase code porta-

bility. Further, figure 4.2 shows that the level of complexity required of the programmer to achieve this

portability does not increase significantly, and thus, our programming model extensions and runtime system

modifications decrease the burden placed on the programmer.

4.3.1 Establishing a Performance Baseline

The application configuration we chose for creating a baseline measurement uses 144 patches with 640

particles per patch, for a total of 92160 particles. This problem size is chosen because it resembles the

ApoA1 particles systems that is commonly used as a benchmark system for measuring the performance of

the production MD code NAMD. The ApoA1 particle system contains 92224 particles spread across 144

patches. Further, the simple MD application will create less than a factor of 2 more computes that NAMD

does when using 64 host cores on a homogeneous cluster. We cite the 64 host core case for NAMD, since we

will be using a total of 66 cores on the test heterogeneous cluster described above once the simple MD code

is scaled to use each node in the cluster (more on this in section 4.3.2). The number of compute objects that

either application creates is directly related to the amount of parallelism within the application. Therefore,

the simple MD code is creating less than a factor of 2 more parallelism on 66 cores compared to the NAMD

application executing a similar particle system configuration on 64 cores. The simulation will be executed

for 128 timesteps on all hardware configurations reported below.

As a first step, the simple MD code is executed using only the x86 cores. The measured performance

when using both x86 cores is approximately 10.09 Gflop/s, or approximately 31.5% of the combined peak

flop rate.

Knowing the performance of the simple MD application executing on the two x86 cores, we now move

on to measure the performance using a single Cell processor. For this purpose, we use a single QS20

Cell processor, which has 8 SPE cores, giving the program access to a total of 9 processing cores. The

performance on a single QS20 Cell processor is approximately 24.46% of the peak flop rate (50.09 Gflop/s).

This calculation only includes the SPEs since the SPEs are doing all the physics calculations. In the next

section, table 4.2 will include calculations with and without the PPEs.

To place this percentage of peak number within a meaningful context, the generated assembly code from

the pair compute object’s accelerated entry method that performs the force computation was evaluated.

This AEM was chosen since it accounts for the great majority of the total work being performed by the

application. The AEM has two loops, one nested within the other, referred to as the outer and inner loops.

Each loop iterates over one of the lists of particles provided by the associated patch objects, calculating
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force vectors for all combinations of atoms between the two lists. The inner loop contains 54 instructions,

29 of which are SIMD instructions. A total of 124 flops occur per inner loop iteration. According to the

SPE timing tool provided within the Cell SDK, the 54 instructions of the inner loop take approximately 56

cycles to execute. Note that the time to access an SPE’s local store from within the same SPE’s pipeline is

a constant value, so load and store instructions do not take a variable amount of time, as is the case when

cache hierarchies are being accessed. From these numbers, we can calculate that the flop rate for a single

inner-loop iteration is 124 flops in 56 cycles, or approximately 2.214 flops per cycle on average. With a peak

flop rate of 8 flops/cycle, this calculated rate of a single inner-loop iteration represents 27.68% of an SPE’s

peak performance. 27.68% represents a good estimate for an upper bound on the expected performance

since the great majority of the work performed by the application results from the execution of iterations

of this inner loop. Further, 27.68% represents an unobtainable upper bound since it assumes only the inner

loops are being executed. This upper-bound estimate does not account for any unavoidable overheads such

as outer loop instructions, required DMA transactions (which, even if perfectly overlapped, still need to be

issued and completed within the instruction stream), and so on. The measured rate of 50.09 Gflop/s (24.46%

of peak) is 78.55% of the calculated upper-bound derived from the pair compute object’s inner loops (63.77

Gflop/s or 27.68% of peak on a single QS20 Cell processor, including the PPE core).

We would like to point out that the upper bound on the SPEs is lower than the measured rate on the x86

cores. The x86 cores are capable of issuing multiple SIMD vector instructions per cycle, for example both

a SIMD add and a SIMD multiply which are not data dependent on one another. However, in the case of

the SPE cores, achieving peak performance requires that an SIMD fused-multiply-add be issued every cycle.

Further, if SIMD fused-multiply-add instructions are not being issued, then the measured performance of

an application cannot achieve greater than half the peak performance of an SPE core. As stated above,

the inner loop of the pair compute object’s main compute AEM has 54 instructions, 29 of which are SIMD

instructions. Of this 29 SIMD instructions, only 2 are fused-multiply-adds. Although, there are several

multiply and add instructions that are not fused. The x86 cores are capable of executing closer to peak

with just the presence of SIMD add and multiply instructions, while the SPE cores are not. This is not the

only reason we see a performance difference between the two core types. However, we believe that this effect

is worth noting since it points out that the design difference between the core types allows the x86 cores

to have a wider variety of instruction mixes within an instruction streams that are capable of obtaining a

higher percentage of the core’s peak performance.
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# Nodes # PPEs # SPEs Peak Gflop/s Measured Gflop/s % Peak (All) % Peak (SPEs)
1 PS3 1 6 179.2 21.53 12.01% 14.02%
2 PS3 2 12 358.4 77.33 21.58% 25.17%
3 PS3 3 18 537.6 111.03 20.65% 24.10%
4 PS3 4 24 716.8 146.61 20.45% 23.86%

1 QS20 1 8 230.4 50.09 21.74% 24.46%
2 QS20 2 16 460.8 96.63 20.97% 23.59%
3 QS20 3 24 691.2 142.01 20.54% 23.11%
4 QS20 4 32 921.6 178.22 19.34% 21.76%

# Nodes # x86 Cores Peak Gflop/s Measured Gflop/s % Peak
1 2 16.0 5.07 31.69%
2 2 32.0 10.09 31.53%

Table 4.2: Performance of the simple MD code scaled to multiple Cell-based compute nodes.
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Figure 4.3: Performance of the MD application as it is scaled on QS20 Cells, PS3 Cells, and x86 cores.
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4.3.2 Homogeneous Scaling

Table 4.2 shows the performance of the simple MD application as it is scaled from one to four Playstation 3s

(PS3s) and from one to four QS20 Cell blades. Figure 4.3 plots the measured flop rates presented in table

4.2. At a high level, the results presented in table 4.2 show that the MD’s application code, written using

our programming model extensions, is portable between each type of node within the heterogeneous. In

the case of the QS20 Cell blades, only a single Cell processor is being used per node (this will be discussed

further in section 4.3.3). The workload of the application is being evenly distributed between the nodes.

Further, all of the accelerated entry methods are being directed to the SPEs.

There are two columns for % peak in table 4.2, all and SPEs. The all column shows the percentage of

peak that is being achieved when all of the cores, both PPEs and SPEs, are being considered. The SPEs

column shows the percentage of peak that is being achieved when only the SPE cores are being considered.

This column as been included since all of the AEMs are being directed to the SPEs, meaning all of the

physics calculations are being performed on the SPEs.

The single PS3 case is a bit of an anomaly. The simple MD code executing on a single host core (even

without accelerator support added in) requires approximately 200MB of memory. This value alone is already

approaching the amount of physical memory on a single PS3 (256MB). When also considering other sources

of memory usage, such as our runtime system additions to support Cell, the operating system, the Cell SDK,

and any other applications/services executing on the PS3 at the same time, this serves as a strong indication

that the amount of physical memory available in the single PS3 case is the main factor contributing to the

decreased performance.

To verify that memory was indeed the issue for these runs, we executed the 1 QS20 Cell, 1 PS3 Cell,

and 2 PS3 Cell configurations using the ’time’ command, which reports page faults. For the 1 QS20 Cell

case, there were approximately 50.0 thousand page faults (all reported as minor). For the 2 PS3 Cell case,

the page fault counts were 34.7 thousand for the first PS3 and 26.7 thousand for the second PS3 (again,

all reported as minor). For the 1 PS3 Cell case, the page fault count was approximately 119.9 thousand

(12.5 thousand report as major and 107.4 thousand reported as minor). According to the manual entry

(also known as the “man page”) for the ’time’ command, major page faults are those “where the page has

to be read in from disk.” Minor page faults “are faults for pages that are not valid but which have not yet

been claimed by other virtual pages. Thus the data in the page is still valid but the system tables must be

updated.” From these measurements, the single PS3 case is the only configuration experiencing major page

faults and experiences more significantly more minor page faults per Cell processor.

For the remaining entries, the performance levels seen are what one might expect from the simple MD
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application as it is scaled to multiple nodes. Recall that the 27.68% value previously given as an upper

bound on the performance expected from the MD code, based on the serial code within the pair computes’

inner loops executing on a single SPE, is an unobtainable upper bound. One should expect that value to

be even further removed from the actual measured performance as other overheads are taken into account,

such as the coordination of multiple SPEs per Cell processor, network communication between multiple Cell

processors, and other factors. While there are certainly optimizations remaining for our implementation,

the performance levels seen in table 4.2 suggests that our approach for creating portable, parallel code in

the presence of heterogeneous hardware allows the serial portions of the code to achieve a high level of their

potential performance levels.

Until now, the term “heterogeneous” within this chapter has been used to referred to hardware config-

urations in which the nodes have multiple types of processor cores, but the nodes themselves are identical.

We also wish to explore cases where the nodes are heterogeneous relative to one another, thus increasing the

level of heterogeneity even further.

4.3.3 Heterogeneous Scaling

Before discussing the application’s performance using a heterogeneous set of nodes, it is worth noting that,

through the use of our programming model extensions, there is no architecture specific code included within

the MD application code. The runtime system is taking care of directing work and moving the data associated

with that work between the various processing cores, host and accelerator alike. In fact, there are several

differences between the processing cores, including three instruction set architectures (ISAs), two types

of memory structures (cache hierarchies and private scratchpad memories with the use of direct memory

accesses), three different SIMD instruction extensions, varying amounts of system memory, differing numbers

of SPEs between Cell-based nodes, and so on. Despite all these differences, the MD code does not include

any architecture specific code mixed in with the application code itself to account for these differences.

Figure 4.4 shows the performance of the simple MD application as it is scaled to use all of the cores within

the heterogeneous cluster described in section 4.2. Recall that this cluster is made up of four Playstation

3s, four QS20 Cell blades, and one dual core x86-based node. Data passed between the x86 and Cell

processors is being automatically modified by the runtime system, as described in section 6.1, to account for

the architecture differences between the processors.

There are two reference plots in figure 4.4. The first reference plot, B ∗ 2, simply doubles the measured

values from plot B (“PS3 Cells”) in figure 4.3. The idea behind including this reference plot is to give

the reader an idea (just an estimate) of what one might expect the performance to be if the the number
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Figure 4.4: Performance of the simple MD application scaled to use all the nodes within a heterogeneous
cluster, making use of x86-based and Cell-based processors.

of PS3s used at each point were doubled (ideally). The second reference plot, B + C + 2 ∗ A(2), adds the

corresponding points from plots B (“PS3 Cells”) and C (“Blade Cells”) in figure 4.3, along with adding

the constant value of A(2) (i.e. the performance on two x86 cores). The idea behind including the second

reference plot is to give the reader an idea of what to expect as the MD application is scaled to use each of

the nodes within the heterogeneous cluster.

The first plot, D, shows the performance of the MD application as it is scaled from one to four Cell

pairs without using any load balancing, where a Cell pair includes one PS3 Cell and one blade Cell. Notice

that the performance of D is not much greater than the performance of the reference plot plot B ∗ 2. This

indicates that the performance of configuration D is likely not benefiting from the extra SPEs available to

the blade Cells. Since the workload is not load balanced, all of the Cells, blade and PS3 alike, receive an

equal portion of the overall workload. As such, the extra SPEs available to the blade Cells allow the blade

Cells to finish their portion of the overall workload faster. However, since the overall performance is limited

by the slowest processors, the PS3 Cells limit the application’s overall performance since they take longer

to execution their portions of the overall workload.

The second performance plot in figure 4.4, E, shows the performance of the MD application as it is

scaled from one to four Cell pairs and applying static load balancing. Notice that the performance of the

MD application isn’t much better that the performance in plot D. In particular, notice that the performance

difference between plots D and E is very low when using four Cell pairs. Generally speaking, the application
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of static load balancing is helping performance. However, as more and more Cells are used, the benefit of

static load balancing diminishes.

Plots F and G add one and two x86 cores, respectively, to the Cell pairs used in plot E (a constant

number of x86 cores are added, regardless of the number of Cell pairs in use). In particular, notice that the

performance of plot F is noticeably greater than the performance of plot E, especially as the application is

scaled to a greater number of Cell pairs. The reason for this stems from the fact that the x86 cores are better

at communication that the PS3s or the blades. In fact, the blades are noticeable worst at communication

than either the PS3s or the x86 cores, in terms of the time it takes to send a given amount of data. Our

previous publication details the cause for this difference [64]. As part of this discussion, we will simply

say that communication is the cause of the difference. Since the objects have different communication to

computation ratios, the static load balancer can take advantage of the x86 cores’ increased communication

performance for the chare objects with higher communication to computation ratios (the patch objects).

The objects with a lower communication to computation ratio (the compute objects) are then mapped to

the PS3s and blade Cells, which are better at performing computation. The performance difference between

the points E(4) (303.86 Gflop/s) and G(4) (331.13 Gflop/s) is 27.27 Gflop/s, which is significantly greater

than (nearly triple) the measured performance on two x86 cores (10.09 Gflop/s). The application is capable

of scaling better when x86 cores are also used compared to only using Cell processors. The measured

performance of point G(4) is 22.59% of the combined peak rate of all the cores in use (8 PPEs, 56 SPEs, and

2 x86 cores, for a total of 66 cores with a combined peak rate of 1465.6 Gflop/s). Recall that an unachievable

upper bound of the application executing on a single SPE (without including any DMA, communication, or

other overheads) is 27.68% of peak. While a direct comparison cannot be made between a single SPE and

the hardware configuration used for point G(4), this upper-bound should provide some context in which to

access the performance achieved at point G(4) since the majority of cores in use are SPE cores.

4.4 Static Load Balancing Summary

In this chapter, the application of the programming model extensions and runtime system modifications

discussed in chapter 3 were applied to a simple MD application. The MD application was then executed using

various combinations of nodes within a heterogeneous cluster made up of QS20 blades (blades), Playstation

3s (PS3), and a dual-core x86-based node (x86 cores). In section 4.3.2, homogeneous executions were made

(i.e. a single run only used nodes that were alike one another, even though each node may or may not

have been internally made up of a heterogeneous set of cores). In section 4.3.3, heterogeneous executions
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were made up to, and including, all of the nodes within the heterogeneous cluster. Various aspects of these

executions were discussed, including pointing out that the performance differences between the x86 cores

and the Cell processors allowed the application to scale better.

When using all of the nodes within the the heterogeneous cluster, the application is making used of a total

of 66 cores (8 PPEs, 56 SPEs, and 2 x86 cores). In this configuration, the application achieves a measured

performance rate of 331.13 Gflop/s, or 22.59% of the combined peak rates of all the cores in use. When

executing on this hardware configuration, the application is making use of 3 different types of cores (PPE,

SPE, and x86), 3 different ISAs, 3 different SIMD instruction extensions, and 2 types of memory structures

(cache hierarchy and scratchpad memories via DMA transactions). Despite all the differences between the

cores being used by the application, the application does not include any architecture specific code. Rather,

it makes use of the programming model extensions and runtime system modifications presented in chapter 3.

Further, the set of AEMs that were issued to the host core(s) where executed sequentially (one-by-one), while

the AEMs there were issued to the SPEs were streamed through the SPEs, with data movement overlapping

with computation within each SPE and parallelism occurring across SPE cores.

Again, the contents of this chapter were previously discussed in much greater detail in our previous

publications [63, 64]. If the reader wishes to have more insight into this topic, please refer to our previous

publications. The results have been summarized here since they are highly related to the overall body of

work surrounding support for accelerator technologies and heterogeneous computing with Charm++.
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Chapter 5

Dynamic Load Balancing

This chapter will discuss the load balancing of workload across a heterogeneous set of processing cores. In

the previous chapter, we discussed using a static load balancing technique to a molecular dynamics (MD)

application. Using the same programming model extensions, which allow pieces of work to be mapped to

various types of cores, a natural next step is to understand what a runtime system can do in terms of

automating the load balancing process at runtime.

This chapter will be referring to two types of load balancing strategies. The first type of load balancer is

the type that already exists within the Charm++ runtime system. In this document, these load balancers

will be referred to as across host core load balancers. The second type of load balancer balances work

between a given host core (PE) and its associated accelerator device and will be referred to as accelerator

load balancers. Together these two types of load balancers form a multi-tier approach to load balancing

structure that will be discussed in further detail as this chapter continues.

In chapter 4, the experiments were performed on a cluster that contained both x86-based and Cell-based

nodes. However, in recent years, the Cell processor has seen a decline in its popularity. Due to the declining

popularity of the Cell processor, along with our desire to demonstrate our approach on multiple types of

accelerator devices that are fairly different from one another, we will make use of CUDA-based GPGPUs

within this chapter.

Chapter 4 used a static approach to load balancing, where the application code included the load balanc-

ing mechanism directly. In this chapter, we will discuss our efforts to push the load balancing mechanism

into the runtime system with the goal of automatically load balancing a workload across a given set of host

cores and accelerator devices. First, we plan to consider cases where a given workload will be shared between

cores, host and accelerator alike, within a given node. We will also explore incorporating multiple nodes

within a heterogeneous cluster. We also plan to consider cases involving interference, since workstations that

incorporate accelerators are sometimes used as shared resources. If multiple applications are making used

of the same hardware resources (i.e. accelerator cores) they will likely interfere with one another in terms

of their performance. We begin by discussing the mechanisms that have been included within the runtime
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system that are related to our dynamic load balancing efforts.

5.1 Accelerator Load Balancing Strategies and the Accelerator

Manager

Several accelerator load balancing strategies have been included within the accelerator manager. These

accelerator load balancing mechanisms act locally to a given host core and accelerator device pairing, though

they may or may not coordinate across host cores. Some of the load balancing strategies are fairly simple

and mainly intended to provide basic functionality and/or to be useful for diagnostics, measuring, and

testing purposes, while other strategies dynamically balance the workload with the goal of increasing the

performance of the application. The choice of which accelerator load balancing strategy the runtime system

will use for a given application is specified on the command line when the application is launched. In

addition to allowing the use of a single accelerator load balancing strategy, the accelerator manager also has

the ability to queue several strategies, allowing later strategies to make use of the output of earlier strategies.

This is particularly useful in implementing profilers, which measure various aspects of the application for

the explicit purpose of allowing later strategies to make use of the information.

All of the accelerator load balancing strategies within this section make use of dynamic assignment. By

“dynamic assignment” we mean that the location of any given accelerated entry method will be determined as

the AEM is being invoked on the target chare object based on current circumstances, rather having the AEMs

for each object have a fixed location for execution. For example, consider the case of an application that has

timesteps, and recall that the order of message delivery is not guaranteed in the Charm++ programming

model (i.e. if message A was sent before message B, there is no guarantee that A will arrive before B, even

if both messages are sent from processor X and received by processor Y ). Consider a situation where the

same AEM is invoked on chare object X once per timestep, and that it just so happens that the AEM is

invoked near the beginning of timestep i and at the end of timestep j. Since the conditions under which

the AEM is being invoked on chare object X in each timestep are different (i.e. the start versus the end of

the timestep), under dynamic assignment, the location where the AEM is actually executed (i.e. host core

versus accelerator device) may be different for timestep i and timestep j. In our approach, it is also possible

to use static assignment. The subject of static assignment will be discussed within the context of persistent

data in section 6.3.
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Figure 5.1: Balancing a workload across the host and accelerator.

5.1.1 Modeling Workload Balance

While different load balancing strategies go about balancing the workload of an application in different ways,

there is a single model that they all used to understand what the balance point should be. For the most

part, the discussion of the load balancing strategies will be framed in terms of the percentage of the workload

that is offloaded to the accelerator device, or just the percent device value for short. Since the accelerator

load balancing strategies act locally on a single host core and accelerator device pairing, we present a model

that describes the effects of dividing a given workload between two different types of processing elements.

Comparing Workloads Between Two Processing Elements

Figure 5.1(a) illustrates the expected outcome of dividing a given workload between a single host core and

a single accelerator device. The horizontal axis represents the percentage of the workload that is being

passed to the available accelerator device (i.e. the percent device value). Starting from the right edge of the

graph and moving to the left, a larger and larger portion of the workload is being assigned to the accelerator

device. Conversely, starting on the left edge of the graph and moving towards the right, a greater and greater

portion of the workload is being assigned to the host processor. The vertical axis represents execution time.

Note that a lower value indicates higher performance since the performance of an application is inversely

proportional to its execution time, assuming a fixed workload. There are two plots, one for the host core

72



(green) and one for the accelerator device (blue).

Figure 5.1(a) is drawn in such a way as to represent a case where the accelerator device performs a given

workload only slightly faster than the host core. As such, the best performance (lowest execution time) would

be achieved when the workload is almost evenly divided between the host and accelerator device. Figures

5.1(b) and 5.1(c) show how one would expect the graph to look if the accelerator device were significantly

more powerful and if the host core were significantly more powerful, respectively. Further, there is a black

dotted line that overlaps with both plots that represents the maximum of the two plots for each percent

device value. Note that the intersection of these two lines represents the minimum execution time for the

given calculation and moves in such a way as to indicate a higher percentage of the workload should be

placed on the processing element that provides the greatest performance relative to the other processing

element. This intersection point is referred to as S (the sweet spot). Also note that the absolute magnitude

of the slope of the plot associated with the more powerful processing element approaches zero (i.e. is more

horizontal) as the performance of that processing element increases relative to the other processing element.

There are two points on the host core’s plot that we used to define it: Hfull and Hbase. The Hfull point

represents the time to execute the given workload when the entire workload is being executed on the host

core, leaving the accelerator device unused (i.e. percent device equals 0%). Conversely, the Hbase value

represents the amount of time that the host core takes to execute its portion of the workload when all of the

accelerated entry methods within the workload are being executed on the accelerator device (i.e. percent

device equals 100%). Note that, even when all of the AEMs are being executed on the accelerator device,

there are still non-accelerated entry methods that host core is required to execute, which we refer to as the

base load of the host core.

In a similar manner, there are two points that we used to define the plot for the accelerator device: Dall

and D1. The Dall point represents the time to execute all of the accelerated entry methods on the accelerator

device (i.e. percent device equals 100%). The D1 point represents the time it takes to execute a single AEM

on the accelerator device. Note that the time to execute zero AEMs on the device will always result in zero

execution time for the accelerator device, since unlike the host core, the accelerator device does not have

any duties beyond executing the AEMs that have been assigned to it. However, the time to execute a single

AEM represents the minimum amount of time required to execute any number of AEMs on the accelerator

device. Referring only to the execution of AEMs, the speedup of the accelerator device relative to the host

core can be defined as SpeedupD/H = Dall/Hfull.

Note that we are idealizing the plots in figure 5.1(a) in order to illustrate the model. However, in

reality, these plots may not be straight lines for a variety of reasons. The most obvious reason is that
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the accelerated entry methods discrete sizes, and as such, the plots are likely to have a stepping nature

when viewed closely. However, assuming a significant number of chare objects, and thus AEM invocations

associated with them, the plots will appear sufficiently smooth at a macro level. For the accelerator device’s

plot, there are also device specific considerations that may further increase the stepping nature of the plot.

For example, GPGPUs include many cores. As such, shifting a single AEM from the host core to the

accelerator device may have a negligible effect on the execution time of all the AEMs because the new

AEM’s execution completely overlaps with one or more AEMs that were previous assigned to the device

(“negligible” since a small amount of overhead may occur, even if the execution completely overlaps). Other

sources of non-smoothing effects include the overlap of computation on the accelerator device with data

transfers to and from the device, the interleaving of multiple threads on a single core (for GPGPUs in

particular), the batching process performed by the runtime system, having multiple types of AEMs present

in the application (potentially also a non-linear effect), and so on. However, we assume that there is a

sufficient large number of AEMs, and as such these lines will appear to be smooth at the macro level, as our

experiments later in this chapter will demonstrate. We point these non-smoothing effects out so that the

reader is aware of them, even though we have drawn the plots in figure 5.1(a) as smooth lines.

We further assume that the time to execute a subset of the overall workload increases monotonically as

the size of that subset increases, regardless of where the subset is being executed (host core or accelerator

device). In other words, we assume that the execution time of a given amount of work on a processing

element will always be greater than or equal to the execution time of a smaller amount of work on the

same processing element. Given this assumption, there will be a performance sweet spot (S ) where the time

required to execute the overall workload across both cores is minimized. To the left of S (i.e. a higher

percent device value), the accelerator device is overloaded and the workload referred to as “device bound.”

To the right of S (i.e. a lower percent device value), the host core is overloaded and the workload is referred

to as “host bound.” Figure 5.2 illustrates that such a point S exists even if the relationship between the

amount of work and the time to execute that work is not a linear relationship. When looking at figure 5.2

(or figure 5.1), recall that the workload of the accelerator device increases from right to left (blue plot) and

the workload of the host core increases from left to right (green plot). Not all possible combinations are

shown (e.g. host being sub-linear and the device being super-linear). However, we believe that these are

the likely situations since the same code (i.e. accelerated entry method function bodies) is being used for

both the host core and the accelerator device. In cases where the programmer wishes to include architecture

specific code, such as mismatch may occur. Regardless, the overall point remains the same. As long as the

time taken to execute a workload grows monotonically relative to the size of the workload for both the host
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Figure 5.2: Balancing a workload across the host and accelerator.

core and the accelerator device, such a performance sweet spot (S ) will exist. In cases where the plots may

have flat regions (i.e. are not strictly monotonic), S may actually be a contiguous set of values rather than

a single value.

It should also be noted that, while we are talking about the graphs in figures 5.1 and 5.2 in terms of

having a host core and an accelerator device, the same type of graph would be applicable between any two

processing elements. While this discussion has been framed in terms of having a host and accelerator, it is

trivial to extrapolate it to compare any two processing elements, regardless of their type.

5.1.2 Base Class for Accelerator Load Balancing Strategies

Before describing the various accelerator load balancing strategies included within the accelerator manager,

the base class used to implement the strategies will be discussed. The base class that all accelerator strategies

derive from is called AccelStrategy. AccelStrategy is an abstract base class that defines an interface (set of

virtual functions) that the accelerator manager uses to notify the strategy of events and to request that

a strategy make decisions about where to execute each of the accelerated entry method invocations. The

following list of virtual functions is intended to give the reader an idea of how the accelerator manager and

a strategy interact, but is not an exhaustive list.

• AccelError decide(int funcIndex, AEMReord *record, AccelDecision &decision, void *ob-

jPtr, AccelManager *manager) : The decide function is called by the accelerator manager each

time an accelerated entry method is invoked. The funcIndex is the unique value assigned to each type

of AEM. The AEMRecord is a data structure that contains information related to each type of AEM,

including a void* strategyVars parameter that can be used by the strategy to store data between calls

to decide and information about the number of local objects that are associated with the AEM type.

A decision data structure is filled in by the decide function and represents the decision about where
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the particular AEM invocation should be executed. The objPtr parameter is a pointer to the actual

chare object that the AEM is being invoked on. The manager is a pointer to the accelerator manager

calling the decide function.

• void notifyIdle(AccelManager *manager) : The runtime system passes notifications to the accel-

erator manager to indicate when the host core transitions between idle and busy states. Additionally,

a periodic notification occurs each second (approximately). Once the total time (idle plus busy) has

accumulated to a given minimum amount, the accelerator manager will pass a notification that idle

and busy time statistics are ready to be consumed by the strategy by calling this notifyIdle function

on the strategy. The notify function can then consume the data and/or reset the statistics to start the

accumulation process over again. If reset, the notifyIdle function will not be called again until the total

time has accumulated pass the minimum point once again. If not reset, the notifyIdle function will

continue to be called each time a idle/busy transition occurs (or at a periodic rate if such transitions

do not occur). The manager parameter is a pointer to the accelerator manager.

• void periodicSample(double value, AccelManager *manager) : Each time the takePeriodic-

Sample function is called on the accelerator manager (refer to section 3.3.1), the accelerator passes this

measured value on to the strategy via the periodicSample function. The value may either be the value

passed to the takePeriodicSample function or a generated value if no such value was supplied. Gener-

ally speaking, the strategies will use the passed in value as a way of gauging if their adjustment(s) to

the percent device value(s) are having positive or negative effects on the application’s performance. For

the strategies that we have included within our implementation, it is assumed that the value passed in

is inversely proportional to the performance of the application (i.e. the strategy should be attempting

to minimize the value and a lower value indicates better performance than a larger value). However,

future strategies may be written to maximize, minimize changes in, or otherwise interpret the passed

in value as they see fit. The manager parameter is a pointer to the accelerator manager.

• void notifyLBFinished() : The notifyLBFinished member function is called immediately after

across PE load balancing occurs, so that the accelerator strategy can take any appropriate actions.

For example, the Sampling strategy, which will be discussed later, resets its history of performance

samples since the load balancing process may or may not affect the balance point. If the balance point

were to change and the history of old performance samples were retained, then the old values would

hinder the Sampling strategy’s ability to find the appropriate balance point until the old performance

values were replaced by updated values. Further, in some cases, the presence of the old values may
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cause the Sampling strategy to avoid resampling certain percent device values altogether by causing

the strategy to not reconsider them as possible improvements relative to other percent device values.

• int safeToRemove(), void aboutToAdd(AccelManager *manager), void aboutToRemove(

AccelManager *manager) : These functions are used by the accelerator manager when attempting

to swap strategies. If there are multiple strategies in the queue of strategies, then the safeToRemove

function is used to indicate to the accelerator manager that the current strategy is in a safe state to be

removed from active duty. In most cases, this involves the strategy having evacuated all of the AEMs

off of the accelerator device and having no batch sets in the process of being created. Except in cases

when a strategy can pass percent device values to the next strategy, this requirement of evacuating the

accelerator device ensures that application will not hang because of an outstanding and uncompleted

AEM batch set is never issued to the accelerator device and not being detected by the next strategy.

Since strategies are exchanged infrequently, if at all, within an application’s execution, the overhead

imposed by this requirement will be minimal over the course of the entire application. The manager

parameters are pointers to the accelerator manager.

• int getStrategyType() : This function returns a unique value associated with each type of accelerator

strategy. It is used by the accelerator manager to identify which strategy is in use.

• void* allocStrategyVars(), void freeStrategyVars(void* vars) : The allocStrategyVars and

freeStrategyVars functions are used to allocate and free, respectively, the strategy variables associated

with each AEMRecord (one per type of accelerated entry method). This mechanism allows for a

persistent state associated with each type of AEM to be retained between calls to the decide function,

as well as the other functions within the strategy.

Again, the list of virtual member functions associated with the AccelStrategy abstract class is just meant

to give the reader a sense of how the accelerator manager interacts with the accelerator strategies. It is not

meant to be an exhaustive list of all the functionality provided. Further, the declarations of these functions

may change over time as more functionality is added. The various accelerator strategies that will be covered

in this document have all been implemented on top of the abstract class AccelStrategy, as a direct or indirect

child, and make use of the virtual functions listed above.

5.1.3 List of Accelerator Load Balancing Strategies

This section will descrive the various accelerator load balancing strategies that have been developed and

added to the Charm++ runtime system as part of this work.
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Basic Utility Strategies

There are three basic utility strategies included within the accelerator manager: HostOnly, DeviceOnly, and

PercentDevice. The first two strategies are straight forward. The HostOnly strategy, as the name implies,

executes any and all accelerated entry methods on the host core. The DeviceOnly strategy does exactly the

opposite, executing any and all AEMs on an available device. If no device is available and the DeviceOnly

strategy is specified, the host core will be used to execute the accelerated entry methods.

The PercentDevice strategy is used to set a percent device value, as specified on the command line. This

specified value is used throughout the execution of the application, allowing the user to select a balance

point for dividing the overall workload between the host core and an attached accelerator device. In this

strategy, the same percent device value is used for each type of accelerated entry method, which may lead to

less than optimal results. However, a benefit of this strategy is that it is simple (i.e. it does not require a lot

of overhead to calculate the balance point in an automated way), which can be useful for applications that

have short running times, giving any adaptive strategy too little time to adapt. While other strategies may

be able to seek a good balance point based on actual measurements of the application, those measurements

require the application to be executing for some amount of time while the measurements are being taken.

Stepping Percent Device (Step)

The Step strategy begins executing all of the accelerated entry methods within the application on an available

device. When this strategy is specified on the command line, a step size value is also specified. At regular

intervals, the Step strategy will reduce the percentage of AEMs that are executing on the device by the step

size specified. As time goes on, the percent device value will continue to drop, until all the AEMs are being

executed on the host (i.e. percent device value of 0%). The point of this strategy is to allow a programmer

to determine the performance sweet spot (S), or at least a point close to the sweet spot. Once this point is

known, the programmer will have a better understanding of how other strategies are performing relative to

their application and/or will have an idea of how to set fixed strategies such as the PercentDevice strategy

mentioned above. However, because the Step strategy is meant to be a simple diagnostics strategy that gives

the programmer an idea of a good balance point between the host cores and the accelerator cores for their

application, the same percent device value is used for each type of accelerated entry method. Since the ideal

balance point between the host and accelerator cores may involve having a different percent device value for

each type of accelerated entry methods, the results of the Step strategy may not be ideal and should only be

used as a reference to give the user a general sense of how to balance the overall workload (i.e. to have an

idea of how the performance achieved with another strategy is good or bad, in a general sense). Clearly, the
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Step strategy is not meant to be used in an actual production setting, as it will spend most of its time at

settings other than the sweet spot (S). If the performance of an application executing using the Step strategy

were to be plotted over time, one would except that graph to have a single plot resembling the maximum of

the two plots presented in figure 5.1(a) from section 5.1.1.

Balancing Busy Time Heuristic (AdjustBusy)

The first accelerator load balancing strategy intended to optimize performance is a simple heuristic that

will be referred to as AdjustBusy. The basic idea is that the runtime system will keep track of the busy

times of both the host core and the associated accelerator device and periodically attempt to adjust the

percent device value so that the host core and accelerator device have the same amount of busy time. The

motivation for balancing the busy times comes from figure 5.1(a) in section 5.1.1. Essentially, the plots

for the two processing elements meet at the point S, where both processing elements are taking the same

amount of time to execute their respective fractions of the overall workload. As such, the host core and

accelerator device should have an equal amount of busy time, assuming there is no unavoidable idle time

(discussed below).

A nice feature of using this heuristic is that it can be implemented locally, without requiring coordination

between the host cores. As such, the interference with the application should be minimal. However, a

downside is that the heuristic isn’t basing the decision of how to divide the workload between the host core

and the accelerator device on the actual performance of the application. Obviously, measuring the busy

time of processor is a measurement of the application’s performance, but it is only a single aspect of the

application’s performance (both in that each host core only know’s its own busy time (partial information)

and in that idle time is ignored). It is possible for the performance of an application to decrease significantly

while, at the same time, a single pairing continues to measure the same amount of busy time. It is also

possible for communication latencies to incrase significantly, causing a slowdownin the application, increasing

each core’s idle time, but not increasing their busy times. It is in this sense that we draw a distinction between

measuring the busy time and measuring an application’s performance. As we have just eluded to, there are

a couple of reasons why simply using busy time without measuring actual application performance could

prove to be problematic.

First, in cases where a certain amount of idle time on the host is unavoidable, this idle time is not counted

as part of the busy time, but does play a part in defining the lower bound of the application’s execution

time. To put it a bit more precisely, there may be situations where the value of the host plot at some given

point (or set of points) in figure 5.1(a) may include idle time that cannot be avoided. Having the runtime
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Figure 5.3: An example breakdown of one timestep in an arbitrary application

system adjust for such induced idle time can get very complicated very quickly. In particular, because the

data dependencies related to the AEMs execution on the accelerator may or may not be the cause of the

idle time. Furthermore, those data dependencies may indirectly cause the idle time, via a chain of data

dependencies that crosses node boundaries.

Second, there may be some startup period in applications that have timesteps. In this context, the term

“startup period” refers to a period of time near the start of each timestep where the host core will be active

but the accelerator core will not be active. Such startup periods can be induced for various reasons, including

(1) the accelerator device waiting for some data to arrive from a remote node before the first AEM assigned

to the accelerator can execute, (2) the inherent latency related to triggering AEMs on the accelerator device,

and (3) the batching technique (used by the runtime system to increase granularity) artificially delaying the

first several AEMs assigned to the accelerator device until the first batch set is formed. To account for this

startup period, and other non-overlapping execution occurring on the host core, the BaseLoad profiler can

be used to measure overlapping and non-overlapping base loads on the host core. The BaseLoad profiler

will will be discussed further in section 5.1.3.

To make both the unavoidable idle time and startup period idea a bit more concrete, figure 5.3 illustrates

these concepts via an imagined timeline of some arbitrary application executing on system with a GPGPU

accelerator device. Since one of the effects is related to applications with timesteps, this example will assume

the application has well defined timesteps. The scenario in figure 5.3 is a simple one, but illustrates both

of the concepts discussed above. The blue colored blocks represents the work associated with accelerated

entry method, while the green blocks represent other work that can only be executed on the host core. The

timestep starts at time α with the host core beginning the batching process for the AEMs (A) that will be

pushed down to the accelerator device. However, if multiple nodes are being used, not all of the data may be

present. Therefore, the host may not have enough work accumulated within the current batch set and must

wait for the incoming data to show up from the remote location (i.e. C does not occur directly after A).

In the meantime, the host core can move on to other pending work while waiting for the remaining AEM

80



invocations to occur (B). Once the required data arrives, the host core is able to complete the batching

process and issue the work to the accelerator device at time β. Note that there is an unavoidable delay

between the host triggering the execution of the AEMs and the batch set beginning to execute on the

accelerator device at time γ. The time period from α to γ represents the startup period associated with the

timestep, where the accelerator device will be idle and the host core will be busy. In this case, there are

two contributing factors to the startup period, both the batch process used for GPGPUs and the inherent

latency associated with offloading work from the host core to an accelerator device. This scenario is just

one example of how the startup period might be structured. In another scenario, the runtime system may

create multiple AEM batch sets to be offloaded to the accelerator device, allowing the first batch set to

be issued shortly after A completes, before time β, and allowing the AEMs being invoked as part of C to

be issued in a later batch set. Moving on, some of the AEMs will execute on the host core, blocks E and

H. However, again, there may be some delay in the arrival of the incoming data associated with block H

causing a block of idle time, G, to occur on the host processor. This delay could be caused by a number

of reasons, including a remote core being overloaded or some other delay in a chain of data dependencies

leading up to the AEM being invoked within H. There is also another idle block of time on the host core, I,

that is caused because the host core has run out of work to perform and the accelerator device is still busy

processing its portion of the workload. Note that, the idle times G and I have occurred for different reasons.

In the case of G, the idle time may not be avoidable, depending on the nature of the application itself (e.g.

data dependencies delaying a message send). However, in the case of I, the idle time is caused by a workload

imbalance between the host core and the accelerator device causing the accelerator device being overloaded

relative to the host core. Finally, at time δ, the accelerator finishes its work and notifies the host. After

some small, unavoidable delay, the host is notified at time ε and the callback associated with the batch set

is triggered on the host core. Once the callback has completed, at time ζ, the timestep is complete.

Keep in mind that this scenario is just one of many possible cases and only meant to give an example

of how the scheme of balancing the host core’s and accelerator device’s busy times within the AdjustBusy

strategy may fall short. Note the dashed lines relating the busy times between the host and the accelerator

device in figure 5.3. In particular, note that the amount of busy time on the host and the amount of busy

time on the accelerator are equal to one another. However, it is fairly clear that the block of idle time

labeled I could be filled in with some of the work that has been assigned to the accelerator. In other words,

there is an opportunity to further reduce the time per timestep, and thus, improve the performance of the

application. However, the AdjustBusy strategy, once it has reached this point, will not attempt to the adjust

the workload balance between the host core and the accelerator device any further since the busy times of
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the host and accelerator device are already equal. One straight forward way to improve on the AdjustBusy

time strategy would be to identify and measure the amount of busy time on the host that does not overlap

with accelerator. In this particular example, the time periods from α to γ (startup period) and from ε to ζ

(non-overlapping callback time, which would only occur for the last callback if there are multiple batches on

the accelerator device). Measuring these time periods will be discussed further in section 5.1.3. If the overall

busy time of the host is reduced by the amount of busy time contained within these periods (adjusted busy

time), then the adjusted busy time of the host is clearly less than the busy time of the accelerator which will

result in the AdjustBusy strategy moving work from the accelerator to the device as it attempts to balance

the two busy time values.

Sampling Timestep Timing (Sampling)

Since the AdjustBusy heuristic discussed in section 5.1.3 does not actually take the performance of the

application into account, we developed another accelerator load balancing strategy, called the Sampling

strategy. The basic idea behind the Sampling strategy is to periodically take note of the time it is taking

to complete an equal amount of work (e.g. the time to complete N timesteps) in an effort to directly relate

changes in the percent device value to changes in the performance of the application. The assumption is

that a decrease in performance will result in an increase in the time to execute each timestep, which in turn

will affect the value passed to the accelerator manager via the takePeriodicSample function.

Usage: The Sampling accelerator strategy requires the application to have a periodic point in the

application (explicitly or implicitly) that occurs at regular intervals such that the work between these points

remains constant (or at least as constant as possible). An example of such a point would be the beginning

of a set of timesteps where the amount of work performed by the application within each set of timesteps

remains fairly constant. The programmer can explicitly mark this point in the application by calling the

takePeriodicSample function from within their application code at a location that fits the requirements of the

periodic point. If this explicit method is used and the programmer generates a custom performance value

to be passed into the takePeriodicSample function, the Sampling strategy will assume that lower values

related to better performance. If no performance value is passed into the takePeriodicSample function, then

the function will automatically generate a performance value based on the time intervals between successive

calls to the function, again assuming that less time per interval relates to an increase in performance.

Alternatively, a command line option can be used to indicate that the runtime system should implicitly

makes calls to the takePeriodicSample function. If this method is used, the runtime system will internally

make these periodic calls based on the frequency of AEM invocations. In other words, the runtime system
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assumes that the performance of the application increases as the frequency of AEM invocations increases

(regardless of location), and vice versa. However, this method is not always reliable. For example, the

number of AEMs being invoked may change over the course of the application’s lifetime, based on the

current conditions within the application. As such, the strategy may be fooled into thinking that there has

been a performance increase or decrease, when no such change has actually occurred. As such, this method is

mainly useful for applications where the number of AEMs executed per unit of time remains fairly constant.

Internal Construction of the Workload Balancing Graph: Regardless of the method used (implicit

or explicit sampling), the samples are essentially used by the Sampling strategy to internally construct the

maximum of the host core and accelerator device plots. The maximum is visually marked using black

dashes in figure 5.1(a), which overlaps with each of the original plots to some degree. Each time the

takePeriodicSample function is called, it is considered to be a single sample taken for the current percent

device value. Once enough samples have been taken, the runtime system will adjust the percent device

value. The exact decision process for determining how the percent device value will be modified is based

on the overall set of samples taken so far. Essentially, the decision process seeks to find a valley in the

workload balancing graph (figure 5.1(a)) by constantly trying to move downhill (towards zero on the vertical

axis) as the percent device is adjusted. For any given percent device value, there is a maximum number of

samples that will be retained by the runtime system before older samples will be dropped as newer samples

are taken. This allows the Sampling strategy to retain a history of the measured performance as it seeks a

minimum execution time (maximum performance). However, if the environment in which the application is

executing changes over time, affecting the performance of the application, the Sampling strategy is capable

of adjusting to those changes over time as old samples are discarded by more recent measurements.

Since the workload balancing graph is be created over time by sampling the performance of the application

at different percent device values, the generated graph may contain only a sparse number of data points

(especially near the beginning of the application’s execution) as well as stale measurements (especially as

the application’s execution continues on over time). In constructing the graph, the range of possible percent

device values (i.e. from 0% to 100%, inclusive) is discretized using a given resolution that is specified as part

of the accelerator manager’s configuration when the runtime system is compiled (currently set to 0.5%). At

any point in time during an application’s execution, many of the possible percent device values may not have

performance samples associated with them. In these cases, the performance value for that percent device

value is assumed to be minimum of the values of the two closest percentages (one greater and one lesser)

which do have actual measured values on either side of the percentage in question.

To make the idea of how the Sampling strategy constructs the workload balance graph a bit more
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Figure 5.4: An example illustrating the construction of the workload balance graph by the Sampling accel-
erator load balancing strategy.

concrete, figure 5.4 illustrates how the workload balance graph is constructed. In this figure, it is assumed

that the execution of the application is not far along, and as such, the performance of the application has

only been sampled for five unique percent device values, A, B, C, D, and E (though, multiple samples have

have been taken for each unique percent device value). Further, it is assumed that the default behavior of

takePeriodicSample is being used, which uses the time intervals between consecutive calls to measure the

performance of the application. For percentages that have not been sampled yet, the minimum of the two

actual measurements on either side of the given percentage is used as the performance value for the given

percentage. For example, in figure 5.4, there are no actual measurements taken for any percentages between

B and C, so the performance at every percentage in between these two percentages is assumed to be the

best performance level (lowest time) measured at either of these two points (in this case, the performance

measured at C). As a whole, the graph can be conceptually broken down into three regions of percentage

values, α, β, and δ. The α region includes the percent device values which cause the application to be device

bound. In a similar way, the δ region includes the percent device values which cause the application to be

host bound. The β region indicates the range of percent device values where the sweet spot (S) may be

found, or in other words, where the application has achieved the best performance based on measurements

taken up to the point in time represented within figure 5.4. Generally speaking, when the application starts,
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the entire range of possible percent device values (i.e. 0% to 100%) is included within the β region. As

time goes on and more measurements are taken, the β region will continue to narrow down until it only

encompasses a small set of percentages located near the sweet spot (S) from figure 5.1(a).

Adjusting the Percent Device Value: When deciding how to choose new percent device values,

the Sampling strategy will examine the current workload balancing graph and choose the already sampled

percentage which resulted in the best performance in the application’s execution so far, γ. The strategy will

then consult the workload balancing graph to either side of γ at some fixed distance, ε (the exact distance is

a configuration parameter at compile time, but is roughly 2-3% within our experiments). The performance

levels for these three percentages (γ+ε, γ, and γ−ε) are then compared to determine what percentages will

be sampled next (note that the performance at percentage γ will have been measured, but the performance

at percentages γ+ ε and γ− ε may be either actual measured values or assumed values as described above).

If the three points form a clear slope (e.g. p(γ + ε) > p(γ) >= p(γ − ε) or p(γ + ε) <= p(γ) < p(γ − ε),

where p(ζ) is the performance, measured or assumed, of the application at percentage ζ), then the Sampling

strategy will queue several (3) equally spaced values downhill (i.e. in the direction of better performance) of

percentage γ, including γ as one of the set. In the case of a flat region or a valley centered around percentage

γ (i.e. p(γ + ε) >= p(γ) <= p(γ − ε)), a range of equally spaced percentages centered on γ are queued as

the next percent device values that the Sampling strategy will sample.

Whether the newly queued percentages are downhill of or centered on γ, their distance from γ is chosen

to be relatively small (typically less than 5%). As will show experimentally in section 5.4.2, even small

adjustments to the percent device value can result in significant performance degradations. As such, we

choose to make smaller adjustments within our implementation. This decision may require more overall

adjustments to be made in order to reach the best performance levels. However, the rate at which samples are

taken is directly proportional to the performance of the application. Small adjustments that are consistently

in the direction of better performance also results in a steady increase in the rate of performance sampling.

Recall that each sample represents a period of time that has passed, and that a decrease in performance

will result each sample taking a longer period of time. If a large movement is made that greatly decreases

the performance of the application, the time spent at that percent device value may also be quite significant

since it takes more time to collect each performance sample and there is a minimum number of samples taken

between percent device adjustments. For example, consider a case where an accelerator device provides a

significant speedup, such as 30x. The time taken to collect the minimum number of performance samples

when the percent device value at 0% would be approximately thirty times longer than when the percent

device value is 100%.
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Measurement Noise: It is also worth noting that, since the Sampling strategy makes use of measure-

ment values, it is inherently exposed to the effects of noise on its measurement values. As already stated,

multiple samples are taken in between each percent device adjustment as one method of alleviating the

effects of noise within the performance measurements. Additionally, each point in the workload balanc-

ing graph accumulates performance samples over time (with old samples eventually being replaced by new

samples after a maximum number per percent device value have been accumulated). The value for a given

percent device value in the workload balancing graph is calculated by averaging all of the samples, after first

removing the minimum and maximum sample values. Noise can arise from many causes, including variances

in data transfers (DMAs, network messages, etc.), variances in execution times for entry methods, variances

in memory access times (i.e. accessing different levels of a cache hierarchy), resource contentions between

asynchronous tasks, and so on.

Beyond the noise that is a natural part of any computing system, the runtime system also introduces a

certain amount of noise into the sampling process. Speaking generally, each time the runtime system takes

some action, that action takes a certain amount of computation and time, which decreases the performance

of the application, at least in an immediate sense, by temporarily stalling application progress as the action

is performed. Obviously, the quicker and less invasive the actions taken by the runtime system are, the less

noise they will create within the application. Further, the application may go through phases of increased

or decreased runtime system activity. Some of these phases may be fairly short but quite intense, such as

during the creation of an application checkpoint or during global load balancing.

The Sampling strategy itself creates noise within the application as it attempts to measure the application.

This is particularly true in the case when static assignment is being used in the presence of persistent data

buffers (discussed in section 6.3). In the case of the Sampling strategy temporarily stalling the application as

it adjusts the percent device value, the pattern of the induced noise is predictable. The noise is introduced

during a short time period directly following the percent device value adjustment (as a direct result of

the adjustment calculation and during the process of applying the given adjustment). Since the noise

introduced by percent device value adjustments is predictable in this way, the Sampling strategy ignores

one or more performance values immediately following an adjustment (we ignore two for our experiments,

but this amount can be adjust within the runtime system code). This is another method by which our

implementation attempts to alleviate the effects of noise. Even though we have introduced this technique

within the discussion of the Sampling strategy, it should be noted that other strategies make use of this

technique as well.

Modes of Operation: The Sampling strategy can be applied in a centralized or a decentralized way.
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In the centralized approach, the periodic sampling and decision process only occurs on host core 0. When

each adjustment to the percent device value is made on host core 0, that change is broadcast to all of the

host cores, guaranteeing that the same percent device value is being used across all of the host core and

accelerator device pairings within the application. The centralized approach introduces a small amount of

communication as new percent device values are distributed. A downside to the centralized approach is that

all of the host core and accelerator pairings are being forced to use the same percent device value. As such, if

a single pairing begins suffering from decreased performance for an extended period of time (e.g. if another

application begins sharing the accelerator device, but not the host core), then that pairing’s percent device

value cannot be adjust independently of the other pairing’s percentages. Instead, an across host core load

balancer would be needed to prevent the single slow pairing to become a bottleneck by migrating work from

the slower pairing to other higher performing pairings. However, on clusters were nodes are dedicated to at

most one application at any given moment, this will likely not be an issue.

A decentralized approach can also be enabled, which eliminates the need for the added communication to

be introduced into the application’s execution. In the decentralized approach, each of the host cores locally

take the periodic measurements (requiring the periodic point to occur on all of the host cores if the explicit

sampling approach is used). While the decentralized approach removes the added communication, it also

suffers from the fact that the host cores’ local percent device adjustments are not synchronized. Note that

the overall performance of a given parallel application (in particular, tightly coupled parallel applications) is

usually defined by the slowest processing element. If any host core adjusts its local percent device value is

such a way that degrades the performance of that host core, the overall performance of the application will

degrade as a result of the natural data dependencies within the application. As such, all of the host cores,

when measuring the performance of the application within their own local vantage points, will measure a

decrease in the application’s performance and associate that slowdown with its the percent device value the

host core currently has applied. This opens the possibility for a single measurement on a single host core to

have rippling effects across all of the host cores. In fact, it can result in an artificially created local minimum

forming in each of the local workload balancing graphs for each host core. The issue arises when the percent

device values are all either in α or δ regions of the workload balancing graph, referring back to figure 5.4 (i.e.

the application is either host bound or device bound), and something causes the percent device values across

the host cores to diverge (i.e. one or more host cores temporarily experience a slowdown for any reason).

Locally, this core will immediately measure a slowdown, causing its local workload balancing graph to differ

slightly from the graphs on other cores. This single host core then may incorrectly decide that it has found a

local minimum and revert the percent device value to uphill value (i.e. away from S ). Meanwhile, the other
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host cores correctly deduce that they are on a slope and should continue moving their percent device values

downhill (i.e. towards S ). Since the performance of the host cores are directly related to one another as a

result of data dependencies within the application, a slowdown on a single host core will soon slow down the

overall application, causing all of the host cores to measure a lower level of performance than they otherwise

should have measured had the percent device values not diverged. This can lead to a situation where the

percent device values across all of the host cores begin to adjust back and forth in an unsynchronized manner.

Since the performance of the application is bound by the slowest pairings, a flat region or even worst a local

minimum can artificially form within all of the workload balancing graphs across the host cores as a result

of at least one pairing’s percent device value moving uphill at any given moment. The local minimum may

be further reinforced as time goes on if the individual percent device values continue moving in opposite

directions relative to one another. As a second order effect, also recall that more time will be spent at

the less optimal percent device value since sampling takes longer when performance is diminished, further

reducing changes of the host cores working their way out of such a situation. The decentralized approach is

susceptible to this behavior and once it occurs, the chances of recovery decreases as the total number of host

cores is increased (i.e. it only takes one host core to begin the chain reaction and the slower host cores retain

their bad percent device values for a longer period of time). As such, even though the centralized approach

introduces a small amount of network overhead and requires a single percent device value to be used by all

host core and accelerator device pairings, it is the recommended mode of operation when using the Sampling

strategy. This behavior was observed during the development of our implementation and testing of the

Sampling strategy.

Before moving on, it is work nothing that the AdjustBusy strategy described above is also a decentralized

strategy. However, the AdjustBusy strategy will not suffer from the artificially created local minima discussed

above. The Sampling (decentralized) strategy does not differentiate between busy and idle time when taking

its periodic measurement. A single pairing experiencing a slowdown affects the performance measurements

on other pairings by inducing idle time between calls to takePeriodicSample. While this is an issue for the

Sampling (decentralized) strategy, the AdjustBusy strategy ignores induced idle time by only attempting to

equalize busy times.

Comparison with AdjustBusy: Finally, it is worth making a quick comparison of the AdjustBusy and

Sampling strategies. An advantage of the AdjustBusy strategy is that does not require evenly spaced points

in the application (e.g. timestep boundaries) at which point performance samples can be taken, making it

more generally applicable. However, the AdjustBusy strategy does not actually react to the performance

of the application (at least in a very direct manner). Instead, a heuristic is applied that balances the busy
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times with the assumption that if the busy times are balanced, then both the host core and the accelerator

core are being fully utilized. Conversely, the Sampling strategy reacts to the measured performance of the

application. However, to do this, it also requires a periodic point in the application, which not all application

may have.

Profilers

Before moving on to the next accelerator strategy, the profilers that have been included within the accelerator

manager will be discussed because the next strategy relies on them. On a conceptual level, profilers and

accelerator load balancing strategies differ in their goals. The accelerator strategies that we have discussed

so far direct the accelerated entry methods to be executed on the host or the accelerator device with

the goal of improving the performance of the application. Profilers will also direct the execution of the

AEMs. However, profilers move around the workload in order to take various measurements with the goal

of determining certain characteristics of the application’s workload so that accelerator strategies can then

take advantage of that information. On an implementation level, profilers are implemented on top of the

same based class, AccelStrategy, making use of the same interfaces used by the strategies.

Two profilers have been included with the accelerator manager, the base load profiler and the kernel

ratio profiler. Each of these profilers will be discussed below. Profilers are used by placing them in the

accelerator manager’s strategy queue prior to the strategies that use them. Once an active profiler (or

strategy) completes its task, it will indicate to the accelerator manager that it is finished. If the strategy

queue has any remaining profilers or strategies to be applied, it will swap out the current one and start the

next.

Base Load (BaseLoad): The goal of the base load profiler is measure the amount of busy time on the

host core when all of the accelerated entry methods are executing on the accelerator. The profiler starts by

transferring all of the workload associated with the AEMs to the accelerator device. Once the AEMs have

been shifted from the host, they remain there for a specified period of time. During this time period, the

runtime system tracks three values on the host core: the busy time, the overlapped busy time, and the idle

time. The busy and idle times are straight forward measurements of the time the host core is busy with

work or sitting idle, respectively. The overlapped busy time is the subset of the busy time that overlaps with

busy time on the accelerator device. Referring back to figure 5.3, in this example the overlapped busy time

refers to blocks E, F , H, and the portion of D that occurs after time γ. In the same vein, the busy time

is the sum of A, B, C, D, F , and J (note that blocks E and H wouldn’t exist since all AEMs are mapped

to the accelerator device while the BaseLoad profiler is taking measurements). The idle time is the sum of
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G and I (and any additional idle time created from the removal of E and H from the host core). Referring

back to figure 5.1(a), the busy time measurement relates to the value Hempty. These values are collectively

referred to as the base load of the host core since they give a basic sense of the minimum workload that will

be present on the host core, regardless of the percent device value in use. The actual values generated by the

BaseLoad profiler are normalized so that busytime+ idletime = 1. Once generated, these values are passed

back to the accelerator manager where they are stored so that future strategies can make use of them.

Kernel Ratio (KernelRatio): The goal of the kernel ratio profiler is to determine if the accelerator

device or the host core is better suited for the executing of each type of accelerated entry method. To

accomplish this task, the KernelRatio profiler cycles through each of the AEM types, one-by-one. For each

AEM, the profiler starts by directing all instances of the given AEM type to the accelerator device. As those

instances are executing on the accelerator device, the busy time of the accelerator is tracked. In the meantime,

the execution times of the other AEMs executing on the host core are also sampled. Once the profiler has

cycled through all of the AEM types, collecting enough samples on each processor type, the profiler calculates

an execution time ratio for each of the AEM types. To calculate the ratio for a given AEM type, the profiler

starts by calculation the time per AEM invocation on the host core (Htime/count = Htime/Hcount, where

Hcount is the number of AEM invocations and the Htime is the total time taken to execute those Hcount

AEM invocations). This calculation is repeated for the device as well (Dtime/count = Dtime/Dcount). The

device time value, Dtime, for a given AEM time is simply the accelerator busy time over the course of the

time period that AEM type is active on the accelerator. This has the advantage of also accounting for the

secondary effects of streaming data into and out of the device (which will occur if, for example, there are

multiple instances of the AEM being streamed through the SPEs on the Cell, multiple batch sets issued

to a GPGPU), the AEMs being divided over several cores on the accelerator device, or the overlapping of

GPGPU threads within a single batch set on a GPGPU. If the profiler attempted to measure the individual

latencies of each AEM invocation executing one-by-one and then sum those values, the various parallelism

and streaming effects associated with accelerator devices would not be accounted for, leading to an over

inflated value for the Dtime measurement.

The host-to-kernel ratio is then calculated by dividing the time per AEM invocation on the host by

the time per invocation on the device (Rhost/device = Htime/count/Dtime/count). Note that the Hcount and

Dcount values may differ since the AEM invocations on the host are sampled the entire time the KernelRatio

profiler is active, while the invocations for each AEM time are not directed to the accelerator device for the

entire time the profiler is active. These ratios are then passed back the accelerator manager so that future

strategies can make use of them. Specifically, Rhost/device and Htime/count values for each type of AEM are
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stored within the accelerator manager.

Greedy (Greedy)

The Greedy accelerator uses the output of the two profilers discussed above, BaseLoad and KernelRatio, to

greedily assign the AEMs that are best suited for the accelerator device to the accelerator device, before

AEMs that aren’t as well suited. Unlike the AdjustBusy and Sampling strategies, the Greedy strategy is not

an active strategy. Instead, once it is made active by the accelerator manager, it applies its greedy algorithm

once and then remains inactive until it is removed by the accelerator manager.

Ttimestep = Bhost +
∑
i∈S

Htime/count,i Ci (5.1)

The Greedy strategy works by first assigning all accelerated entry methods to the host core. Specifically,

the percent device value for each type of AEM is set to 0%. The strategy then calculates the total time

to execute a single timestep of the application using the output of the BaseLoad profiler, the Htime/count

values generated by the KernelRatio profiler, and the already existing object counts within the runtime

system, using equation 5.1. In equation 5.1, Ttimestep is time to execute a single timestep, Bhost is the

non-overlapping base load on the host (as measured by the BaseLoad profiler), Htime/count,i is the average

time to execute an invocation of AEM type i on the host core (Htime/count, as calculated by the KernelRatio

profiler), and Ci is the number of objects local to the host core and accelerator device pairing associated

with AEM type i.

For the time being, the Greedy strategy makes two assumptions. The first assumption is that it will be

common for chare objects with AEMs to have that AEMs invoked on a frequent basis (e.g. all objects in

all timesteps). We believe this is a fairly safe assumption since the AEMs are intended to be used for the

calculation intense portions of the application, meaning that they should naturally comprise a significant

portion of the application’s overall workload. However, this may not always be the case, and as such, we

intend to improve upon the Greedy strategy by removing this assumption in future implementations.

The second assumption is that the execution characteristics of the application will be similar before and

after the application of the profilers. For example, suppose all of the objects are having their AEMs invoked

while the profilers are active, but then sometime after the profilers have completed the application enters

a phase where only half of them are being invoked, this approach may produce non-optimal results. This

is mitigated to some degree by the fact that the percent device values for each type of AEM are based on

the relative execution times of the host core and the accelerator device. In other words, if the workload

associated with one type of AEM is halved, for example, then simply keeping the percent device value for
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that AEM type constant will result in both the host core’s and accelerator device’s portions of that workload

to be halved (i.e. the ratio of work remains the same). What does change are the ratios of total workload

associated with one type of AEM to the total workload associated with another type of AEM and the base

load of the host core.

Further, the Greedy strategy does not understand the various data dependencies within the application.

In fact, none of the strategies we have included as part of our existing implementation take data dependencies

into account. This could cause less than optimal results in situations where a given AEM type is the best

suited of all the AEM types and thus the first to have its individual percent device value to be greedily

assigned to the device. However, if it just so happens that this AEM type does not overlap with any other

work in the application because of data dependencies, it might be better if some small portion of that AEM

type is executed on the host core since the host core is otherwise idle. This is a possible short coming of the

Greedy strategy.

Crawler (Crawler)

The Crawler strategy is similar to the Sampling strategy in that it samples the actual performance of the

application in an attempt to determine the best balance of the overall AEM workload between the host and

accelerator device. However, unlike the Sampling strategy, the Crawler strategy adjusts the percent device

value for each of the various accelerated entry method types individually, instead of using the same value

for all AEM types. As such, the Crawler strategy can favor AEMs that are better suited for the accelerator

device when assigning AEMs to the device. Also unlike the Sampling strategy, the Crawler strategy does

not retain a history of the performance measurements that have been sampled so far for the various percent

device values that have already been tried. If there are several types of AEMs, then the amount of data

that would need to be retained could grow quickly, and it is not clear that retaining this information is truly

required. Another difference is that the Crawler strategy only operates in a centralized mode, compared to

the Sampling strategy which can operate in either a centralized or decentralized mode.

The Crawler strategy first takes a series of measurements by going through a rotation sequence. There

are several steps to the rotation. In the first step, the performance using the current percent device values

is measured, referred to as the center point. Then the percent device value of each of the AEM types is

adjusted by a fixed amount (0.5%) in both directions (increased and decreased by a small amount), by

cycling through each AEM type and direction combination one-by-one. As was the case with the Sampling

strategy (refer to section 5.1.3), we have decided to use small steps within our implementation to avoid the

possibility of drastic performance degradations if a large step in the wrong direction is attempted. Once all
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of the AEM types and direction combinations have been cycled through, the best performing combination

is selected as the new center point around which the next set of rotations will use as a base. Once the center

point has been adjusted, the rotation process starts over. As this rotation sequence repeats over time, the

adjustments to center point accumulate, allowing the percent device values to change significantly over time.

Since there can be several AEM types per application, the rotation process can be slow, requiring several

samples for each AEM type and direction combination, including the center point, before a single center

point adjustment is made. Further, it will take several center point adjustments before the percent device

value for any of the AEM types will shift by any significant amount. Therefore, a clear disadvantage to the

Crawler strategy is that it can take quite some time to converge on a suitable balance point for the workload.

To overcome the downside of taking quite some time to modify the percent device values by any significant

amount, the Crawler strategy has been implemented so that it can follow the Greedy strategy. Again, the

Greedy strategy is a one time calculation that is applied to the various percent device values for each AEM

type, which can result in a significant adjustment to each of those percent device values. A downside to the

Greedy strategy is that it only applies the greedy algorithm based on some initial measurements from the

BaseLoad and KernelRatio profilers. If conditions under which the application is executing change or those

initial measurements are not quite as accurate as they could have been, then the result of the Greedy strategy

will be affected. However, if the Greedy strategy is applied and then immediately followed by the Crawler

strategy, the combination of strategies can help overcome the shortcomings of either strategy. Further, the

implementation of each strategy remains independent, allowing the implementation to remain focused and

clear and allowing either strategy to be used in combination with future strategies without requiring the

functionality in the existing strategy to be recreated.

Compared to either the AdjustBusy or Sampling strategies, the Crawler strategy is capable of adjust the

percent device values of each AEM type independently of one another, similar to the Greedy strategy. Like

the Sampling strategy, the Crawler strategy actually measures the performance of the application via the

takePeriodicSample.

5.2 Across Host Core Load Balancing (AccelEvenLB)

In addition to the accelerator load balancing strategies that act locally with a single host core and accelerator

device pairing, the across host core load balancing strategy AccelEvenLB has also been created as part of

this work. The idea behind the AccelEvenLB strategy is to equally distribute chare objects of the same type

across each of the host core and accelerator device pairings. When we say “equally distribute” we mean

93



in terms of execution time, not the number of objects or even the number of flops performed. During an

application’s execution, the load balancing framework [97, 9] within the Charm++ runtime system measures

the load of each chare objects in terms of the amount of time that object occupied the host core. Periodically,

using the load balancing framework’s AtSync triggering method, the AccelEvenLB load balancer is invoked.

The AccelEvenLB load balancer is a centralized load balancer, meaning that the load balancing algorithm

is executed on a single core and the results are broadcast back to all the cores in order to carry out the

decision.

When accelerated entry methods are used, such a measurement process can lead to an incorrect assess-

ment of which objects take more time than others. For example, consider to chare objects, A and B of the

same type and mapped to the same host core and accelerator device pairing. It may be the case that A

happens to have its associated AEMs mapped to the accelerator device, while B does not. Assuming the

accelerator device provides a speedup for the execution of AEMs, then the time attributed to A will be less

than B. However, this is just a matter of circumstance rather that a difference between A and B. If A and

B are otherwise identical (apart from their current mappings), then having them swap places would result

in B having less time attributed to it relative to A. To account for this timing imbalance as a result of some

host cores appearing to be faster than other host cores, the AccelEvenLB strategy averages the amount of

time per chare object of a given type on a given host core, τtype,ρ. That is to say, the objects within the

application are grouped into sets with one set for each object type and host core combination. For each

set, the average time per object is calculated. Then, for each individual object, this average time is used in

place of the object’s individually measured time in order to calculate the overall distribution of objects of

the given type across all the host cores.

After computing the average time for each chare object type and processor combination, the algorithm

continues by calculating the balance of objects for each type of object. For each type of object, the maximum

average time is determined across all of the host cores (equation 5.2a, where P is the set of host cores).

The time τtype is then used to invert the average times for each object type and host core combination

(equation 5.2b). These inverted averages are then normalized and divided by the their sum to determine

the fraction of objects of the given type that will be placed on each of the host cores (equations 5.2c, 5.2d,

and 5.2e, where ftype,ρ represents the faction of the total objects of the given type to be placed on host core

ρ,
∑
ρ∈P

ftype,ρ = 1, θtype is the total number of chare objects of the given type, and ηtype,ρ represents the

number of chare objects of the given type that should be placed on host core ρ).

94



τtype = max(τtype,ρ ∀ ρ ∈ P ) (5.2a)

[∀ρ ∈ P ] τ ′type,ρ =
τtype
τtype,ρ

(5.2b)

ψtype =
∑
ρ∈P

τ ′type,ρ (5.2c)

[∀ρ ∈ P ] ftype,ρ =
τ ′type,ρ
ψtype

(5.2d)

[∀ρ ∈ P ] ηtype,ρ = ftype,ρθtype (5.2e)

Once the number of objects per host core, (ηtype,ρ), has been determined, AccelEvenLB proceeds to

reassign the chare objects to host cores so that the calculated fractions are realized within the application.

The reassignment of chare objects occurs in two phases. During the first phase, the number of chare objects

of the given type currently assigned to processor ρ are counted. If the number of objects currently assigned

to a given host core ρ is greater than ηtype,ρ (the target number of objects), then the extra chare objects are

placed in a list of objects, Γ, that are available for migration. During the second phase of reassignment, any

host core that is found to have less than its target number of chare objects, ηtype,ρ, has objects assigned to

it from the list of extra chare objects, Γ. By making used of the extra chare objects list, the AccelEvenLB

load balancer only moves objects that are required to be move for load balancing, minimizing the amount of

chare objects migrated across host cores to achieve the calculated object distribution. This overall process

is repeated for each type of chare object within the application.

As with all general load balancing strategies included within the Charm++ runtime system, the Ac-

celEvenLB strategy is not intended to handle all situations flawlessly. In particular, the AccelEvenLB

strategy assumes that there are many objects per processor for each type of object. In situations were there

are many objects total, but only a few objects of each type, the approach used in AccelEvenLB will likely

not function correctly since it tries to evenly distribute objects across the host cores on a type-by-type basis.

5.3 Description of Hardware

In this section, we describe the hardware that will be used to execute test applications. For the dynamic

load balancing strategies, the Forge GPGPU cluster at the National Center for Supercomputing Applications

(NCSA) [78] will be used.
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5.3.1 Forge (GPGPU Cluster)

Forge is a cluster located at the National Center for Supercomputing Applications (NCSA). The compute

nodes within the cluster are Dell PowerEdge C6145 servers. Each compute node includes 16 cores (AMD

Opteron Magny-Cours 6136) running at 2.4 GHz. Each compute node also includes some number of GPGPUs

(32 nodes include 6 GPGPUs, 12 nodes include 8 GPGPUs, and the specific hardware used is nVidia’s M2070

accelerator units).

Unless noted otherwise, the experiments within this chapter will use nodes that include 6 GPGPUs. The

GPGPUs will be assigned to the host cores is a round-robin manner. For example, physical GPGPU 0 will

be mapped to virtual host core 0, physical GPGPU 1 will be mapped to virtual host core 1, ... physical

GPGPU 5 will be mapped to virtual host core 5, physical GPGPU 0 will be mapped to virtual host core

6, physical GPGPU 1 will be mapped to virtual host core 7, ... and so on. The virtual host cores will be

mapped to physical host cores based on the virtual host cores’ assigned physical GPGPUs’ affinity to the

physical host cores (the affinity of physical cores to GPGPU processors is located on NCSA’s website [78]).

Specifically, the option “+pemap 0,2,8,9,10,11,4,6,12,13,14,15,1,3,5,7, 8,10,0,2,9,11,12,14,4,6,13,15,1,3,5,7,

8,9,10,11,0,2,12,13,14,15,4,6,1,3,5,7” was used. The pemap options indicates how the runtime system should

map virtual host cores to physical host cores. Specifically the ’virtual host core number modulus the length

of the pemap list’ is used to index into the pemap list in order to lookup the physical host core associated with

the given virtual host core. In the case of Forge, the pemap is particularly long since there are 6 GPGPUs

and 16 host cores per node, so 48 entries (3 nodes) are required in the pemap in order to create a repeating

sequence. Otherwise, standard options were used for launching application executions (i.e. “+netpoll”,

“+p”, “++nodelist”, and any options specific to the various load balancing strategies being used within

each experiment).

5.4 Applications

5.4.1 5-Point Weighted Stencil

One of the applications that we will be using to test our load balancing strategies is a 5-point weighted stencil

application. This type of calculation is typically used for simulating heat transfer and as a kernel (step) in

iterative solvers. It is a simple (and widely used) stand-in for many real applications with near-neighbor

data exchanges.

The 5-point stencel application serves as a fairly good starting point at which to test the included

strategies, because there is only a single type of accelerated entry method. This simplifies the job of the
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accelerator strategies because there is only a single degree of freedom (i.e. one percent device value) that

requires adjusting. In more complex programs, that include various types of AEM, there are added degrees

of freedom when balancing the workloads since some of the AEM types may be better suited for the various

types of cores than other AEM types. For the same reason, the stencil application serves as a good application

in which to introduce the reader to the behavior of the various accelerator strategies (i.e. fewer complexities

to reason about when analyzing the results). However, such a simple stencil code has a low flop to byte ratio.

That is, the amount of data accessed by each AEM invocation is fairly high relative to the number of flops

performed. Typically, such applications aren’t the best candidates for making use of accelerator technologies,

since the use of an accelerator will typically require additional data transfers to take place between the host

core(s) and the accelerator device(s). The overhead of moving the data, while at the same time performing

only a small amount of work per byte transferred, usually decreases the impact that accelerator can have

in terms of improving the application’s performance. As such, the results from the stencil application are

included mainly to illustrate various points related to the accelerator load balancing strategies in a situation

when the accelerator is unlikely to make significant impact on the application’s performance.

Application Description

The structure of the application is fairly straight forward. There is an overall two dimensional (2D) matrix

of values. The application’s execution is broken down temporally into a set of discrete timesteps. During

each timestep, a stencil calculation is performed on each of the elements with in the matrix. The amount

that each matrix element changes during the timestep is calculated, referred to as maxError within the code

itself, and a global reduction is used to calculate the maximum change that occurred across all the elements

within the timestep. If the maximum change is below some given threshold, the program halts (i.e. has

converged). Otherwise, if the maximum change of any one element is greater than the given threshold, then

execution continues on to the next timestep.

In our stencil application, the overall matrix has been broken up into a set of tiles, with each tile being

assigned to a given chare array element in a 2D chare array. In particular, the application is being executed

with a grid of 32 by 32 tiles (1024 total tiles with each tile being a chare object) and 256 by 254 matrix

elements per tile (65024 matrix elements per tile). Note that this code was adapted from a previous version to

use our programming model extensions; the non-square shape of each 2D tile is not cause by our extensions,

but is rather an artifact of the application code we used. The code holds one matrix element per tile at

a constant value of one, while allowing all of the other tile elements to vary as the calculation proceeds.

Initially, the elements that can vary are initialized to a value of zero. The weighted stencil pattern that we
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Figure 5.5: 5-Point weighted stencil pattern used in the 5-point stencil application.

Figure 5.6: Interaction of tiles in the 5-point stencil application.

use is given in figure 5.5. Some stencil applications are more complex, causing the flops per byte ratio to

increase. However, as stated previously, part of the reason for choosing the 5-point stencil application is

that we wish to consider a case where the accelerator isn’t necessarily well-suited for the given computation

(i.e. the host core and the accelerator core are more evenly matched in terms of performance).

Within each timestep, the tiles begin by exchanging border information with one another, sometimes

referred to as exchanging ghost information. For a given chare to perform the stencil calculation on the

edges of the tile contained within it, the chare requires some of the element data within the chare objects

(or tiles) that neighbor it, and vice versa. Therefore, each timestep begins with the tiles exchanging border

information with one another. Once a given tile has all of the ghost information that it requires from it’s

neighbors, the tile can then proceed to perform the stencil calculation locally. Given the stencil pattern being

used, as illustrated in figure 5.5, the ghost regions are a single data element wide. Figure 5.6 illustrates how

the ghost data is transferred between neighboring tiles at the beginning of each timestep of the application.

Figure 5.6 only shows the interaction between a given tile (“this”) and one of its neighbors, but the same

process is used for each of the four neighbors surrounding the “this” tile in the figure.

The stencil calculation is written as a splittable accelerated entry method, with the number of splits set
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to the number of rows in the local tile. There are actually two copies of the tile data within each chare object.

The matrix data array contains the actual tile data (input). The matrixTmp data array holds calculated

values as they are being written in the stencil calculation function (output). Separate input and output

buffers are used so that the values generated each timestep only rely on values from the previous iteration,

and are unaffected by the calculations of neighboring elements within the same timestep. Because the splits

in a splittable entry method are required to be data parallel with one another, similar to the iterations of

an OpenMP parallel for loop, an auxiliary array is also included. The length of the auxiliary array is the

number of rows (i.e. one element per split) so that each split can write its own locally calculated maxError

value. The callback function that combines these values, creating the maxError value for the entire tile.

Each tile will then contribute this tile-wide maxError value to a global reduction used to determine the

global maxError value.

To give the reader a sense of the code that would be required of a programmer writing this stencil

application, figure 5.7 includes the accelerated entry method code and callback function used by each of

the tile objects. Otherwise, standard Charm++ constructs were used to write the application code. Keep

in mind, the point of including the application code in figure 5.7 is to show how a programmer would use

accelerated entry methods, and thus has been simplified relative to the actual application code for clarity

and brevity. The point of figure 5.7 is not to demonstrate how one should write optimized stencil code.

Application of Accelerated Load Balancing Strategies

Step: As an initial starting point, the Step strategy is applied to the 5-point stencil application to establish

a sense of what to expect from the application. As the application proceeds, the portion of the workload

implemented using accelerated entry methods is slowly shifted from being executed solely on the accelerator

device to having a larger and larger fraction being executed on the host core. Figure 5.8 gives the performance

results of the stencil code executing using a single host core and a single GPGPU on the Forge system.

There are two plots included in figure 5.8: the performance of the program over time (“Avg. Time/-

Timestep (sec)”) and value of percent device as it changes over time (“Percent Device”). In the “Avg.

Time/Timestep (sec)” plot, a V shape appears, as one would be expected based on the discussions in sec-

tions 5.1.1 and 5.1.3. When one considers the stencil calculation for a given tile (i.e. the doCalculation

accelerated entry method shown in figure 5.7), there is a low flop to byte ratio (10 flops per 8 bytes of data

for each matrix element). This low flop to byte ratio makes offloading a given tile calculation to an accel-

erator core less than ideal, since there is little work to perform relative to the overhead resulting from the

transfer of tile data to and from the accelerator device. As a result, the host and accelerator cores provide
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// In t e r f a c e F i l e : Acce l e ra ted Entry Method Function Body
entry [ t r i g g e r e d s p l i t t a b l e (NUMROWS) accel ] void doCalcu la t ion ( )

[ readonly : f loat matrix [DATA BUFFER SIZE] <impl obj−>matrix >,
writeonly : f loat matrixTmp [DATA BUFFER SIZE] <impl obj−>matrixTmp>,
writeonly : f loat tmpMaxError [NUMROWS] <impl obj−>tmpMaxError>

] {

// Loop over the rows as s i gned to t h i s s p l i t ( i f numSpl i ts < NUMROWS)
for ( int y = sp l i t I nd e x + 1 ; y <= NUMROWS; y += numSplits ) {

// Loop over the columns wi th in t h i s row
f loat maxError = 0 .0 f ;
for ( int x = 1 ; x <= NUM COLS; x++) {

int index = GET DATA I(x , y ) ;

// Apply the s t e n c i l pa t t e rn to t h i s ’ index ’
matrixTmp [ index ] = ( ( 2 . 0 0 f ∗ matrix [ index ] ) +

(0 . 75 f ∗ matrix [GET DATA I(x − 1 , y ) ] ) +
(0 . 75 f ∗ matrix [GET DATA I(x + 1 , y ) ] ) +
(0 . 75 f ∗ matrix [GET DATA I(x , y − 1 ) ] ) +
(0 . 75 f ∗ matrix [GET DATA I(x , y + 1 ) ] )

) ∗ ( 0 . 2 f ) ;

// Hold t i l e e lement (1 ,1) cons tant a t 1 .0 f on every t i l e and c a l c u l a t e
// t h i s e lement ’ s change and update maxError f o r the row
i f ( y == 1 && x == 1) { matrixTmp [GET DATA I(x , y ) ] = 1 .0 f ; }
f loat tmpError = matrixTmp [ index ] − matrix [ index ] ;
i f ( tmpError < 0) { tmpError = −1.0 f ∗ tmpError ; }
i f ( tmpError > maxError ) { maxError = tmpError ; }

}

tmpMaxError [ y−1] = maxError ;
}

} doCa l cu l a t i on pos t ;

// Source Code F i l e : Acce l e ra ted Entry Method Ca l l back
void Jacobi : : doCa l cu l a t i on pos t ( ) {

// Ca l cu l a t e the maximum error amongst a l l t he s p l i t s
f loat maxError = tmpMaxError [ 0 ] ;
for ( int i = 1 ; i < NUMROWS; i++) {

i f ( tmpMaxError [ i ] > maxError ) {
maxError = tmpMaxError [ i ] ;
tmpMaxError [ i ] = 0 ;

}
}

// Contr ibu te t h i s t i l e ’ s maxError to a g l o b a l r educ t ion
con t r ibu t e ( s izeof ( f loat ) , &maxError , CkReduction : : max f loat ) ;

// Housekeeping : Swap the matrix po in t e r s and advance the t i l e ’ s i t e r a t i o n counter
f loat ∗tmp = matrix ; matrix = matrixTmp ; matrixTmp = tmp ;
i terCount++;

}

Figure 5.7: Stencil code that acts upon a single tile, written as an accelerated entry method.
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Figure 5.8: The 5-Point stencil application executing on a single host core and accelerator device pairing on
Forge using the Step accelerator strategy.

a fairly similar level of performance for the doCalculation AEM. In fact, the host core actually has slightly

better performance, likely caused by the additional data movement required for AEMs that are invoked

on the accelerator device. Later, in section 6.3, we will attempt to decrease the overhead related to data

movement between the host core and the accelerator device by through the use of persistent data buffers. As

will be shown, eliminating the data movement significantly improves performance when AEMs are mapped

to the accelerator device.

AdjustBusy: Next, we consider the case of the stencil application executing on a single host core and

a single accelerator device on Forge using the AdjustBusy strategy discussed in section 5.1.3. Over time,

the busy times of the host core and the accelerator device are measured. Periodically, these values are used

to adjust a single percent device value, which in turn, is used to balance the workload for each type of

accelerated entry method. Since the stencil application only has a single type of AEM, the percent device

value only effects the one type of AEM, which simplifies the interpretation of the results. The results of

applying the AdjustBusy strategy are shown in figure 5.9.

Figure 5.9 includes three plots. The first plot, “Avg. Time/Timestep (sec),” indicates the performance

of the application over time. As one can see from the figure, the stencil application initially starts with a

relatively bad level of performance, caused by all of the accelerated entry methods being executed on the

accelerator device (a GPGPU, in this case). As time goes on, the runtime system, under the guidance of the

AdjustBusy accelerator strategy, adjusts the percent device value over time to balance the overall workload
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Figure 5.9: The 5-Point stencil application executing on a single host core and GPGPU pair on Forge using
the AdjustBusy strategy.

between host and accelerator cores. The second plot, “Percent Device,” shows the change of the percent

device value over time. Refering back to figure 5.8, we can see that the AdjustBusy strategy converged on

a percent device value that is roughly equivalent to the percent device value corresponding to the minima

in Step strategy’s performance plot. However, remember that the AdjustBusy strategy is only applying a

heuristic, without measuring the resulting performance to determine if that heuristic was successful. Next,

we move on to the Sampling strategy, which does in fact measure the performance of the application in order

to make adjustments to the percent device value.

Sampling (centralized): Figure 5.10 shows the performance of the stencil application executing on a

single host core and a single GPGPU with the workload being balanced via the Sampling strategy, as the

strategy is described in section 5.1.3. The sampling strategy begins with a percent device value of 100% and

begins testing lower and lower values. Eventually, at approximately 100 seconds, a valley in the workload

balancing graph is detected and the strategy begins to refine its search around a percent device values of

41% to 44% (varrying as time goes on). The sawtooth nature of the horizontal sections of the “Percent

Device” plot illustrates the local search behavior of the sampling accelerator strategy as it cycles between

values above, at, and below the percent device value that has resulted in the best performance so far. Should

the environment in which the application is executing change for any reason, the strategy will be able to

detect and react to that change. Note that the resulting performance of the Sampling strategy is roughly

equivalent to the minima seen when the Step strategy was applied (refer to figure 5.8). Further, for the
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Figure 5.10: The 5-Point stencil application executing on a single host core and GPGPU pair on Forge using
the sampling accelerator strategy.

5-point stencil code, the Sampling strategy is achieving slightly better results than the AdjustBusy strategy.

Greedy and Greedy with Crawler: Figure 5.11 moves on to using the greedy accelerator strategy,

with and without applying the crawler accelerator strategy afterward. Note that the vertical axis of figure

5.11 does not originate at zero. This was done to allow the reader to more easily see the difference between

the two plots. As discussed in section 5.1.3, the greedy strategy uses the information provided by the

BaseLoad and KernelRatio profilers to greedily assign work to both the host and the accelerator cores.

Initially starting with all of the work mapped to the host core, it selects the accelerated entry method that

receives the greatest speedup when executed on an available accelerator and assigns as much of that sub-

workload to the accelerator as possible, without causing the accelerator to become overloaded relative to the

host core. If moving all of the work associated with a given AEM still leaves the accelerator with some idle

time, the process repeats for the AEM with the next best speedup, and so on, until either all of the AEMs

have been mapped to the accelerator or a workload balance has been reached.

One of the advantages of the greedy strategy itself is that it is quick, only performing a quick calculation

once the two profilers that it relies on have completed. However, it does rely on the profilers, which take

an amount of time that grows linearly (in units of timesteps) relative to the number of accelerated entry

method types within the application. During this profiling time, the runtime system is constantly adjusting

where the work associated with the various accelerated entry methods executes, which can result in dramatic

performance decreases during the profiling period. For example, the initial execution of the stencil application
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Figure 5.11: The 5-Point stencil application executing on a single host core and GPGPU pair on Forge using
the Greedy strategy, with and without the Crawler strategy.

executes at a rate just over 1 timestep per second. While this period only continues for a short time in

the stencil application, other applications that have more AEM types will have a longer profiling period.

Further, depending on the relative performance for each AEM type on either the host core or the accelerator

device, the period of time when the AEMs are largely being executed on the host core could result in a

drastic slowdown in performance. Figure 5.11 shows that the stencil application experiences a slowdown

of approximately two relative to the portion of the execution when the workload is balanced between the

host core and accelerator device. Once the profiling period is complete, the greedy algorithm is applied,

marked in the figure with an abrupt increase in performance. From this point on, the performance of the

application stays fairly constant as the application proceeds to execute in the “Greedy” plot in figure 5.11,

since the Greedy strategy takes no further action. This points out the previously mentioned disadvantage

of the Greedy strategy, which is that it does not react beyond the time at which the greed algorithm was

applied. This is one of the reasons to include yet another strategy after the greedy strategy in the queue of

strategies generated during initialization, such as the crawler strategy.

The second plot in figure 5.11 shows the results of applying the crawler strategy after an initial balancing

having been performed by the greedy strategy. The crawler strategy, as described in section 5.1.3, has a

similar drawback to the sampling strategy in that it takes time to take measurements (samples) and make

balancing adjustments based on those decisions. This process is slow and continuous, as the second, “Greedy

w/ Crawler,” plot illustrates (between approximately 25 and 170 seconds). However, by allowing accelerator
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strategies to be chained, the greedy algorithm can be used to define the initial starting point used by the

crawler strategy, greatly speeding up the crawling process by giving the Crawler a better starting point than

just some arbitrary fixed point (e.g. all percent device values set to 100%). Figure 5.11 demonstrates that

using the two strategies in conjunction with one another combines the advantages of the greedy algorithm

with the advantages of the crawling strategy (which are similar to the advantages of the sampling strategy).

As time goes on, the crawler strategy uses measurements to adjust the percentage of each type of accelerated

entry method that is executed on an available device. As shown in figure 5.11, the crawler strategy is able

to slowly improve upon the initial balancing provided by the greedy algorithm. However, the improvement

isn’t drastic, showing that the initial guess of the Greedy strategy, while not optimal, is a fairly good guess.

Like all measurement based schemes, the quality of the output from the BaseLoad and KernelRatio profilers

is only as good as the measurements themselves, including the various sources of noise present in computing

systems and induced by the runtime system, as discussed in section 5.1.3 under “measurement noise.”

Of course, a single strategy could have been created which combines all of the functionality of the

BaseLoad profiler, the KernelRatio profiler, the Greedy strategy, and the Crawler strategy (i.e. if the chaining

or queuing of strategies was not supported). However, this would create a duplication of functionality if

multiple strategies required the same techniques. For example, both the AdjustBusy strategy and the Greedy

strategy can make use of the output of the BaseLoad profiler, to the benefit of the stencil application, as

demonstrated here. Thus, the ability to chain strategies does indeed demonstrably help ease the burden of

introducing new accelerator strategies within the runtime system by allowing the functionality of a given

strategy (or profiler) to be reused.

Strategies Compared: Finally, figure 5.12 includes results from the various strategies that have been

applied to the stencil application so far, allowing the reader to more easily see their relative performance.

Note that the vertical axis does not start at zero, therefor, the best and worst performing strategies are only

separated by approximately 0.8 seconds per timestep (or approximately a 13.3% decrease in performance

relative to the “Host Only” plot). Notice that the AdjustBusy and Greedy strategies perform similar to one

another. This is not entirely unexpected since both approach the problem of load balancing the workload

by trying to adjust the amount of busy time on both the host core and the accelerator device. Further,

the Sampling (centralized) and Crawler strategies perform similarly to one another. Again, both of these

strategies approach the problem of load balancing by measuring the actual effect that a change to the percent

device value has on the performance of the application, rather than assuming that the best results will be

achieved by balancing the busy times of the host core and the accelerator device.

It should be noted that, when these experiments are repeated, there is a small amount of variance in the
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Figure 5.12: The 5-Point stencil application executing on a single host core and GPGPU pair on Forge using
the various accelerator strategies available within the Charm++ runtime system. Note that the vertical axis
does not start at zero.

relative performance of the various strategies. For example, sometimes the Greedy plot strategy (“Greedy”

plot) does slightly better or worst (± 3%) than the AdjustBusy strategy (“AdjustBusy” plot). However,

what does stay constant is that (1) the “Host Only” plot always has the lowest performance, (2) the Greedy

and AdjustBusy strategies perform better than “Host Only” and relatively close to one another, and (3) the

Sampling and Crawler (“Greedy w/ Crawler” plot) exhibit the best performance. As such, figure 5.12 gives

a fair representation of the strategies’ relative and absolute performances, regardless of the variance between

executions.

5.4.2 Molecular Dynamics

We will apply the load balancing techniques discussed in this chapter to the same molecular dynamics (MD)

application that was previously discussed in section 4.1 as part of the static load balancing experiments

in chapter 4. First, the triggered and splittable keywords will be applied to the various accelerated entry

methods within the application, updating the application code to make use of these newer additions to our

approach. Once these modifications have been made, the application will have an increased level of flexibility

that will allow the runtime system to make effective use of the GPGPUs, in addition to the Cell processor as

previously discussed in section 4.3. Once the application code has been updated to take advantage of these

newer extensions, the application of the accelerator load balancing strategies will be discussed.
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Making Use of Splittable, Triggered, and Shared

The “splittable” and “triggered” keywords and their usage and effects were previously discussed in sections

3.2.1 and 3.2.1, respectively. The “shared” keyword causes the runtime system to share data buffers between

accelerated entry method invocations that are included within a single batch of AEMs, reducing the overall

amount of data that needs to be transferred per batch. This is accomplished at runtime using a dynamic

pointer lookup mechanism. The usage and effects will be discussed in greater detail in section 6.2.2, as part

of the discussion of data management.

Within the molecular dynamics application, there are three accelerated entry methods, including the force

computation AEMs in the pair and self compute classes, along with the integrate AEM in the patch class.

All of these AEMs have been updated to make use of the “splittable” and “triggered” keywords. Further,

the “shared” keyword has been added to the local parameters containing the incoming readonly particle

data. Additionally, the static load balancing mechanism within the application code has been removed,

since the role of load balancing will be taken over by the accelerator load balancing strategies. Aside from

these changes, the previous description of simple MD application’s implementation in section 4.1 still applies.

Section 6.2.2 includes a figure (figure 6.2) which illustrates the actual use of these keywords within the force

calculation AEM in the pair compute class.

The most note worthy effect on the code relates to the use of the “splittable” keyword on the pair

compute’s force calculation AEM. Since there is no guarantee of the execution order of the individual splits

created for a splittable entry method, there should be no data dependencies between the splits, as described

in section 3.2.1. The original version of this force calculation AEM used the idea of equal-and-opposite forces

to reduce the overall amount of computation required to calculate the forces. However, in the context of a

splittable AEM, the use of the equal-and-opposite forces optimization creates data hazard between splits.

As such, in the splittable version of this force calculation AEM, the equal-and-opposite force optimization

has been removed. The impact of this change will be discussed in further detail in section 6.2.2. For the

time being, we simply wish to bring this change to the reader’s attention.

Application of Accelerated Load Balancing Strategies

Step Strategy: In this section, the various accelerator load balancing strategies will be applied to the

simple MD application. As was the case with the 5-point stencil application, the Step strategy is applied

first in an effort to get an idea of what to expect from the application as the workload is shifted between

the host and the accelerator device. The performance of the MD application executing on a single host core

and a single GPGPU is shown in figure 5.13. Note the maximum and minimum values used for the vertical
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Figure 5.13: The molecular dynamics application scaled to a single node of Forge and using the Step
accelerator strategy.

axis in the figure, since the figure is fairly zoomed in. As a result, the noise within the performance plot is

also being emphasized.

There are a few things worth noting in figure 5.13. First, the percent device value at which the lowest point

(highest performance) occurs is at a high percent device value (98%). As it turns out, the accelerated entry

methods within the molecular dynamics application are much better suited for executing on an accelerator

device. In particular, there is a fair amount of work to be done by each accelerated entry method compared

to the number of bytes that need to be transferred per AEM invocation. The amount of data grows linearly

with the number of particles per patch, while the work grows as the square of the number of particles within

the computes’ force calculation AEMs and linearly in the number of particles within the patch’s integration

AEM.

Second, the portion of the performance plot in figure 5.13 to the left of the knee (at approximately 350

seconds) is fairly flat. Recall figure 5.1(b), which shows the expected workload balancing outcome when the

accelerator device is capable of out performing the host core by a significant factor. It is expected that the

portion of the performance plot in figure 5.13 prior to 350 seconds will be fairly horizontal. Also noticed

that the knee in the performance plot occurs as the percent device value is approximately 98%. Assuming

a D1 value of zero (which will not actually be the case since a minimal unit of work will not take zero

time to execute), that would require the difference between Dall and D1 to be equal to Dall, or a value of

approximately 0.74 seconds from figure 5.13. Since the time taken by the accelerator is expected to decrease
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(roughly) linearly relative to the percent device value, the Dall value multiplied by the percentage difference

between 100% and the percent device value at the knee represents the expected increase in performance at

the knee. 2% of 0.74 seconds is 0.0148 seconds, or an expected time of 0.725 seconds at the knee. However,

keep in mind that the minimum of 0.725 seconds shouldn’t actually be reached since the value of D1 isn’t

actually zero, which was the assumption in this calculation. Two references lines, at performance values of

0.74 seconds and 0.725 seconds, have been included in figure 5.13 to clearly and visually show the relationship

between these calculated values and the measured performance of the application. Note that the difference

between these reference lines is quite small. In fact, the noise in the plot makes it a bit hard to see, but

there actually is a downward slope on the portion of the performance plot prior to 350 seconds (comparing

the performance plot to the two reference lines makes the downward slope a bit easier to see).

Third, it should be pointed out that the noise present in the plot may cause issues for the load balancing

strategies. The portion of the performance plot prior to 350 seconds is not as smooth as the associated

idealized line presented in figure 5.1(a). At the very least, we can say that this portion of the performance

plot is nearly horizontal (as expected per the discussion above) and that the noise may cause false judgments

within a load balancing strategy since the magnitude of the noise is approximately the same as the expected

difference of 0.0148 seconds (between 0 and 350 seconds). As a result, it is unclear how much of a performance

gain will be achieved by any load balancing strategy that can correctly 98% as the percent device value to

use, versus a strategy that just generally keeps the percent device value somewhere between 100% and 98%.

Fourth, the performance of the MD application drops (i.e. time per timestep increases) fairly quickly as

the percent device value drops below 98% (at approximately 350 seconds). This may point out a potential

hazard for any measurement based load balancing strategy, since maintaining a percent device value above

98% is clearly not as bad as accidentally incurring the performance degradation caused by decreasing the

percent device value below 98%. We will return to this idea as we discuss the results of using the Sampling

strategy on the simple MD application.

Figure 5.14 moves on to show the performance of the molecular dynamics strategy on a single node of

Forge, using various combinations of host cores and accelerator devices. The performance plot from figure

5.13 is the first plot, “A,” in figure 5.14. The plots within figure 5.14 are all shaped as one would expected

based on the discussion so far. That is, each plot starts with a “horizontal” region, eventually reaches a knee

point, and then the further drop in the associated percent device value (not shown) over time results in a

steady decrease in performance.

However, there two observations that we would like to point out. First, the knee points are staggered in

a seemingly odd pattern. Second, the performance within the “horizontal” region of configuration F is lower
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Figure 5.14: The molecular dynamics application scaled to a single node of Forge and using the Step
accelerator strategy.

(higher time) when compared to the “horizontal” region of configuration E. To understand these effects

requires an understanding of the percent device values at each of the configurations’ respective knee points,

which will be discussed below within the context of the AdjustBusy strategy. For the time being, we simply

point out these irregularities.

Before moving on to the AdjustBusy accelerator strategies, we should mention one additional difference

between the configurations. The number of timesteps that the molecular dynamics program was executed

differs depending on the hardware configuration. Generally speaking, as more hardware resources were used

within a configuration, the number of timesteps executed for that configuration was also increased, so there

would be plenty of time for the percent device value to stabilize. Unless stated otherwise, this is true for all

figures related to the performance of the MD application throughout this section.

AdjustBusy Strategy: Figure 5.15 shows the performance of the MD application with the AdjustBusy

strategy being applied to the same hardware configurations that were used for the Step strategy. For the

most part, the plots in figure 5.15 are as one might expect. After the AdjustBusy strategy has had some

time, the performance levels are similar to the “horizontal” regions of the corresponding plots in figure 5.14.

However, configurations D and F exhibit a fair amount of noise in their performance.

To help understand what is going on, figure 5.16 presents the same data for configurations D, E, and

F using four zoomed in graphs. The first (top) graph simply repeats the performance plots from figure

5.15 so that the reader can more easily compare the performance of these configurations. Notice that from
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Figure 5.15: The molecular dynamics application scaled to a single node of Forge and using the AdjustBusy
accelerator strategy.

approximately 125 seconds to 250 seconds, when configuration D completes, configuration E is generally

performing better than configuration D (we are ignoring the noise for a moment, but will discuss it below).

The combined peak flop rate of configurationD is 6.295 Tflop/s. The combined peak flop rate of configuration

E is 6.410 Tflop/s. The peak flop rate difference between these two configurations is 115 Gflop/s, an increase

of 1.83% relative to D’s flop rate. Dividing a time of 0.15 seconds (all measured times throughout the

simulation for configuration D are greater than 0.15 seconds) by 1.0183 gives a time of 0.1473 seconds

(reference lines of y = 0.15 and y = 0.1473 have been included in the top graph for reference). While

it is hard to say conclusively because of the noise levels in the plots, it seems as though configuration E

performs at approximately this level of performance during the flat regions of its performance plot, which

is a bit better than expected considering D never reaches a performance level of 0.15 seconds per timestep.

A likely cause is the reduced pressure on the host cores. In particular, each host core has approximately

half the number of compute objects with only a slightly lower percentage of those objects being issued to

the accelerator devices (as shown in the lower three graphs, as describe below), allowing the host core to

seem as if it were a bit more responsive to the accelerator device in E relative to D. To put it another way,

from the point-of-view of an accelerator device in configuration E, since there are two host cores feeding the

accelerator work, neither of those host cores have to be as reactive as they would need to be if either were

the only host core feeding the accelerator work.

However, the performance of configuration F is clearly lower (higher times) when compared to either D
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Figure 5.16: Zoomed in views of the data in figure 5.15, along with corresponding percent device values.

112



or E. This is also to be expected, since the distribution of work in configuration F is uneven per pairing.

In configuration F there are 16 host cores and 6 accelerator devices. Note that 16 is not a multiple of 6,

and recall that each host core is associated with one and only one accelerator device. As a result, some of

the accelerator devices are being shared amongst 3 host cores, while others are only shared amongst 2 host

cores. However, since the overall application workload is evenly distributed amongst the host cores and the

accelerator load balancing strategies only act locally to a given host core and accelerator device pairing, there

is currently no way to overcome the misbalance of work between the pairings without an across host core load

balancer (will be addressed later in this section). This misbalance causes the performance of configuration F

to suffer. In configurations A through E, the number of host cores is a multiple of the number of accelerator

devices, allowing the default distribution of chare objects (i.e. an equal portion of the workload is assigned

to all host cores) to result in an even distribution of work to naturally occur across all of the accelerator

devices.

The lower three graphs in figure 5.16 show the performance plots of configurations D, E, and F , respec-

tively, along with the percent device values for each of the cores over time. The solid lines are the performance

plots, while the dotted and largely overlapping lines are the percent device plots. In the case of configuration

F , two colors are used for the percent device plots, one for host cores that share their associated accelerator

device with one other host core (cyan) and one for host cores that share their associated accelerator device

with two other host cores (yellow). Lower percent device values are being used on host cores associated with

accelerated devices shared between three host cores, while slightly higher percent device values are being

used by host cores associated with accelerator devices shared by only two host cores. Since all host core and

accelerator device pairings are being assigned the same amount of work, it makes sense that a lower percent

device value would be used by pairings that are associated with accelerator devices that are shared amongst

more host cores.

Finally, the final percent device values across all of the pairings for each configuration is shown in figure

5.17. With the exception of configuration F , which would have a slightly larger range, the last assigned

percent device values are roughly the percent device values used through each configuration’s execution. We

can relate these final percent device values back to figure 5.14 to help explain the location of the knee points

in the performance plots generated when using Step strategy. The percent device values associated with the

knee points in figure 5.14 for configurations A through D are relatively the same, as shown in figure 5.17.

Since a fixed number of timesteps separate each percent device adjustment when using the Step strategy

and the sampling rate increases as the performance increases (between configurations), the percent device

value of the knee is reached in less time (relative to the performance increase). Configurations E and F
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Figure 5.17: The final percent device values for the various configurations used in figure 5.15.

only add a small amount to the available peak flop rate provided by the respective configurations, relative

to configuration D. However, all of the added flops come from the addition of more host cores, resulting in a

drop in the percent device value associated with the knee point. Since the performance doesn’t significantly

increase, and thus the sampling rate does not significantly increase, from D to E to F , the time taken to

reach the knee point increases from D to E to F .

The plots in figure 5.18 are the same as the plots in figure 5.15, except that the across host core load

balancer, AccelEvenLB, has also been applied to the runs. With the addition of the across host core load

balancing, plot F is performing as well as plot E. Recall the differences between these two configurations. In

E, each GPGPU is shared by an equal number of host cores (2). In F, some GPGPUs are shared between

two host cores, while others are shared between 3 host cores. Because of this imbalance, configuration F

performed worst that E when no across host core load balancer was applied (figure 5.15), which has been

corrected for in figure 5.18. Its hard to come to any conclusion as to whether or not the performance of F is

doing better or worst than E because the noise being seen within the runs is higher than the performance

gain one would expect to see from the additional host cores which only increase the combined peak flop rate

by 1.2%. Essentially, configuration F is harder to load balance and offers little benefit over E in terms of

the peak flop rate. For reference, we have included two horizontal lines in the lower, zoomed in graph in

figure 5.18 that visually show what an increase of 1.2% would look like based on an initial performance level

of 0.16 seconds per timestep.
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accelerator strategy along with the AccelEvenLB load balancing strategy.
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Figure 5.19: The molecular dynamics application scaled to a single node of Forge and using the BaseLoad
profiler, AdjustBusy accelerator strategy, and the AccelEvenLB load balancing strategy.
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Figure 5.20: The molecular dynamics application scaled to a single node of Forge and using the Sampling-
Centralized accelerator strategy.

Figure 5.19, presents the same set of plots that were present in figure 5.18, except that the BaseLoad

profiler has also been used for these runs. The combined peak flop rate increases by only 1.2% when moving

from configuration E to F . There are two horizontal reference lines in figure 5.19, visually indicating a 1.2%

performance increase starting from a base performance level of 1.6 seconds per timestep. As can be seen,

the noise within the plots is too large in magnitude to determine if the performance of the application does

indeed increase by an additional 1.2% when moving from configuration E to F . One may wonder why the

performance of configuration E is clearly better compared to the performance of configuration D. When

moving from configuration D to E, the number of host cores associated with each accelerator device increases

from 1 to 2 (an equal number per accelerator device in both cases). Configuration E not only provides the

additional processing power of the added host cores, but also begins sharing the accelerator devices between

host cores (i.e. there are two host cores feed work to each accelerator device, rather than one). As such,

switching from configuration D to E represents a more significant change in the hardware configurations

compared to the shift from E to F .

Figure 5.20 applies the Sampling (centralized) accelerator load balancing strategy to the same configura-

tions used for testing the Step and AdjustBusy strategies. The most notable feature of the plots is the large

humps that occur for each configuration. In assist in the explanation of why these humps are occurring, we

have included a simplified (idealized) scenario in figure 5.21 to illustrate the cause. Aside from the humps

and the beginning of the executions, the Sampling and AdjustBusy strategies result in similar performance.
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Figure 5.21: Illustration explaining the “humps” in figure 5.20.

To understand how the hump occurs, see the idealized scenario in figure 5.21. There are two graphs in

figure 5.21, the percent device graph to the left and the time graph to the right. In both cases, the vertical

axis represents the performance of the application (i.e. time per timestep), with a lower value equating to

better performance. The left graph, is the same as the workload balancing graph (i.e. as shown in figure

5.1(a)). The arrows show how the sampling strategy moves between the points A, B, C, and D as the the

strategy takes performance measurements in an attempt to find the sweet spot S. The strategy starts with

a percent device value of 100% (A). As time goes on, the strategy starts decreasing the percent device value

until, at some point, it passes the point S (point C in figure 5.21). Note that the Sampling strategy (or

any strategy like it) must pass the point S in order to detected it (i.e. in order to detect a valley). After

sampling at points A, B, and C, the Sampling strategy will believe that it has found a minimum at point

B. Keep in mind that the strategy has incomplete information, not the entire graph as shown in figure 5.21.

Once it is time to move one from point C, the Sampling strategy (or any strategy that works in a similar

way, regardless of the exact implementation) will likely begin picking points around point B (e.g. point D).

The graph on the right side of figure 5.21 shows the corresponding time graph (equivalent to the plots in

figure 5.20). The four regions in the time graph in figure 5.20 relate directly to the points in the percent

device graph. Note that the time spent in each region is not drawn to scale. For example, the region in

which the most time will be spend is @C (of just the four shown and assuming the same number of samples

are collected in each). If, for example, the time per timestep of C is twice that of B, then the region marked

as @C will last twice as long as the region marked as @B.

In support of this analysis, figure 5.22 shows the performance of the MD application executing on a single

host core and a single GPGPU (i.e. configuration A from figure 5.20). Along side the performance plot, the

percent device value is also shown. From 5.13, it is known that the best balance point for this application

running on a single host core and a single GPGPU is approximately 97.5%. In particular, there are two
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Figure 5.22: The molecular dynamics application on a single host core and a single GPGPU using the
Sampling strategy.

points at which the percent device value drops below 97.5% (i.e. the large hump and the small performance

drop at the end of the execution). The performance levels seen in figure 5.22 correspond to the performance

levels measured in figure 5.13 for corresponding percent device values.

There are a few observations that should be pointed out in relation to figures 5.21, 5.22, and 5.20. First,

the height of the hump (@C ) in the time graph is directly related to the location of the point C in the percent

device graph, which is in turn, directly related to the performance difference between the host core and the

accelerator device (i.e. the slopes of the lines in the percent device graph from figure 5.21). Recall from the

discussion in section 5.1.1 that as the accelerator device becomes more and more effective at executing the

workload, the slope of the line representing the host core’s time to execute its portion of the workload (i.e.

the green line) will become greater and greater in magnitude. Second, any load balancing strategy must

sample the percent device graph on both sides of S, regardless of the exact implementation of the strategy,

in order to discover S (i.e. detect a valley in the workload balance graph). Third, the further to the right

(lower percent device value) beyond S a strategy samples, the more of a performance impact there will be

in the application and the longer this diminished performance region (i.e. @C from the example in figure

5.21 assuming the number of samples per adjustment remains constant). The more the imbalance between

the performance of the host core and the accelerator device, the greater the performance impact of even a

small overstep to the right of S.

The observations mentioned above have two implications on the load balancing strategies that would

118



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  50  100  150  200  250  300  350  400  450  500

A
vg

. T
im

e/
T

im
es

te
p 

(s
ec

)

Simulation Time (sec)

MD (Forge, 1 Node, SamplingCentralized, AccelEvenLB)

A: 1 CPU Core, 1 GPU
B: 2 CPU Cores, 2 GPUs
C: 4 CPU Cores, 4 GPUs
D: 6 CPU Cores, 6 GPUs

E: 12 CPU Cores, 6 GPUs (Shared)
F: 16 CPU Cores, 6 GPUs (Shared)

Figure 5.23: The molecular dynamics application scaled to a single node of Forge and using the Sampling-
Centralized accelerator strategy along with the AccelEvenLB load balancing strategy.

control the balance of a workload between host cores and accelerator devices. The first directly follows from

the observations, that an overstep will be costly in cases where there is a large performance imbalance. For

long running applications, the associated time period(s) of lower performance will likely be negligible since

their amortized impact will be minor. However, for short running applications, an over step in to the region

of the graph where the application is host core bound (i.e. to the right of S ) could be quite costly. However,

strategies designed for short running applications are likely to be aggressive, so that they can quickly converge

on S. This aggression may result in large oversteps. However, perhaps profiling and across execution memory

could assist with shorting running applications. This may allow a less aggressive strategy to make smaller

steps, because of a good starting point based on data from previous executions of the application. Second, as

a strategy approaches the point S, it is likely to bounce back and forth between the left and right sides of S.

This is especially true for strategies that do not assume that the point S is stationary and must periodically

sample either side of S to detect a shift. If the hardware system the application is running on has sources of

interference, such as operating system interference, other applications executing, etc., the location of S may

shift as the interference comes and goes. Such strategies will likely test percent device values to either side

of S on a regular basis. However, such testing can cause noise within the application as the percent device

value moves back and forth to either side of S.

Figure 5.23 shows the performance of the MD application when using both the Sampling (centralized)

accelerator load balancing strategy and the AccelEvenLB across host core load balancing strategy.
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Figure 5.24: The MD application using the Greedy strategy, with and without the Crawler strategy.

Greedy and Greedy With Crawler: Figure 5.24 goes on to apply the Greedy strategy, with and

without being followed by the Crawler strategy, to the MD application. Recall that the Greedy strategy relies

on the output of both the BaseLoad and KernelRatio profilers. The profilers are applied at the beginning

of the application’s execution. A vertical reference line has been included in figure 5.24 to mark the time

when the Greedy strategy applies its one-time balancing algorithm (at approximately 60 seconds). Note

that the MD application only reports its performance after every 16 timesteps (as it was configured for these

executions). As such, there is some delay between the Greedy algorithm being applied and the resulting

performance increase being reported in the application’s output. From figure 5.24, the application of the

Crawler strategy seems to have no difference on the application’s performance beyond the increased provided

by the Greedy strategy itself. However, recall that the Crawler strategy cycles through a rotation sequence

in order to test individual percent device value adjustments for each type of accelerated entry method, and

that several samples are take for each of those adjustments. The result is that the Crawler strategy can take

quite a bit of time to make adjustments.

Figure 5.25 shows the results of the MD application executing using the same configuration as was used

in figure 5.24, but for many more timesteps (2048 in figure 5.24, 30720 in figure 5.25). From figure 5.25,

we can see that the Crawler strategy can, in fact, provide a performance benefit over the one-time Greedy

strategy, if given the time to do so. Note that the vertical axis does not start at zero and is quite a bit more

zoomed in compared to figure 5.24, emphasizing the noise present in the performance plots. Additionally,
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Figure 5.25: The MD application executing for 30720 timesteps using the Greedy strategy, with and without
the Crawler strategy.

two reference lines have been included to give the reader a sense of scale. The upper reference line is set

to 0.175 seconds per timestep, and the lower line represents a 10% decrease in the time per timestep of the

upper reference line.

Finally, figure 5.26 shows the performance of the MD application using the Greedy, Greedy with Crawler,

AdjustBusy, Sampling (centralized), and DeviceOnly over the course of 30720 timesteps. For clarity, figure

5.26 has two graphs. The upper graph shows the raw performance output of the MD application while the

lower graph shows the same data smoothed so the general trend of each plot is more readily visible. Note

that both graphs have the same zoomed in view used for figure 5.25, emphasizing the noise in the plots.

There are a few points that we wish to make in reference to figure 5.26. First, the Crawler strategy is

capable to increase the performance of the application if it is given enough time to do so. However, it is

worth noting that the Crawler strategy can take quite some time to do so, since it must cycle through its

rotation sequence several times to have a noticable impact. Second, while it is not clear from the figure,

there is some performance variability between runs (plots can shift vertically by approximately 5%, up or

down). The same reference lines from figure 5.25 have been included in figure 5.26 to give the reader a sense

of scale. What is consistantly true, however, is that the DeviceOnly strategy is not the best performing

strategy. Even in a situation where the GPGPUs are providing a large fraction of the combined peak flop

rate (approximately 95% of the combined peak flop rate), the host cores are still able to make a noticable

contribution to the performance of the application.

Scaling to Multiple Nodes

Table 5.1 shows the results of scaling the application from one to six nodes of the Forge cluster. In all

cases, the execution time of the simulation (only simulation time was counted, not startup or shutdown) was
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Figure 5.26: The MD application executing for 30720 timesteps using a variety of accelerator load balancing
strategies.

Nodes CPU Cores GPGPUs Peak Gflop/s Time Measured Gflop/s % Peak Efficiency
1 1 1 1049.20 96.55 247.72 23.61% 100.00%
1 16 6 6487.20 19.94 1199.44 18.49% 78.31%
2 32 12 12974.40 11.57 2067.35 15.93% 67.49%
3 48 18 19461.60 9.20 2599.54 13.36% 56.57%
4 64 24 25948.80 7.93 3016.99 11.63% 49.24%
5 80 30 32436.00 7.46 3208.01 9.89% 41.89%
6 96 36 38923.20 6.74 3547.76 9.11% 38.60%

Table 5.1: Scaling performance of the simple MD application from one to six nodes on Forge with GPGPU
sharing.
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divided by the number of timesteps executed. In the case of table 5.1, the time column represents the time

to execute 128 timesteps (128 timesteps is an arbitrary choice with no special significance). The values in

the efficiency column are calculated using ’the measured speedup of the application relative to the first row

(1 CPU core and 1 GPGPU)’ divided by ’the ratio of the combined peak flop rates of the configuration in

question versus the combined peak flop rate of the base configuration.’

The base case of a single host core and a single GPGPU achieves a measured flop rate of 247.72 Gflop/s,

or 23.61% of peak. While it is likely that a higher level of performance could be achieved by a programmer

programming the force computation kernels by hand, making use of all the hardware features of the GPGPU

hardware available to them. Doing so would require quite some effort, and the resulting code would not be

portable to other platforms without a fair amount of changes to the code. When considering the performance

achieved by the MD application using our programming model extensions and runtime system modifications,

recall that the application code does not include any architecture specific code, and as such, the generated

GPGPU code is not making used of any hardware specific synchronization mechanisms, constant memory,

or texture memory provided by GPGPU hardware (unless the NVCC compiler provided within the CUDA

SDK performs these optimizations on the generated code internally). Further recall that the application code

does not include any explicit batching of accelerated entry methods into kernels or even kernels themselves.

The application programmer programs the MD application using the programming model available to all

Charm++ applications (though, using AEMs when appropriate). Further, the SIMDIA abstraction allows

SIMD instructions to be used on the host core and scalars to be used within the GPGPU threads. The

MD application is capable of achieving 23.61% of peak using a single host core and a single GPGPU,

and at the same time, is written in a portable manner using the same programming model and execution

model that is presented to any other Charm++ application executing on any other hardware platform.

There are certainly additional optimizations that could be made within the runtime system and additional

optimizations to be made at compile time that could further improve the performance of such applications

executing on platforms that include accelerator technologies. However, we believe that this work, at the

very least, shows that applying a message-driven (event-driven) approach to accelerator technologies is not

only feasible, but has several advantages over other approaches (discussed further in chapter 8).

As the MD application is scaled from one node to six nodes, the performance continues to increase,

however, the efficiency steadily decreases. Note that six nodes on Forge contain a total of 96 host cores

and 36 GPGPUs, where 36 GPGPUs = 504 streaming multiprocessors (SMs) = 16128 streaming processors

(SPs or SIMD cores). Having given the core counts, it is worth noting that a direct comparison between

the host cores and either the SMs or SIMD cores within the GPGPUs is inappropriate (i.e. they are fairly
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Figure 5.27: Timeline of the molecular dynamics application executing on six nodes of Forge.

different, so trying to convert the number of one type into an equivalent number of the other type in an

attempt to give a single value for the “core count” would not be fair). In terms of the peak flop rate, the

96 host cores and 36 GPGPUs have a combined peak flop rate of 38.92 Tflop/s. Assuming an x86 host core

with a 256-bit (8 32-bit elements) wide SIMD register and support for fused-multiply-add SIMD instructions

executing at 3.0 GHz (i.e. similar to modern host cores), an equivalent host-core-only system would require

approximately 811 such cores to have an equivalent peak flop rate. In the six node case, the efficiency has

decreased to 38.6%. To understand why this is occurring, a Projections Timeline graph is presented in figure

5.27 for the six node case (last row of table 5.1).

The timeline in figure 5.27 shows the activity on every 13th host core, and associated accelerator device,

over the course of 3 timesteps (the start of a fourth on the right-hand side is only partially shown). Not

all host cores are shown for brevity, and a prime number is used for the stride between processors to avoid

any patterns based on host core counts or GPGPU counts (e.g. some effect that only affects the first host

core in each node). Each host core (or “PE”) has several rows associated with it, with the bottom most row

(thickest) showing entry methods being performed on the host core itself (one “block” per entry method

invocation) and one or more (thinner) rows above that showing the activity on that host core’s associated

accelerator device. The red blocks show force and integration calculations being executed on the host cores,

while the blue blocks show force and integration calculations being executed on the accelerator devices. Time

increases from left to right.

The first thing to take notice of when trying to understand the efficiency drop when using six nodes

of Force is the time taken to execute the portion of the workload assigned to the accelerator devices each

timestep. In particular, take note of the accelerator work associated with “PE 78.” There is a large degree

of variability in the time it takes the accelerator device to execute its workload from timestep to timestep

(the first timestep shown is relatively long, the second is relatively short, and the third is relatively long).

From examining the execution’s output, it can be determined that no load balancing occurred (between the
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host core and the accelerator device, or between any host cores) during the time period shown. As the MD

application scales, this variability has a large impact on scalability since the time per timestep has a lower

bound which is determined by the slowest host core and accelerator device pairings. Since the GPGPUs are

being shared between host cores, the kernels issued by one host core may be slowed as already executing

kernels finish executing (as one possible source of kernel execution variability). Note that the blocks shown

in figure 5.27 executing on the accelerator devices include all data transfers associated with the kernel, the

kernel execution itself, and any delays (i.e. represents the time from the host core issuing a batch set to the

time the callback associated with that batch set is initially triggered on the host core), which is why some of

the smaller kernels overlap in time. As such, the interference of kernels being issued by multiple host cores

to the same GPGPUs are accounted for in the timeline figure shown.

The second thing to notice is that a significant portion of each host core’s time is spend performing

communication and any related batching resulting from those messages arriving. Basically, each of the

“short” blocks is communication (short in terms of time). During the time periods dominated by these short

to execute entry methods associated with data communication, their is a significant amount of idle time on

each host core as local execution waits for data to arrive. Also recall that an O(N2) algorithm is being used

for the simple MD code. That not only increases the amount of work (compute objects) but also increases

the amount of communication occurring. As this communication, and related idle time occurs, the force

computations are not being executed and the overall performance (efficiency) of the application decreases

as a result. This is a common effect seen in parallel applications as result of strong scaling. However, the

batching process used by the runtime system may be emphasizing the effect since the kernel execution cannot

begin until a given number of messages arrive. However, the same is true of hand-coded applications as well,

with the difference being that the application code does the batching explicitly, rather than the runtime

system implicitly.

Finally, we repeated the six node execution with and without GPGPU sharing. Figure 5.28 shows the

results of both runs. The top graph in figure 5.28 shows the performance of both executions, with and without

GPGPU sharing, over the course of their executions. Initially, the performance of the “Not Sharing” run is

quite bad. This is because the objects within the application are distributed equally to each host cores. As

such, the host cores that do not have accelerators are initially a bottleneck for performance. After a couple

across host core load balancing steps, however, the performance is greatly increased, as the load balancer

migrates the objects away from the weaker pairings (i.e. host cores without access to accelerator devices).

The “Shared” plot initially does fairly well since all of the host cores have access to GPGPUs.

The center and bottom graphs of figure 5.28 show the object distributions across the pairings for both
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Figure 5.28: The object distribution and performance of the 6 node execution, with and without GPGPU
sharing.
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the “Not Shared” and “Shared” runs in the top graph, respectively (only pair compute objects are shown).

For both graphs, all 96 pairings are shown, but only the first pairing from each node is labeled. There is a

single row for each pairing. The gray value indicates the number of objects located on each pairing per the

scale on the right side of the graph. Note that the gray value scales for the two object distribution graphs

are not the same (i.e. the bottom graph has a smaller range of values and thus noise is emphasized in the

gray values more so than it is in the middle graph).

In the “Not Shared” case (center graph in figure 5.28), only the first 6 host cores are paired with one

of the 6 GPGPUs (giving them each exclusive access to that GPGPU. The remaining 10 host cores per

node do not have access to GPGPUs (though, we still refer to them as pairings). This misbalance is clearly

evident in the “Not Shared” execution’s object distribution (middle graph of figure 5.28). The AccelEvenLB

across host core load balancer quickly moves migrates objects away from the host cores without GPGPUs,

indicated by the six bands of lighter gray values (each containing six pairings). Note that the initial object

balance is not shown since the execution’s output only reports object distributions after a load balancing

step (that is why the middle graph seems to start just after 50 seconds). Note that the 60 host cores without

access to GPGPUs combined only contribute approximately 3% of the total peak flop rate provided by all

six nodes, so very AccelEvenLB is mapping very few chare objects to them. While it is hard to tell from the

figure, there are approximately 10 to 13 pair compute objects mapped to each host core without GPGPU

access at any given moment.

In the “Shared” case (bottom graph in figure 5.28), all of the host cores have access to the GPGPUs.

Some of the GPGPUs (on a per node basis) are shared by two host cores, while others are shared by three

host cores, a nutural result of 16 (number of host cores) not being evenly divisible by 6 (number of GPGPUs).

This makes the job of the across host core load balancer, AccelEvenLB, more difficult in that it introduces

side effects to object movement. In particular, we mean that moving chare objects from pairing i to pairing

j not only affects the performance of pairing j, but also affects the performance of any pairing that is also

making use of the same physical GPGPU. This may account for some of the noise seen in the bottom graph

of figure 5.28.

5.5 Adapting to Interference

In addition to load balancing a given workload from an initially imbalanced state, there may be situations

in which an application may need to react to external influences. For example, consider a situation where

an application, A, is executing on a shared workstation and another application, B, begins executing. If
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some subset of the hardware resources that where originally being exclusively used by A suddenly become

shared between both A and B, A is likely to see a performance degradation. Consider the case where

one or more accelerator devices become shared, but the host cores remain exclusive. In such a case, the

performance of the shared accelerator devices will decrease from A’s point-of-view, and thus, the ratio of

measured flops between any exclusive resources (host or accelerator) will increase relative to the shared

accelerator resources. This degradation occurs for two reasons. First, the shared resource must divide its

time between multiple applications, which will likely result in any tasks associated with that shared device

to increase in latency. Second, if a proper subset of the hardware resources transition from exclusive to

shared, an imbalance will form, causing the application to be limited by the slowest component. In such

situations, it may be beneficial to shift some of the workload associated with the shared resources to the

exclusive resources in order to rebalance the workload such that all resources complete their portion of the

workload in the same amount of time.

To show how our approach handles such cases, two situations are simulated using the MD application.

The first situation will be a case of overlapping application instances, where each application instance is

completely sharing the accelerator devices available to them. In the overlapping situation, the relative

performance of the accelerator devices compared to the host cores is shifted during execution, which the

application instances must adapt to in order to minimize the impact on their performance. The second

situation will be a case of interference, where one of the application instances will make use of only a subset

of the other application instance’s accelerator devices, causing an imbalance between the accelerator devices

themselves, in addition to the host cores.

5.5.1 Overlapping Execution

The first example of an external influence considered is the case of overlapping interference. By “overlapping”

we simply mean that the set of accelerator devices available to all of the applications sharing them is

completely overlapping.

In the case of GPGPUs in particular, multiple applications can make use of the accelerator at the same

time. As the applications are sharing the accelerator, the accelerator’s performance may decrease from the

point-of-view of either application, since only a fraction of the accelerator’s time can be given to either

application. As such, it may be advantageous for the applications to react accordingly and migrate some of

the workload assigned to the shared accelerator devices to the host cores to mitigate the perceived decrease

in performance. We use the phrase “perceived decrease in performance” since, from the point-of-view of

the accelerator itself, the accelerator may actually be doing more work per unit time, even though each
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Figure 5.29: Two instances of the MD application with the same configuration overlapping in time.

application individually is submitting a lower portion of it’s overall workload.

To demonstrate that our approach can assist applications in this regard, multiple instances of the molecu-

lar dynamics (MD) application will be executed on the same node of Forge such that their executions overlap

in time. Both instances of the application are using the exact same configuration (number of host cores,

number of accelerator cores, number of timesteps, number of particle counts, load balancing strategies, and

so on). However, each instance makes use of a mutually exclusive set of physical host cores, while sharing

the same physical accelerator resources. For these executions, 2 host cores and 2 GPGPUs were used for

each application instance.

Figure 5.29 shows the result of the overlap experiment. First, notice that the executions of the application

instances do not completely overlap in time. This was done so that the reaction of each application instance

could be seen, showing that the application and runtime system are in fact adapting to the environment in

which they are executing. The first application instance, “Inst. 0” (blue), begins execution at time 0. The

second application instance, “Inst. 1” (green), is started sometime after the first. As such, “Inst. 0” begins

execution with exclusive access to the accelerator devices and must later adapt to sharing them with “Inst.

1.” “Inst. 1” begins execution by sharing the accelerator devices with “Inst. 0,” but later obtains exclusive

access when “Inst. 0” completes its execution.

The first two plots, “Inst. 0 (Perf.)” and “Inst. 1 (Perf.),” show the performance of each instance of the

MD application. The second instance (1 ) was started approximately half way through the execution of the
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first instance (0 ). The green vertical line, at approximately 225 seconds, shows the time at which the second

instance began executing relative to the execution time of the first instance (this is estimated based on the

output of the first instance, since there are no shared clocks between the executions). It should be noted

that the performance plot of the second instance, “Inst. 1 (Perf.),” begins slightly to the right of the green

vertical line. This delay occurs for two reasons. First, there is some application initialization which delays

the beginning of the first timestep. Second, the MD code reports performance after each set of 16 timesteps

which causes the first data point to appear only after the first 16 timesteps have completed, making the

delay at the beginning of the application’s execution seem longer than it is in reality. In addition to the

performance levels of each instance of the application, the percent device values for the first host core and

GPGPU pairing are also shown for each application instance, “Inst. 0 (P.D.)” and “Inst. 1 (P.D.).” In

the same vein as the performance plots, the data points that make up the percent device plots only occur

when a change in the percent device value occurs. Each instance of the application begins with all percent

device values (i.e. for all host core and GPGPU pairings) set to a value of 100%. A second vertical line,

blue in color and at approximately 502 seconds, marks the time at which the first instance of the application

(0 ) finishes executing. Thus, the two vertical lines mark the region of time where the two instances of the

application are overlapping in time and sharing the GPGPUs.

The first thing worth noting in figure 5.29 is the performance of each application during the time period

of overlapping execution once both instances have reached a fairly stable level of performance (i.e. from

approximately 300 seconds to approximately 500 seconds). In particular, notice that the level of performance

for both instances is approximately 0.6 seconds per timestep. Compare that to the performance of each

instance of the application execution in isolation, which is approximately 0.4 seconds per timestep. Since

neither application is making full use of the physical accelerator devices (i.e. is not actively executing work

100% of the time on the accelerator), the net effect is that the performance of the application instances

during the overlapping time period does not drop to half (i.e. 0.8 seconds per timestep) the performance

level measured when either is executing in isolation. Instead, each instance of the application is able to share

the accelerator devices, filling in what would have otherwise been idle time in the other instances execution.

Also notice that the percent device plots of each instance of the application decrease during the period

of time when both instances are active. From the point-of-view of either application instance, the other

instance is seen as interference causing a perceived decrease in the performance of the accelerator devices

relative to the host cores. The accelerator load balancing mechanism reacts to this perceived decrease by

shifting a portion of the workload from the accelerator devices to the host cores. However, it should be

noted that amount by which the percent device value changed is fairly minor, moving from just under 98%
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to just over 96% (i.e doubling the workload on the host cores associated with AEMs), so the accelerator

devices are still handling the majority of the application’s workload associated with AEMs. These shifts are

consistent for both applications (i.e. same levels during the overlapped time period and the isolated periods,

respectively).

Another (minor) point to take note of is the initial behavior of the AdjustBusy accelerator load balancing

strategy. Specifically, the AdjustBusy strategy begins with a percent device value of 100%. If there is any

idle time on the host, the AdjustBusy strategy will migrate work from the device to the host. Notice that the

percent device value of the first host core and GPGPU pairing in the first application instance (0 in figure

5.29) drops to approximately 91.5%. However, for the second application instance, there is “interference”

from the very beginning of the instance’s execution. As such, the AdjustBusy strategy initially drops the

percent device value of the first host core and GPGPU pairing to an even lower percentage (approximately

85.6%), indicating that it is in fact detecting and reacting to the relative performance between the host core

and the accelerator device for the first pairing.

5.5.2 Partial Interference

In the case of figure 5.29, the two instances of the MD application were executed using exactly the same

physical GPGPUs. As such, all of the GPGPUs were experiencing an equal amount of interference by the

executed of the second instance of the application. However, what if only a subset of the GPGPUs being

used by an application were experiencing interference? In this section, we explore the interference case,

when only a subset of the accelerator devices are shared with other applications.

Figure 5.30 shows three instances of the same MD application. However, in figure 5.30, the three instances

of the application are being executed on different hardware configurations. In the case of instance A, 12

host cores and 6 GPGPUs are being used to execute the MD code for 6144 timesteps. Instances B and C

are executed using 2 host cores and 2 GPGPUs, and only execute 768 timesteps (each).

Initially, in figure 5.30, instance A of the MD application begins execution. At approximately 221 seconds

and 229 seconds, instances B and C, respectively, begin execution. As was the case in figure 5.29, each of

the instances of the MD application are executing using a mutually exclusive set of host cores. In this case,

instance A is using physical cores 0, 2, 8, 9, 10, 11, 4, 6, 12, 13, 14, and 15 (which are equivalent to virtual

cores 0 through 11). The irregular mapping is caused by the affinity of the various GPGPUs to the various

host cores, as defined by the Forge architecture. Instance B is using physical cores 1 and 3. Instance C

is using physical cores 5 and 7. However, the applications are share the physical GPGPU resources. In

particular, instance A is using all 6 GPGPUs (0-5), which are paired with the host cores in a round-robin
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Figure 5.30: An instance of the MD application executing with interference.

manner (i.e. host core 0 uses GPGPU 0, host core 2 uses GPGPU 1, 8 uses 2, 9 uses 3, and so on in

round-robin order). Instance B is using GPGPUs 0 and 1. Instance C is using GPGPUs 0 and 1. Since

all of the instances share GPGPUs 0 and 1, once the two extra instances of the MD application, B and

C, these two GPGPUs will become overloaded compared to the other four GPGPUs. Otherwise, the plots

within figure 5.30 have been displayed in a manner that is very similar to figure 5.29 above. The vertical

lines indicate the starting and ending times of application instances A and B. The percent device value of

the first host core and accelerator device pairing over time is shown for each configuration. The percent

device values for the second pairing in both B and C are nearly identical to the first pairing’s percent device

plots. The other percent device value plots for instance A are displayed in figure 5.31, as described below.

Notice that the performance of instance A initially suffers as instances B and C begin their execution.

However, between 250 and 400 seconds, the all of the applications once again reach a stable point as both

the across host core load balancing and the accelerator load balancing strategies correct for the interference.

Note that the performance of instance A moves from approximately 0.15 seconds per timestep before the

interference to approximately 0.2 seconds per timestep, which is a decrease in performance of 33.3% relative

to the pre-interference performance level. Note that instance A is configuration E from figures 5.15 and

5.16 in section 5.4.2. Instances B and C are configuration B from the same figures, which when executed

in isolation, achieved a performance level of 0.375 seconds per timestep. However, when the executing in an

environment where the accelerator devices are being shared between three separate application instances,
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the performance for instances B and C is closer to 0.8 seconds per step (roughly speaking), which is a

slowdown of approximately 113% relative to executing in isolation.

The two graphs in figure 5.31 illustrate how the load balancing mechanisms reacted to the induced

interference on GPGPUs 0 and 1 within instance A of the application. Figure 5.31(a) shows the number

of chare objects that are being mapped to the various processors over the course of instance A’s execution.

The horizontal axis represents time, while the vertical axis lists each of the host cores (PEs) in use by

the application. There are 12 rows made up of varying gray values, one per PE, where the gray value

reflects the number of chare objects that are located on that PE at the corresponding time in the simulation.

The bar to the right of figure 5.31(a) maps the color to the number of chare objects. A darker gray value

represents fewer objects, while a brighter gray value represents more objects. Across host core load balancing

is triggered every 256 timesteps. Since there are 12 host cores and 6 GPGPUs paired with those host cores

in a round-robin manner, each GPGPU is shared by two host cores within instance A.

At this high level, the overloading of GPGPUs 0 and 1 is very apparent in figure 5.31(a). For host cores

0, 1, 6, and 7 (using virtual numbering, not physical numbering), which are the host cores using the shared

GPGPUs 0 and 1, a significant fraction of the objects originally mapped to these host cores are moved to

other host cores during the interference period (these host cores become a darker gray value while the other

cores become a lighter gray). Since there are twice as many exclusive accelerator devices compared to the

number of shared accelerator devices, the number of chare objects on these host cores should only increase

by half the decrease seen host cores associated with shared accelerator devices. Once instances A and B

have completed, the number of objects across all of the host cores once again moves to levels that are similar

to the levels seen prior to the interference period.

Figure 5.31(b) shows the percent device values for application instance A over time for each host core and

accelerator device pairing. The percent device plots for host cores associated with shared accelerator devices

are colored blue, while the plots for host cores associated with exclusive accelerator devices are colored

green. As figure 5.31(b) shows, the percent device values associated with the shared accelerator devices are

decreased during the time period that the interference is occurring. Once the interference period has ended,

the percent device values associated with the shared accelerator devices return to levels seen prior to the

interference occurring. Further, during the same time period, the percent device values associated with the

non-overloaded GPGPUs remain fairly constant, as these exclusive accelerator devices are largely unaffected

by the interference caused by the other two instances of the MD application.

When viewed together, the graphs in figure 5.31 illustrate the overall effect of the interference as seen

from the point-of-view of instance A. In summary, during the interference period, many chare objects are
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Figure 5.31: An instance of the MD application executing with interference.
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Figure 5.32: Performance of the MD code using various progress call frequencies, with and without splitting
accelerated entry methods on the host core.

migrated away from the host cores associated with the shared accelerator devices. Of the remaining objects,

an increased percentage of those objects are having their accelerated entry methods invocations directed to

the host cores rather than the shared accelerator devices.

5.6 Effects of Host Splitting

Figure 5.32 shows the effects of using various progress call frequencies to the GPU Manager from within the

Charm++ scheduler, along with and without splitting the accelerated entry methods assigned to the host

core. In each run, a single host core and a single GPGPU is used to execute the MD application. A single

host core and accelerator device pairing was used to minimize the amount of noise within the application’s

execution. There are two main types of plots shown in figure 5.32, “Host Splitting” and “No Host Splitting.”

In the case of the “No Host Splitting” plots, any splittable AEMs executing on the host core are executed

using a single split. In the case of the “Host Splitting” plot, any splittable AEMs executed on the host core

were executed using two splits. A fixed number of splits was used for this experiment, but in the future, we

may make this a variable amount that the runtime system adjust dynamically. Additionally, for each plot, a

frequency (“Freq.”) value is given (actually, the value actually relates to the period rather than the frequency,
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but “freq” is used to identify the configuration parameter within the code, so we retain the relationship to

the name here). The frequency value indicates the frequency with which the Charm++ runtime system

scheduler calls the GPU Manager’s progress function. This progress function essentially checks the state of

the accelerator device, and has the host core perform any actions required by the accelerator device (issuing

pending AEM batches (kernels), triggering data transfers, triggering callback functions, and so on). By

calling the progress function with a greater frequency (lower value), the host core will seem more responsive

to the needs of the accelerator device. Specifically, the frequency number indicates the number of consecutive

entry methods (of any type) that the scheduler will be execute between calls to the progress function (i.e.

the higher the number, the lower the frequency). Note that, the progress function will also be called if the

host core goes idle.

As can be seen from figure 5.32, as the frequency of calls to the progress call decreases (a higher number),

so does the performance of the application. The highest frequency at which the Charm++ scheduler can call

the progress function is between every entry method (a value of 1). However, recall that entry method are

non-interruptible. That is, once the runtime system has passed control of the host core to application code

within an entry method, control is not returned to the runtime system, and thus the scheduler, until the

entry method has completed (or yielded in the case of a threaded entry method). As such, the actual time

between calls to the progress function is dependent on the application code (amount of time spent in each

entry method). By splitting the AEM entry methods assigned to the host core and executing those splits

one-by-one, the runtime system is effectively decreasing the average amount of time per task, giving the

runtime system a chance to make progress calls between splits. As shown in figure 5.32, the MD application

performs best when the AEMs assigned to the host core are split.

Beyond decreasing the granularity of tasks in the case of mapping accelerated entry methods to GPGPUs,

this result shows an additional use for splittable AEMs. The original intent of AEMs was to decouple the

number of messages from the number of entry methods (tasks) executed by the application. By creating

many smaller tasks out of what would have otherwise been a single larger tasks, the runtime system is able to

increase the amount of parallelism within the application while, at the same time, decreasing the granularity

of individual tasks. This could also be achieved by creating smaller chares (and thus more shorter-executing

entry methods associated with those chares). However, in doing so, one would also increase the number

of messages while also decreasing the amount of data per message (i.e. decreasing the effectiveness of the

interconnect and increasing scheduler overhead). Instead, splittable AEMs allow for both larger messages

and smaller tasks. This second use of AEMs allows the runtime system decrease the average time per entry

method by splitting AEMs on the host and then executing them sequentially. The cost is that the overall
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amount of time to do the same amount of work that was encapsulated within the original AEM (before

splitting was applied) is increased because of the added overhead of the splits. However, a potential gain

(i.e. allowing the host core to be more reactive to the needs of an accelerator device) is demonstrated in

figure 5.32.

Something that may seem a bit odd about figure 5.32 is that when host splitting is not used and the

frequency of progress calls is low (values 25 and 50), the performance of the application actually decreases.

Since the scheduler is calling the progress function rather infrequently, there may be some delay between

the time an AEM batch (kernel) actually finishing on the accelerator device and the time that the host core

actually notices the AEM batch has completed (i.e. the start of the associated callback function). Since the

accelerator busy time is actually measured on the host core by the accelerator manager, which makes use

of the GPU Manager but is not apart of the GPU Manager, any delay will be measured by the accelerator

manager as an increase in the busy time of the accelerator device. This artificial increase in the accelerator’s

busy time, from the point-of-view of the accelerator device, causes the AdjustBusy strategy to shift some

work from the accelerator device to the host core in an attempt to even out their respective busy times.

The fundamental issue is that any runtime system that must periodically poll for the completion of one or

more tasks on an accelerator device and that cannot collect timing data directly on the accelerator device

itself will have this issue. Specifically, the effectiveness of any dynamic, measurement-based load balancing

strategy will rely on the accuracy of the timing measurements, which in turn, will rely on the rate at which

the runtime system polls the accelerator device. Notice that the artificial increase relies on two causes that

must both be present, not being able to measure timing on the device itself (i.e. avoiding the inclusion of the

artificial delays) and the timing data collected on the host relies on polling to detect the events to be timed

(i.e. only takes a time sample when an event is noticed rather than when it actually occurs). While this will

be corrected for in our approach, we point out this issue since it is something that other implementations

may encounter.

5.7 Revisiting the Cell Processor

In this section, we will revisit the Cell processor, making use of the Cell nodes within the heterogeneous

cluster that were used for the static load balancing experiments presented in chapter 4. In particular, we

will examine the performance of the MD application executing on the Cell-based nodes (i.e. QS20s and

PS3s) within the heterogeneous cluster using both the Sampling (centralized) and AdjustBusy accelerator

load balancing strategies.
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Figure 5.33: The MD application executing on QS20 blades in the cell cluster, using the Sampling (central-
ized) accelerator load balancing strategy.

5.7.1 Sampling (centralized)

Figure 5.33 shows the performance of the MD application executing on the QS20 blades (one Cell processor

each) using the Sampling (centralized) accelerator load balancing strategy. For the 4 QS20 blades configura-

tion, the application was executed with and without the AccelEvenLB host core load balancer. As the figure

shows, the addition of the AccelEvenLB load balancer does not improve performance, which is expected

since each of the Cell processors (and the nodes they are located in) are identical to one another and the

default mapping of chare objects is to equally distribute the objects across the Cells. Each of the plots in

figure 5.33 have the hump that was seen when GPGPUs were being used to execute the MD application.

However, note that the hump has two levels in it. This is caused by our implementation, which always starts

by sampling percent device values of 100%, 97.5%, and 95% at the beginning of an application’s execution.

Since the percent device value that gives the greatest performance is 100% (will be discussed further below),

sampling at 97.5% and 95% results in decreased performance. Plot 5.34 illustrates this point for the 1 QS20

blade Cell configuration. When viewing figure 5.34, recall that the percent device value is set to 100% at

the beginning of an application’s execution and the runtime system only reports the percent device value

when the value changes. As such, the initial portion of the percent device plot (i.e. before 294 seconds) is

not shown, but the percent device value is in fact set to 100%. For completeness, the MD application was

also executed on the QS20s using both Cell processors (i.e. 4 nodes, 2 processors per node). In the previous
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Figure 5.34: The MD application executing on 1 QS20 blade in the cell cluster, using the Sampling (cen-
tralized) accelerator load balancing strategy.

static load balancing work performed on this cluster [64], it was shown that the message send times on the

QS20 Cell blades were fairly long relative to the other nodes when only a single Cell processors was being

used per QS20 blade. When using two Cells per QS20 blade, these communication overheads hinder the MD

application scaling from 4 QS20 Cell processors (1 per node) to 8 QS20 Cell processors (2 per node).

As a reference, figure 5.33 also includes a red horizontal line that represents the time per timestep achieved

with the measured flop rate of 178.22 Gflop/s (the 4 QS20 Cell blades case presented in table 4.2 using static

load balancing). Since the best percent device value happens to be 100%, all this comparison really serves

in showing is that the added overhead of using dynamic load balancing is not that costly (except for the

hump). There will be a periodic decrease in performance as the dynamic load balancer periodically samples

the performance below 100%, but the performance is similar otherwise. The slight performance increase for

the 4 QS20 Cell case is actually a result of a slight configuration difference between the previous static load

balancing results presented in table 4.2 and the dynamic load balancing results presented in figure 5.33. In

order to periodically output coherent timing information every X timesteps, a barrier operation is performed

every X timesteps that would not otherwise be required. A larger value of X was used for the dynamic load

balancing experiments, which largely accounts for the small performance increase.

An important, but non-obvious, point to be made here is that the MD code being used on the Cell

cluster is the same code being used on the GPGPUs cluster except for a single difference. In particular,

the pair compute object’s force calculation accelerated entry method is not splittable when executing on
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the Cell cluster, but is splittable when execution on the GPGPU cluster. To be clear and direct, we do

not mean splittable and executed with a single split, rather we mean not using the “splittable” keyword. In

the case of the GPGPU cluster, the pair compute objects’ force calculation code was made splittable so

that the runtime system had the option of creating tasks with a finer granularity (i.e. splitting the AEMs).

However, there is a cost related to splitting the pair compute’s force calculation AEMs. Specifically, the

equal-and-opposite forces optimization cannot be applied to the splittable AEMs (refer to section 6.2.2),

which increases the number of flops required per timestep. In the case of GPGPUs, this tradeoff is fine

since the increased flop rate provided by the splitting results in better performance (time per timestep,

and thus time to solution). However, in the case of the Cell processor, the equal-and-opposite optimization

can be applied, which results in better performance overall. This difference illustrates a weakness in our

unified programming model. To be clear, it is the case that both versions of the code (with and without

the equal-and-opposite force optimization applied) are portable between both platforms. Both the Cell

cluster and the GPGPU cluster can execute either version of the MD code (with and without splits). In this

sense, our unified programming model represents a minimal set of abstractions/features required to provide

portability. However, our approach is minimal in that it only supports this portability in a mechanical sense

(i.e. allowing it to occur). Our approach does not optimize an AEM’s function body in a way that specific

to each type of processing element as the AEM is compiled for each type of processing element (host core,

SPE, or GPGPU). Given a sufficiently advanced compiler, the data dependencies of the AEMs function

body could be analyzed for both data dependencies and loop-level parallelism (e.g. data parallel iterations)

such that the programmer could write a straight forward inner/outer loop combination used for particle-to-

particle interactions with the equal-and-opposite optimization. Knowing that the AEM’s function body is

going to be compiled for each type of core (host and accelerator) and knowing the hardware characteristics

of each core type, the compiler could make different tradeoffs for each version of the AEM code. In the case

of a host core or a SPE core, the compiler could keep the general nature of the code the same. However,

in the case of of a GPGPU, the compiler could duplicate work as a tradeoff for splitting the loop iterations

(i.e. create a data parallel loop by duplicating calculations in order to remove race conditions), knowing

that the duplication of work will likely lead to better performance (i.e. not better performance in terms of

achieved flops per second, but rather better performance in terms of time to solution). The creation of such

a compiler, and the associated data dependency analysis and loop-level transformations, is left as future

work from the point-of-view of this work.

Figure 5.35 shows the performance of the MD application executing on the Cell cluster using 4 QS20

blade Cells and 2 PS3 Cells and making use of the Sampling (centralized) accelerator load balancing strategy.
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Figure 5.35: The MD application executing on 4 QS20 blades and 2 PS3s in the cell cluster, using the
Sampling (centralized) accelerator load balancing strategy.

Only 2 of the 4 PS3 nodes were used because, at the time these executions were performed, 2 of the PS3

nodes were not operational. As the figure shows, the application is able to make use of both types of

nodes simultaneously. From the figure, we can see that the use of AccelEvenLB is actually decreasing the

performance of the application. Figure 5.36 shows the number of pair compute objects assigned to each

pairing (PE) by the AccelEvenLB balancer over time.

Figure 5.36 shows that the AccelEvenLB balancer is mistakenly placing more objects on the PS3 Cells

(PEs 4 and 5) compared to the QS20 blades Cells (PEs 0 through 3). The reason for this is that the

AccelEvenLB does not directly read the performance (absolute busy time, ratio of busy time to idle time, or
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Figure 5.36: The balance of objects as set by AccelEvenLB for the MD application executing on 4 QS20
blades and 2 PS3s in the cell cluster, using Sampling (centralized).
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any other direct measurements) of the accelerator devices. Instead, AccelEvenLB was originally designed to

be oblivious to the presence of an accelerator. From the point-of-view of AccelEvenLB, a host core should

only seem more powerful if it has an accelerator attached since it will get through its portion of the workload

faster, relative to a host core without an attached accelerator device. When executing on the GPGPU cluster

(Forge), this was in fact the case. However, it was only the case because at least some accelerated entry

methods were being executed on the host cores. When executing on the heterogeneous cluster using the

Cell processors, this is no longer true. For the Cells, the ideal balance of the workload is to push any and

all AEMs to the accelerator device (the SPEs), leaving the host core (PPE) as free as possible. In other

words, the PS3s Cells are taking less time to dispatch their portion of the AEMs to their SPEs compared to

the QS20 blade Cells and only the host core (PPE) time is being taken into account since AccelEvenLB is

oblivious to accelerator measurements. As a result, AccelEvenLB is being tricked into assigning more chare

objects to them.

This identifies another fundamental difference between the Cell processor and GPGPUs. There is a

tendency that one unit of work for an SPE is smaller in size than one unit of work for a GPGPU. By

“unit of work” we mean some amount of calculation such that an interaction with other components of the

system, such as other cores, system memory, or the network, is not required for continuation. Put another

way, SPEs, which stream data through their local stores, tend to require interactions with other components

of the system on a more regular basis when compared to GPGPUs, which tend to operate on larger kernels

(relatively speaking). Note that this is not true for every approach, especially approaches that limit the

computation to operations on very regular data structures, such as matrices, and thus allow the SPEs to

be more autonomous. However, it tends to be true in our approach since the tasks being streamed through

the SPEs (i.e. AEM invocations) are triggered by messages, which are processed on the host core and often

triggered by messages originating from the network. As such, the PPE needs to remain highly active in

order to constantly feed work to the SPEs, leading to a percent device value of 100%.

On the other hand, the larger granularity of the kernels executing on the GPGPUs allows the host core

to perform more work unrelated to the accelerator device for longer periods of time. As such, the balance

point was almost always less than 100%, meaning that there are AEMs executing on both the host core

and the GPGPU, allowing AccelEvenLB to pick up on differences between the accelerator devices in an

indirect manner (as we originally intended). As an example, recall the percent device values from figure 5.16

for configuration F . The percent device values for host cores associated with physical GPGPUs shared by

two host cores were greater than the percent device values for host cores associated with physical GPGPUs

shared by three host cores. The increased ratio of AEMs executing on host cores versus AEMs executing
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on the accelerator device leads to an increase in the average amount of time to execute each AEM. The

increase in this average makes the host core seem less powerful from the point-of-view of AccelEvenLB,

which balances objects across host cores based on this average time to execute (i.e. in a way that is oblivious

to accelerators, but indirectly affected by their presence). However, this is not possible on the Cell processor

since 100% of the AEMs are being mapped to the SPEs (i.e. the ideal balance point is to keep the PPE

unburdened and thus reactive to the SPE’s needs). Instead, since the PPEs are the same regardless of the

node type and the same number of objects are initial mapped to each Cell processor, the workload of each

PPE seems the same (i.e. the amount of work it takes to offload to an SPEs, whether there are 6 SPEs or

8 SPEs, is the same). In fact, it is even worst. In our previous static load balancing experiments, we were

able to show that the PS3s took less time to perform a network send compared to the QS20 blades when

Ethernet was being used as the interconnect [64]. This can result in the PS3s taking less time per AEM

invocation, on average, which helps to explain the greater number of pair compute objects being mapped

to the PS3 Cells (PEs 4 and 5), rather than the QS20 Cells (PEs 0 through 3) as shown in figure 5.36,

along with the decrease in performance when using AccelEvenLB in figure 5.35. Indirectly measuring the

influence of accelerators by across host core (or across node) load balancers is not sufficient in all situations.

Through the use of the accelerator manager and the PercentDevice accelerator load balancing strategy, a

single high-level load balancing mechanism that includes all host cores and accelerator devices alike could be

created (i.e. components external to the accelerator manager can set the percent device values). However,

the creation of such a load balancer is left as future work. Here, we simply wish to point out one way

in which indirect measurement can be insufficient for one accelerator architecture, even though the same

method is sufficient for another architecture.

5.7.2 AdjustBusy

Figure 5.37 shows the MD application executing using the QS20 blades within the Cell cluster and with

the AdjustBusy accelerator load balancing strategy being applied. The MD application was run with and

without the AccelEvenLB strategy. The difference between using and not using the AccelEvenLB strategy

is negligible. Additionally, the performance of the MD code executing on 4 QS20 blade Cells has also been

included for reference.

What is quite noticeable about figure 5.37 is that the performance of the MD application while using the

AdjustBusy strategy steadily decreases until the application is executing quite a bit slower (per timestep)

compared to executing the same configuration using the Sampling (centralized) strategy. While the perfor-

mance differences between the AdjustBusy and Sampling strategies were generally much more comparable
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Figure 5.37: The MD application executing on QS20 blades in the cell cluster, using the AdjustBusy accel-
erator load balancing strategy.

when executing the MD application on the GPGPU cluster (Forge), the difference in performance is rather

drastic on the heterogeneous cluster.

To understand the steady performance degradation within the MD application caused by the AdjustBusy

strategy, recall that the AdjustBusy strategy does not actually measure the performance of the application

in order to determine how to balance the workload between host cores and accelerator devices. Instead,

the AdjustBusy strategy applies a blind heuristic that simply tries to even out the busy times of both the

host core and the accelerator device in order to ensure both compute resources are being fully utilized. As

discussed above within the context of the Sampling strategy, one characteristic of the Cell processor is that

the PPE must remain responsive to the needs of the SPEs in order for the SPEs to remain busy. As a

consequence, having idle time on the PPE is actually beneficial to performance. More to the point, any

long running block of code (i.e. entry method that takes a while to execute), such as the compute objects’

force computation accelerated entry methods, cause the PPE to become unresponsive and the SPEs go idle

waiting for more work.

To make matters worst, if the accelerator device’s busy time measurement takes place solely from the

point-of-view of the host core, then the cycle of moving work from the accelerator device to the host core

becomes a self-reinforcing endeavor. First, by “busy time measurement ... from the point-of-view of the host

core,” we mean to say that the busy time of the accelerator device is defined as the total amount of time

that there is at least one AEM dispatched to the accelerator devices. This definition is rather intuitive and
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useful since it measures to the actual amount of time it costs to perform a set of AEMs on an accelerator

device, regardless of the device’s architecture, in a way that has low amount of overhead and naturally

includes many secondary effects, such as overlap of computation with data movement, parallelism within

the accelerator device itself, and other factors as well. Using this definition, it is natural to make the timing

measurements on host core itself as AEMs (or batches of AEMs) are dispatched and completed. Doing so

includes all of the data transfer times and notification delays as part of the cost of offloading the AEM(s)

to the accelerator device from the point-of-view of the host core. However, what this does not do is take

into account the root cause of the delays. In particular, if there is a long running entry method (task)

executing on the host core, the host core is not paying attention to the accelerator device. As such, the

timing measurements themselves are delayed since the host core does not notice the completion of one or

more AEMs in a timely manner. The delay on the host not only causes the SPEs to become idle, but it also

delays the time measurements associated with the AEMs executing on the SPEs. As such, the more work

that is placed on the PPE, the slower the SPEs seem to be from the point-of-view of the host core. As the

SPEs seem slower, even more work is shifted from the SPEs to the host core by the AdjustBusy strategy,

causing a self-reinforcing cycle of moving data from the accelerator device to the host core. This continues

until enough work has been removed from the SPEs so that, even with the long, artificial delays, the PPE’s

busy time is equal to the SPEs’ “busy time.”

From this we learn that the way in which measurements are made by the runtime system can have a large

impact on resulting decisions that are made by that runtime system. While a method of measuring may

seem fairly straight forward and intuitive, it may in fact lead rather bad results in certain conditions. When

measuring an accelerator device’s busy time, there are two key factors that lead to issue discussed above.

First, the timing measurements are being taken from the host core’s point-of-view. Second, the host core

only performs those timing measurements as it polls the state of the device. In the case of the Charm++

runtime system, the “polling” effect is a natural result of the semantics of the programming model itself,

which Charm++ has in common with many other parallel programming models. In particular, the runtime

system can only take action at particular points within the application’s execution. In Charm++ specifically,

since the tasks (entry methods) are non-interruptible, the runtime system only regains control of the host

core in-between entry method executions or at any other time the application code explicitly calls an API

function provided by the runtime system, creating the “polling” effect. This is also true of using CUDA

directly, since the programmer is required to either block until a kernel completes or have the host core test

(poll) for the completion of a kernel directly. Anything that delays the runtime system from polling the

accelerator device will cause an incorrect measurement, as long as the measurements are taken during those
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polling points within the runtime system.

5.8 Summary of Dynamic Load Balancing

In this chapter, we have demonstrated the application of our approach on both a 5-point stencil application

and a simple MD application. Using the accelerator load balancing strategies within the accelerator manager,

the workload of these applications were automatically and dynamically balanced between the host cores and

the accelerator devices available to the applications. In the discussing the performance of the applications

when applying the various strategies, we pointed out some of the pitfalls that could be encountered when

implementing strategies.

Interference between multiple applications sharing the same physical accelerator devices was also dis-

cussed. It was shown that our approach is capable of reacting to interference created by other applications

making use of the same physical hardware, by shifting some of the application’s workload from the shared

hardware resources to the exclusive hardware resources. The net effect is that all of the applications are

able to make use of the shared hardware resources. In some cases, the overall throughput of the device is

increased, even if the throughput of the device from any one application’s point-of-view is diminished.

We pointed out at least one other use of splittable accelerated entry methods. In particular, that splittable

AEMs can be used to decrease the average time per entry method, and thus increase the frequency at which

the runtime system regains control of the host core(s) from application code. This turns out to be important

in the case of accelerators in cases where the host core is required to perform tasks on the accelerator’s behalf,

including issuing work and polling for the complete of that work. Further, depending on the method used

by the runtime system to take time measurements related to the accelerator device, the polling frequency

can have adverse effects on the quality of those time measurements.

Finally, we demonstrated that our approach does indeed allow for the creation of portable code by apply-

ing the runtime system modifications and dynamic load balancing techniques developed for the GPGPU to

the MD application executing on a set of Cell processors. We also discussed why the AdjustBusy accelerator

load balancing strategy is inappropriate for the Cell processor, at least as we have implemented it so far.
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Chapter 6

Data Management

This chapter will discuss the various ways in which the runtime system moves and/or modifies the application

data in an attempt to make programming heterogeneous systems less cumbersome for programmers. In

some cases, the host cores of a system are heterogeneous and require the programmer to perform various

mundane tasks, such as correcting for endianness differences between cores. From the point-of-view of the

programmer, such tasks are tedious and mainly serve as a potential source of programming errors since their

functionality has little (or nothing) to do with the overall goals of their application. In other cases, the

underlying hardware may have some performance considerations to take into account when executing chare

objects on them, such as the shared memory area of the GPGPU which is banked. Since GPGPUs have a

SIMD execution model, it would be nice if the scalars from the various chare objects didn’t all map to the

same physical banks, forcing the accesses to a single bank to be serialized. In yet other cases, it might be

advantageous to keep some of the application data within the accelerator device’s memory, as the accelerator

device will be the main or only processing element that accesses that data. As part of this work, we apply

some of these techniques to the Charm++ runtime system to illustrate how these techniques can be applied

to applications.

6.1 Automatic Modification of Data Crossing Processor

Boundaries

One of the most straight forward cases where an underlying runtime system can assist a programmer is to

automatically modify application data for host core differences. Many of these differences require in fairly

straight forward adjustments within the application code, though such adjustments may be numerous. For

example, if an application is making use of multiple host core architectures, including architectures with big

endian and little endian data encodings, the programmer will be required modify the byte orders of the data

within their application. At each point in their application where data is either being sent or received, such

as entry method invocations in Charm++ or MPI send/receive calls, the programmer would have to modify
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the data to correct for endianness differences. At a minimum, this must occur at points in the application

where data is received, in the case of lazy data modification.

In the specific case of implementing an automatic data modification technique within the context of

Charm++, make make the observation that there are clear communication boundaries within Charm++

applications. In particular, a given piece of application data is contained within one of the chare objects

in the application (or perhaps multiple objects if the data is duplicated). For this given piece of data to

transferred from one chare object to another chare object, it must be passed as a parameter to a entry

method. At that point, the Charm++ runtime system and charmxi tool have access to typing information

for the data, at least in principle, via parameter types and PUP routines for those types. Languages and

models that have such clear communication boundaries have a natural place for such data modification

techniques to occur. However, to automate the application of those techniques, type information is required.

The automatic modification of application data as it passes between host cores with differing architectures

was previously discussed [64].

6.1.1 Programmer Impact

Regardless of the mundane nature of such data modifications (e.g. handling endianness or pointer sizes),

there are a few things to note about how such requirements impact the programmer. First, the code must be

explicitly included by the programmer in many programming models, since the programming models do not

implicitly support such automatic data modifications. Because of this, the programmer is required to include,

and potentially clutter, their application code with data correction code that has little or nothing to do with

the overall goal of their application. The overall impact of this requirement is dependent on the nature of the

application code. In cases where the communication points are limited, then the required amount of data

modification code would also be limited. However, in cases where communication is happening at several

locations, such data modification code would be littered throughout the application code. Second, as long

as there is typing information, such data modification should be fairly straight forward to automate through

compiler and/or runtime system support. In our case, we make use of a runtime system to automate such

modifications in a lazy manner. This not only removes the need to have the data modification code explicitly

included within the application code, but removes the requirement that programmers spend time thinking

about and implementing techniques to handle such architecture differences, allowing programmers to focus on

the goal of their application code. Further, such efforts aren’t duplicated by multiple programmers working

on multiple applications. Third, the inclusion of such functionality, while required, also servers as a point for

programming errors to be introduced within an application. Removing the requirement for programmers to
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Figure 6.1: Modifications to the send/receive process in a heterogeneous builds of the Charm++ runtime
system.

explicitly write such data modification code would also remove the potential for programming errors being

introduced in relation to that code. There are clear benefits for automation such data modifications within

the underlying runtime system.

6.1.2 Method

Figure 6.1 illustrates the overall method used to implement automatic application data modification within

the Charm++ runtime system. There are two main modifications to the message send/receive process within

Charm++. The first modification is on the sending side of the communication process. Charm++ messages

can conceptually be broken down into two components, the header and the payload. In actuality, the header

has several sub-components, but those details can be ignored for this discussion. The pertinent piece of

information for the reader is that additional formatting information has also been included as part of the

header as part of this work. This formatting information is simply included. No modification of application

data occurs as a message is sent from the source processing element. In figure 6.1, this additional formatting

data is marked as “machInfo.”

On the receiving side, this formatting information is compared to the receiving processor’s local format-

ting information. If the incoming message has the same format of the target processor, then no translation

of application data takes place. However, if the formatting of the message differs from the format of the

target processors, the payload of the message is passed through a translator to account for endianness and

data type differences between the source and target processor architectures.

The actual implementation of the data translation process is lazy. That is, any data translation only

occurs as needed and just prior to that need. In the case of the message headers, a network format is used

when the heterogeneous functionality of the runtime system is enabled. This network format defines the

endianness of the network messages, resulting in a message format that is independent of the sending and
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receiving processors’ architectures. However, the payload of the message remains in the format of the sending

processor until the moment just prior to the entry method being executed. An advantage of this approach

is that the payload doesn’t have to be translated multiple times if an intermediate node in the network does

not share the same architecture as the sending and receiving processors. For example, consider the case

of the runtime system making use of a spanning tree optimization to implement a broadcast operation. In

such cases, an intermediate node can examine the contents of the header and realize that the message needs

to be forwarded on to the next node in the spanning tree without having to apply any translation to the

payload. Furthermore, if the sending processor and a given receiving processor of the broadcast message

have the same architecture but an intermediate node has a different architecture, then no translation of the

payload would occur. As result, translation only occurs as needed.

At this point, it should be noted that the machInfo (a data structure describing a processor’s encoding)

and the translator (a PUP::er that does the grunt work of swapping endianness) entities existed in Charm++

prior to this work. The contributions made by this work revolve around the modification of a machine layer

to support messages between different architectures (i.e. implementing the network format with message

headers), the definition and implementation of the lazy mechanism that actually applies the translator to

message payloads, and the related code generation modifications/additions within charmxi that assist enable

this implementation.

6.2 Data Within GPGPU Batch Sets

When it comes to the data associated with accelerated entry methods, there are two types: streamed and

persistent. Every parameter is assumed to be streamed data, as the values embodied within those parameters

are only valid for the given invocation of the AEM. Local parameters, on the other hand can be marked with

the “persist” keyword, indicating to the runtime system that the values associated with these parameters can

persist within device memory between invocations of the AEM on that chare object. Persistent data will be

discussed later in section 6.3. All values associated with passed parameters and local parameters not marked

with the “persist” keyword are streamed through the GPGPU at the same time the AEM invocations are

streamed through.

The streamed data associated with a batched set of accelerated entry method invocations (i.e. a single

CUDA kernel invocation) is placed into a single combined data buffer. This combined data buffer contains

various pieces of control information associated with the kernel’s execution, the data values contained within

the streamed parameters, and pointers used to locate the persistent data that will be accessed within the
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kernel. The combined data buffer has three major regions: the control region, the scalar region, and the array

region. The control region contains information related to the overall kernel execution, such as fields used

for kernel execution verification and an overall error status. The control region also contains information

specific to each AEM invocation, such as the location of data associated with each AEM invocation so that

it can be located in constant time on the device itself and the number of splits associated with each splittable

AEM invocation. The remaining two regions contain the scalar and array values associated with the scalar

and array AEM parameters, respectively. The reason for using two sections will be discussed further in

section 6.2.1.

Each AEM invocation with a batched set of invocations is given an index value which is used to uniquely

identify the AEM invocation with the set and locate the data associated with that specific invocation. As

each AEM invocation is added to the batched set, this index value is incremented from a starting point of

zero. The GPGPU threads are also assigned to the AEM invocations on the device in a similar manner,

with the lowest indexed threads being assigned to the lowest indexed invocation. If the AEM type being

batched is not splittable, then there is a one-to-one correspondence between the AEM invocation index and

the GPGPU thread index. In cases where the AEM type being batched is splittable, a consecutive number

of GPGPU thread indexes are assigned to the AEM invocation index, based on the number of splits created

by the runtime system for that particular AEM invocation.

6.2.1 Data Alignment of Streamed Parameters on GPGPUs

In the case of CUDA-based GPGPUs, the runtime system is manipulating the layout of data associated

with a batched set of accelerated entry methods. To understand why manipulating the layout of the data

within a batched set of AEMs could be advantageous, one first needs to understand the architecture of the

underlying hardware itself.

In modern Fermi-based GPGPUs, the shared memory associated with each SM is divided across 32 banks

[80]. The reason for doing this should be fairly clear. There are 32 GPGPU threads executing in lockstep

(i.e. SIMD) per SM at any given moment. Each time a load or store instruction is reached in the instruction

stream being executed by a warp, all of the active GPGPU threads will attempt to access memory at the

same time. As long as each thread is accessing data in a separate bank of shared memory, each of the 32

banks can then service one of the 32 GPGPU threads’ memory requests, allowing all 32 memory access

to occur in parallel. However, when using CUDA directly, a programmer must mindful of the memory

access patterns within their application as the GPGPU threads access shared memory. Otherwise, if the

programmer unknowingly causes all of the threads to access the same bank or a small fraction of the banks,
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there may be a large impact on the performance of the GPGPU code, and thus the application, since only a

fraction of the bandwidth between the GPGPU’s processing cores and shared memory banks will be utilized.

This is just one of many examples of how the architecture details associated with accelerator architectures

can have drastic effects on the performance of application code.

A second important architecture detail is that, in Fermi-based GPGPU architectures, the shared memory

of a given SM can be used in one of two ways, as shared memory or as an L1 cache that sits between device

memory and the processing cores of the SM. In the case of accelerator entry methods being executed on

CUDA-based GPGPUs, the runtime system automatically places the shared memory into the L1 cache mode

(as much of the memory as possible) and treats all memory accesses as accesses to device memory.

With these two architecture specific details in mind, the batching process creates an array for each scalar

parameter for an AEM within the scalar region of the combined data buffer. The values of the scalar

values are then packed into consecutive indexes of these arrays each time an AEM invocation is added to

the batch set (i.e. the scalars for AEM invocation index i can be found in array element i of each scalar

array). There are two cases where this data layout will be beneficial to the program, non-splittable AEMs

and splittable AEMs with low (less than 32) splits. In both of these cases, the non-overlapping subsets of

the GPGPU threads within a single warp will be accessing different memory addresses each time a scalar

parameter is accessed within the function body of the AEM, since the non-overlapping subsets of threads

will be assigned to different AEM invocations. However, since the scalars are being packed into consecutive

array elements and the GPGPU threads are assigned in the order of AEM invocation indexes (i.e. lower

GPU thread indexes to lower AEM invocation indexes), the threads within a single warp will either access

the same memory address (i.e. the same hardware bank for threads assigned to the same AEM invocation)

or consecutive memory addresses (i.e. different hardware banks for threads assigned to different AEM

invocations). It should be further noted that each scalar array is 128 byte aligned. As a result, if each

thread within a warp is assigned to a separate AEM invocation, a highly efficient data access pattern from

the point-of-view of the hardware is used (i.e. one thread per bank), making maximal use of the shared

memory bandwidth. Further, this is accomplished without requiring the programmer to do anything special

within the application code.

A downside to this approach is that the runtime system is arbitrarily moving around data within a single

chare object. The data layout guarantees related to member variables of chare classes that would otherwise

be provided by C++, will not be maintained within the function body of an accelerated entry method.

Examples of such guarantees may include the ordering of member variables with memory, the differences in

the memory addresses of those member variables, and so on. However, we view this as a minor inconvenience
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for programmers.

6.2.2 Shared Buffers

In some cases, the data being streamed through the accelerator device may be shared between two or more

of the accelerated entry method invocations. For example, in the case of the molecular dynamics program,

the particle data for any given patch object is required by all of the compute objects associated with that

patch object. If multiple compute objects associated with a given patch are located on the same host core,

then it would be a waste to transfer two copies of the particle data, one for each invocation, to and from the

device. Through the use of shared parameters, only a single copy will be transferred per batch set.

Within a single batch set, for each array parameter that is marked with the shared keyword, a realtime

lookup is done on the pointer value and length associated with the array. The lookup is done against a hash

table, using the pointer value and the length as the key value. If the data has not already been included

within the combined buffer for the batch set, the data is included and the offset of the data within the batch

set’s combined buffer is included with the hash table entry for the array. Any other AEM invocation that

is included as part of the same batch set and that accesses the same data buffer using one of its parameters

(it does not have to be the same parameter, just the same data) will have that parameter directed to point

to the same memory address as the original copy. The overall result is that only a single copy of the data is

streamed through the accelerator device per batch set that requires it, which can significantly reduce the size

of the combined data buffer. Of course, the extend to which shared buffers can be used is entirely dependent

on the nature of the application code.

As a concrete example of how this mechanism operates, figure 6.2 gives the general structure of the

PairCompute objects’ force calculation, “doCalc,” which is embodied within the accelerated entry method

in figure 6.2. The function body of this AEM is made up of three loops, referred to as the outer-loop,

inner-loop 0, and inner-loop 1. Two list of particles are being passed into the accelerated entry method, “0”

and “1,” the contents of which are divided amongst the local parameters with the associated numerals. The

local parameters staring with the letter “p” represent input data coming from the associated Patch objects.

Of these local parameters, the last letter in the name represents the attribute represented by the list (i.e.

“x” is the x-coordinate, “y” is the y-coordinate, “z” is the z-coordinate, and “q” is the charge). In the same

vein, the local parameters starting with the letter “f” represent the force vectors being generated within this

function, each of which has an x, y, and z component.

There are a couple things worth noting about the inner-loops in figure 6.2. First, there are two inner-loops

because the AEM is splittable, and thus separate splits may be executing each iteration of the outer-loop. If
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entry [ t r i g g e r e d s p l i t t a b l e ( numPart ic les ) accel ] void doCalc ( ) [
readonly : int numPart ic les <impl obj−>numPartic les >,

readonly shared : MD FLOAT p0 x [ numPart ic les ] <impl obj−>par t i c l eX [0] > ,
readonly shared : MD FLOAT p1 x [ numPart ic les ] <impl obj−>par t i c l eX [1] > ,
readonly shared : MD FLOAT p0 y [ numPart ic les ] <impl obj−>par t i c l eY [0] > ,
readonly shared : MD FLOAT p1 y [ numPart ic les ] <impl obj−>par t i c l eY [1] > ,
readonly shared : MD FLOAT p0 z [ numPart ic les ] <impl obj−>pa r t i c l e Z [0 ] > ,
readonly shared : MD FLOAT p1 z [ numPart ic les ] <impl obj−>pa r t i c l e Z [1 ] > ,
readonly shared : MD FLOAT p0 q [ numPart ic les ] <impl obj−>par t i c l eQ [0 ] > ,
readonly shared : MD FLOAT p1 q [ numPart ic les ] <impl obj−>par t i c l eQ [1 ] > ,

writeonly : MD FLOAT f0 x [ numPart ic les ] <impl obj−>forceX [0] > ,
writeonly : MD FLOAT f1 x [ numPart ic les ] <impl obj−>forceX [1] > ,
writeonly : MD FLOAT f0 y [ numPart ic les ] <impl obj−>forceY [0] > ,
writeonly : MD FLOAT f1 y [ numPart ic les ] <impl obj−>forceY [1] > ,
writeonly : MD FLOAT f 0 z [ numPart ic les ] <impl obj−>f o r ceZ [0 ] > ,
writeonly : MD FLOAT f 1 z [ numPart ic les ] <impl obj−>f o r ceZ [1] >

] {
. . .
// The outer−l oop
for ( int j = sp l i t I nd e x ; j < numPart ic les ; j += numSplits ) {

. . .
// The inner−l oop 0 ( i n t e r a c t p a r t i c l e in l i s t 0 at index j wi th l i s t 1)
for ( int i = 0 ; i < numPart ic les ; i++) { . . . f 0 x = . . . ; f 0 y = . . . ; f 0 z = . . . ; }
. . .
// The inner−l oop 1 ( i n t e r a c t p a r t i c l e in l i s t 1 at index j wi th l i s t 0)
for ( int i = 0 ; i < numPart ic les ; i++) { . . . f 1 x = . . . ; f 1 y = . . . ; f 1 z = . . . ; }
. . .
}
. . .
} doCa l c ca l l back ;

Figure 6.2: Example of using shared local parameters (PairCompute from MD code).
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the runtime system does use separate splits at runtime, making use of equal-and-opposite force calculations

would result in a data race hazard. By creating the two separate inner-loops, this data race is avoided. If

the AEM were not splittable, forcing the runtime system to use a single thread of execution for all iterations

of the outer-loop, then an equal-and-opposite for calculation could be used. Second, the inner-loops in the

actual code are written to make use of SIMD instructions, even though the code in figure 6.2 suggests that

they are not. Generally speaking, the code presented in figure 6.2 has been simplified for the purposes of

clearly presenting the ideas to the reader and for brevity, but not in such a way as to miscommunicate its

general nature.

In figure 6.2, the local parameters containing the particle data (i.e. starting with the letter “p”) are all

marked as shared. Further, the actual pointer values that are passed into the AEM via these parameter are

shared by multiple invocations of this same AEM. For example, consider the case (which does occur in the

execution of the MD code) where PairCompute α uses Patch γ’s particle data for its first list of particles

and PairCompute β uses Patch γ’s particle data as its second list of particles. In this case, the pointer value

passed into PairCompute α’s p0 x local parameter will match the pointer value passed into PairCompute

β’s p1 x local parameter. This is also true for all of the particles’ attributes (i.e. α’s p0 y also matches β’s

p1 y, and so on). Since the local parameter is marked as “shared,” the otherwise separate invocations of the

doCalc AEM on PairCompute objects α and β will operate on the same physical copy of the particle data

in memory (as long as they are batched together into the same batch set of AEMs, otherwise, the “shared”

keyword has no effect). This occurs because of the live lookup of the pointer values, even though the single

pointer value is being passed to the two AEMs through different local parameters. The final result is that

only a single copy of the data is transferred per batch set between the host and the accelerator device,

reducing the overall amount of data required to be transferred for that batch set.

6.3 Persistent Data

In some cases, it may be advantageous to keep some portion of the application data located in the accelerator

device’s memory, when possible. In particular, any data that is only accessed by accelerated entry methods

has no need to be transferred to and from the host memory in between calls to the accelerated entry methods

that make use of it. With the exception of initialization or cleanup at the beginning or end of the application’s

execution, the movement of this subset of the application data may only take time without providing any

benefit as it is not actually accessed by the host core. As such, we have included the ability to mark some

of the local parameters associated with an accelerated entry method as persistent.
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6.3.1 Description

In the local parameter list associated with an accelerated entry method, the programmer can mark a pa-

rameter as being persistent. To do so, the programmer uses the keyword “persist” as the modifier to the

local parameter. When the “persist” keyword is used on a local parameter, the intent is that the actual

buffer being passed into the accelerated entry method will not be modified on the host core outside of any

accelerated entry methods. The exception to this is during the initialization of the application, before any

accelerated entry methods are triggered.

The first time a given host buffer is passed as a persistent local parameter, the runtime system allocates

a buffer on the accelerator device, creates an association between the host and device buffers, and copies

the contents of the host buffer into the associated device buffer (assuming this process is appropriate for the

given accelerator device). As accelerated entry method invocations occur, rather than including the content

of the host buffer directly into the kernel’s data buffer as described in section 6.2, a pointer to the device

buffer is included instead. Upon completion of the accelerated entry method, the device buffer’s contents

remains in the device’s memory, rather than being transferred back to the host core. As such, any data

generated by an accelerated entry method and written into a persistent local parameter will not be available

to code executing on the host core. However, it will be available to another invocation of an accelerated entry

method, whether its the same accelerated entry method or not, if that invocation occurs on the accelerator

device.

Since the host buffers are looked up each time they are used in an accelerated entry method invocation.

This allows techniques, such as double buffering, to still be used by simply swapping pointers of the persistent

buffers on the host core. In section 6.3.2, the 5-point stencil application will be modified to use persistent

buffers, giving the reader an example of how to use persistent buffers. The 5-point stencil application makes

use of a double buffering technique, which will illustrate the dynamic associate of local parameters within

accelerated entry method invocations. If the buffers were associated with particular local parameters, rather

than host buffers, then any form of dynamic selection would not be possible since a given local parameter

would have to access the same device buffer for every invocation of that accelerated entry method. Further,

local parameters to different accelerated entry methods would not be able to access the same device buffer.

It should be noted that mechanisms to push and pull the contents of a persistent buffer are available to

the programmer. Should the host core require access to the contents of a data buffer, the code executing on

the host core can explicitly pull the content of the device buffer back into the associated host core buffer. If

the host core modifies the data, the updated contents can be explicitly pushed back to the device’s memory.

However, this push is only required if the contents have been updated, as the contents of the device buffer
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Figure 6.3: The data patterns of the 5-point stencil application.

remain intact. These push and pull operations are blocking, causing giving the host code immediate access

to the data without having to poll for completion. The use of these operations is discouraged since their

blocking nature could potentially impact performance in a negative way if used too often. These same push

and pull mechanisms are used within the runtime system as chare objects are load balanced, checkpointed,

or at any other time where the values within the device buffer must be accessed on the host core.

6.3.2 Application Code Example (5-Point Stencil Modification)

To illustrate the use of persistent buffers, the 5-point stencil code has been modified to make use of the

“persist” keyword. Before describing the code changes required by the use of the “persist” keyword, we

first revisit the data pattern of the 5-point stencil application since the changes revolve around those data

patterns.

Figure 6.3 illustrates the data access pattern of the 5-point stencil application from the point-of-view of

a single tile interacting with its east neighbor. The same data transfers occur with each of the tiles other

neighbors, even though those interactions are not reflected in figure 6.3. Before executing the local tile

calculation, a given tile must exchange ghost information with each of its neighbors. Each tile will pass

data elements along each edge of its local tile data to the corresponding neighbor tile (north edge passed

to northern neighbor, east edge passed to eastern neighbor, and so on). In figure 6.3, this is shown by the

green region of the “this” tile being copied to the blue region of “this” tile’s eastern neighbor. The inverse

data transfer also occurs.

In making use of persistent buffers, the pattern of exchanging data between tiles has not changed.
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However, because the tile data will remain on the accelerator device itself (the effect of using persistent

buffers), additional buffers are required to pass the incoming and outgoing data for each tile between the

host and accelerator. For each neighbor there is a buffer for holding the input ghost data (xxxxGhostData,

where xxxx is replaced by the direction of the neighbor). As the ghost data arrives, it is placed into this

input buffer, prior to the execution of the doCalculation accelerated entry method. For each neighbor, there

is also an output buffer hold the associated edge of the tile data (xxxxGhostDataOut). Once this data has

been exchanged, the updated doCalculation accelerated entry method, shown in figure 6.4, is triggered.

Notice that the code in figure 6.4 is very similar to the code presented in figure 5.7. The modifications

to the code have been marked with comments. The main difference is that the contents of the input and

output ghost buffers are now contained separate buffers, rather then being included directly within the local

tile matrices, matrix and matrixTmp. Again, this is because of the effect of the “persist” keyword, which

causes these matrices to remain within device memory. The other entry methods within the application that

take care of sending and receiving the ghost information to and from the neighboring tiles will access the

ghost buffers, rather than accessing the matrix and matrixTmp buffers directly (this change is not reflected

in figure 6.4).

6.3.3 Results

Host or Device Only

Figure 6.5 shows the relative performance of the 5-point stencil application executing with and without

using persistent buffers. The first plot (“Non-Persist w/ DeviceOnly”) shows the performance of the stencil

code executing without making use of persistent buffers. The second plot (“Persist w/ DeviceOnly”) shows

the performance of the stencil code making use of persistent buffers. Clearly, the performance of the stencil

application is increased through the use of the persistent buffers. This plot shows that the overhead associated

with streaming each tile’s matrix elements through the accelerator’s memory is significant. Since the values

are only accessed and updated by the tile’s calculation accelerated entry method, the “persist” keyword

can be used to indicate that the runtime system can simply leave the values associated with the persistent

buffers on the device where they were generated.

Two additional reference plots have also been included in figure 6.5, showing the relative performance

of the various approaches attempted so far. The first reference plot shows the performance of the 5-point

stencil application executing without persistent buffers and with the Sampling (centralized) accelerator

strategy (see section 5.4.1). The second reference plot shows the performance when executing using only

the host core (HostOnly strategy). The performance achieved when executing the AEMs on the host is
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entry [ t r i g g e r e d s p l i t t a b l e (NUMROWS) accel ] void doCalcu la t ion ( )
[ readonly p e r s i s t : f loat matrix [DATA BUFFER SIZE] <impl obj−>matrix >,

writeonly p e r s i s t : f loat matrixTmp [DATA BUFFER SIZE] <impl obj−>matrixTmp>,
writeonly : f loat tmpMaxError [NUMROWS] <impl obj−>tmpMaxError>,
readonly : f loat northGhostData [NUM COLS] <impl obj−>northGhostData >,
readonly : f loat southGhostData [NUM COLS] <impl obj−>southGhostData >,
readonly : f loat eastGhostData [NUMROWS] <impl obj−>eastGhostData >,
readonly : f loat westGhostData [NUMROWS] <impl obj−>westGhostData >,

writeonly : f loat northGhostDataOut [NUM COLS] <impl obj−>northGhostDataOut >,
writeonly : f loat southGhostDataOut [NUM COLS] <impl obj−>southGhostDataOut >,
writeonly : f loat eastGhostDataOut [NUMROWS] <impl obj−>eastGhostDataOut >,
writeonly : f loat westGhostDataOut [NUMROWS] <impl obj−>westGhostDataOut>

] {

for ( int y = sp l i t I nd e x + 1 ; y <= NUMROWS; y += numSplits ) {

// Copy t h i s row ’ s ea s t and west ghos t data
matrix [GET DATA I(0 , y ) ] = westGhostData [ y − 1 ] ;
matrix [GET DATA I(NUM COLS + 1 , y ) ] = eastGhostData [ y − 1 ] ;

f loat maxError = 0 .0 f ;
for ( int x = 1 ; x <= NUM COLS; x++) {

// Copy in north and south gho s t s as we move down the row
i f ( y == 1) { matrix [GET DATA I(x , y − 1 ) ] = northGhostData [ x − 1 ] ; }
i f ( y == NUMROWS) { matrix [GET DATA I(x , y + 1 ) ] = southGhostData [ x − 1 ] ; }

int index = GET DATA I(x , y ) ;
matrixTmp [ index ] = ( ( 2 . 0 0 f ∗ matrix [ index ] ) +

(0 . 75 f ∗ matrix [GET DATA I(x − 1 , y ) ] ) +
(0 . 75 f ∗ matrix [GET DATA I(x + 1 , y ) ] ) +
(0 . 75 f ∗ matrix [GET DATA I(x , y − 1 ) ] ) +
(0 . 75 f ∗ matrix [GET DATA I(x , y + 1 ) ] )

) ∗ ( 0 . 2 f ) ; // Divide by 5.0 f

i f ( y == 1 && x == 1) { matrixTmp [ index ] = 1 .0 f ; }
f loat tmpError = matrixTmp [ index ] − matrix [ index ] ;
i f ( tmpError < 0) { tmpError = −1.0 f ∗ tmpError ; }
i f ( tmpError > maxError ) { maxError = tmpError ; }

// Copy out north and south output gho s t s as we move down the row
i f ( y == 1) { northGhostDataOut [ x − 1 ] = matrixTmp [ index ] ; }
i f ( y == NUMROWS) { southGhostDataOut [ x − 1 ] = matrixTmp [ index ] ; }

}
tmpMaxError [ y−1] = maxError ;

// Copy t h i s row ’ s ea s t and west output ghos t data
westGhostDataOut [ y − 1 ] = matrixTmp [GET DATA I(1 , y ) ] ;
eastGhostDataOut [ y − 1 ] = matrixTmp [GET DATA I(NUM COLS, y ) ] ;

}
} doCa l cu l a t i on pos t ;

Figure 6.4: The calculation accelerated entry method in the 5-point stencil application modified to use
persistent buffers.
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Figure 6.5: The 5-point stencil application executing on a single host core and GPGPU pair on Forge, with
and without the use of the persistent data.

particularly important to keep in mind for the stencil application since the stencil application isn’t ideal for

execution on the accelerator device (i.e. has a low flop rate per byte transferred each timestep). With the

inclusion persistent buffer support, the amount of data being transferred to and from the device is reduced

to the ghost and the maxError data. When comparing the plots in figure 6.5 it is clear that both the use of

persistent buffers and the use of load balancing are important to improving the performance of the 5-point

stencil application. As such, we will apply the previously discussed accelerator load balancing strategies to

the version of the 5-point stencil application that includes persistent buffers.

Load Balancing with Dynamic Assignment

Figure 6.6 goes on to apply some of the load balancing approaches that were discussed in chapter 5 using a

dynamic assignment scheme. The term “dynamic assignment” refers to the fact that AEMs that are invoked

first are pushed to the accelerator hardware while the those that are invoked last remain on the host. As

such, the location where any given object’s AEMs are assigned to execute is determined dynamically as the

AEM is invoked its associated chare object. From figure 6.6, we can see that the load balancing strategies

used do not improve the performance of the 5-point stencil application beyond that of the DeviceOnly

strategy. Essentially, the balance point is being correctly determined by strategies as run all of the AEMs

on the device. The reason running everything on the accelerator device makes sense in these cases is that the

accelerator is faster than the host when the amount of data being transferred is reduced, combined with the
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Figure 6.6: The 5-point stencil application using persistent buffers and dynamic assignment.

needs to grab that data from the device whenever an AEM is dynamically invoked on the host core. Since

the accelerator is now in a position of out performing the host core, it makes sense to choose the accelerator’s

memory as the location to keep the data since it is likely that the majority of the AEMs will be executed on

the accelerator. Further, the dynamic assignment prevents the runtime system from predicting which AEM

invocations will be on the host core, and this preemptively move the data before it is needed. As such, the

data transfer is forced to be a synchronous transfer.

The “Persist w/ SamplingCentralized, Dynamic Assign” plot is hard to see since it overlaps completely

with the “Persist w/ DeviceOnly” plot. The only significant difference is near the beginning of the execution

(at approximately ten seconds) when the SamplingCentralized strategy first attempts to adjust the balance

so that some of the AEMs will be executed on the host core. However, based on the actual measurements

of the application’s performance, the strategy quickly returns to completely executing all of the AEMs on

the accelerator device.

The “Persist w/ AdjustBusy, Dynamic Assign” plot has a sawtooth shape to it because the AdjustBusy

strategy has is constantly try to balance the busy times of the host and accelerator device. Since the

performance of the application is at its best when the accelerator device is executing all of the AEMs,

the busy value of the host is lower than the busy time of the device. As such, the AdjustBusy strategy

immediately moves some of the work over to the host core. In particular, the AdjustBusy strategy is

implemented in such a way that, if it finds the work pushed all the way towards either of the cores, it
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takes a larger than normal step off that balance point extreme. In other words, the AdjustBusy strategy is

implemented in such a way that it assumes both the host and accelerator will be useful to some degree, so

either extreme is bad and will be moved away from quickly. If this is not the case, then one should simply use

HostOnly or DeviceOnly strategies instead. We point this out simply because the larger than normal step

off the either extreme point (all on device or all on host) is a detail of our implementation, but certainly not

a requirement when implementing a load balancing strategy that attempts to equalize the busy values of the

two processing elements. However, this does emphasize a problem with the general approach of balancing

busy time values of the host and the accelerator. If the optimal balance point truly is one extreme or the

other (i.e. a percent device value of 100% or 0%), a pattern such as the one seen for AdjustBusy can easily

occur. When at an extreme, the slower processing element will have 0% of the tasks (AEMs) and the faster

processing element will have 100% of the tasks. This extreme balance of tasks may lead to the busy time

of the slower processing element being (significantly) smaller than the busy time of the faster processing

element, and thus any heuristic that attempts to balance busy times will attempt to move work from the

faster processing element to the slower processing element. However, since the balance point truly should

be the extreme, the result will be that any amount of work moved to the slower element will result in the

slower processing element suddenly having a greater busy time than the faster processing element, and thus

the application experiencing diminished performance.

Figure 6.6 shows that the use of persistent buffers also comes with a drawback when used with dynamics

assignment techniques. In particular, the chare objects that make use of persistent buffers will have data that

is located on the accelerator device. Further, when the workload of a given set of local chare array elements

is divided between the local host core and accelerator device, the chare objects that are last (in time) to

have their accelerated entry methods invoked are the objects where the AEM will execute on the host core.

When taking this approach to AEM assignment, the set of chare objects that execute their AEMs on the

host core can change from timestep to timestep. Each time an AEM with persistent buffers executes on the

host core, the contents of those buffers must be shifted from the accelerator device’s memory to the host’s

memory, and back again after the AEM completes (updated copies on both cores). As a small optimization,

some of these transfers are skipped by the runtime system based on the read/write access modifiers used

by the programmer when specifying the local parameters. While this negatively impacts performance when

balancing AEMs with persistent buffers between the host and accelerator cores, it does allow for the correct

execution of the application.
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Figure 6.7: The 5-point stencil application using persistent buffers and static assignment.

Load Balancing with Static Assignment

Since the persistent buffers don’t seem to be working well with the dynamic assignment schemes used by

the accelerator manager and related strategies, we also implemented a static assignment scheme. The term

“static assignment” refers to a scheme where the the objects associated with the accelerated entry methods

being invoked are assigned to have their AEMs execute on either the host or the device until another

rebalancing occurs. Unlike the dynamic scheme, if a remote message associated with an object assigned

to execute AEMs on the accelerator device sees an unusually long latency, because of network interference,

OS interference, or some other reason, the execution of the batch that AEM will be placed in will also be

delayed. Note that this effect is mitigated since the batching process is dynamic (i.e. objects assigned to

the device will be batched, but are not assigned to particular batches). In the dynamic scheme, this issue

is avoided by simply dynamically assigning the last-to-be-invoked AEMs to the host, rather than to a fixed

location, allowing the AEM batch to full up with invocations as quickly as possible. The advantage of using

a static assignment scheme is particularly strong when using the scheme with persistent buffers. Since the

runtime system is aware that the object’s AEMs will be executing in a fixed location, then the persistent

buffers associated with that object can also be placed in that location and remain there for an extended

period of time (i.e. until the load balancing strategy reassigns the object to a different processing element).

Figure 6.7 show the performance of the 5-point stencil code executing with the AdjustBusy and Sampling

(centralized) accelerator load balancing strategies, using static assignment of chare objects. Since the point

163



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  100  200  300  400  500  600
 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
vg

. T
im

e/
T

im
es

te
p 

(s
ec

)

P
er

ce
nt

 D
ev

ic
e

Simulation Time (sec)

Stencil (Forge, 1 Host Core and 1 GPGPU, Step, Static Assign, Persist)

Performance
Percent Device

Figure 6.8: The 5-point stencil application using persistent buffers, static assignment, and the Step strategy.

of including this figure is to illustrate the effect of using static assignment rather than dynamic assignment in

the context of balancing a workload across host cores and accelerator devices, we only include results from two

accelerator load balancing strategies to illustrate the associated points, rather than exhaustively including all

strategy combinations. For comparison purposes, figure 6.7 also includes the “Persist w/ DeviceOnly” plot

from figure 6.6 and the original plot showing the performance of the 5-point stencil application executing on

only the host core and without using persistent buffers from figure 5.12.

One thing that is clear from figure 6.7 is that the use of static assignment is beneficial compared to the

use of dynamic assignment when persistent buffers are in use. The benefit of static assignment is that the

runtime system does not have to reactively move persistent data associated with an AEM invocation from

its current location to location where the AEM invocation has been dynamically assigned to (i.e. the host

core or the accelerator device). However, the unpredictable nature of message arrivals (i.e. timing, ordering,

etc.) is part of the reason that dynamic assignment was first considered as part of this work. In cases where

persistent data is not being used, dynamic assignment allows the runtime system to fill AEM batches as

quickly as possible.

To get an idea of how the load balancing strategies in figure 6.7 are performing, the Step strategy has

also been applied to the 5-point stencil code in conjunction with persistent buffers and static assignment of

chare objects. Figure 6.8 shows the performance of the 5-point stencil code as the percent device value is

slowly decreased over the course of the execution from a starting point of 100%. A maximum performance
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Figure 6.9: The 5-point stencil application using persistent buffers, static assignment, and the Sampling
strategy.

level (i.e. minimum time per timestep value) is reached at approximately 160 seconds with a percent device

value of approximately 65%.

Delaying AEMs Assigned to the Host: It should be noted that the accelerator load balancing

strategies have the option of either issuing AEMs to the host immediately or in a delayed manner. In the

cases of static assignment, the accelerator strategies who’s implementations include static assignment are

currently implemented to delay the execution of AEMs on the host until all of the AEM instances that are

assigned to the accelerator device have been batched for triggered accelerated entry methods. The delayed

execution of AEMs on the host core allows static assignment to have some of the benefits of dynamic

assignment (i.e. overlapping execution of AEMs on the host with the execution of AEMs on the device by

ensuring the accelerator is serviced before the host core enters into application code) along with the benefits

of static assignment (i.e. not requiring data associated with the AEMs to be moved in a reactive manner as

messages arrive and the runtime system makes realtime decisions about where to direct the AEMs). Another

benefit of issuing the AEMs on the device before AEMs on the host is that once the batch set is created, the

data can start transferring to the device before the execution of the previous batch has finished. In other

words, the batches can be streamed through the accelerator device, allowing the execution of one batch to

overlap with data transfers, input or output, related to other batches.

Experiments were also attempted with and without the immediate execution of the AEMs assigned to

the host. Figure 6.9 shows that the immediate execution of AEMs assigned to the host core results in a small
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Figure 6.10: The 5-point stencil application using persistent buffers, static assignment, and the Sampling
strategy.

decrease in performance on average. In case of immediate execution, if the host core is busy execution an

AEM after starting, but before finishing, a batch of AEMs destined for the accelerator device, the execution

of that batch on the accelerator device is delayed. Even worst, if no batches have been dispatched to the

accelerator device, the AEM executing on the host core is not overlapped with useful work on the accelerator

device, resulting in only one processing element is active. However, if the AEMs assigned to the host core

are delayed, the batching process can proceed and work can be issued to the accelerator device as soon as

possible. Once the accelerator is busy executing its portion of the AEM workload, the host core can move

on to execute its portion of the AEM workload in parallel with the accelerator device.

Finally, the exact cause of the short, tall spikes seen in the various plots in figures 6.7, 6.8, and 6.9

remains unknown. Since the spikes only seem to occur when persistent buffers are used, a likely cause could

be situations were the runtime system is forced to wait for a blocking copy before forward progress in the

application can be made. For the reader’s reference, figure 6.10 shows the performance of the 5-point stencil

application along with the percent device value being used to balance the workload. This shows both the

balance point that was chosen and that the load balancing strategy itself is not the cause of the performance

spikes.
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Figure 6.11: Performance of the MD application as it recovers from a host core fault.

6.4 Integration with Fault Tolerance Support

Within the Charm++ runtime system, there exists several methods for recovering from hardware faults

[75, 98]. One such mechanism is referred to as automatic memory checkpointing. In this scheme, a synchro-

nization point within the application is used to trigger a memory checkpoint. Upon triggering this memory

checkpoint, the runtime system will iterate through all of the chare objects within the applications and use

the provided PUP routines to checkpoint the object’s state (collectively referred to as a single global applica-

tion checkpoint). This checkpointing process is typically triggered at periodic points within the application

(e.g. every N timesteps). In the event of a hardware fault, the runtime system will rollback the state of the

application by recreating all of the chare objects using the state information that was embodied within the

most recent checkpoint.

Figure 6.11 shows the performance of the MD application as it recovers from a (simulated) hardware

fault using the Charm++ memory checkpoint scheme. Initially, there are four host core and accelerator

device pairings in use by the application. At some point within the application’s execution (just before 150

seconds), one of the processes associated with the application’s execution is killed via a signal. At that

moment, from the point-of-view of the remaining processes, the host core and accelerator device pairing

becomes unresponsive, as would be the case if a hardware fault occurred. Thus, after the fault occurs, there

are only three pairings available to the application. The objects associated with the lost pairing are simply

recreated on one of the other pairings (only a single pairing) creating a load imbalance.
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There are two plots within figure 6.11, one that includes across host core load balancing (“LB” in green)

and one that does not (“no LB” in blue). In both cases, the lost of a host core and accelerator device

pairing results in a decrease in performance after the fault. Without load balancing, the performance of the

application is limited by the pairing that receives all of the work related to the lost pairing. In particular,

the performance of the MD application is decreased to half its performance prior to the fault (twice the time

per timestep) since one pairing now has twice the work and becomes a performance bottleneck. However,

in the case of the “LB” plot in figure 6.11, load balancing is being applied periodically throughout the

application’s execution. Clearly the use of load balancing after a fault occurs allows the application to

readjust to the new hardware configuration (i.e. short one pairing) by redistributing the workload from the

faulted pairing so that it is distributed over all of the remaining pairings. In the load balancing case, the

resulting performance is approximately 33% slower than the performance seen prior to the fault, which is

what one would expect when moving from four pairings to three pairings. Note that four pairings were used

because the pre-existing memory checkpointing mechanism that we used required a minimum of four host

cores. We use the minimum number of cores to emphasize the performance lost from a single core (i.e. is

clearly noticeable in figure 6.11).

In terms of the memory checkpoint mechanism itself, little was done to the checkpointing process itself.

Essentially a hook was added into the Pack-UnPack (PUP) process to ensure that whenever a chare object is

having its state serialized into a buffer, that any persistent data on the device is pulled and the host has an

up-to-date copy of the data. The PUP routines are used to create a checkpoint of the application’s state at

runtime, which can be used to rollback the application’s state in the case of a fault. The memory checkpoint

mechanism already requires that an application to be in an idle state (objects are not actively updating),

so this already removes the need to account for any accelerated entry method invocations that are currently

pending on an accelerator device.

In terms of the recovery process, again, little was changed. Essentially, a single hook was added early

in the recovery process that notifies the accelerator manager that a fault has occurred and that appropriate

action should be taken. In the event of a fault, the accelerator manager simply flushes its state associated

with any objects. If static assignment is being used, then the assignments of objects to particular locations

(host core versus accelerator device) is dropped. Any pending accelerated entry method batches are also

marked as abandoned. If an AEM batch is still in the process of being formed, but has not been issued to

the accelerator device, then the batch is simply destroyed. If an AEM batch set has already been issued to

the accelerator device, then the batch is marked as abandoned and a reference to the batch is set aside until

the accelerator device completes the batch. Once completed, the generated callback code verifies whether
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or not a batch has been abandoned, and if it has, disregards any output data that has been passed back

from the device. If persistent data buffers are being used, all associations between host core buffers and

accelerator device buffers are broken (which will cause new buffers to be created once the application restarts

after the recovery process). Any existing accelerator buffers are retained until all abandoned AEM batches

have completed, since any currently executing batches may refer to those device buffers. Once all of the

abandoned batches have completed, it is known that no other current or future batches will refer to the

abandoned device buffers, so the abandoned device buffers are finally discarded.

In the memory checkpointing mechanism, all objects are discarded in the case of a fault. However, more

advanced fault tolerance mechanisms within Charm++ only require a subset of the objects to rollback,

reducing the cost of recovery. In these more advanced fault tolerance mechanisms, the states of individual

objects are checkpointed, along with the messages associated with entry methods that have been invoked on

them since their last checkpoints. In order to accommodate these fault tolerance mechanisms, the checkpoints

of the objects themselves would have to be delayed until the completion of any pending accelerated entry

methods on the given chare object. With no pending AEMs, there is no risk of an accelerator device

update the state of the chare object during the checkpointing process itself. Note that this does not change

the expense of checkpoint, it simply changes when checkpoint can occur. If a fault tolerance mechanism

were to require the deletion of objects on pairings that have not failed as a result of a fault on one of the

pairings, like the memory checkpoint mechanism does, then the abandonment mechanism currently used by

the accelerator manager would have be updated to act on an object-by-object basis rather than batches.

Essentially, the requires a single abandonment flag to become an array of abandonment flags (as part of the

batch’s data structure) and a check be added within the generated callback that checked each of these flags

individually as it processes the output of the batch. Persistent data would be handled in the same manner,

being disregarded after all abandoned objects have completed, rather than all abandoned batches have been

completed.

Note, at the time of this writing, the support for the memory checkpointing mechanism had not been

back ported to the generated code for the Cell processor (i.e. is only supported for GPGPUs). Since the

popularity of the Cell continues to decline, such support may or may not be implemented in the future.

However, if such support were to be implemented, it would be a straight forward extension of the current

implementation for GPGPUs (i.e. batches of size one and/or on an object-by-object basis).
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6.5 Summary of Data Management

In this chapter, we have discussed the various ways in which the runtime system can assist the programming

model and the application programmer by handling various issues related to managing an application’s

data and/or state. First, the automatic manipulation of parameters passed through an entry method’s

passed parameter list was demonstrated (the discussion of the mechanism was in section 6.1, while the

demonstration was in section 4.3.3). While such corrections are mundane, they are a source of programming

errors if the programmer is forced to explicitly handle architecture differences. Since automating these

correction via a runtime system is fairly straight forward, such automation can benefit the programmer

by simplifying the code (removing explicit correction code) and removing a source of programming errors.

Second, the data portion of the accelerated entry method batching process was discussed. By coalescing

scalar values during the batching process, the runtime system attempts to avoid shared memory bank

conflicts when targeting GPGPUs. Additionally, separate AEM invocations that reference the same data

via their shared local parameters can utilize a single buffer on the accelerator device to reduce the overall

footprint of an AEM batch within the device’s memory. The runtime system automates this sharing of data

across AEM invocations via pointer lookups, leaving the programmer to simply mark the appropriate local

parameters with the “shared” keyword. Third, the use of persistent local parameters was also discussed.

Again, local parameters marked with the “persist” keyword, which causes the runtime system to retain the

local parameter’s data on the device when appropriate, eliminating data transfers to and from the device

between invocations. Within this context, static versus dynamic assignment of chare objects to either the

host core or the accelerator device as also discussed. Finally, support for the memory checkpoint fault

tolerance mechanism was also discussed in this chapter. Support for memory checkpointing within the

accelerator manager enables the runtime system to extend its preexisting memory checkpoint mechanism to

include applications that make use of accelerator devices.
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Chapter 7

Related Work

In this chapter, we will discuss how other approaches have addressed the difficulties of heterogeneous systems.

Along the way, we will compare and contrast our approach with these other approaches.

7.1 Native Programming Models

A natural starting place to begin is to mention the programming models that were/are co-developed by

the creators of the accelerator technologies that have been discussed within the context of our work. When

the Cell processor was introduced, the Cell SDK was also introduced [23], which includes various libraries,

intrinsics, and interfaces that allow programmers to write application for the Cell processor. When using

the Cell SDK directly, the programmer is required to explicitly perform many of the tasks associated with

executing computation on the SPEs, such as initiating direct memory accesses (DMAs) and managing each

SPE’s local store memory.

In the context of the CUDA-based GPGPUs, the most notable programming model in use today is the

compute unified device architecture (CUDA) programming model [80]. We have already eluded to how the

CUDA programming model works throughout this document, particularly in section 2.2 (i.e. using kernels,

warps, many threads, the SIMD execution model, and so on). As is the case with the Cell SDK, when using

CUDA directly, the programmer is responsible for explicitly moving data, determining how the resources

will be shared (i.e. determining and optimizing their code to maximize occupancy), and so on.

When comparing our approach to both the Cell SDK and the CUDA approaches, there are several

differences. First, our approach has been used to program both the Cell processor and GPGPUs, which

cannot be said for either the Cell SDK or CUDA. Though, it is certainly not difficult to imagine mapping

CUDA to the Cell processor. Further, our approach creates a unified programming model, allowing a single

expression of the application code (i.e. the accelerated entry methods) to be portable between core types,

enabling features such as automatic load balancing between host cores and accelerator devices. We also

address concerns such as fault tolerance.

171



Because of it is similar to CUDA in many ways, we will include the OpenCL programming model in

this section as well. In the OpenCL programming model [40], a programmer issues kernels (collected into

“program” constructs) made up of work-items which are collected into sets or workgroups. Synchronization

is only possible between work-items within the same workgroup. Kernels have to complete in order achieve

synchronization across the global set of work-items. This is quite similar to the CUDA programming model’s

use of streams, kernels, warps, and threads. In particular, the programmer creates many relatively small

work-items that can be executed in parallel during any given kernel execution. Additionally, OpenCL

supports separate types of memory that can be used explicitly by programmers (private to work-items,

shared between work-items in the same workgroup, global, constant, etc.). Unlike CUDA, the OpenCL

programming model has been generalized so that is applicable to different types of processing devices, such

as GPGPUs, Cell processors, and commodity host cores. However, in the presence of multiple devices, a

separate command queue is used explicitly by the programmer to issue work to each of the devices, leaving

the programmer to decide where portions of the application should be executed. There are several other

features included within OpenCL, but we will limit our discussion of OpenCL to these features for brevity.

In many ways, the difference between CUDA and our approach are the same as the differences between

OpenCL and our approach (as listed above).

7.2 Extensions to OpenMP

While our approach focuses on runtime system support for heterogeneous systems, there are several other

approaches based on compile-time techniques extending OpenMP [32]. There are obvious differences between

compiler-based approaches and our work, which focuses on the role of the runtime system. While we do

make use of a source-to-source compiler in our work for code generation purposes (i.e. charmxi), we do not

implement many of the more sophisticated compile-time techniques discussed in this chapter.

The XLC single source compiler, or “Octopiler,” [35, 34] optimizes code written using OpenMP pragmas

by performing several compile-time optimizations to the application code, including automatic SIMDization

of application code, branch optimizations, and others. Additionally, a shared memory model is presented to

the programmer through the use of a software cache. DMA transactions generated by the compiler assist in

moving data to and from the SPEs’ local stores (i.e. cache misses). As stated above (in a general way), this

approach has the benefit of being able to apply sophisticated compile-time techniques to assist programmers

in making used of the Cell processor. However, our approach differs in that Charm++ has a message queue

which is essentially a list of ready-to-execute tasks. This, combined with the encapsulated nature of entry
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methods, allows the runtime system to pro-actively move all of the data that will be accessed by the task

executing on the SPE. Software caches, however, are reactive, only starting a DMA transaction after the

data is already required. Certainly, the Octopiler can included software prefetches as easily as it inserts the

DMA transactions themselves (of course, with the same limitations that all prefetch mechanisms encounter).

OpenMP to GPGPU [67] is another technique that allows programmers to write their application code

using OpenMP pragmas. At compile time, the compiler analyzes the OpenMP portions of the application,

mapping the loop iterations to GPGPU threads. This is done by analyzing the code to detect implicit or ex-

plicit synchronization points within the OpenMP constructs (e.g. parallel loops). Using the synchronization

points as dividing points, the OpenMP portions of the application are broken down into kernel regions, with

each kernel region mapping to a single kernel execution to enforce global synchronization at the required

points.

Our approach could certainly benefit from several of the techniques used by the compiler techniques

mentioned above, particularly in the case of splittable accelerated entry methods and removing the need to

use SIMDIA explicitly within application code (see section 8.3). However, our approach goes beyond the

compiler-based methods mentioned in this section in that our approach targets clusters rather than single

nodes (i.e. we use the same programming model for all cores, not requiring a second programming model

for across node communication), apply dynamic load balancing techniques, integrate with fault tolerance

support, and so on.

Of course, all OpenMP-based approaches influence programmers in the same way that OpenMP influ-

ences programmers. Another high-level point is that the use of concurrent objects within the Charm++

programming model essentially forces programmers to think about their applications in a parallel manner.

On the other hand, OpenMP encourages programmers to start with a serial implementation of their appli-

cation and to parallelize portions of it, piece-by-piece. In this sense, one should also consider the influence

a programming model has on a programmer in terms of how the model forces the programmer to envision

their application code. While is is quite difficult to quantify such influences, OpenMP in particular almost

begs programmers to fall victim to Amdahl’s Law [1] by having programmers structure their applications

based around a single sequential master thread. Of course, the same parallel structure possible in any pro-

gramming model, but the question one should ask themselves is ’how far out of their way does a programmer

have to go to implement such a structure within a given parallel programming model?’
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7.3 Extensions to MPI

Having discussed approaches based on OpenMP in the previous section, we now move on to talk about

approaches based on MPI. The message passing interface (MPI) [37] is well-known and commonly used

parallel programming model. As such, there have been several approaches which build upon MPI as the

basis of their work.

Open MPI [39] is one such approach. Like our approach, Open MPI will automatically modify applica-

tion data passing between processing elements over the network. The main advantage of Open MPI over

our approach is that Open MPI provides support for network heterogeneity, allowing multiple types of inter-

connects to be used within a single parallel execution. However, Open MPI does not address heterogeneity

between nodes (beyond data encoding differences such as endianness, size of data primitives, and so on),

whereas our approach can make use of a mixture of processing element types within a single execution.

The HeteroMPI [66] approach is also based on MPI. Like Open MPI, HeteroMPI goes beyond our

approach in that it supports heterogeneous networks, allowing communication within an application to pass

over multiple types of interconnects. HeteroMPI also supports a heterogeneous collection of processing

elements. However, a benchmark code must be created by the programmer, which is used to predict the

relative performances of the application for each phase of the application’s execution (HMPI Recon). Further,

the use of HMPI Recon is done explicitly within the application code. In our approach, we directly measure

the performance of the application as it executes, without requiring the programmer to include any code.

HeteroMPI, to the best of our knowledge, has only been demonstrated to execute on heterogeneous clusters

with varying host cores. Our approach goes a step further in that we also support heterogeneous clusters

that include accelerator devices.

MPI microtasks [81] extends MPI to allow for the execution of MPI microtasks on the SPEs of a Cell

processor. By using the same (or at least very similar) API calls, the microtasks are able to communicate with

one another and the PPE. On the host core itself, the programmer uses standard MPI calls for communicating

between PPEs (which is to say, the MPI microtask does not address it directly, but so closely resembles MPI

that it all but eliminates the mental effort required by a programmer to ’use another API’ for across host

core communication).

Our approach further differs from the above MPI-based approaches in the same ways MPI and Charm++

differ from one another. For example, MPI is centered around the used of long-lived MPI threads, while

Charm++ makes use of chare objects (long or short lived) and entry methods (tasks) that execute on those

chare objects. Further, Charm++ naturally allows for dynamic load balancing, fault tolerance support, and

other features due to the migratable nature of chare objects and through the assistance of an active runtime

174



system. Though, it is worth noting that AMPI [46, 54] has shown that MPI applications can also make use

of the techniques commonly available to Charm++ applications.

7.4 Other Approaches

Several abstractions that have been created to ease the burden of programming accelerator technologies do

so by creating libraries and frameworks that are focused on one or more problems types or computation

patterns. One such approach is Mercury’s Multicore Framework (MFC) [16], which allows a programmer

to initiate a N -dimensional matrix computation on the accelerator device from the host core. Another

framework is RapidMind’s Development Platform [72], which allows a programmer to create collections of

values which are then passed into and out of program constructs. To be clear, “program constructs” are not

programs in the sense of applications, but rather well-defined task definitions that are applied to collections

of values. Code examples that we have seen are limited to dense data structures such as arrays and matrices,

though there is no reason to believe that the approach is limited in this way (conceptually speaking).

Sequoia [36] is another interesting approach in that it focuses on the idea of a code expression that allows

for the granularity of the tasks to be specified separately from the code itself. In Sequoia, a programmer

expresses a calculation as a recursively divisible operation. This is done by creating both “inner” and

“leaf” steps to the calculation, which one can conceptually think of as forming a tree structure representing

portions of the overall calculation. At each “inner” node in the tree, one or more tunable variables are used

to recursively divide the work based on a specification (i.e. a representation the specific hardware being

targeted). Using the specification and the tunables, Sequoia breaks the overall workload into portions that

map to the various memory levels within the hardware. For example, the levels may correspond to L1 and

L2 caches on a commodity core, the local stores within SPEs on a Cell processor, shared memory nodes

within a cluster, and so on. The overall idea being to allow the granularity of sub-tasks within a given

computation to not be defined by the expression of the computation, but rather to express the computation

in a manner that allows the granularity to be adjust based on the circumstances under which an application

is executing. Our approach addresses granularity adjustments at runtime through the use of splittable

accelerated entry methods. Additionally, in this work we have applied our approach to dynamically load

balance a given workload across a heterogeneous set of cores (versus a static specification) allowing it to

adapt to interference, included support for SIMD instructions, and included integration for fault tolerance

support.

There have also been several programming models explicitly created with the goal of targeting hetero-
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geneous systems using task-based approaches, similar to the entry method (task) approach that we used in

our work. StarSs [85] is a particularly flexible approach in that it supports a variety of hardware platforms

by creating several individual runtime libraries, including the Cell processor [11, 10] (CellSs), GPGPUs [5]

(GPUSs), SMP processors [83] (SMPSs), OpenMP [2] (OmpSs), FPGAs [6], and others. Our approach does

not currently support FPGAs or allow for an extended version of OpenMP to be used to express application

code. In the StarSs approach, the programmer marks functions within their application code as tasks. These

tasks are arranged a hierarchy, requiring children tasks to complete before parent tasks are able to complete.

This is unlike our approach where there is implicit or explicit hierarchy associated with the entry methods

(tasks). As such, our approach does not introduce any implicit synchronization between tasks. StarPU

[3, 4] and the Hybrid Multi-core Parallel Programming (HMPP) environment [33] are additional task-based

approaches, which both make use of tasks which they refer to as codelets. In StarPU, the programmer is

required to write a version of the codelets for each type of processing element, while in HMPP, the codelets

are portable. In HMPP, however, there is no direct support for across host core communication, requiring

programmers to make use of another programming model, such as MPI, for that purpose. In our approach,

the programmer also effectively marks which functions (entry methods) can be offloaded to an available

accelerator devices by making used of accelerated entry methods rather than standard entry methods. Our

approach goes beyond all of these approaches in that we further provide integration with the Charm++

automatic memory checkpoint scheme so that it can be used on systems that include accelerators as well.

Finally, we introduce the SIMDIA abstraction, allowing programmers to make used of SIMD instruction

extensions within the AEMs (tasks) in a portable manner.

7.5 Previous Work Within Charm++

In addition to comparing and contrasting our approach with that of other approaches that are not based

on Charm++, we also would like to point out previous work that has been based on Charm++ also. First,

within Charm++ it is possible to make use of both the Offload API [61] for the Cell processor and the

GPU Manager [93, 55] (previously known as the Hybrid API) directly from within Charm++ application

code. In both cases, the programmer is required to write one or more device-specific functions they wish to

offload to the devices and explicitly invoke those offloaded functions via work requests. The work presented

here draws upon this initial work (see chapter 2), extending it to the approach we have presented in this

document.

Additionally, there has been previous work within our group that explores agglomeration techniques for
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GPGPU devices [68]. Again, the programmer is required to explicitly include code for each type of device.

However, an accelerator FIFO is used to agglomerate units of work together into larger sets, which are then

issued to an available GPGPU as a single kernel. A scheduler is used to select work units from a pool of

work units based on each work unit’s priority and then directs work units to either the host cores or the

accelerator FIFO for later execution on a GPGPU. Unlike the agglomeration work, the approach presented

in this document makes use of a unified programming model (i.e. no explicit kernel code is written),

integrates with other mechanisms within Charm++ (e.g. the load balancing framework and automatic

memory checkpointing mechanism), includes support for the Cell processor, and so on.

Saletore et al. extended CHARM (a predecessor to Charm++) in order to support heterogeneous clusters

[89]. In particular, they demonstrated the execution of CHARM using a mixture of Sun Sparc, HP-PA, and

IBM RS/6000 workstations using dynamic load balancing techniques. However, it is worth noting that the

extent to which these workstations differ is mainly limited to processing power. We have demonstrated

our approach on a heterogeneous cluster that includes peak flop rate and architecture differences between

host cores, along with support for accelerator devices. Further, our approach includes support for SIMD

instructions through SIMDIA, integration with at least one fault tolerance mechanism, and so on.
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Chapter 8

Conclusions

In this work, we have extended the Charm++ programming model and runtime system to support accelerator

devices and heterogeneous clusters. This chapter presents a summary of the document, some concluding

remarks, a discussion on future work, and some thoughts on the future of heterogeneity in computing.

8.1 Summary of Content

Chapter 1 introduces the reader to the context and motivations surrounding this work. Chapter 2 moves on

to provide background information to familiarize the reader with the accelerator devices used in this work,

along with various aspects of the Charm++ programming model and runtime system that are relevant to

the work presented here.

Chapter 3 presents the general approach used in this work. The Charm++ programming model and

runtime system were used as the basis of this work. The Charm++ programming model has been extended

to include accelerated entry methods (AEMs) and the SIMD instruction abstraction (SIMDIA). With these

extensions, we create a unified programming model that can be used to write application code that targets

both host cores and accelerator devices alike. Additionally, the runtime system has been modified to include

the accelerator manager, which assists in executing the accelerated entry methods on either the host core

or an available accelerator device. The accelerator manager helps to facilitate the execution of Charm++

applications making use of AEMs by providing several services to the application, such as dynamic load

balancing between the host core and accelerator device and integration with fault tolerance mechanisms.

Chapter 4 presents previous experiments involving a simple molecular dynamics (MD) application that

uses our programming model extensions to execute on a heterogeneous cluster. The heterogeneous cluster

is composed of four Playstation 3s (PS3s) nodes, four QS20 Cell blades (blades) nodes, and an x86-based

node. We demonstrate the MD application executing on the heterogeneous cluster and making use of a

static load balancer to divide the workload across the various nodes. When executing using all the nodes,

the application is making use of three types of cores (PPEs, SPEs, and x86s), three types of SIMD instruction
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extensions, and two types of memory structures (cache hierarchies and scratchpad memories requiring DMA

transactions). Despite all of the architectural differences between the cores, the application does not include

any architecture specific code within the application code itself. Further, the application code remains

portable to traditional (homogeneous) clusters that do not contain any accelerator cores (i.e. the SPEs, in

this case).

Chapter 5 moves on to discuss our recent efforts to support general purpose graphical processing units

(GPGPUs) in addition to the Cell processor using the same programming model extensions presented in

chapter 3. Both a 5-point stencil application and an updated version of the MD application used within

chapter 4 are used to demonstrate Charm++ applications written using our programming model extensions

executing on a combination of x86-based host cores and GPGPU accelerator devices. Dynamic load balancing

strategies are used to balance the overall workload between the host cores and the accelerator devices.

Further, the same load balancing strategies are also used by the MD application to demonstrate adaptability

to the interference of the other applications sharing the same accelerator resources. Additionally, we briefly

discuss the updated MD application executing on the heterogeneous cluster introduced in chapter 4 to

demonstrate the use of our dynamic load balancing strategies on a cluster including Cell processors.

Chapter 6 discusses various data management services provided by the runtime system, including auto-

matic manipulation of application data, shared and persistent local parameters, and the integration of the

accelerator manager with the memory checkpointing fault tolerance scheme within the Charm++ runtime

system. The automatic manipulation of application handles some of the mundane tasks related to applica-

tions executing on heterogeneous hardware, such as correcting for endianness differences between cores with

different architectures. While such corrections are indeed mundane in nature, requiring the programmer to

handle these differences, the correction of which can be automated by an underlying runtime system, serves

as a possible source of programming errors. Further, requiring the programmer to explicitly handle such dif-

ferences does not serve the general goal of the application beyond simply allowing the application to execute

on a heterogeneous system. The use of various modifiers to the local parameters associated with accelerated

entry methods allows the runtime system to dynamically reduce the total memory associated with a batch

of AEMs executing on a GPGPU device (i.e. shared local parameters), along with determining where data

should reside, in system memory or on the accelerator device (i.e. persistent local parameters). Finally, some

of the automated mechanisms within the Charm++ runtime system, such as fault tolerance schemes, require

additional support from the accelerator manager in order to correctly operate within the context of hetero-

geneous systems. We demonstrated one such approach by allowing the memory checkpointing mechanism

within the Charm++ runtime system to interact with the accelerator manager.
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Finally, chapter 7 compares and contrasts our approach with various other approaches. Refer to chapter

7 for specific comparisons.

8.2 Concluding Remarks

At the highest level, this work explores the application of a message-driven object-based parallel programming

model to heterogeneous systems including accelerator technologies. In this work, the Charm++ program-

ming model has been applied to clusters including Cell processors or CUDA-based GPGPUs. Typically,

programming models that are highly data parallel in nature are used for GPGPU programming, while

streaming programming models are used for the Cell processor. In this work, we have demonstrated that it

is in fact possible to target a variety of fairly different hardware architectures (i.e. commodity host cores,

Cell processors, and GPGPUs) using a single, flexible programming model (i.e. Charm++ with the exten-

sions presented in this work). Through the use of this unified programming model, we enable programmers

to focus on the overall goals and purposes of their applications, rather than becoming over-burdenned by

architecture-specific details presented by the hardware their applications will execute upon.

At the core of our approach is an intelligent, adaptive, and active runtime system. The runtime system

is intelligent in that it uses information collected at runtime make decisions and apply heuristics. The

runtime system is adaptive in that it is able to react to changes within the environment in which an ap-

plication is executing. The runtime system is active in that it does not simply fulfill requests made by the

programmer via API calls, but rather proactively performs various actions when given permission to do

so, such as improving the performance of applications via load balancing strategies, protecting applications

against hardware faults, maps appropriate portions of an application’s workload to available accelerator

devices, modifies application data to correct for architecture differences in heterogeneous systems, reduces

communication demands through shared and persistent buffers, and so on. Generally speaking, the runtime

system maps the message-driven programming model to the specific hardware on which the message-driven

application is executing. The overall runtime system can be broken down into a set of sub-components,

including the accelerator manager which was introduced as part of this work. The accelerator manager is

responsible for a variety of tasks related to the execution of accelerated entry methods, including dynamic

load balancing between host cores and accelerator devices, batching AEMs, coalescing of shared data related

to AEMs, management of persistent data related to AEMs, splitting splittable AEMs into smaller subtasks

when appropriate, fault tolerance support as it relates to accelerators, and so on. With the runtime system

actively performing a variety of tasks for the application, we begin to see in what ways a runtime system
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can assist programmers in creating applications that target heterogeneous systems. In particular, when we

say “assist programmers” we mainly mean allowing programmers to focus on the goal or intent of their

applications rather than the mechanics of their application executing on specific hardware.

One aspect of the mechanics of an application executing is the process of balancing the application’s

workload across the available processing cores, host and accelerator alike. Dynamic load balancing between

the host cores and accelerator cores is achieved by taking various runtime measurements of the application

and rebalancing the workload in response to those measurements via the various load balancing strategies

discussed in chapter 5. However, there are challenges and pitfalls related to automating the load balancing

process as it relates to heterogeneous hardware. As part of our static load balancing experiments, we

showed that the communication characteristics of the various nodes is an important consideration when

balancing a workload within the context of a heterogeneous cluster. In fact, the presence of nodes with

better communication characteristics can help applications scale better if the communication heavy portions

of the workload can be focused on hardware with good communication characteristics, even if that same

hardware offers very little additional benefit in terms of the combined peak flop rate. Other pitfalls arise

out of having host cores and accelerator devices with significantly different peak flop rates. In such a

situation, automatic load balancing strategy runs the risk of moving too much work in the direction of the

lower performing core, which may have drastic performance implications if even a small amount of work is

shifted. Dynamic and automatic load balancing strategies must be cautions not to accidentally degrade the

performance of applications for a significant period of time when seeking an optimal balance point for the

application’s workload. Yet other pitfalls arise out of the actions of the runtime system itself. As the runtime

system performs tasks on an application’s behalf, it inevitably affects the behavior of the application itself.

These effects can, in turn, affect the measurements take by the runtime system, resulting in cascading effects

and/or feedback cycles that reinforce themselves if proper care is not taken in the implementation of the

runtime system.

Further, we have shown that our approach is capable of integrating with other features provided by

runtime systems in order to assist applications and programmers in coping with a changing and imperfect

computing environment. We have integrated our approach with at least one fault tolerance mechanism

(automatic memory checkpointing). If a host core fails, the runtime system is able to use the memory check-

pointing mechanism to automatically role the state of the application back to a previous known-to-be-good

state and restart execution from that state without requiring user intervention. Future integration with other

fault tolerance mechanisms will provide support for more than a single host core failure. Additionally, we

have shown that our approach is capable of adapting to interference caused by shared accelerator resources.

181



This support is a natural result of the dynamic load balancing mechanisms included as part of this work.

8.3 Future Work

Our attempt to create a unified programming model is somewhat limited in its current form. It is true that

our approach enables applications to be portable between and concurrently make use of various types of

processing elements. However, our approach also presents the programmer with a minimal set of features

for creating such applications. For example, our approach does not include a compiler to perform complex

architecture-specific optimizations such as automatically analyzing and transforming standard entry method

into accelerated entry methods, including triggered and/or splittable AEMs. While we consider such opti-

mizations as future work, it should also be noted there is an ongoing effort to create a Java-like programming

language called Charj that embodies the Charm++ programming model [8]. Charj represents a possible fu-

ture approach to creating a “front-end” for the various abstractions and runtime system features presented

in this work, which would enable a compiler to provide additional analysis and optimizations during the

compliation process. Without such “front-end” analysis and optimizations, the programmer is still limited

in that they must choose a single representation of their application code. Such as a particular AEM being

splittable or not splittable, as discussed in section 5.7.1. The creation of such a “front-end” is left as future

work.

Additionally, there remains several opportunities to improve upon our existing runtime system support.

One such improvement is the reduction of overhead. While we have strived to create a lean implementation,

we are continually thinking of ways to improve the implementation. As an example, we are revisiting some

of the dynamic data structures and implementing pooling techniques to minimize memory allocations and

deallocations at runtime, finding ways to use asynchronous data transfers for persistent data whenever

possible, and so on. Since Charm++ is used in production-level scientific codes, a long term goal of this

work is to continually improve our implementation so that future applications will receive as much benefit

from this work as possible. This also includes extending support to additional accelerator technologies, such

as MIC.

There is also additional future work in providing greater integration with other components within the

Charm++ runtime system. As part of this work, the accelerator manager has been integrated with the

existing load balancing framework and the automatic memory checkpointing mechanism. However, work

remains to the increase support for other components. For example, other fault tolerance mechanisms such

as memory logging [75] or the dynamic resizing feature [60] (allowing Charm++ applications to dynamically
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N11 J11 N10 J10 N09 J09 N08 J08
Cell 3 3 6 6 4 7 3

GPGPU (nVidia) 4 2 4 2
GPGPU (ATI) 1 2 1 1
GRAPE-DR 1 1 1
BlueGene/Q 5 2 1
BlueGene/P 6 8 7 8
Accelerator 5 7 9 8 8 5 7 3
BlueGene 5 2 1 6 8 7 8

other 1 1 2
Total Systems 10 10 11 10 14 13 14 11

Table 8.1: The top 10 systems on the Green500 list by year [21].

change the number of processors they are using as other applications start and finish in order to maximize

cluster utilization) will require additional support within the accelerator manager to provide full support for

these features in the context of heterogeneous systems.

8.4 The Future of Heterogeneity

Finally, it is worth taking a step back and discussing the future of heterogeneous systems in general, not

just in the context of our work. Table 8.1 is an expanded version of table 1.1 originally presented in section

1.2.1. In addition to table 8.1, figure 8.1 presents four graphs showing data for the top 50 systems in the

two most recent lists. Since energy consumption is quickly becoming a main concern in the design of large

supercomputers and data centers, we place our focus on the Green500 list, as opposed to the Top500 list.

From table 8.1, we can see that many of the top 10 systems in the world in terms of Mflop/s per Watt

are heterogeneous systems. However, the table has been expanded to include the BlueGene [38] systems.

BlueGene systems use a greater number of weaker processors, along with a reduced software stack on the

compute nodes themselves. BlueGene systems have certainly had an significant presence on the list of green

supercomputing systems over the last four years. Further, the 5 BlueGene\Q systems in the November 2011

Green500 list are the top 5 systems. Further, these systems hold ranks 17, 29, 64, 65, and 284 on the Top500

list, showing that they are also amongst some of the most powerful systems in use today. From the upper

right graph in figure 8.1, we can see that scaling these systems to higher core counts does not seem to have a

large impact on their overall power efficiency, meaning that it is likely that even larger BlueGene\Q systems

will appear amongst the highest ranked systems on the Top500 in the very near future. Further, figure 8.1

show how the heterogeneous systems compare to non-heterogeneous systems for the top 50 systems on the

Green500 list. These figures call into question the idea that heterogeneity will increase the power efficiency of

large clusters. Additionally, from the lower graphs in figure 8.1 there is also a trend of heterogeneous clusters
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Figure 8.1: The top 50 systems from the June 2011 and November 2011 Green500 lists.
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achieving a lower percentage of their peak flop rates, specifically amongst clusters that include GPGPUs.

This fact could be a hint that clusters including GPGPUs are more difficult to program relatively to other

types of clusters. It could also suggest the presence of design imbalances within the clusters, such as a

cluster’s ability to perform communication as fast as it can perform computation. Considering all of these

ideas together, it is not unlikely that system designs similar to BlueGene systems may increase in popularity

in the coming years. On the other hand, it is also entirely likely that heterogeneous systems may increase

in popularity, especially if the hurdles related to programming such systems can be overcome. As it stands

now (November 2011 list), there are 39 systems that include accelerators and 16 BlueGene systems (5 ’Q’s,

4 ’L’s, 7 ’P’s), meaning that heterogeneous systems currently outnumber BlueGene systems by a factor of

almost 2.5.

However, the above discussion centers around the largest clusters on Earth. There is also the question

of smaller, locally operated clusters that include accelerators. For smaller systems, power concerns are not

as critical. Rather, performance levels tend to be a prime concern. In these situations, accelerators provide

great benefit.

With these points in mind, the future of heterogeneous clusters is unclear, particularly for large clusters.

At the very least, we can say that heterogeneous clusters are likely to be around for several years to come.
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