Assessing Energy Efficiency of Fault Tolerance Protocols for HPC Systems

Esteban Meneses, Osman Sarood and Sanjay Kalé

Parallel Programming Laboratory University of Illinois at Urbana-Champaign

SBAC-PAD 2012

Exascale

Energy

- Power management (20MW budget)
- Administrative considerations $(1MW \rightarrow $1M/year)$
- System codesign (architectural features)

Fault Tolerance

- Size of the machine (200,000 sockets \rightarrow MTBF)
- Types of failures (memory, accelerator, network)
- Different strategies

Energy Efficiency of Fault Tolerance Protocols

Agenda

- Fault Tolerance Protocols
- 2 Experimental Setup
- 3 Experimental Results
- 4 Analytical Model
- Discussion
- 6 Conclusions and Future Work

Fault Tolerance Protocols

Checkpoint/Restart

- State is saved periodically
- Coordinated global checkpoint
- Checkpoint stored locally
- Failure → global rollback

Message-Logging

- Messages are stored at sender
- Non-determinism logged
- Determinants in causal path
- \bullet Failure \rightarrow local rollback

Parallel Recovery

- Tasks are migratable
- ullet Failure o recovery in parallel

Caveat

- Many variants of checkpoint/restart
- Several message-logging protocols
- Hybrid schemes

Optimum Checkpoint Period

Daly's modified model:

$$\tau = \sqrt{2\delta(M+R)} - \delta$$

Questions

- ullet Optimum au for message-logging and parallel recovery?
- Optimum τ to minimize energy?
- Execution time vs energy consumption?

Charm++ Runtime System

- Migratable Objects Model
- Asynchronous Method Invocation
- $\hbox{ Adaptive MPI} \to \hbox{each rank} \\ \hbox{becomes an object}$
- Application-level checkpoint

- One process per logical node
- Failure injection: kill -9 pid
- Failure detection → automatic restart on replacement node
- Fault tolerance protocols at object-level

Energy Cluster

General Features

- 40 single-socket nodes
- Each node has a four-core Intel Xeon and 4GB of main memory
- Gigabit ethernet switch

Power Measuring

- Liebert power distribution unit (PDU)
- Power measurement per-node
- 1-second interval frequency

Checkpoint/Restart

- Test program
 - 7-point stencil
 - Nearest neighbor in 3D
 - Barrier after each step
 - Virtualization ratio = 32
 - 200 steps (checkpoints at 50 and 150)
- Local disk checkpoint

Total Energy Consumed

Energy Consumption in Recovery

- Test programs
 - NAS Parallel Benchmarks
 - Block Tridiagonal (BT) and Scalar Pentadiagonal (SP)
 - Virtualization ratio = 4

Summary

	Jacobi3D	NPB-BT	NPB-SP
Language	Charm++	MPI	MPI
Problem size	1024 ³	class C	class C
Number of cores	128	100	100
Virtualization ratio	32	4	4
Recovery parallelism	8	4	4
Message-logging overhead	1.0%	3.6%	4.1%
Max power (C)	106	102	95
Max power (M)	106	102	96
Max power (P)	106	102	96

Message-logging does NOT increase power draw

Execution Time and Energy Model

Parameter	Description	Value
V	Optimal virtualization ratio	> 8
W	Time to solution with V	25 h
Μ	Mean-time-to-interrupt of the system	-
S	Total number of sockets in the system	-
δ	Checkpoint time	180 s
au	Optimum checkpoint period	-
R	Restart time	30 s
T	Total execution time	-
Ε	Total energy consumption	-
μ	Message-logging slowdown	1.02
Р	Available parallelism during recovery	8
ϕ	Message-logging recovery speedup	1.2
σ	Parallel recovery speedup	Ρ
λ	Parallel recovery slowdown	$\frac{P+1}{P}$
Н	Max power of each socket	100 W
L	Base power of each socket	40 W

Execution Time and Energy Formulas

$$T = T_{Solve} + T_{Checkpoint} + T_{Recover} + T_{Restart}$$
 $E = E_{Solve} + E_{Checkpoint} + E_{Recover} + E_{Restart}$

Execution Time (Parallel Recovery)

$$T = W\mu + \left(\frac{W\mu}{\tau} - 1\right)\delta + \frac{T}{M}\left(\delta + \frac{\tau - \delta}{2\sigma} + \frac{\tau + \delta}{2}\left(\lambda - 1\right)\right) + \frac{T}{M}R$$

Energy (Parallel Recovery)

$$E = W\mu SH + \left(\frac{W\mu}{\tau} - 1\right)\delta SL + \frac{T}{M}\left(\delta SL + \frac{\tau - \delta}{2\sigma}\left(PH + (S - P)L\right) + \frac{\tau + \delta}{2}\left(\lambda - 1\right)SH\right) + \frac{T}{M}RSL$$

Time-optimum τ

Energy-optimum τ

Improvement in Execution Time

Up to 17% improvement

Improvement in Energy

Time-optimum τ

Energy-optimum au

Up to 13% improvement

Discussion

• Trend in ratio of base to maximum power

	Release	Max	Base	Base/Max
Processor	Date	Power	Power	Ratio
Intel Xeon	Q1,09	125	60	0.48
(E5520)				
Intel Nehalem (i7 860)	Q3,09	151	52	0.34
Intel Sandy Bridge (i7 2600)	Q1,11	101	21	0.21

• Migratability and over-decomposition in scientific applications

Conclusions

- "Minimize execution time ⇒ minimize energy" (not true)
 - Increase checkpoint frequency
 - Recovery is more energy-efficient with message logging
- Energy overhead of message-logging
 - It does not increase power draw
 - It increases energy consumption on the forward path
- Parallel recovery leverages message-logging
 - It provides the minimum execution time (users happy)
 - It offers the minimum energy consumed (administrators happy)
 - The model predicts 17% reduction in execution time, 13% reduction in energy consumed

Future Work

Particle-simulation applications:

Molecular Dynamics

Quantum Chemistry

Cosmology

- Enhancements to analytical model:
 - Different failure distributions: Weibull, log-normal
 - No upper bound for checkpoint period
- Energy-aware fault tolerance protocols

Acknowledgements

- HPC Colony II Project. This work is partially supported by the US Department of Energy under grant DOE DE-SC0001845 and by a machine allocation on XSEDE under award ASC050039N.
- Prof. Tarek F. Abdelzaher. The experimental results of this work come from the *Energy Cluster* in the University of Illinois at Urbana-Champaign.

Obrigado!

24th International Symposium on Computer Architecture and High Performance Computing

SBAC-PAD'2012

October 24-26, 2012 New York City, USA

Columbia University

Progress Diagram

Performance Overhead

Progress Diagram for Energy Efficient Fault Tolerance

Effect of Higher Parallelism During Recovery

Optimum Checkpoint Period

ullet Optimum checkpoint period (au) vs MTBF

Time-optimum au

Energy-optimum au

