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University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{sun51, gzheng, chaomei2, ebohm, jcphill, kale}@illinois.edu

Terry R. Jones
Oak Ridge National Lab, Oak Ridge, TN 37830, USA

trjones@ornl.gov

Abstract— Achieving good scaling for fine-grained communi-
cation intensive applications on modern supercomputers remains
challenging. In our previous work, we have shown that such an
application — NAMD — scales well on the full Jaguar XT5
without long-range interactions; Yet, with them, the speedup
falters beyond 64K cores. Although the new Gemini interconnect
on Cray XK6 has improved network performance, the challenges
remain, and are likely to remain for other such networks as
well. We analyze communication bottlenecks in NAMD and its
CHARM++ runtime, using the Projections performance analysis
tool. Based on the analysis, we optimize the runtime, built on
the uGNI library for Gemini. We present several techniques to
improve the fine-grained communication. Consequently, the per-
formance of running 92224-atom Apoa1 with GPUs on TitanDev
is improved by 36%. For 100-million-atom STMV, we improve
upon the prior Jaguar XT5 result of 26 ms/step to 13 ms/step
using 298,992 cores on Jaguar XK6.

I. INTRODUCTION

Biomolecular simulations are critical in understanding the
functioning of biological machinery: the proteins, cell mem-
branes, DNA molecules, etc. Atom-by-atom simulation of
such systems allows us to determine the relationship between
structure of proteins and their functions, understand various
biological processes, and facilitate rational drug design.

Molecular dynamics simulations for this domain are chal-
lenging for one main reason: the significant difference between
the timescales at which interesting biological phenomena
occurs, and the time-steps at which the simulation must be car-
ried out to maintain accuracy. The vibrational modes of many
covalent bonds involved require the time-step to be around one
femto-second. In contrast, hundreds of nanoseconds (and often
several microseconds) of simulation are necessary to observe
interesting behavior. A goal of 10ns per day requires finishing
each time step in 8.6ms, while a rate of hundred nanoseconds
per day requires a time step in 860µs.

The number of atoms involved in such simulations is
relatively small: most simulations involve between hundred
thousand to 10 million atoms, with a few interesting outliers
with around hundred million atoms. Correspondingly, the
computation involved in each time step is also relatively small:
a single time step of a 1 million atom simulation requires about
20 seconds on one core of a modern processor. This paper is
focused on challenges involved in scaling such simulations to
the point where it may take a few milliseconds per time step.

NAMD [18] is a molecular dynamics application that was
developed in the mid-1990’s. Unlike its contemporaries at
that time, NAMD was designed from scratch to be a parallel
program. Its basic parallel structure, based on the CHARM++
programming system [11], has withstood the test of time.
However, exploiting extreme strong scaling in the petascale
era requires addressing unprecedented challenges. NAMD,
running a 100 Million atom molecular system, was selected
by NSF as an acceptance test for the Sustained Petascale Blue
Waters platform. Cray’s Gemini architecture underlies both
the XK6 and XE6/XK7 platforms of Titan and Blue Waters,
which further motivated this work in that optimizations for
Titan will naturally extend to Blue Waters. In our earlier work,
we have shown how NAMD scales to 64K cores of BG/P, and
224k cores on Jaguar XT5. Table I presents the performance
of NAMD running a 100-million-atom system on Jaguar XT5
in 2011 [12]. It can be seen that the speedup starts to falter
beyond 64K cores. A 1-million-atom simulation could not be
scaled beyond 4K cores, where it achieved 8.66ms/step. This
paper addresses this poor scalability caused by the fine-grained
parallelization, and describes the techniques we developed to
attack the challenges so that the application can be scaled to
new heights.

Cores (100 million STMV) 1680 26880 53760 107520 224076
Timestep 1343.9 94.38 54.25 37.10 26.28

Cores (1 million STMV) 125 500 2000 4000 8000
Timestep 162.33 44.72 15.35 8.66 11.8

TABLE I
TWO BENCHMARK TIMESTEP(MS/STEP) ON JAGUAR XT5

Although the new Gemini network helps performance, the
fundamental challenge in the fine-grained parallelization still
remains and motivates new software techniques described in
this paper. NAMD, like most biomolecular simulation appli-
cations, uses particle-mesh-Ewald (PME) method to calculate
the long-range forces. As our analysis in the subsequent
section shows, this method becomes the primary performance
bottleneck for strong scaling. A series of techniques are
then presented to eliminate the bottleneck. With these, we
demonstrate that a small molecular system can run in only
a few hundred microseconds per step, and a 100-million-atom
system scales to almost 300,000 cores with an average of
13 ms/step.
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In the era when the HPC community moves towards ex-
ascale computing, we believe that the lessons learned from
this application shed light on other applications that target at
better scalability with fine-grained parallelization. Here is the
summary of our contributions:

• We present an SMP (multithreaded) execution mode
based on Gemini’s low-level interface (uGNI) for the
message-driven programming model, which enables vari-
ous low-level optimizations for fine-grained communica-
tion.

• We extend Projections, a performance analysis tool, with
new features specifically for uGNI to facilitate the detec-
tion of communication bottlenecks.

• Several optimization techniques are developed to improve
fine-grained communication, including supporting out-of-
band messages, assigning higher priority to messages on
the critical path, decomposing work in more efficient way
and speeding up intra-node computation.

• GPU implementation in NAMD is optimized, which helps
improve performance as much as 36% for very fine-
grained decomposition on TitanDev.

• We have achieved 13ms/step and 64% parallel efficiency
for the 100M-atom simulation on 298, 992 cores of Jaguar
XK6, compared with 26ms/step and 38% efficiency on
the full Jaguar XT5 machine.

In the rest of the paper, Section II describes the background
of the Cray XK6 system, the CHARM++ runtime system and
NAMD. Section III presents the performance analysis tool
used to identify performance bottlenecks in NAMD. Commu-
nication optimization techniques are presented in Section IV.
Strong scaling performance on GPUs and CPUs is reported
in Section V. Related work and conclusions are discussed in
Section VI. and Section VII.

II. BACKGROUND

In this section, we briefly describe the target Jaguar Cray
XK6 machine and Gemini interconnect. Next, we present the
CHARM++ programming model as well as the associated
runtime system, biomolecular simulation program NAMD and
its GPU design.

A. Titan - Cray XK6 with Gemini Interconnect

Our results stem from measurements taken on Oak Ridge
National Laboratory’s flagship computer - the Jaguar super-
computer. During calendar year 2012, the Jaguar supercom-
puter is undergoing a multi-phased upgrade that will result in a
much more capable machine with a mostly hybrid architecture
of central processing units as well as application accelerators
called graphics processing units (GPUs). So far the upgrade
has converted the Cray XT5 system – an all-CPU model with
an older, smaller core-count version of the AMD processor
– into a Cray XK6 system with Interlagos CPUs, twice the
memory of its predecessor, and a more capable network named
Gemini. After cabinets have been equipped with NVIDIA’s
newest Kepler GPUs by the end of 2012, the peak performance
will be at least 20 petaflops, and Jaguar’s name will be changed
to Titan. At the time of our experiments, ten of Jaguar’s

two-hundred cabinets were upgraded to the target CPU-GPU
hybrid to create a testbed system called TitanDev. Throughout
the rest of the paper, we will refer to the entire machine (nodes
with and without GPU accelerators) as Jaguar XK6, and the
subset of the machine with GPUs as TitanDev.

The whole system is connected using the Gemini Intercon-
nect. In comparison to the preceding SeaStar2+ interconnect,
Gemini improves latency from 5µs to 1µs and bandwidth
from 2GBytes/s to 8GBytes/s as well as provides better
hardware support for one-sided communication. One Gemini
ASIC serves two nodes by connecting each node to one
network interface controller (NIC) over a non-coherent Hyper-
Transport(TM) 3 interface. The NIC provides two hardware
components for network communication: the Fast Memory
Access (FMA) unit and the Block Transfer Engine (BTE) unit.
It is important for developers to properly utilize both of them
to achieve maximum communication performance.

User-level Generic Network Interface (uGNI) is a set of
APIs for developers to interact with Gemini hardware. It
defines a collection of functions to transfer data using the FMA
and BTE units. Besides FMA/BTE post transactions, GNI
Short Message (SMSG) is available for developers to transfer
small messages. Completion Queues (CQ) are provided as a
light-weight event notification mechanism to track the progress
of local and remote FMA/BTE transactions. The rich set of
functions provided by uGNI APIs makes it challenging to
implement a general high-performance runtime system since
many aspects need to be considered in the design process.

B. Charm++ Runtime System
CHARM++ is a parallel programming model which imple-

ments message-driven parallel objects. CHARM++’s portable
adaptive runtime system automatically maps these objects and
associated computation to processors evenly using the load
balancing and communication optimizations.

Although CHARM++ runs on top of any MPI commu-
nication library including Cray MPI, to achieve the best
performance, it is ported directly to the uGNI interface [19].
In this paper, we extended the work to support the SMP
(multi-threaded) execution mode [13], [12], which is tuned
for running on multicore-based parallel machines.

In SMP mode, there are multiple flows of control per pro-
cess, called “worker threads”, which are typically implemented
via pthreads. Worker threads share their parent process’s ad-
dress space, but contain their own event schedulers and appear
semantically as independent ranks with a persistent mapping
of objects. Each thread is typically mapped to one core and
persists for the life of the application. A communication thread
handles the network communication for all the worker threads
in the process, and dispatches messages to the event schedulers
of its worker threads. In non-SMP mode, in contrast, each
process embodies only one control flow, which handles both
event scheduling and network communication. Several benefits
of SMP mode result from the shared memory space, such as
reduced overall memory footprint, less memory bandwidth
consumption, faster application launch, and more efficient
intra-node communication [12]. Section IV-A will describe the
implementation of the SMP mode on uGNI interface.
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Fig. 1. Pencil PME communication of data

C. NAMD

The parallel structure of NAMD is based on a unique object-
based hybrid decomposition, parallelized using the CHARM++
programming model. Atomic data is decomposed into spatial
domains (called “patches”) based on the short-range interac-
tion cutoff distance such that in each dimension only atoms
in one-away or, when necessary to increase concurrency, one-
away and two-away neighboring domains will interact directly.
These equally-sized domains are distributed as evenly as pos-
sible across the machine and are responsible for accumulating
forces and integrating the equations of motion asynchronously
via per-domain user-level threads. Patches are represented on
other cores by proxies and all position and force data sent
between cores passes via these proxy patches.

The calculation of short-range interactions is orthogonally
decomposed into “compute objects” representing interactions
between atoms within a single domain, between pairs of
domains, or for groups of neighboring domains for terms
representing multi-body covalent bonds. Compute objects are
scheduled by local prioritized CHARM++ messages when
updated position data is received for all required patches.
Longer-running domains are further subdivided by partitioning
their outer interaction loops to achieve a grain-size that enables
both load balancing and interleaving of high-priority PME
or remote-atom work with lower-priority work that does not
require off-node communication.

1) NAMD Long-Range Interaction (PME): The long-range
interaction in NAMD is implemented via the Fast Fourier
Transform (FFT) based particle-mesh Ewald method (PME).
PME calculation, due to the data transposes required in three
dimensional Fourier transforms, is highly communication in-
tensive [22], and therefore very challenging to scale. While
NAMD supports both slab (one dimensional decomposition)
and pencil (two dimensional decomposition) PME, this paper
addresses only the pencil form due to its superior scaling
characteristics [6].

The communication required is illustrated in Figure 1,
which highlights the critical path of communication issues
constraining performance. Constructing the grid and extracting
the result from it is shown at left and the 3-D FFT forward
and backward at right. Pencil based distributed parallel imple-
mentations of 3-D FFT have communication requirements that
are well studied in the literature [6], so we present a minimal
summary of the critical issues for completeness. Furthermore,
the communication process from reciprocal space to real space
is the reverse of the real to reciprocal process, therefore only
the forward path will be considered in detail.

Given a PME grid of Nx×Ny×Nz points, it is decomposed
into pencils using nx, ny, nz points per dimension. Each of the

Molecule Atoms Cutoff(Ȧ) Simulation Box
DHFR 23558 9 62x62x62
Apoa1 92224 12 108x108x77
1M STMV 1066628 12 216x216x216
100M STMV 106662800 12 1084x1084x867

TABLE II
PARAMETERS FOR FOUR MOLECULAR SYSTEMS

Nx

nx
× Ny

ny
ZPencils will therefore have nx × ny × Nz points

and will construct Nz

nz
messages of size nx×ny×nz×4 bytes

to each intersecting YPencil. Each of the Nx

nx
× Nz

nz
YPencils

of nx × Ny × nz points will construct Ny

ny
messages of size

nx × ny × nz × 4 bytes to each intersecting XPencil. Points
per pencil, nx, ny, nz , are free parameters chosen at run time
to produce the desired quantity of pencils. NAMD uses one
dimensional FFTW3 [5] plans for the actual FFT operation at
each step, communication is handled by CHARM++ messaging
which may then be subjected to various optimizations as
described in later sections of this paper.

2) NAMD GPU Design: NAMD offloads only short-range
non-bonded calculations to the GPU as these are the most
expensive part of the calculation, are best suited to the GPU
architecture, and do not require additional communication
stages. Every non-bonded compute object assigned to a given
GPU is mapped to one or two GPU multiprocessor work
units (“blocks” in CUDA). Although GPUs support very
fine-grained parallel decomposition internally, the interface
presented to the controlling CPU requires data and work to be
aggregated for efficiency. When all required position data is
received on the CPU, it is then copied to the GPU and two sets
of work units are scheduled. The first set calculates forces for
remote atoms, which require off-node communication, and the
second set calculates only forces for local atoms. This allows
some overlap of communication and computation [17].

With the increasing power of GPUs and increasing core
counts of CPUs, the design of NAMD has shifted from
each CPU core having its own independent context to a
possibly shared GPU, to each GPU being managed by a single
CPU process. This new arrangement greatly increases the
amount of work available to the GPU to execute in parallel
while eliminating the copying of redundant atom coordinates
to the GPU. However, CHARM++ SMP execution mode is
now necessary to allow multiple CPU threads to share the
overhead of servicing the GPU, presenting a challenge to
parallel scaling as the network must be driven by a single
communication thread per GPU rather than multiple processes
per node. The increase in CHARM++ SMP communication
performance required by GPU-accelerated NAMD has driven
many optimizations described below.

3) Experimental Setup: In this paper, four different sized
molecular systems (see Table II) are used for performance
evaluation. All simulations are of biomolecules in explicit
solvent employing the CHARMM all-atom force field and
periodic boundary conditions. For all experimental results in
Section IV and V, PME is performed every 4 steps.

III. PERFORMANCE ANALYSIS

In order to optimize the fine-grained communication perfor-
mance in NAMD, it is necessary to understand the details of
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(a) 4 nodes with CPU only

(b) 4 nodes with GPUs

(c) 512 nodes with CPU only

(d) 512 nodes with GPUs

Fig. 2. Projection timeline views of NAMD simulating 1M STMV using 4
nodes and 512 nodes

application communication patterns message by message. In
particular, the critical path and communication bottleneck has
to be identified and analyzed. To realize this capability, in this
section, we describe a trace-based performance analysis tool,
called Projections [10], and extend it to support uGNI-based
CHARM++’s SMP mode. The extension allows us to monitor
uGNI low-level communication events and significantly facil-
itates optimization efforts on improving PME communication.

A. Trace-based Performance Analysis Tool

Projections is a comprehensive trace-based performance
analysis tool associated with CHARM++. It consists of an
automatic runtime instrumentation module that generates trace
files for an application execution, and a stand-alone Java GUI
program to visualize and analyze the performance data.

The runtime instrumentation module is embedded in the
CHARM++ runtime system. It automatically records the per-
formance metrics, including execution time of user functions
invoked by messages, and events such as sending and receiving
a message, idle time and etc. The stand-alone Java GUI
program offers many tools to visualize and analyze perfor-

mance , such as: displaying the timeline of events on a given
set of processors, illustrating CPU utilization, detecting load
imbalance, and finding performance outliers.

In order to trace the details of messaging behavior in the
uGNI layer, we extended the runtime instrumentation module
to trace uGNI events and completion events. In CHARM++
SMP mode, all inter-node communication is handled by the
communication threads. The worker threads push the messages
to the network queues, which are processed by the commu-
nication threads to deliver to the network. By instrumenting
SMSG, RDMA operations (GET and PUT), and their com-
pletion time, we can record the activities on communication
threads. For instance, to send a medium size message with a
rendezvous protocol, the sender sends a control message to the
receiver, and the receiver reserves registered memory and posts
a GET RDMA transaction. Adding instrumentation to every
stage of this protocol, we can easily understand the cause of
message delay in much more detail. For example, a prolonged
completion time for a GET transaction can suggest a delay in
network hardware due to network contention.

B. PME Communication Issues

Figure 2 is generated by the timeline tool in Projections. It
shows the execution details of running 1 million STMV sim-
ulation on TitanDev with 4 nodes and 512 nodes respectively.
Each sub-figure depicts the activities on 4 chosen processor
cores. Each timeline stands for the execution of a thread on
one core. Different colors represent different functions, while
the portion in white represents the idle time. The blocks in the
main timeline mean the activities on CPU, while the red bar on
top of the blocks represents the GPU execution, which overlaps
with the CPU execution. Meanwhile, the two numbers in the
bracket below the PE number indicate CPU utilization and the
percentage of the useful work excluding the runtime overhead.
In the figure, three phases in PME are separated by vertical
lines in one timestep: (1) Patch-to-Pencil communication; (2)
Forward/Backward FFT; (3) Pencil-to-Patch communication.

In Figure 2(a) on the 4 nodes without GPUs, the commu-
nication time of PME phases totally overlaps with the bonded
and non-bonded calculation. Therefore, almost 100% CPU
utilization is obtained. In the case of using GPU (Figure 2(b)),
the non-bonded calculation is moved to GPU, while bonded
and PME calculation is still performed on CPUs. As a result,
CPUs have less work and go idle while waiting for both GPU
work and PME communication to finish. The utilization is
around 70% for the first two cores and 50% for the other
two cores. Still, the overall GPU performance is 2.7 times
of that using only the CPUs. When scaling to 512 nodes
shown in Figure 2(c) and Figure 2(d), the CPU utilization
drops to 60% for CPUs only run and 40% for GPUs run. It
is clear to see that the PME phases become the bottleneck.
In the particular aspect of NAMD, this bottleneck is due to
the lack of overlap between the non-bonded and the long
range computation. Fundamentally this is caused by the ratio
of atoms/core decreasing with strong scaling. Although the
performance analysis in this section is carried out on small
number of cores run, similar analysis and conclusion also
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Fig. 3. Message tracing in Projections for NAMD simulation 1M STMV
using 512 GPU nodes on TitanDev

applies to large number of cores run, maintaining the the same
atoms/core ratio.

Knowing that PME is the bottleneck, to figure out where
messages are delayed in the network, we developed a new
feature in Projections to trace messages back to its sender
and repeat until it finds the first sender. Using this feature,
it is convenient to locate the occurrence of long message
delay along the path. An example is shown in Figure 3. The
message tracing of a PME message reveals a 2.1ms latency
for a kilobyte message, while the timestep is only 7ms. In
a quiet network, the latency of such messages usually is
only a few microseconds. Several factors may lead to such
unexpected message delay. It could be due to the runtime
system, where the communication thread is a bottleneck in
processing messages, or it could be due to network contention
or bandwidth limit. This motivates our work to optimize PME
communication, which is discussed in the next section.

IV. OPTIMIZING COMMUNICATION

As described previously, the fine-grained communication in
PME imposes a bottleneck to the strong scaling performance.
In this section, we present several techniques to improve
the communication by optimizing both application and the
underlying runtime system.

A. Communication Progress Engine in SMP Mode

 
PumpNetwork‐
Smsg() 

PumpLocalRdma‐
Transactions() 

SendBuffered‐
SmallMsg() 

PostBufferedRdma‐
Transactation() 

 

Worker thread 

Put small data msg or Control Data msg in queues 

 

 

Small  

Messages 

Queue 

 

 

Fma 

Rdma 

Trans‐
actions 

Queue 

Fig. 4. Design of uGNI-based SMP communication engine

In [19], we have demonstrated the advantage of the uGNI-
based CHARM++ runtime over the MPI-based one. In this
paper, we will continue focusing on the uGNI-based imple-
mentation, but extend it to support SMP execution mode. In
this mode, one communication thread calls the progress engine
to serve several worker threads, performing the tasks of both
sending and receiving messages via uGNI interface. The tasks
of a communication thread in the Gemini machine layer are
illustrated in Figure 4. When a worker thread sends a message,
depending on the size of the message, it is enqueued in the
small message queue or the FMA/RDMA transactions queue

as shown in the figure. The communication progress engine
repeatedly performs the following four tasks in order:
PumpNetworkSmsg(): check incoming small messages from
SMSG mailbox.
PumpLocalRdmaTransactions(): check the local
FMA/RDMA completion queue (CQ) for the completion of
GET/PUT transactions.
SendBufferedSmsg(): send buffered SMSG (small) messages.
PostBufferedRdmaTransaction(): post buffered GET/PUT
RDMA transactions.

During bursty communication, the communication server
can easily become a bottleneck when it is busy performing
the above tasks sequentially. For example, a small message
which arrived at the Gemini NIC can only be polled and
delivered to the worker thread when the communication server
calls PumpNetworkSmsg. The message can be stuck if the
communication thread is busy performing other tasks. When
a message is in a critical path, the unresponsiveness of the
communication thread can greatly delay the message, and
negatively impact the overall performance.

This subsection describes a few techniques to speedup the
communication progress engine’s turnaround time in process-
ing its tasks.
Reducing small messages A large amount of small message
traffic is due to the small ACK messages. For example, when a
GET RDMA transaction finishes on a processor, a small ACK
message is sent to the source processor to tell it to free the
send message buffer. To eliminate the small ACK messages
and reduce the burden of the communication server, we use a
technique in uGNI that exploits the remote events generated
on the remote processor (i.e. the source processor for GET
and the destination processor for PUT operation). The remote
event data can be set by the processor issuing the FMA/RDMA
transaction. When the transaction is completed, the remote
event data is obtained by the remote processor polling the
completion queue (GNI CqGetEvent). However, the remote
events carry only 32 bit of data, which in our scenario is not
enough to store a 64-bit memory address. This can be solved
by storing the actual address of the message buffer in a table,
and using its table index as the remote event data. In our
experiments up to 298,992 cores, this scheme works well.
Removing scaling bottleneck Using our uGNI instrumen-
tation and statistics collection of the progress engine, we
found that function SendBufferedSmallMsg() takes a signifi-
cant amount of time, which is much longer than the other 3
progress engine calls. In SendBufferedSmallMsg(), the commu-
nication server processes all buffered small messages. These
messages are sorted in queues according to the destination. As
the number of nodes increases, looping over all the queues can
be expensive. By using the statistics counters in our tracing
framework, we observed that the cost of communication server
calling SendBufferedSmallMsg function increases linearly with
the number of nodes. To overcome this scaling problem,
instead of looping over all the queues, we maintain a linked
list which contains only the non-empty queues. Although
locks are needed when modifying the link list, the optimized
SendBufferedSmallMsg() no longer has to loop over all cores.
Moreover, the number of threads contending the lock does not
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changes with the number of nodes. Therefore, it has no scaling
issues.
Increasing responsiveness As shown in Figure 4, the
communication thread alternates among four different tasks.
If a communication thread spends extra long time on any
one of the tasks, other tasks are delayed, which may result
in prolonged message latency, especially for messages on
critical paths. To prevent this, we put a limit on the number
of messages each task can process, so that each tasks take
no more than certain amount of time. This simple method
improves the responsiveness of the communication thread.
Later in section IV-B , we will show how this change combined
with other techniques reduces the latency of the message on
the critical path.

B. Priority Messages on Critical Path

In molecular dynamics simulation, typical computation in-
cludes bonded/non-bonded calculation, long-range force cal-
culation by PME and integration of updating velocity and
position. From the perspective of communication, the non-
bonded and bonded calculation requires data from the home
patches and a few neighbor processors while PME calculation
is a three-dimensional FFT calculation. These different types
of computation and communication pattern are driven by
different types of messages in CHARM++. Some of these
messages play a significant role in performance, while others
do not. For example, if the message latency can be overlapped
by computation, it does not affect the overall performance. In
Section III, we see that the communication in NAMD PME
phases is the performance bottleneck for strong scalability.
When a time step starts, both cutoff messages and PME
messages are sent to the network at the same time. This burst
of messages incurs significant overhead on the communication
thread and causes network contention. Therefore, it is highly
desirable to associate PME messages with higher priority
than non-bonded compute messages. In the optimized scheme,
on the sender side, high priority messages are sent as soon
as their data is ready. The communication server delivers
these messages to the network even when there are other
low priority messages waiting in the send buffer queue. The
implementation of supporting such high priority messages on
the sender side is the out-of-band sending. On the receiver
side, the high priority messages are handled as soon as
possible, even when there are other low priority messages in
the scheduler queue. It is implemented by prioritized execution
and expedited messages.

Out-of-band sending: High priority messages should be
handled with much less turn-around time in messages queues.
To realize it, besides the two queues for regular messages in
Figure 4, two more special queues are added for the high
priority messages. The corresponding sending functions are
implemented and called by the communication thread more
often than the four regular functions. For GET-based large
message transfer, the control message is assigned with a
special uGNI tag so that the receiver issues the FMA/RDMA
transaction immediately instead of buffering it. Moreover, the
transaction for this high priority message is associated with

(a) Without optimization

(b) With optimization

Fig. 5. The message tracing of patch-to-PME in Projections timeline for
DHFR running on 1024 cores

a specialized Completion Queue (CQ), which is polled more
often to ensure responsiveness.

Prioritized execution: CHARM++ messages can attach two
kinds of priorities: integer priorities and bit vector priorities.
In both cases, numerically lower priorities will be dequeued
and processed before numerically greater priorities. When
CHARM++ messages are delivered to the receiver core, typ-
ically they are first deposited in a low level FIFO network
queue, and after they are processed, moved to a priority-based
message queue for execution.

In NAMD, the above two techniques are applied to PME
messages. To see the effect of the above optimizations (in-
cluding the optimizations described in Section IV-A), we
ran NAMD with the DHFR system on 1024 cores. Before
optimization, as the Projections timeline view in Figure 5(a)
shows, it takes 470us for a 3020-bytes patch-to-PME message
to send from core 576 on node 82 to core 511 on node 73.
Out of the total of 470us, 100us is spent on sending the
small control message to the communication thread on the
destination node 73 after calling PumpNetworkSmsg(). After
the control message is processed on node 73, a GET RDMA
request is enqueued. When the communication thread calls
PostBufferedRdmaTRansaction(), it posts the RDMA GET
transaction. It takes another 178us for the GET transaction to
finish and communication server calls PumpLocalRdmaTrans-
actions() to check the event. As seen in the figure, calling
PostBufferedRdmaTRansaction() is delayed because it has to
wait until the ongoing task PumpLocalRdmaTransaction()
(shown in the pink color) is finished, which takes 119us. Also,
delivery and processing this PME message can be delayed due
to other non-PME messages ahead in the queue. After applying
the optimizations described previously, including putting a
limit on amount of work each task can do at a time, and out-
of-band messages support, the time is reduced from 470us to
240us as shown in Figure 5(b).

Persistent communication for FFT: In NAMD, PME
messages are typically a few kilobytes. Sending these medium
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sized messages involves a small control message transfer and
an FMA/RMDA GET transaction. This message passing does
not match naturally to the one-sided communication uGNI
provides, since the memory address on the remote processor
is unknown at the time of sending a message.

For communication with fixed patterns, such as the PME
communication, the communication can be expressed in the
persistent communication API in CHARM++, using the per-
sistent messages implemented on uGNI [19]. With persistent
messages, a persistent channel between the sender and receiver
is setup once at the beginning, so that the sender knows
the memory address and handler of the receive buffer. When
sending a persistent message, a PUT transaction is issued
directly using the information in the persistent handler. Besides
saving the time of sending the small control message, there is
another benefit of using persistent messages for PME. Since
PME objects do not migrate among processors, and the PME
communication repeats in each PME step, this PME persistent
channel can be used repeatedly to avoid memory allocation
and registration. Similarly, the remote events idea discussed in
section IV-A is also applied here to avoid the ACK message
which was needed to notify the remote side the completion of
a PUT transaction.

Using persistent messages for PME in NAMD, we observed
about 10% overall performance improvement running the
100M STMV atom system on the full Jaguar XK6 machine.

C. PME Decomposition

The problem size of 3D FFT used for long-range force
calculation in NAMD is fixed in strong scaling. Therefore,
performance can be greatly influenced by how the FFT is
decomposed. To better understand the effect of the PME
decomposition, we describe the total time cost of one phase
of the 3D FFT in Eq. 1.

T = Tcomm + Tcomp =
D

4 ∗B ∗ α +
NlogN

P
(1)

Here N is the FFT size in one dimension, P is the
total number of cores, and D is the total amount of FFT
data. Half of the data needs to be moved to the other half
processors. Data movement in one direction is therefore D

4 .
B is the bisection bandwidth, and α is the sustained ratio
for particular message sizes, which is always less than 1. In a
quiet network, with the message size increasing, α approaches
1. Therefore, large messages, corresponding to bigger PME
pencils, utilize network bandwidth more efficiently. However,
having bigger PME pencils means fewer PME pencils so that
fewer cores can be used for computation (less parallelism),
which increases the time in the second portion of the equation,
leading to worse performance. Another potential problem
with fewer but larger PME pencils is that it may lead to less
overlapping of computation and communication. Therefore,
finding a tradeoff number of PME pencils is critical to the
overall PME performance.

It is inefficient to have multiple PME objects per core due
to per object communication overhead. It is desirable though
to have at least one PME object on each physical node to
maximize network capacity. This gives two extreme cases

Number of Nodes 4K 8K 16K
multiple PME each node 49 27.5 16.9
one PME each physical node 47 26.3 16.2
one PME each Charm node 45 25.1 15.7

TABLE III
100M-ATOM SIMULATION BENCHMARK TIME (MS/STEP) USING

DIFFERENT NUMBER OF PME OBJECTS

of decomposing FFT computation: (1) one PME object per
core, or (2) one PME object per physical node. Assigning
one PME object to each core maximizes parallelism, allowing
better overlap of computation and communication. However,
this finer-grained decomposition may result in too many small
messages, which makes it challenging to fully utilize the
network bandwidth.

The other extreme case places one PME object on each
physical node to better utilize the network bandwidth. This
comes at the cost of reduced parallelism within each node,
furthermore each PME object has to wait for more data to
arrive before it can start computation, which may lead to idle
time.

The tradeoff in between is that each SMP process has one
PME object. On Cray XK6, experiments show that 2 processes
(with multiple worker threads each) for one node gives best
performance, while on Cray XE6, it is 4 processes on each
node (XE6 has 32 cores/node). This approach tries to combine
the benefits of overlapping computation and communication
and reducing communication overhead. Table III shows how
the performance is affected by different decompositions. It can
be seen that the middle case of having one PME on each
CHARM++ SMP node gives best performance. This is the
configuration that we used for experiments in Section V.

One potential problem with this configuration is that only
one of the worker threads in an SMP process owns the PME
object and performs the expensive PME calculation, leading
to load imbalance inside a node. Next we describe a scheme
to parallelize the PME work among worker threads.

Exploiting Intra-node Parallelism: To parallelize the PME
calculations, one option is to use OpenMP to parallelize the for
loops in PME. However, currently it is not straightforward to
use OpenMP directly in CHARM++. This is because OpenMP
and CHARM++ manage threads on their own. The scheduling
of OpenMP threads and CHARM++ worker threads is not
coordinated, which may result in degraded performance. In ad-
dition, CHARM++ is an asynchronous message driven runtime,
each worker thread schedules messages independently, while
OpenMP assumes all threads are available when parallelizing
a loop. Therefore, applying the same idea of OpenMP, we
implemented a micro runtime utilizing the CHARM++ worker
threads to parallelize the loops, with a dynamic scheduling
scheme that considers the load of other worker threads.

In this scheduling scheme, when a loop is partitioned into
small pieces of tasks, only the idle CHARM++ worker threads
will execute these tasks. When a loop is parallelized, we create
a loop descriptor to represent the loop parallel task. Inside this
descriptor, in addition to basic information about the loop such
as the range of loop iterations etc., we store the number of
chunks that the loop is divided into and an “index” indicating
the chunk that is currently being executed. After this loop
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descriptor is broadcast to every PE on the same SMP node,
the idle thread will retrieve the atomically incremented “index”
value, and start executing the chunk of loop indicated by the
“index”. The idle threads continue doing this until there is no
remaining chunks for execution. The thread that originates this
parallel loop task will also participate this process, and do a
busy-waiting at the end until all tasks are finished.

System #Nodes no Exploit Exploit Speedup(%)
DHFR 128 1.76 1.56 12.82
Apoa1 128 2.32 2.16 7.41

1M-STMV 1024 4.69 4.47 4.92

TABLE IV
PERFORMANCE (MS/STEP) OF EXPLOITING INTRA-NODE PARALLELISM

(PME EVERY TIMESTEP) IN NAMD

Applying the intra-node parallelism into NAMD PME, we
have obtained observable performance improvement, shown
in table IV, when PME is on the performance scaling critical
path. Since we have chosen to place at most one PME object
per CHARM++ node, the total PME computation will be fixed
on each node beyond a certain scale. This implies there is a
theoretical upper limit in the reduction of PME computation
time we can achieve per node. The fine-grained communica-
tion in PME will then begin to dominate the overall PME
performance, which re-emphasizes the importance of commu-
nication optimization techniques described in section IV.

D. GPU Optimization

In order to allow pipelining of results from the GPU to
the CPU at finer granularity than supported by the CUDA
runtime facilities we have modified the NAMD GPU kernel
to stream force data back to the GPU at the level of individual
spatial domains. This is accomplished by combining system-
level memory fence operations on the GPU to ensure that force
data written to CPU memory is fully visible, with periodic
CPU polling of an output queue. Receiving forces from the
GPU incrementally allows the CPU cores to begin sending
results and even integrating the equations of motion while the
GPU is still calculating forces. One outstanding issue with
this approach is how to order work on the GPU to have some
results complete earlier while not extending total GPU runtime
and delaying the final results. Table V presents the results
of running Apoa1 with PME every 4 steps on GPUs with
and without the pipelining optimization. On 32 nodes, we saw
the biggest gain of 23%. However, the improvement becomes
less when scaling to 64 nodes and 128 nodes, where PME
communication starts to dominate performance. Therefore, all
the communication optimizations discussed above also help
GPUs performance. The results will be reported in section V.

Number of nodes 16 32 64 128
Initial SMP GPU 3.55 2.86 1.86 2.45
Pipelining SMP GPU 3.45 2.32 1.72 2.30

TABLE V
APOA1 GPU BENCHMARK TIMESTEP (MS/STEP) W/ AND W/O PIPELINING

V. PERFORMANCE RESULTS

In this section, we present the results of NAMD running
different sizes of molecular simulation with PME every 4 steps

using both GPUs and CPUs on TitanDev, and CPUs only on
the Jaguar XK6 machine. Performance using GPU is analyzed
and compared. We also compare the NAMD performance
on new Jaguar XK6 with the old Jaguar XT5 for a 100M-
atom benchmark up to the whole machines. The effect of
optimizations presented above is demonstrated by comparing
the uGNI-based NAMD results with the initial performance.

A. NAMD GPU Performance
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Fig. 6. NAMD Apoa1 GPU performance on 64 XK6 nodes (TitanDev) for
varying numbers of processes (p) per node and worker threads(t) per process.

We first compare the performance of the initial version
of NAMD running Apoa1 with the optimized version using
different number of threads on one node. Figure 6 shows the
time step (in milliseconds) of NAMD running on 64 GPU
nodes with different configurations of CHARM++ processes
and work threads. We can see that the performance varies as
much as 2 times using different configurations. Using more
cores does not necessarily provide better performance; the
worst performance occurs when using 12 work threads. This is
mainly due to the communication thread becoming bottleneck
in serving 12 work threads. In the other aspects, optimized
version outperforms the baseline ones by as much as 54%,
which is the case with 12 threads in one process. Among all
configurations, the best performance is 2.08ms/step in the
baseline version, while 1.43ms/step in the optimized version.

The benchmark time of running Apoa1 simulation on differ-
ent number of GPU nodes using different versions of NAMD
is presented in Table VI. All results are obtained with NAMD
on uGNI-based CHARM++. The first two rows are the results
of running non-SMP and SMP versions of NAMD. SMP-built
GPU version performs better than non-SMP NAMD with a
speedup as much as 1.34 on 16 nodes. This is mainly due
to the benefit of avoiding memory copy in the SMP-built
NAMD. Due to the limitation of CUDA library on TitanDev,
only one process can communicate with GPU, all data on
the physical node have to be moved to that host process. In
non-SMP mode, each core runs a NAMD process (vs. pthread
in SMP version), data must be copied from guest processes
to the host process via inter-process communication which is
slow. In SMP mode, all NAMD threads share the same address
space in the parent process so that the data copying is avoided.
However, with the number of nodes increasing, the amount of
data on each node decreases. This limits the benefits of using
GPUs, and the CPU work starts to dominate the execution
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time. Therefore, the advantage of using SMP mode reduces
as the number of nodes increases. The last second row in
Table VI presents the results after applying the optimization
techniques described in Section IV. Comparing with the initial
performance, the performance is improved by as much as 36%.
The last row lists the results of running Apoa1 system without
GPU. Similar timestep performance is achieved on 256 CPU
nodes comparing with 64 GPU nodes. In the CPU only case,
NAMD scales up to 512 nodes, while in the GPU case, NAMD
does not scale on more than 128 GPU nodes. The missing
data points in the Table VI could not be obtained for that
configuration of Apoa1, which has only 144 patches, because
the GPU version of the code only functions when there is at
least one patch per GPU.

Number of nodes 16 32 64 128 256 512
Non-SMP GPU 4.67 3.05 2.25 2.5 - -
Initial SMP GPU 3.55 2.86 1.86 2.45 - -
Optimized SMP GPU 3.45 2.10 1.44 1.92 - -
Optimized SMP CPU 9.16 4.85 2.82 1.75 1.36 1.13

TABLE VI
APOA1 XK6 BENCHMARK TIMESTEP (MS/STEP)

Table VII compares the NAMD GPU benchmark times
running the 100M-atom system before and after the opti-
mizations. In both cases, the performance scales well up to
512 nodes when the GPU computation still overlaps the PME
communication. However, the scaling drops after 512 nodes.
Using our runtime network counters, we found that some
messages take much longer time than the usual case, possibly
due to network contention. Indeed, the GPU allocation on
TitanDev has the dimensions of 2 by 16 by 24, resulting in
small bisection bandwidth. Even though with this limitation,
the techniques presented in this paper improve the GPU
performance by 25%. In the rest of this section, we will mainly
focus on the results on CPU allocation, which is much bigger
and has better bisection bandwidth.

Number of nodes 128 256 512 768 950
Initial GPU 427.7 236.5 132.5 98.1 85.9
Optimized GPU 355 189 117.7 77.5 70.8

TABLE VII
100M-ATOM SIMULATION XK6 PERFORMANCE (MS/STEP)

B. Scaling Results on Jaguar XK6 vs. XT5

In this section, we present NAMD performance using three
different sized atom system benchmarks (increasing order) on
the XK6, and compare some of the results with the Jaguar XT5
reported in [12]. The Jaguar XT5 system had 224,256 cores
(two 2.6GHz hex-core AMD Opteron per node) and a 3D-torus
SeaStar2+ interconnect. As mentioned before, Jaguar XK6 has
298,992 cores (one 2.1GHz sixteen-core AMD Interlagos per
node) with Gemini interconnect. It also has 960 GPU nodes.
Single core performance of Jaguar XK6 is slower than Jaguar
XT5. However, the interconnect of XK6 has lower network
latency and higher bandwidth.

Figure 7 shows the results of running DHFR (Section II-C3)
with three versions of NAMD - MPI-based, uGNI baseline
and uGNI optimized versions. On a smaller number of cores,
the performance is similar. As the number of cores increases,
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Fig. 7. NAMD DHFR CPU performance on TitanDev

the uGNI version starts to outperform the MPI-based NAMD.
Even the baseline version has the improvement by 18%
over the MPI-based version. Furthermore, the optimization
techniques for fine-grained communication improve the bench-
mark time farther to 0.65ms on 2048 cores, which is 54%
improvement comparing with the MPI-based NAMD.

The performance of running 1M STMV system on Jaguar
XK6 is shown in Figure 8(a), compared with the results
on Jaguar XT5 [12]. It can be seen that on XT5, NAMD
stops scaling beyond 4096 cores, while NAMD on XK6
keeps scaling to 16, 384 cores. Meanwhile, the performance
is improved from 8.6ms per step to 2.5ms/step, which is
significant. The improvement from MPI-based NAMD on XT5
to MPI-based NAMD on XK6 is largely due to the upgrading
to Gemini interconnect. The optimizations on the fine-grained
communication in the uGNI-based CHARM++ also play a
significant role.

In Figure 8(b), we present the results of NAMD running the
100M-atom system on Jaguar XK6, and compared to Jaguar
XT5. We first compared the performance of the MPI-based
NAMD on XK6 and XT5. On smaller number of nodes, Jaguar
XT5 has better performance. This is because XT5 has faster
cores and program execution time is largely dominated by
the computation time. When the number of cores increases to
beyond 65K cores, XK6 starts to outperform XT5 by as much
as 39% for same number of cores. Compared at full machine
scale, MPI benchmark time on XK6 is 18.9ms/step, which is
significantly better than the 26ms/step on XT5.

When using the native uGNI machine layer of CHARM++
for XK6 system, NAMD outperforms the MPI-based version
for all the experiments we carried out. The best performance
when running the 100M-atom system on the full Jaguar XK6
machine (298, 992 cores) with the uGNI-based NAMD is
13ms/step, which is a 32% improvement from the MPI-
based version. Compared to the 26ms/step best performance
on Jaguar XT5, this is a significant improvement of 100%.
In summary, the performance improvement of Jaguar XK6
v.s. XT5 is largely due to the hardware upgrade and the
optimization techniques presented in this paper.

The performance of 100M atoms running on GPU is also
illustrated in Figure 8(b). Good speedup is observed up to
the full GPU allocation currently installed on the TitanDev
machine. Compared with the CPU results on same number
of nodes, using GPU boosts the performance by about 3.2
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Fig. 8. Timestep (ms/step) of NAMD simulating 1M and 100M STMV on
Jaguar XT5 and XK6

times. Because GPU allocation is of size 2 by 16 by 24, the
bisection bandwidth is constrained by the narrow shape, which
decreases the NAMD performance with GPUs.

VI. RELATED WORK

Similar highly scalable MD codes, such as Blue Matter [3],
Desmond [1], Amber [7] and GROMACS [9] have not yet
demonstrated strong scaling results for molecule systems
larger than 1x107 on over 200, 000 cores as in this paper,
though the latter two have reported good GPGPU results on
smaller systems on smaller machines. Impressive work has
recently been done [22] optimizing FFT performance in a
similar context on Anton, however unlike that work ours is
focused on commodity hardware.

MPI is the dominant paradigm for distributed parallel
programming and provides an excellent foundation for opti-
mization efforts. Compiler based approaches, such as OMPI
[16], similarly Friedley and Lumsdaine describe a compiler
approach, producing a 40% improvement, by exploiting one-
sided communication via transformation of MPI calls [4].
Similar work exploits one-sided communication within the
Partitioned Global Address Space (PGAS) languages like
Chapel [2], UPC [20], Global Arrays [14], and Co-Array
FORTRAN [15] with some preliminary Gemini work using
the DMAPP API[21].

Unlike compiler approaches, our strategy is based on dy-
namic runtime system optimizations, most of which (excluding
the persistent message scheme) require no changes to appli-
cation source code. The CHARM++ approach differs from

the above PGAS languages in its migratable object-based
virtualization strategy, which is leveraged for adaptive load
balancing, critical path, and fault tolerance optimizations.

OpenMP/MPI is the dominant paradigm for hybrid pro-
gramming and has been applied to MD codes, such as AMBER
and GROMACS. However, loop based parallelization in the
OpenMP model is fundamentally an SPMD bulk synchronous
approach, in that it is rarely effective to have more than
one type of task executing at the same time. In contrast,
the CHARM++ loop parallelization approach is designed to
interleave seamlessly with other computations.

VII. CONCLUSION AND FUTURE WORK

This paper focused on how to tune NAMD, a fine-grained
communication intensive molecular dynamics simulation ap-
plication, on Cray XK6 supercomputers. In particular, the
paper addressed the scaling challenges in PME communication
of NAMD. Our approach to optimizing NAMD on Cray XK6
explored multiple facets of this platform. We illustrated that
significant performance gains can be achieved by utilizing
the uGNI API to access multiple aspects of the Gemini
interconnect. A performance analysis and visualization tool
was extended to help identify the fine-grained communication
bottleneck. Significant scaling improvements were demon-
strated for the PME phase using several techniques. A new im-
plementation of loop-level intra-node parallelism was applied
to the PME phase, and was shown to improve performance
when it is bounded by parallelizable communication overhead.
We also demonstrated the streaming optimization technique for
GPUs.

On the small portion of GPU allocation that is currently
available on TitanDev, the performance of NAMD running
Apoa1 benchmark is improved by 36% after applying the
optimization techniques. On the full Jaguar XK6 machine
(CPU-only partition), we were able to achieve 13 ms/step with
parallel efficiency of 64%. It is twice as fast as the best
performance of 26 ms/step we achieved on full Jaguar Cray
XT5.

Future work will consider network topology-aware layout of
PME tasks, as our work in that area had inconclusive results
at the time of writing due to several challenges found on Cray
XK6, including the fact that the job scheduler does not allocate
contiguous nodes. Furthermore, the performance challenges
of PME are theoretically circumventable via the adoption of
alternative algorithms, such as multi-level summation [8].
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