
Dynamic Scheduling for Work
Agglomeration on Heterogeneous

Clusters

Jonathan Lifflander, G. Carl Evans, Anshu Arya, Laxmikant Kale

University of Illinois Urbana-Champaign

May 25, 2012

I Work is overdecomposed into medium-sized grains
I Fine-grain task parallelism
I Sized well for the CPU

I Overlap of communication and computation
I GPUs rely on massive data-parallelism

I Fine grains decrease performance
I Each kernel instantiation has substantial overhead

I To reduce overhead
I Combine fine-grain work units for the GPU
I Delay may be insignificant if the work is low priority

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 2/26

Terminology

I Agglomeration—composition of distinct work units
I Static agglomeration—fixed number of work units are agglomerated
I Dynamic agglomeration—number of work units agglomerated varies

at runtime

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 3/26

Scheduler

CPUs

Accelerators

Accelerator FIFO

Work Unit Pool

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 4/26

Implementation

I Charm++
I Work is decomposed into objects

I With affinity to data
I Represents multiple tasks
I Each task is a method of an object
I Remote invocation occurs when a message arrives (the data is the

parameters)
I Each object lives on a processor
I Each processor has many objects on it
I Sets of objects that perform the same type of work are organized into

arrays

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 5/26

Charm++ Scheduling

I Each processor has a scheduler
I Arrival messages are put in a queue
I They are prioritized based on priority set by the sender
I Execution is in that order based on the current queue state

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 6/26

A[1]

A[0]

A[2]

B[3]

B[0]

C[1,0]

C[1,2]

C[0,0]

C[0,2]

C[1,4]

Processor 1 Processor 2

B[3]C[0,0]

C[1,4]

Processor 3 Processor 4

A[1]A[2]

C[0,2]

C[1,0]
C[1,2]

A[0]

B[0]

Location ManagerSchedulerLocation ManagerScheduler

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 7/26

Agglomeration API

Accelerator FIFO

scheduleWork()

Work Unit
Agglomeration

agglomerateWork()

Accelerator

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 8/26

Programmer/Runtime Division

I Programmer
I Writes GPU kernel for agglomeration
I Creates an offset array

I Each task’s input might be a different size
I Store the offset of each task’s beginning and ending index in the

contiguous data arrays

I System
I Decide what work to execute and when

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 9/26

Input A

Input B

Output

Non-Agglomerated Data

Agglomerated Data

Input A'

Input B'

Output'

Offset A

Offset B

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 10/26

Low-priority
agglomeration

message

Higher priority
GPU messages

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 11/26

Dynamic Agglomeration

I Uses the following heuristic
I If the “accelerator FIFO” reaches a size limit, work is agglomerated

I Typically set based on memory limitations
I Else enqueue a low priority message that causes agglomeration

I When higher-priority work is being generated, it goes into the FIFO
I When it lets up, work is agglomerated
I Since low priority work is assumed, not agglomerating aggressively

should not reduce performance

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 12/26

Experimental Setup

I NCSA AC Cluster
I Two dual-core 2.4 GHz AMD Opterons

I 8 GB of memory
I NVIDIA Tesla S1070 with four GPUs

I Each with 4 GB of memory
I CUDA

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 13/26

Application: Molecular2D

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 14/26

Molecular2D

I Work is decomposed into:
I Cells: 2D array of objects

I Spatially decomposed
I Each holds a set of particles
I They interact with the neighboring cells
I The cell holds the current particle position and updates these based on

calculated forces
I Interactions: 4D array of objects

I Each interacts two particle sets
I Bulk of the work

I Using the GPU
I Cells on CPU
I Interactions on GPU
I When an interaction receives the two particles sets, it calls

scheduleWork

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 15/26

Molecular 2D Interaction Kernel

__global__ void interact(...) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

// For loop added for agglomeration
for(int j = start[i]; j < end[i]; j++)

// interaction work
}

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 16/26

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of Particles

0

20

40

60

80

100

120

140
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

CPU only
GPU without agglomeration
GPU with agglomeration

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 17/26

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of Particles

1

1.03

1.06

1.09

1.12

1.15

1.18

Sp
ee

du
p

of
 A

gg
lo

m
er

at
io

n

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 18/26

500 1000 1500 2000 2500
Number of Particles per Work Unit

85

90

95

100

105

110

115

120
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

GPU without agglomeration
GPU with agglomeration

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 19/26

0 5 10 15 20 25 30
Static Agglomeration Packet Size

3.8

4

4.2

4.4

4.6

4.8

5

5.2
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

Dynamic Scheduled Agglomeration
Static Agglomeration

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 20/26

Application: LU Factorization without pivoting

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 21/26

A1,1

A2,1

A1,2

A2,2

@
@
@
@

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 22/26

LU Factorization

I CPU
I Diagonal factorization
I Triangular solves

I GPU
I Matrix-matrix multiples (DGEMMs)

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 23/26

4096 6144 8192 10240
Matrix Size (X by X)

0

10

20

30

40
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

CPU
GPU without agglomeration
GPU with agglomeration

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 24/26

0 20 40 60 80 100 120
Static Packet Size

36

38

40

42

44

46

48

50
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

Dynamic Agglomeration
Static Agglomeration

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 25/26

Conclusion

I For both benchmarks, agglomerating work increases performance
I Agglomeration does not need to be application-specific
I Statically selecting work units to agglomerate is difficult and may

reduce performance
I Runtimes can agglomerate automatically

I An agglomerating kernel still must written
I Obtains better performance than static

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters ‖ Jonathan Lifflander (UIUC) ‖ 26/26

