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I Work is overdecomposed into medium-sized grains
I Fine-grain task parallelism
I Sized well for the CPU

I Overlap of communication and computation
I GPUs rely on massive data-parallelism

I Fine grains decrease performance
I Each kernel instantiation has substantial overhead

I To reduce overhead
I Combine fine-grain work units for the GPU
I Delay may be insignificant if the work is low priority
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Terminology

I Agglomeration—composition of distinct work units
I Static agglomeration—fixed number of work units are agglomerated
I Dynamic agglomeration—number of work units agglomerated varies

at runtime
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Implementation

I Charm++
I Work is decomposed into objects

I With affinity to data
I Represents multiple tasks
I Each task is a method of an object
I Remote invocation occurs when a message arrives (the data is the

parameters)
I Each object lives on a processor
I Each processor has many objects on it
I Sets of objects that perform the same type of work are organized into

arrays
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Charm++ Scheduling

I Each processor has a scheduler
I Arrival messages are put in a queue
I They are prioritized based on priority set by the sender
I Execution is in that order based on the current queue state
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Agglomeration API

Accelerator FIFO

scheduleWork(    )

Work Unit
Agglomeration

agglomerateWork()

Accelerator
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Programmer/Runtime Division

I Programmer
I Writes GPU kernel for agglomeration
I Creates an offset array

I Each task’s input might be a different size
I Store the offset of each task’s beginning and ending index in the

contiguous data arrays

I System
I Decide what work to execute and when
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Dynamic Agglomeration

I Uses the following heuristic
I If the “accelerator FIFO” reaches a size limit, work is agglomerated

I Typically set based on memory limitations
I Else enqueue a low priority message that causes agglomeration

I When higher-priority work is being generated, it goes into the FIFO
I When it lets up, work is agglomerated
I Since low priority work is assumed, not agglomerating aggressively

should not reduce performance
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Experimental Setup

I NCSA AC Cluster
I Two dual-core 2.4 GHz AMD Opterons

I 8 GB of memory
I NVIDIA Tesla S1070 with four GPUs

I Each with 4 GB of memory
I CUDA
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Application: Molecular2D
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Molecular2D

I Work is decomposed into:
I Cells: 2D array of objects

I Spatially decomposed
I Each holds a set of particles
I They interact with the neighboring cells
I The cell holds the current particle position and updates these based on

calculated forces
I Interactions: 4D array of objects

I Each interacts two particle sets
I Bulk of the work

I Using the GPU
I Cells on CPU
I Interactions on GPU
I When an interaction receives the two particles sets, it calls

scheduleWork
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Molecular 2D Interaction Kernel

__global__ void interact(...) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

// For loop added for agglomeration
for(int j = start[i]; j < end[i]; j++)

// interaction work
}
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Application: LU Factorization without pivoting
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LU Factorization

I CPU
I Diagonal factorization
I Triangular solves

I GPU
I Matrix-matrix multiples (DGEMMs)
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Conclusion

I For both benchmarks, agglomerating work increases performance
I Agglomeration does not need to be application-specific
I Statically selecting work units to agglomerate is difficult and may

reduce performance
I Runtimes can agglomerate automatically

I An agglomerating kernel still must written
I Obtains better performance than static
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