Charm++ Tutorial

Presented by Eric Bohm

Outline

* Basics * Advanced
— Introduction — Prioritized Messaging
— Charm++ Objects — Interface file tricks
— Chare Arrays * Initialization
— Chare Collectives * Entry Method Tags
_ SDAG — Groups & Node Groups
_ Example — Threads

e |ntermission

Expectations

* Introduction to Charm++
— Assumes parallel programming aware audience
— Assume C++ aware audience
— AMPI not covered

* Goals
— What Charm++ is
— How it can help
— How to write a basic charm program
— Provide awareness of advanced features

What Charm++ Is Not

Not Magic Pixie Dust
— Runtime system exists to help you

— Decisions and customizations are necessary in proportion to the
complexity of your application

Not a language

— Platform independent library with a semantic

— Works for C, C++, Fortran (not covered in this tutorial)

Not a Compiler

Not SPMD Model

Not Processor Centric Model

— Decompose to individually addressable medium grain tasks
Not A Thread Model

— They are available if you want to inflict them on your code
Not Bulk Synchronous

Applications
NAMD: Classical | LeanCP:Quantum | RocStar:Rocket
Molecular Dynamics | Molecular Dynamics Simulation

Changa: Cosmology
Simulation

Frameworks Tools

ParFUM: POSE: r Faucets:
Unstructured Meshes | PDES Job Scheduler
Projections:

Languages / Models Performance Analysis
: MSA: Multiphased : Structured

A MPI h . :
daptive Shared Arrays Charisma Dagger (SDag) AL
Debug Support

Charm++

Converse: Abstraction of the Machine Layers

One of the Machine Layers: Cluster of Linux Workstations, IBM's Blue Gene\L, SGI's
Altix, Cray's XT3, Infiniband, Myrinet, Ethernet, and more

£
[}
-
v
)
()]
v
£
=
c
=
4
+
+
£
-
©
N =
Vv

The Charm++ Model

* Parallel objects (chares) communicate via
asynchronous method invocations (entry
methods).

* The runtime system maps chares onto
processors and schedules execution of entry

methods.
* Similar to Active Messages or Actors

User View vs. System View

User View:

Chare B

Chare D
; Ehare Clo]
hare C
@ Ehare C[]
Chare A
vold entryMethod_1() [
doSomeWorki);

doMoreWork();
I

MyMessage msg = new MyMeassage(l;
B.entryethod_2(msg) S retums Immediately

void entryMethod_3(int varl, float var2) {...]

AentryMethod_3{myint, ryFloat);

Chare C[3]

Ehare C[5]

Ehare C[4]

Chare E

System View:

Processor O Processor 1 Processor M-1
[Chare cio] T [ehare cE]
[Charen | [Chareci3)] Cl4 - [[chare |

Charm++ RTS/Converse
[Scheduler| firiErges
Machine Layer

Charm++ RTS/Converse
[Scheduler| fyEmges
Machine Layer

nierconnec

Charm++ Basics

Charm++ RT5/Converse

I Schedur-@rl Hﬂﬁ'ﬁ";"’"‘"ﬂ

Machine Layer

Architecures

* Runs on:
— Any machine with MPI installation
— Clusters with Ethernet (UDP/TCP)
— Clusters with Infiniband

— Clusters with accelerators (GPU/CELL)
— Windows

 To install
— “ /build”

Portability

Cray XT (3|4]5)

e Cray XT6 In
development

BlueGene (L|P)
« BG/Qin development

BlueWaters
o LAPI
o« PAMI in development

SGI/Altix

Clusters
X86, X86_64, [tanium

MPI, UDP, TCP, LAPI,
Infiniband, Myrinet,
Elan, SHMEM

Accelerators

Cell

GPGPU

Charm++ Objects

A “chare” is a C++ object
with methods that can
be remotely invoked

The “mainchare” is the

chare where the l
execution starts in the
program

A “chare array” is a
collection of chares of
the same type

Typically the mainchare
will spawn a chare array
of workers

mainchare

chare array (1D0,2D,3D,...) | O

Charm++ Basics 10

Charm++ File Structure

. Thgce)C++ objects (whether they are chares or
no

—Reside in regular .h and .cpp files

* Chare objects, messages and entry methods

(methods that can be called asynchronously
and remotely)

— Are defined in a .ci (Charm interface) file
—And are implemented in the .cpp file

C4+4 Charm-4+

-h Cpp -h Cpp .Ci

hrededer | 000 soelrnc = headar |00 Sceuwnce = interfmoes
Fil= il file File Fil=

Class Files Chare Class Files

Hello World: .ci file

e ci: Charm Interface

* Defines which type of chares
are present in the application mainmodule hello {

— At least a mainchare must be mainchare Main {
set entry Main(CkArgMsg* msg);
b
* Each definition is inside a .
module

— Modules can be included in
other modules

Hello World: the code

main.h
#include "hello.decl.h”
class Main : public CBase_Main {

public:
Main(CkArgMsg* msg);

)

Main(CkMigrateMessage* msg);

main.C
#include "main.h"

// Entry point of Charm++ application
Main::Main(CkArgMsg* msg) {

CkPrintf("Hello World'\n");

CKEXxit();
}

Main::Main(CkMigrateMessage* msqg) { }

#include "hello.def.h"

Charm++ Basics 13

CkArgMsg in the Main::Main Method

* Defined in charm++
e struct CkArgMsg{
int argc;

char **argyv;

°*C
°*C

°*C

Compilation Process

narmc hello.ci

narmc —o main.o main.C (compile)

narmc —language charm++ -o pgm main.o

(link)

decl.h

temp. ' p w ui W, -
file #_rr?a;.l‘ude fxﬂ,ﬁec{jh #include "ok

r.(u:fl charme i il LPt

———1 phimedl C++ Compiler)] abjec

ek .h Cor.cpp il
header file source file

defh
hi‘.r:?' I #include “xxx.def h”

Execution

e ./charmrun +p4 ./pgm

— Or specific queueing system
* Output:

— Hello World!
* Not a parallel code :(

— Solution: create other chares, all of them saying
“Hello World”

How to Communicate?

* Chares spread across multiple processors
— It is not possible to directly invoke methods

* Use of Proxies — lightweight handles to
potentially remote chares

Local to Chare A Local or remote
(depending on
mapping)
/ Proxy for \
\ Chare B J - Chare B

(Ghare A)<

/ Proxy for \
\ Chare C J - Chare C

The Proxy

* A Proxy class is generated for every chare

— For example, Cproxy Main is the proxy generated for
the class Main

— Proxies know where a chare is inside the system

— Methods invoked on a Proxy pack the input
parameters, and send them to the processor where
the chare is. The real method will be invoked on the
destination processor.

* Given a Proxy p, it is possible to call the method
— p.method(msg)

A Slightly More Complex Hello World

* Program’s asynchronous flow
— Mainchare sends message to Hello object
— Hello object prints “Hello World!”

— Hello object sends message back to the
mainchare

— Mainchare quits the application

hello.ci

Code

hello.cpp

mainmodule hello {
readonly CProxy Main mainProxy;

mainchare Main {
entry Main(CkArgMsg=*);
entry void end(void);

}:

chare Hello {
entry Hello();
entry void PrintHello(void);

#include "hello.decl.h”
/*readonly*/ CProxy_Main mainProxy;

class Main : public Chare {
public:
Main (CkArgMsg* m) {
delete m;
mainProxy = thishandle;

CProxy Hello h = CProxy_Hello: :ckNew();
h.PrintHello();

}

void end() {
CkExit();
}
}:

class Hello : public CBase_Hello {
public:
Hello() {}

void PrintHello(void) {
ckout << "Hello World!" << endl;
mainProxy.end () ;
}
}i

#include "hello.def.h"”

Charm++ Basics 20

“readonly” Variables

* Defines a global variable

— Every PE has its value

* Can be set only in the mainchare!

Charm++ Basics

21

Workflow of Hello World

"Main" object

Program starts

Mainchare constructor I

Hello chare created

h.PrintHello();

| _end() method invoked |

I Program quits l

"Hello" object

Hello chare constructor

ckout << "Hello World!" << endl;

mainProxy.end();

finclude "hello.decl.h”

/*readonly*/ CProxy_Main mainProxy;
class Main : public Chare {
public:
Main(CkArgMsg* m) {
delete m;
mainProxy = thishandle;

CProxy_Hello h = CProxy Hello::ckNew();
h.PrintHello();
}

void end() {
CKExit ();
}
}i

class Hello : public CBase_Hello {
public:

Hello() {}
void PrintHello(void) {

ckout << "Hello World!" << endl;
mainProxy.end();

"hello.def.h"

#include

Charm++ Basics

22

Limitations of Plain Proxies

* |n a large program, keeping track of all the
proxies is difficult

* Asimple proxy doesn’t tell you anything about
the chare other than its type.

* Managing collective operations like broadcast
and reduce is complicated.

Chare Arrays

* Arrays organize chares into indexed
collections.

* There is a single name for the whole collection

* Each chare in the array has a proxy for the
other array elements, accessible using simple
syntax

—sampleArray[i] // 1’th proxy

Array Dimensions

* Anything can be used as array indices
— integers
— Tuples (e.g., 2D, 3D array)
— bit vectors
— user-defined types

Array Elements Mapping

* Automatically by the runtime system

* Programmer could control the mapping of
array elements to PEs.

— Round-robin, block-cyclic, etc
— User defined mapping

Broadcasts

* Simple way to invoke the same entry method
on each array element.

* Example: A 1D array “Cproxy_MyArray arr”

— arr[3].method(): a point-to-point message to
element 3.

— arr.method(): a broadcast message to every
elements

Hello World: Array Version

mainmodule hello { hello.ci

readonly CProxy_Main mainProxy;

readonly int numElements;

mainchare Main {
entry Main(CkArgMsg* msg);
entry void done();

¥

array [1D] Hello {
entry Hello();

entry void sayHi(int);

b

¥

Charm++ Basics

e entry void sayHi(int)

— Not meaningful to
return a value

— Parameter marshalling:
runtime system will
automatically pack
arguments into a
message or unpack the
message into arguments

28

Hello World: Main Code

#include "hello.decl.h" main.h
class Main : public CBase Main {
public:

Main(CkArgMsg* msq);
Main(CkMigrateMessage* msqg) {}

void done();

}

Charm++ Basics 29

Hello World: Array Code

#include "hello.decl.h* hello.h
class Hello : public CBase Hello {
public:

Hello();
Hello(CkMigrateMessage *msg) {}

void sayHi(int from);
H:

Charm++ Basics 30

Result

S ./charmrun +p3 ./hello 10

Running “Hello World” with 10 elements using 3 processors.
“Hello” from Hello chare #0 on processor O (told by -1)
“Hello” from Hello chare #1 on processor O (told by 0)
“Hello” from Hello chare #2 on processor O (told by 1)
“Hello” from Hello chare #3 on processor O (told by 2)
“Hello” from Hello chare #4 on processor 1 (told by 3)
“Hello” from Hello chare #5 on processor 1 (told by 4)
“Hello” from Hello chare #6 on processor 1 (told by 5)
“Hello” from Hello chare #7 on processor 2 (told by 6)
“Hello” from Hello chare #8 on processor 2 (told by 7)
“Hello” from Hello chare #9 on processor 2 (told by 8)

Reduction (1)

* Every chare element will contribute its portion
of data to someone, and data are combined

through a particular op.
* Naive way:
— Use a “master” to count how many messages

need to be received.
— Potential bottleneck on the “master”

Reduction (2)

* Runtime system builds
reduction tree

Chare 1

Chare 5 —

e User specifies
reduction op Catack || crare?

Chare 2

Chare 3

* At root of tree, a
callback is performed Sy
on a specified chare _—

Chare 6 —

b

Charm++ Basics 33

Reduction in Charm++

* No global flow of control, so each chare must
contribute data independently using
contribute(...).

— void contribute(int nBytes, const void *data,
CkReduction::reducerType type):

* A user callback (created using CkCallback)
is invoked when the reduction is complete.

Reduction Ops
(CkReduction::reducerType)

* Predefined:

— Arithmetic (int, float, double)
e CkReduction::sum_int, ...
* CkReduction::product_int, ...
e CkReduction::max_int, ...
* CkReduction::min_int, ...
— Logic:
* CkReduction::logical and, logic_or
* CkReduction::bitvec_and, bitvec_or
— Gather:
* CkReduction::set, concat
— Misc:
* CkReduction::random

* Defined by the user

Callback: where reductions go?

CkCallback(CkCallbackFn fn, void *param)

— void myCallbackFn(void *param, void *msg)
CkCallback(int ep, const CkCharelD &id)

— ep=Ckindex_ChareName::EntryMethod(parameters)
CkCallback(int ep, const CkArrayID &id)

— A Cproxy_MyArray may substitute CkArrayID

e The callback will be called on all array elements

CkCallback(int ep, const CkArraylndex &idx, const
CkArrayID &id)

— The callback will only be called on element]idx]

CkCallback(CkCallback::ignore)

Charm++ Basics

36

Example

* Sum local error estimators to determine global
error

Function to call

~

CkCallback cb(CkIndex Main: :computeGlobalError(),
mainProxy); T ——1~

Chare to handle callback function

contribute(sizeof(mvError), (void*)&mg@ggg&i'

CkReduction::sum, cb); Local Data
Reduction operation

Charm++ Basics 37

SDAG JACOBI Example

* Introduce SDAG
e Using 5 point stencil

Example: Jacobi 2D

‘Use two interchangeable matrices

do {

update matrix();

maxDiff = max(abs (A - B));
} while (maxDiff > DELTA)

update_matrix() {
foreach i,j {
B[i.jl = (AlLj] + Ali+1,j] + Ali-1,j] + Ali,j+1] + Ali,j-1]) / 5;
}
swap (A, B);
}

15/07/2010 CNIC Tutorial 2010 - SDAG HandsOn 39

Jacobi in parallel

matrix decomposed
in chares

15/07/2010 CNIC Tutorial 2010 - SDAG HandsOn 40

Jacobi: the code

Main(CkArgMsg* m) { // initialize everything
array = CProxy_Jacobi::ckNew(num_chare_x, num_chare_y);
array.begin_iteration();
}
void report(CkReductionMsg *msg) { // Each worker reports back to here when it completes an iteration
iterations++;
maxdifference=((double *) msg->getData())[0];
delete msg;
if (maxdifference - THRESHHOLD<0) {
CkPrintf("Difference %.10g Satisfied Threshhold %.10g in %d Iterations\n",
maxdifference, THRESHHOLD,iterations);
done(true); }
else {array.begin_iteration();}
}
void Jacobi::begin_iteration(void) {
iterations++;
if('leftBound)
{ double *leftGhost = new double[blockDimY7];
for(int j=0; j<blockDimY; ++j)
leftGhost[j] = temperature[index(1, j+1)];
thisProxy(thisindex.x-1, thisIndex.y)
.processGhosts(RIGHT, blockDimY, leftGhost);
delete [] leftGhost; }

void processGhosts(int dir, int size, double gh[]) {
switch(dir) {
case LEFT:
for(int j=0; j<size; ++j) emperature[index(0, j+1)] = gh[j];

if(++imsg==numExpected) check_and_compute(); }
}
void check_and_compute() {

imsg=0;

compute_kernel();

mainmodule jacobi2d {

readonly CProxy_Main mainProxy;

readonly int arrayDimX; readonly int arrayDimY;;
readonly int blockDimX; readonly int blockDimY;
readonly int num_chare_x; readonly int num_chare_y;

readonly int maxiterations;

mainchare Main {

entry Main(CkArgMsg *m);

entry void report(CkReductionMsg *m);
3

array [2D] Jacobi {
entry Jacobi(void);
entry void begin_iteration(void);
entry void processGhosts(int dir, int size, double ghosts[size]);

I3

contribute(sizeof(double). &maxdifference. CkReduction::max double. CkCallback(CkIndex Main::report(NULL). mainProxv)):

Remove Barrier

- More efficient

Problem!

Potential Race Condition

- May receive neighbor update for next iteration
Solution

Send iteration counter

- Buffer (and count for next iter) messages until ready

We can do better using SDAG

Structured DAGger
Directed Acyclic Graph (DAG)
Express event sequencing and dependency

Automate Message buffering

Automate Message counting

Express independence for overlap

Differentiate between parallel and sequential blocks
Negligible overhead

Structured Dagger Constructs

when <method list> {code}
Do not continue until method is called
Internally generates flags, checks, etc.

atomic {code}
Call ordinary sequential C++ code

if/else/for/while
C-like control flow

overlap {code1 codeZ2 ...}
Execute code segments in parallel

forall

“Parallel Do”
Like a parameterized overlap

Reinvent Jacob2d in SDAG

- Code walkthrough

Task 1

Convert to SDAG
- Add _sdag directives
- Add sdag control entry method

- Make distinction between receiving and processing
ghosts

- Use SDAG iteration and message counting
Remove barrier

Jacob2d to 3d in SDAG

- Hands on project homework
- Task 2

Convert to 3D 7point stencil

Add “front” “back” neighbors and blocksizes
Revise numExpected calculation

Add FRONT BACK ghost cases

Add frontBound backBound,kStart, kFinish
Extend index(), k dimension to init + compute

- Is there a need to change the SDAG code?
- Answer can be found in Charm++ distribution

Advanced Messaging

Prioritized Execution

mCharm++ scheduler
mDefault - FIFO (oldest message)

mPrioritized execution

nlf several messages available, Charm will process
the messages in the order of their priorities

mVery useful for speculative work,
ordering timestamps, etc...

Priority Classes

mCharm++ scheduler has three queues:
high, default, and low

mAS signed integer priorities:
sHigh -MAXINT to -1
mDefault O
sLow 1 to +MAXINT

mAS unsigned bitvector priorities:
m0x0000 Highest priority -- OX7FFF
m0x8000 Default priority
m0x8001 -- OxFFFF Lowest priority

Prioritized Messages

eNumber of priority bits passed during message
allocation

FooMsg * msg = new (size, nbits) FooMsg;
mPriorities stored at the end of messages

mSigned integer priorities
*CkPriorityPtr(msg)=-1;
CkSetQueueing(msg, CK_QUEUEING_IFIFO);
mUnsigned bitvector priorities

CkPriorityPtr(msg) [0 |=0x7fffffff;
CkSetQueueing(msg, CK_QUEUEING_BFIFO);

Prioritized Marshalled Messages

mPass “CkEntryOptions” as last parameter

mFor signed integer priorities:
CkEntryOptions opts;

opts.setPriority(=1);

fooProxy.bar(x,y,opts);

mFor bitvector priorities:

CkEntryOptions opts;

unsigned int prio[2]={0x7FFFFFFF,0xFFFFFFFF};
opts.setPriority(64,prio);

fooProxy.bar(x,y,opts);

Advanced Message Features

mNokeep (Read-only) messages
mEntry method agrees not to modify or delete the message
mAvoids message copy for broadcasts, saving time

minline messages
mDirect method invocation if on local processor

mExpedited messages
mMessage do not go through the charm++ scheduler (ignore any
Charm++ priorities)

mimmediate messages
mEntries are executed in an interrupt or the communication thread
mVery fast, but tough to get right

mlmmediate messages only currently work for NodeGroups and
Group (non-smp)

Presenter
Presentation Notes
Not sort on priority

Read-Only, Expedited, Immediate

mAll declared in the .ci file

{
entry [nokeep] void foo_readonly(Msg *);

|
entry linline] void foo_inl(Msg *);
entry [expedited] void foo_exp(Msg *);
|

entry [immediate] void foo_imm(Msg *);

Interface File Example

mainmodulle hello {
include “myType.h”

initnode voird myNodelnit();
initproc void mylnit(Q);

mainchare mymain {
entry mymain(CkArgMsg *m);

}:

array[1D] foo {

entry foo(int problemNo);

entry void barl(int Xx);

entry void bar2(myType X);
}s

}s

55

Include and Initcall

minclude
minclude an external header files

minitcall

mUser plugging code to be invoked in Charm++’'s
startup phase

minitnode
mCalled once on every node

mlnitproc
mCalled once on every processor
minitnode calls are called before Initproc calls

Entry Attributes

mThreaded

mFunction is invoked in a CthThread

mSync
mBlocking methods, can return values as a message
mCaller must be a thread

mEXxclusive

mFor Node Group

mDo not execute while other exclusive entry methods of its node group are
executing in the same node

mNotrace

mlnvisible to trace projections
mentry [notrace] void recvMsg(multicastGrpMsg *m);

Entry Attributes 2

mlocal

mLocal function call, traced like an entry method
mPython

mCallable by python scripts
mExclusive

mFor Node Group

mDo not execute while other exclusive entry methods of its node group are
executing in the same node

Groups/Node Groups

Groups and Node Groups

mGroups
mSimilar to arrays:

mBroadcasts, reductions, indexing

mBut not completely like arrays:
sNon-migratable; one per processor

mExactly one representative on each processor
mldeally suited for system libraries

mHistorically called branch office chares (BOC)

mNode Groups
mOne per SMP node

Presenter
Presentation Notes
Special chare array

Declarations

m.cifile

group mygroup {
entry mygroup(); //Constructor
entry void foo(foomsg *); //Entry method
¥
nodegroup mynodegroup {
entry mynodegroup(); /Constructor
entry void foo(foomsg *); //Entry method
| §
mC++ file
class mygroup : public Group {

mygroup() {}
void foo(foomsg *m) { CkPrintf(“ Do Nothing”);}
5
class mynodegroup : public NodeGroup {
mynodegroup() {}
void foo(foomsg *m) { CkPrintf(“ Do Nothing”);}
1

Creating and Calling Groups

mCreation

P = CProxy mygroup::ckNew();
mRemote invocation

n.foo(msg); //broadcast

o[1] -foo(msg); //asynchronous
0.foo(msg, npes, pes); // list send
mDirect local access

mygroup *g=p.ckLocalBranch();

g->foo(...); //local i1nvocation
mDanger: if you migrate, the group stays behind!

Threads in Charm++

Why use Threads?

mhey provide one key feature: blocking
mSuspend execution (e.g., at message receive)
mDo something else
mResume later (e.g., after message arrives)

mExample: MPI_Recv, MPI_Wait semantics

mFunction call interface more convenient than
message-passing
mRegular call/return structure (no CkCallbacks) with complete
control flow

mAllows blocking in middle of deeply nested communication
subroutine

Presenter
Presentation Notes
Wait for reply

Why not use Threads?

mSlower

mAround 1lus context-switching overhead unavoidable
mCreation/deletion perhaps 10us

mMigration more difficult

mState of thread is scattered through stack, which is
maintained by compiler

mBy contrast, state of object is maintained by users

m[hread disadvantages form the motivation to
use SDAG

20

15

10

Context Switch Cost

- Process
= CthThreads

- Pthreads

12345678910

50

100

500

1000

5000

15000

66

What are (Converse) Threads?

mOne flow of control (instruction stream)

mMachine Registers & program counter
mExecution stack

mlLike pthreads (kernel threads)
mOnly different:

mimplemented at user level (in Converse)
mScheduled at user level; non-preemptive
mMigratable between nodes

How do | use Threads?

mMany options:
sAMPI
mAlways uses threads via TCharm library

sCharm++

m[threaded] entry methods run in a thread
m[sync] methods

mConverse
mC routines CthCreate/CthSuspend/CthAwaken
mEverything else is built on these
mimplemented using

mSYSV makecontext/setcontext
mPOSIX setjmp/alloca/longjmp
mAssembly code

How do | use Threads (example)

mBlocking APl routine: find array element
Int requestFoo(int src) {

myObject *obj=...;

return obj->fooRequest(src)

by

mSend request and suspend

int myObject: :fooRequest(int src) {
proxy|[dest] . fooNetworkRequest(thislindex);
stashed_thread=CthSelf();

CthSuspend(); // -- blocks until awaken call --
return stashed return;

}

mAwaken thread when data arrives

void myObject: :fooNetworkResponse(int ret) {
stashed_return=ret;
CthAwaken(stashed thread);

}

How do | use Threads (example)

mSend request, suspend, recv, awaken, return
int myObject: :fooRequest(int src) {
proxy[dest] . fooNetworkRequest(thislndex);
stashed thread=CthSelf();
CthSuspend();

void myObject: :fooNetworkResponse(int ret) {
stashed return=ret;
CthAwaken(stashed thread);

return sthshed return;

}

Thread Migration

Stack Data

m[he stack is used by the compiler to track

function calls and provide temporary storage

mLocal Variables
mSubroutine Parameters
mC “alloca” storage

mMost of the variables in a typical application
are stack data

mStack is allocated by Charm run-time as heap
memory (+stacksize)

Migrate Stack Data

m\Without compiler support, cannot change

stack’s address

mBecause we can’t change stack’s interior pointers (return
frame pointer, function arguments, etc.)

mEXisting pointers to addresses in original
stack become invalid

mSolution: “iIsomalloc” addresses

mReserve address space on every processor for every thread
stack

mUse mmap to scatter stacks in virtual memory efficiently
mldea comes from PM?

Presenter
Presentation Notes
Isomalloc Stacks A user-level thread, when suspended, consists of a stack and a set of
preserved machine registers. During migration, the machine registers are simply copied
to the new processor. The stack, unfortunately, is very difficult to move. In a distributed
memory parallel machine, if the stack is moved to a new machine, it will almost undoubtedly
be allocated at a different location, so existing pointers to addresses in the
original stack would become invalid when the stack moves. We cannot reliably update
all the pointers to stack-allocated variables, because these pointers are stored in machine
registers and stack frames, whose layout is highly machine- and compiler-dependent.

PM2 [12] is another migratable thread system, which treats threads as remote procedure calls, which return some data on completion .
Multithreaded systems such as PM 2 [NM96] require every thread to store its state in specially allocated memory, so that the system can migrate the thread automatically

IVIigrate Stack Data

Processor A's Memory
OXFFFFFFFF

Migrate

Processor B's Memory

OXFFFFFFFF

Ox00000000

Thread 3

0x00000000 74

IVIigrate Stack Data: IsomallocC

Processor A's Memory

OXFFFFFFFF

Migrate

Processor B's Memory

OXFFFFFFFF

Ox00000000

Thread 3

0x00000000 75

Migrate Stack Data

misomalloc is a completely automatic solution

mNo changes needed in application or compilers

mJust like a software shared-memory system, but with
proactive paging

mBut has a few limitations

mDepends on having large quantities of virtual address space
(best on 64-bit)

m32-bit machines can only have a few gigs of isomalloc stacks across the whole machine
mDepends on unportable mmap
—Which addresses are safe? (We must guess!)
—What about Windows? Or Blue Gene?

Aliasing Stack Data

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Ox00000000 Ox00000000

Aliasing Stack Data: Run Thread 2

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Execution Copy

/8 Ox00000000 Ox00000000

Aliasing Stack Data

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Ox00000000 Ox00000000

Aliasing Stack Data: Run Thread 3

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Execution Copy

80 0x00000000 0x00000000

81

Aliasing Stack Data

Processor A's Memory
OXFFFFFFFF

Ox00000000

Migrate
Thread 3

Processor B's Memory

OXFFFFFFFF

Ox00000000

Aliasing Stack Data

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Ox00000000 Ox00000000

83

Aliasing Stack Data

Processor A's Memory
OXFFFFFFFF

Ox00000000

Execution Copy

Processor B's Memory

OXFFFFFFFF

Ox00000000

Aliasing Stack Data

mDoes not depend on having large quantities
of virtual address space

m\Works well on 32-bit machines

mRequires only one mmap’d region at a time
m\Works even on Blue Gene!

mDownsides:

mThread context switch requires munmap/mmap (3us)

mCan only have one thread running at a time (so no
SMP’s!)

m“-thread memoryalias” link time option

Heap Data

mHeap data is any dynamically allocated
data

mC “malloc” and “free”

aC++ “new” and “delete”

sF90 “ALLOCATE” and “DEALLOCATE”

mArrays and linked data structures are
almost always heap data

Migrate Heap Data

mAutomatic solution: isomalloc all heap data
just like stacks!

m‘-memory isomalloc” link option
mOverrides malloc/free
sNo new application code needed

mSame limitations as isomalloc; page allocation
granularity (huge!)

mManual solution: application moves its heap
data

mNeed to be able to size message buffer, pack data into
message, and unpack on other side

m‘pup” abstraction does all three

Thank You!

Free source, binaries, manuals, and
more information at:
http:.//charm.cs.uiuc.edu/

Parallel Programming Lab
at University of lllinois

ROGRAMMING LAB

87

http://charm.cs.uiuc.edu/

	Charm++ Tutorial
	Outline
	Expectations
	What Charm++ Is Not
	Charm++ Runtime System
	The Charm++ Model
	User View vs. System View
	Architecures
	Portability
	Charm++ Objects
	Charm++ File Structure
	Hello World: .ci file
	Hello World: the code
	CkArgMsg in the Main::Main Method
	Compilation Process
	Execution
	How to Communicate?
	The Proxy
	A Slightly More Complex Hello World
	Code
	“readonly” Variables
	Workflow of Hello World
	Limitations of Plain Proxies
	Chare Arrays
	Array Dimensions
	Array Elements Mapping
	Broadcasts
	Hello World: Array Version
	Hello World: Main Code
	Hello World: Array Code
	Result
	Reduction (1)
	Reduction (2)
	Reduction in Charm++
	Reduction Ops (CkReduction::reducerType)
	Callback: where reductions go?
	Example
	SDAG JACOBI Example
	Example: Jacobi 2D
	Jacobi in parallel
	Jacobi: the code
	Remove Barrier
	We can do better using SDAG
	Structured Dagger Constructs
	Reinvent Jacob2d in SDAG
	Jacob2d to 3d in SDAG
	Intermission
	Advanced Messaging
	Prioritized Execution
	Priority Classes
	Prioritized Messages
	Prioritized Marshalled Messages
	Advanced Message Features
	Read-Only, Expedited, Immediate
	Interface File Example
	Include and Initcall
	Entry Attributes
	Entry Attributes 2
	Groups/Node Groups
	Groups and Node Groups
	Declarations
	Creating and Calling Groups
	Threads in Charm++
	Why use Threads?
	Why not use Threads?
	Context Switch Cost
	What are (Converse) Threads?
	How do I use Threads?
	How do I use Threads (example)‏
	How do I use Threads (example)‏
	Thread Migration
	Stack Data
	Migrate Stack Data
	Migrate Stack Data
	Migrate Stack Data: Isomalloc
	Migrate Stack Data
	Aliasing Stack Data
	Aliasing Stack Data: Run Thread 2
	Aliasing Stack Data
	Aliasing Stack Data: Run Thread 3
	Aliasing Stack Data
	Aliasing Stack Data
	Aliasing Stack Data
	Aliasing Stack Data
	Heap Data
	Migrate Heap Data
	Thank You!

