
Using Shared Arrays in Message-Driven
Parallel Programs

Phil Miller1, Aaron Becker2, Laxmikant Kalé

Department of Computer Science, University of Illinois, Urbana, Illinois 61801, USA

Abstract

This paper describes a safe and efficient combination of the object-based
message-driven execution and shared array parallel programming models. In
particular, we demonstrate how this combination engenders the composition of
loosely coupled parallel modules safely accessing a common shared array. That
loose coupling enables both better flexibility in parallel execution and greater
ease of implementing multi-physics simulations. As a case study, we describe
how the parallelization of a new method for molecular dynamics simulation
benefits from both of these advantages. We also describe a system of typed
handle objects that embed some of the determinacy constraints of the Multi-
phase Shared Array programming model in the C++ type system, to catch some
violations at compile time. The combined programming model communicates
in terms of these handles as a natural means of detecting and preventing errors.

Keywords: programming models, composition, distributed shared arrays

1. Introduction

Asynchronous message-driven execution is a convenient and effective model
for general-purpose parallel programming. The flow of control in message-driven
systems is dictated by the arrival of messages. In Charm++-based [1] message-
driven applications, the problem to be solved is decomposed into collections of
communicating parallel objects, providing the opportunity for easy overlap of
communication with computation and runtime-level optimizations such as auto-
matic load balancing. In the loosely-coupled style encouraged by the message-
driven model, the assembly of separate parallel modules in a single application
only requires adaptating interfaces, rather than the deeper structural changes
or non-overlapped (and hence non-performant) time or processor division that

Email addresses: mille121@illinois.edu (Phil Miller), abecker3@illinois.edu (Aaron
Becker), kale@illinois.edu (Laxmikant Kalé)

1Corresponding author. Supported by NSF grant OCI-0725070
2Supported by NFS grant ITR-HECURA-0833188 and the UIUC/NCSA Institute for Ad-

vanced Computing Applications and Technologies

Preprint submitted to Elsevier October 16, 2011



might be required in single program multiple data (SPMD) models such as MPI
and partitioned global address space (PGAS). In fine-grained and irregular ap-
plications, this style can be a necessity for attaining high performance.

However, the message-driven model is not an ideal choice for all parallel
applications. In cases where shared data is essential to concise expression of
the algorithm, the code needed to explicitly communicate this shared data in a
message-driven style can dominate the structure of the program, and overwhelm
the programmer. In this situation, a shared address space programming model,
as exemplified by the Global Arrays library [2] and PGAS languages [3, 4, 5] can
be advantageous. Applications which require data structures too large to fit in
memory local to one processor may also become much simpler when expressed
in a shared address space model. The ability to access data in the global address
space without explicit messaging can offer substantial productivity benefits, and
in many cases remote accesses can be optimized by a compiler, as demonstrated
by Co-Array Fortran [6] and Jade [7]. Programs which use explicit messaging
can benefit from the elimination of boilerplate messaging code which accompa-
nies a switch to a shared address space model, particularly in cases where the
communication structure is irregular or data-dependent.

This paper describes the combination of Charm++’s object-based message-
driven execution with shared arrays provided by Multiphase Shared Arrays (Sec-
tion 4). In particular, we demonstrate how this engenders the composition of
loosely coupled parallel modules safely accessing a common shared array. That
loose coupling enables both better flexibility in parallel execution and greater
ease of implementing multi-physics simulations. As a case study, we describe
how the parallelization of a new method for molecular dynamics simulation ben-
efits from both of these advantages (Section 5). We also describe a system of
typed handle objects (Section 3) that embed some of the constraints of the Mul-
tiphase Shared Array programming model in the C++ type system, to catch
some violations at compile time. The combined programming model works with
these handles as a natural means of detecting and preventing errors.

2. Multiphase Shared Arrays

Multiphase Shared Arrays (MSA) [8] provide an abstraction common to
several HPC libraries, languages, and applications: arrays whose elements are
simultaneously accessible to multiple client threads of execution, running on
distinct processors. These clients are user-level threads, typically many on each
processing element (PE), which are tied to their PE unless explicitly migrated
by the runtime system or by the programmer. Application code specifies the
dimension, type, and extent of an array at the time of its creation, and then
distributes a reference to it among client threads. Each element has a particu-
lar home location, defined by the array’s distribution, and is accessed through
software-managed caches.

One problem common to shared memory applications are data races, where
concurrent access to globally visible data yields a non-deterministic result. The
initial development of MSA was based on the observation that applications that

2



Client
Threads MSA Message-driven

Objects

(a) The user view of an MSA ap-
plication.

PE 1 PE 2 PE 3

(b) One possible mapping of program entities
onto PEs

Figure 1: The developer works with MSAs, client threads, and parallel objects without ref-
erence to their location, allowing the runtime system to manage the mapping of entities onto
physical resources.

use shared arrays typically do so in phases. Within each phase, all accesses to
the array use a single mode, in which data is read to accomplish a particular
task, or updated to reflect the results of each thread’s work. MSA formalizes this
observation, by requiring synchronization points between phases, and limiting
the array to only be accessed using one one of several specifically-defined access
modes (described below) during each phase. By establishing this discipline,
MSA usage is inherently deterministic. However, in exchange for this guarantee,
the programmer gives up some of the freedom of a completely general-purpose
programming model.

2.1. Data Decomposition and Distribution

MSA decomposes arrays not into fixed chunks per PE, but rather into pages
of a common shape. Developers can vary the shape of the pages to suit applica-
tions’ needs. For example, a 10×10 array could be broken into ten 10×1-shaped
pages, or four 5 × 5 pages, etc. Thus, the library does not couple the number
of pages that make up an array to the number of processors on which an appli-
cation is running or the number of threads that will operate on that array. If
the various parts of a program are overdecomposed into sufficiently more pieces
than there are processors, the runtime system can hide latency by overlapping
the communication of one piece with computation from another.

Once the array is split into pages, the pages are distributed among PEs.
The page objects are managed by the Charm++ runtime system. Thus, each
MSA offers control of the way in which array elements are mapped to pages,
and the mapping of pages to PEs. This affords opportunities to tune MSA code
for both application and system characteristics. The page objects are initially
distributed according to a mapping function, either specified by application
code or following the defaults in Charm++. As the program executes, the
runtime may redistribute the pages by migrating them to different PEs in order
to account for load imbalance, communication locality, system faults, or other
concerns. The user view of an MSA program and corresponding mapping by
the runtime system are illustrated in figure 1.

3



2.2. Caching

The runtime library caches data accessed from MSAs. This approach differs
from Global Arrays [2], where the user must either allocate and manage buffers
for bulk remote array segments or incur remote communication costs for each
access. Runtime-managed caching offers several benefits, including simpler ap-
plication logic, the potential for less memory allocation and copying, sharing of
cached data among threads, and consolidating messages from multiple threads.

When an MSA is used by an application, each access checks whether the
element in question is present in the local cache. If the data is available, it is re-
turned and the executing thread continues uninterrupted. The programmer can
also make prefetch calls spanning particular ranges of the array, with subsequent
accesses specifying that the programmer has ensured the local availability of the
requested element. Bulk operations allow manipulation of an entire section of
the array at once, as in Global Arrays.

When a thread accesses data that is not cached locally, the cache requests
it from its home page, then suspends the requesting thread. At this point,
messages queued for other threads are delivered. The cache manager receives
the home page’s response and unblocks the requesting thread. Previous work
with MSA [7] has shown that the overhead of caching and associated checks
is reasonable, and well-tuned application code can match the performance of
equivalent sequential code.

Each PE hosts a cache management object which is responsible for moving
remote data to and from that PE. Synchronization work is also coalesced from
the computational threads to the cache objects to limit the number of synchro-
nizing entities to the number of PEs in the system. Depending on the mode that
a given array is in, the cache managers will treat its data according to different
coherence protocols, as the Munin system does [9]. However, the MSA access
modes are designed to make cache coherence simple and inexpensive. Accesses
never require remote cache invalidations or immediate writeback.

2.3. Access Modes and Safety

By limiting MSA accesses to a few well-defined access modes and requiring
synchronization from all MSA client threads to pass from one mode to another,
race conditions within the array are excluded without requiring the programmer
to understand a complicated memory model. The access modes MSA provides
are suitable for many common parallel access patterns, but it is not clear that
these modes are the only ones necessary or suitable to this model. As we extend
MSA further, we expect to discover more as we explore a broader set of use cases.

Read-Only Mode: As its name suggests, read-only mode makes the array
immutable, permitting reads of any element but writes to none. Remote cache
lines can simply be mirrored locally, and discarded at the next synchronization
point. In this mode, there are no writes to produce race conditions.

Write-Once Mode: Since reads are disallowed in this mode, the primary
safety concern when threads are allowed to make assignments to the array is the
prevention of write-after-write conflicts. We prevent these conflicts by requiring

4



that each element of the array only be assigned by a single thread during any
phase in which the array is in write-once mode. This is checked at runtime as
cached writes are flushed back to their home locations. Static analysis could
allow us to check this condition at compile time for some access patterns and
elide the runtime checks when possible.

Accumulate Mode: This mode effects a reduction into each element of
the array, with each thread potentially making zero, one, or many contributions
to any particular element. While it is most natural to think of accumulation in
terms of operations like addition or multiplication, any associative, commuta-
tive binary operator can be used in this fashion. One example, used for mesh
repartitioning in the ParFUM framework [10], uses set union as the accumula-
tion function. The operator’s properties guarantee that the order in which it’s
applied does not introduce non-deterministic results.

The various access modes are illustrated in the following toy code that com-
putes a histogram in array H from data written into array A by different threads:

A.syncToWrite ();

for (int i = 0; i < N/P; ++i)

A(tid + i*(P-1)) = f(x, i);

A.syncToRead (); // Done writing A; data can now be read

H.syncToAccum (); // Get ready to increment entries in H

for (int i = 0; i < N/P; ++i) {

int a = A(i + tid*N/P);

H(a) += 1;

}

2.4. Synchronization

A shared array moves from one phase to the next when its client threads
have all indicated that they have finished accessing it in the current phase,
by calling the synchronization method. During synchronization, each cache
flushes modified data to its home location and waits for its counterparts on
other PEs to do the same. Logically, client threads cannot access the array
again until synchronization is complete. In SPMD-style MSA code, this requires
that threads explicitly wait for synchronization to complete sometime before any
post-synchronization access. In section 4, we describe how to relax the need to
explicitly wait by delivering messages when synchronization is complete.

3. Typed Handles

One drawback of the basic MSA model is its weak support for error detection.
Previous work with MSA led to applications in which the access mode of each
phase was implicit in the structure of the code. Some sync() calls would be
commented to indicate the new phase of the array, but this was not universal,
and the comments were not always accurate. Thus, the implicit nature of MSA’s
access modes is problematic. Because MSA is implemented as a C++ library,
it has no compiler infrastructure to detect violations of its access modes until

5



runtime. This lengthens the debugging process (while using potentially scarce
parallel execution resources) and leaves the possibility that unexercised code
paths contain serious errors. It also adds avoidable per-access runtime checks
that each operation is consonant with the current access mode.

To address these problems, we have developed a way to detect a variety of
access mode violations at compile-time by routing all array accesses through
lightweight handle objects whose types correspond to the current mode of the
array. The operations allowed by an array’s current access mode are presented
as methods in the corresponding handle type’s interface. The synchronization
methods return a handle in the new mode and mark the old handle as ‘in-
valid’. An example application using this idiom, parallel k-means clustering, is
described in section 3.1. We currently rely on run-time checks to detect error
conditions, such as threads synchronizing into different modes, and intersecting
write sets during write-once mode. Converting ParFUM’s [10] mesh reparti-
tioning code to use typed handles exposed previously undetected bugs that we
subsequently fixed.

There are alternatives to our typed handle scheme, but they all suffer from
either increased complexity or the need for non-standard tools. With a more
capable type system in C++, we could define the array with a linear type [11]
such that synchronization would change the array’s type in the same way that
handle types are currently changed. If we wished to construct more complex
constellations of allowed operations, an approach of policy templates and static
assertions [12] would serve. Such policy templates would have a boolean argu-
ment for each operation or group of operations that is controlled.

We could also enforce MSA’s high-level semantic conditions in contracts [13]
describing allowable operations. We avoided the use of contracts in MSA for
three reasons. First, contracts require either an enforcement tool external to the
compiler, or a language like Eiffel [14] that natively supports contracts. Second,
these conditions would depend on state variables that aren’t visible in the user
code. Finally, we prefer a form in which the violation is local to the erroneous
statement, rather than context-dependent.

Another approach to problems like this, common in the software engineering
literature, is the definition of MSA’s access modes and phases in a static analysis
tool. Again, this implies enforcement by a tool other than the compiler. The
rules so defined would necessarily be flow-sensitive, which makes this analysis
fairly expensive and bloats the errors that would result from a rule violation.

3.1. Example: Parallel k-Means Clustering

In this example, each processor in a large-scale parallel application run has
collected timing data for various segments of the program. At the end of the
run, these metrics need to be reduced to avoid the slow output of an overwhelm-
ing volume of data. A two-part process identifies representative processors to
report measurements for. The first part groups the processors by similarity of
their execution profiles using k-means clustering, and the second part selects an
exemplar and outliers from each cluster to report.

6



An initial implementation of this module was written in Charm++, but
it was found that the large number of reductions with processors contribut-
ing to different parts of the output was too cumbersome. This same process
would be fairly straight-forward to implement using common MPI functions
such as MPI Allreduce. However, the experimental nature of this analysis fea-
ture makes it desirable to try it several times on the same end-of-run data, with
varying parameters. Runs could be executed one after another, in a loop over
the input parameters, but this is wasteful of expensive machine time given that
each run is largely communication-bound. As an alternative, runs for all of the
input parameters could be executed together, with heavier bookkeeping code to
track where each run’s data lives and whether a given run has converged yet.

MSA admits straightforward solutions to all of these concerns. The commu-
nication pattern is expressed as adding to and reading from a shared matrix.
Multiple concurrent runs are expressed as separately instantiated collections of
objects, one for each set of parameters. Because each of the concurrent runs
is expressed as an independent collection of objects, each run’s sequential seg-
ments can be mapped to different processors, avoiding a bottleneck at a shared
‘root’ processor present in the Charm++ implementation.

The core code of the clustering process is shown in listing 1. It traces out
the full life-cycle of a shared array, clusters, of summed per-processor perfor-
mance metrics. The array has k columns, each of which represents a cluster
of processors. The first numMetrics entries in each column are sums of actual
measurements taken by the processors. There are two additional entries in each
column, the first for the number of processors in the associated cluster (so that
the metrics can be averaged), and the second for whether any of those processors
joined that cluster in the current iteration.

In each iteration, the array alternates between a read phase, during which
every processor finds the closest cluster to itself, and an accumulate phase, in
which the processors contribute their position to their respective closest clus-
ters. Every processor performs the same convergence test, checking whether
any processor changed cluster membership during the current iteration.

The total implementation of the process described is ∼610 lines of code,
while the Charm++ implementation ran to ∼800 lines of code before this new
approach was taken. This represents a code-length reduction of 23.8%.

4. Composing Shared-Array and Message-Driven Modules

Prevalent parallel software needing distributed arrays combines MPI with
GA, and implementations of those libraries are designed to interoperate. Multi-
phase Shared Arrays have also previously been used in concert with Adaptive
MPI [15] on top of Charm++’s message-driven runtime system. The environ-
ment provided by those packages is well suited to interactions within a single
internally coordinated, easily synchronized parallel module. However, applica-
tion development is trending toward the combination of multiple, interacting
parallel modules. In that context, issues of data synchronization, transfer of

7



1 // One instance is created and called on each PE

2 void KMeansGroup :: cluster ()

3 {

4 CLUSTERS ::Write w = clusters.getInitialWrite ();

5 if (initSeed != -1) writePosition(w, initSeed );

6
7 CLUSTERS ::Read r = w.syncToRead (); // Put the array in Read mode

8
9 do { // Each PE finds the seed closest to itself

10 double minDistance = distance(r, curSeed );

11
12 for (int i = 0; i < numClusters; ++i) {

13 double d = distance(r, i);

14 if(d < minDistance) {

15 minDistance = d;

16 newSeed = i;

17 }

18 }

19
20 // Put the array in Accumulate mode ,

21 // excluding the current value

22 CLUSTERS ::Accum a = r.syncToExcAccum ();

23 for (int i = 0; i < numMetrics; ++i)

24 a(newSeed , i) += metrics[i]; // Each PE adds itself to its new seed

25
26 a(newSeed , numMetrics) += 1; // Update membership and change count

27 if (curSeed != newSeed)

28 a(0, numMetrics +1) += 1;

29 curSeed = newSeed;

30
31 r = a.syncToRead (); // Put the array in Read mode

32 } while(r(0, numMetrics +1) > 0);

33 }

Listing 1: Parallel k-Means Clustering implemented using an MSA named clusters. This
function is run in a thread on every processor. First, processors selected as initial ‘seeds’
write their locations into the array (call on line 5). Then, all the processors iterate finding the
closest seed (lines 14–20) and moving themselves into it (22–33). They all test for convergence
by checking an entry indicating whether any processor moved (37).

control, and performance tuning become substantially more challenging with a
purely SPMD-oriented software stack.

The message-driven execution model addresses the concerns of transfer of
control and coupled performance tuning directly, by fully interleaving all par-
allel computation and communication. In concert with a shared-array model,
however, the same data synchronization concerns arise, and are potentially am-
plified by the nondeterminism in control flow. As described in section 2, MSA
addresses the general data synchronization issues, but does not speak to the

8



coordination or synchronization of control flow around it. We address precisely
those issues in this section.

The basic challenges in the use of shared arrays by message-driven code,
while retaining some useful safety guarantees, are dual: determining when any
given object can access an array, and determining when the overall array’s state
has changed and what should happen to it next.

In the simplest cases, the challenges of combining Charm++ and MSA code
have been easy to address since MSA was first implemented. In that case, there
is only one collection of objects that accesses each array (or set of arrays), each
running one persistent thread. The objects of this distinguished collection can
still interact with others via messages, but access to their array(s) is fully encap-
sulated. The problem of asynchronously processed messages spurring improper
array access is addressed by specifying the objects’ control flow in SDAG [16].
With respect to the shared array, this is essentially the same SPMD arrange-
ment as seen before. Extending this style to multiple object collections accessing
one or more arrays through an identical sequence or cycle of phases is similarly
straightforward.

As we introduce multiple modules that want to share an array, the complex-
ity of the existing approach increases. Each module module must respect the
phase and synchronization behavior of all the others. The obvious but painful
way to accomplish this is for each module to trace out the synchronization for
every phase, even those in which it does not participate. There are two down-
sides to this approach: modules not participating in a phase will nevertheless
be blocked while that phase proceeds, and the phase-change code of every mod-
ule must be updated in lockstep, lest the programmer witness hangs, assertion
failures, or wrong results (depending on the exact changes made).

We avoid this complexity by sending messages containing array handles to
client objects that react by spawning a thread to perform one phase worth of
computation on the array. These messages serve to signal the client objects that
the array has been synchronized properly and is in the mode they expect and
depend on. At the end of the phase, these threads call a newly added method,
Handle::syncDone(), to signal completion and deactivate the handle.

To drive the interactions of various collections of parallel objects with the
shared arrays, we construct explicit coordination code that sends the messages
mentioned above. This ‘driver’ code centralizes the knowledge of what phases
an array will pass through and which objects participate in which phase. For
objects not participating in a given phase, the driver code passes the same array
handle as it sent to the active chares to a special entry method that simply calls
syncDone and returns. This fulfills those objects’ participation in the phase
without interrupting the flow of their normal work.

Giving separate modules access to common shared arrays presents new op-
portunities beyond coupling pieces of an application that wish to interact through
a shared array. Different steps of computation can easily have widely-varying
demands in terms of the work to be done, the amount of data to be accessed,
and the pattern in which that access occurs. Where these steps don’t depend on
persistent state outside the array, we can separate each phase into its own col-

9



lection of objects, allowing us to vary the parallel decomposition and mapping,
taking into account grain size, load balance, and data locality.

This approach supports a separation of concerns between application sci-
entists writing the bodies of the individual computational methods and com-
puter scientists focusing on efficient parallel execution. This approach also pro-
duces better-engineered software in which distinct computational steps are dis-
tinguished and named as loosely coupled components, each of which could then
be tested in isolation.

5. Case Study: Long-Range Forces in Molecular Dynamics

To direct and test our composition of shared-array and message-driven exe-
cution, we have developed a prototype parallel implementation of the novel long-
range force-calculation method for classical molecular dynamics (MD) known as
the Multi-Level Summation Method (MSM) [17]. MSM is a potential replace-
ment to the popular particle-mesh Ewald (PME) summation that operates on
a hierarchy of progressively-coarsened grids to compute the electric potential
across the simulation space from the distribution of particles’ electric charges.
Compared to PME, MSM can produce similarly accurate results in O(n) time,
while PME requires O(n log n), where n is the number of particles in the sys-
tem. MSM has the additional practical advantage of an isoefficient 3D stencil
structure, as opposed to PME’s 3D FFTs.

Our prototype is built on the popular MD application NAMD [18]. For
its short-range interactions, NAMD uses a hybrid spatial-force decomposition.
In this decomposition, the particles are divided among a collection of Patch

objects, each responsible for the particles within a portion of the simulation
box. The forces among the particles are computed by several collections of
Compute objects that receive particle positions from one or two Patch objects,
calculate the interactions among the particles, and transmit the resulting forces
back to the Patches (Figure 2). The Patches are responsible for integrating the
net forces on the particles to obtain their velocity and position for the next time
step. These portions of the code are purely message-driven Charm++ code,
and remain unchanged in our modified version.

We incorporate MSM into this existing structure by adding a new set of
Compute objects responsible for interpolating particles’ charge contributions
onto the finest charge grid and interpolating the forces on the particles back
from the finest potential grid. The entire process is illustrated in figure 3. The
restriction, prolongation, and cutoff steps are each performed by separate col-
lections of chares at each level. Each level’s grids are stored and transfered by
MSA.

This process exposes parallelism at two distinct levels: each of the computa-
tional steps at each level (direct interaction, restriction, and prolongation) can
begin and run independently as soon as its input data is available, and the work
of each step can be divided among a number of objects. We have benchmarked
this early implementation on Blue Gene P using the 92224 atom ApoA1 molec-

10



Patch Objects

Non-
bonded Bonded MSM

Compute Objects

...

Figure 2: The multi-level summation methed is one of many types of Compute objects used in
NAMD.

MSM Compute Objects

Interpolate Anterpolate

Cutoff

Cutoff

Cutoff

Restrict

Restrict
Prolong

Prolong

Charge Grids Potential Grids

Figure 3: Multi-level summation as implemented using collections of message-driven objects
(MSMCompute, Cutoff, Restrict, Prolong) accessing MSAs.

11



4 8 16 32 64 128 256 512 1024 2048 4096

Cores

1

10

100

1000
S
te

p
s 

p
e
r 

m
in

u
te

Figure 4: Scaling results for the multi-level summation method implemented in NAMD using
MSA on Blue Gene P. Step time on 4 processors (1 node) is 31.9 seconds.

ular system, and scaling results are shown in Figure 4. At present, the arrays
are distributed in the Charm++ runtime’s default linear blocked manner.

Some extracts from our prototype code appear in listing 2. Lines 1–15 show
the Charm++ coordination code (in Structured Dagger notation [16]) for the
work each MSMCompute does in a single run of the MSM process. First, it waits
for messages containing particle positions via its interact entry method and an
accumulate-mode handle on the charge grid via its contributeCharges entry
method (lines 2–3). Once both have arrived, it stores the particles’ positions,
interpolates those particles’ charges onto the grid, and synchronizes the grid to
indicate completion. When the potential grid is ready to have forces anterpo-
lated back to the particles, as indicated by receiving a read-mode handle (line
8), it prepares and sends a message reporting the forces it calculates back to
its corresponding Patch, synchronizes the potential grid, and discards the old
particle positions.

One of the computations internal to MSM, of the potential energy of longe-
range interactions, can be seen in lines 16–25. This entry method receives
read-mode handles to both finest-resolution grids (16), computes their pointwise
product (or this Energy objects’s portion thereof, when we decompose this step),
contributes it to a reduction, and synchronizes the grids.

6. Related Work

MSA draws some ideas from earlier implementations of distributed shared
memory. Munin [9, 19] lets the programmer statically specify that each shared

12



1 entry void MSMCompute ::step() {

2 when interact(ParticleDataMsg *msg),

3 contributeCharges(Accum charges) {

4 particles = msg;

5 computeChargeGrid(charges );

6 charges.syncDone ();

7 }

8 when readPotentials(Read potentials) {

9 forceMsg = new ParticleForceMsg;

10 computeForces(potentials , forceMsg );

11 patch.receiveForces(forceMsg );

12 potentials.syncDone ();

13 delete particles;

14 }

15 }

16 entry void Energy :: calculate(Read charges , Read potentials) {

17 double u = 0.0;

18 for(int i = 0; i < grid_x [0]; ++i)

19 for(int j = 0; j < grid_y [0]; ++j)

20 for(int k = 0; k < grid_z [0]; ++k)

21 u += charges(i,j,k) * potentials(i,j,k);

22 contribute(u); // Contribute to a reduction

23 charges.syncDone ();

24 potentials.syncDone ();

25 }

Listing 2: Two illustrative functions: (a) One timestep’s work for the Compute objects that
interface between the Patches and the MSM computation. (b) A method that computes the
system’s long-range potential energy by summing the point-wise product of the charge and
potential grids.

variable should be cached in one of a few different ways, depending on their
expected access pattern. These cache modes include read-mostly, write-once,
result, producer-consumer, and migratory. It also provides an unconstrained
generic coherence protocol for variables with no specified treatment. Tread-
marks [20] and the subsequent Cluster OpenMP [21] try to offer developers a
model very similar to physical shared memory in programmability and perfor-
mance on distributed systems. Unlike MSA, Cluster OpenMP and Munin do
not offer mechanisms to control data distribution, although Huang et al. have
implemented mapping directives in OpenMP as part of an effort to implement
OpenMP on top of Global Arrays [22].

X10 [5] is a partitioned global address space (PGAS) language with strong
support for asynchronous operations and flexible synchronization. Its clock syn-
chronization construct, and the subsequent proposal of phasers [23], allow dy-
namically varying sets of tasks to coordinate their activities. Unlike MSA’s ac-
cess mode discipline, X10 does not directly associate its synchronization mecha-
nisms with the state of shared data structures, and thus requires the programmer
to ensure correct usage. UPC has also seen proposals to add more asynchronous
mechanisms [24].

13



7. Future Work

In many cases, particular computational elements will access the same parts
of a shared array repeatedly, such as from one iteration of an algorithm to the
next. This persistence of reference means that migrating data-containing shared
array objects and computation objects closer together should reduce communi-
cation latency and network contention. In the ideal case, most ‘shared’ array
accesses can actually take place within one processor or node’s own memory,
turning system-level interconnect traffic to memory bus traffic. When access
patterns are static and predictable based on knowledge of the algorithms or
problem domain in question, such a mapping can be constructed by a suffi-
ciently knowledgable and dedicated programmer. However, the patterns may
be both unpredictable and dynamically varying. Even when the patterns are
simply dependent on the input problem or data, optimal performance would
still require a carefully crafted mapping for each instance. Based on runtime
instrumentation, we can apply a graph partitioning library like METIS [25] or
Scotch [26] to approximately equalize load and minimize communication.

Another avenue for improvement would be to make the MSA implementation
adapt its behavior at runtime. Within a phase, accesses to nearby locations
can be prefetched on the same basis as a hardware memory prefetch system.
Across phases, when the runtime identifies that an object accesses the same
part or parts of a shared array in successive phases, the cache on the object’s
host processor can exploit this observation to proactively request that section’s
contents as soon as the array enters a read phase. These optimizations aim to
reduce latency, at the potential cost of additional network traffic.

8. Conclusion

In this paper, we consider the combination of the Multi-Phase Shared Arrays
programming model, which sacrifices some flexibility of a shared memory system
to prevent data races, with the general-purpose message-driven execution model.
We describe an extension of MSA’s implementation to enforce its constraints
more inexpensively at compile-time. We then build on this new mechanism to
compose MSA safely with existing message-driven code.

To improve on the safety guarantees of MSA, we introduce a system of
typed handle objects. An MSA’s access mode in each phase of a parallel pro-
gram defines the operations allowed on the array during that phase. In MSA,
the programmer was previously responsible for manually keeping track of each
array’s phase and avoiding inappropriate accesses. Now, this state information
is encoded in the type system and checked automatically at compile-time.

Building on the improved safety provided by typed handles, we tackled the
problem of integrating MSAs into programs composed of message-driven objects
by sending messages containing appropriate shared array handles to clients in-
volved in each phase. Using that structure, we modified MSA’s synchronization
semantics such that client threads not participating in an entire series of phases
need not block while waiting for intermediate synchronization steps to complete.

14



To demonstrate the advances described above, we present a pair of examples
drawn from real applications. The first, a parallel implementation of k-means
clustering, demonstrates the use of typed handles in SPMD-style MSA code.
The second, multi-level summation for molecular dynamics, motivates our syn-
thesis of MSA with message-driven execution and illustrates the resulting design.

References

[1] L. V. Kale, S. Krishnan, Charm++: Parallel Programming with Message-
Driven Objects, in: G. V. Wilson, P. Lu (Eds.), Parallel Programming
using C++, MIT Press, 1996, pp. 175–213.

[2] J. Nieplocha, R. J. Harrison, R. J. Littlefield, Global arrays: A nonuniform
memory access programming model for high-performance computers, J.
Supercomputing (1996) 197–220.

[3] T. El-Ghazawi, W. Carlson, T. Sterling, K. Yelick, UPC: Distributed
shared memory programming, books.google.com (2005).

[4] R. Numrich, J. Reid, Co-array fortran for parallel programming, ACM
SIGPLAN Fortran Forum 17 (1998).

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, V. Sarkar, X10: an object-oriented approach to non-uniform
cluster computing, in: OOPSLA 2005: ACM SIGPLAN Conference on
Object Oriented Programming Systems, Languages, and Applications.

[6] Y. Dotsenko, C. Coarfa, J. Mellor-Crummey, A multi-platform co-array
fortran compiler, in: Proceedings of the 13th International Conference of
Parallel Architectures and Compilation Techniques (PACT 2004), Antibes
Juan-les-Pins, France.

[7] J. DeSouza, Jade: Compiler-Supported Multi-Paradigm Processor
Virtualization-Based Parallel Programming, Ph.D. thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 2004.

[8] J. DeSouza, L. V. Kalé, MSA: Multiphase specifically shared arrays, in:
Proceedings of the 17th International Workshop on Languages and Com-
pilers for Parallel Computing, West Lafayette, Indiana, USA.

[9] J. Bennett, J. Carter, W. Zwaenepoel, Munin: distributed shared memory
based on type-specific memory coherence, PPOPP ’90: ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (1990).

[10] O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley,
G. Zheng, L. Kale, Parfum: A parallel framework for unstructured meshes
for scalable dynamic physics applications, Engineering with Computers 22
(2006) 215–235.

15



[11] P. Wadler, Linear types can change the world!, in: M. Broy, C. Jones
(Eds.), Programming Concepts and Methods, 1990.

[12] J. Maddock, S. Cleary, Boost.StaticAssert, Boost Library Project, 2005.

[13] R. Helm, I. M. Holland, D. Gangopadhyay, Contracts: specifying behav-
ioral compositions in object-oriented systems, SIGPLAN Not. 25 (1990).

[14] B. Meyer, Applying “Design by Contract”, IEEE Computer 25 (1992).

[15] S. Chakravorty, A. Becker, T. Wilmarth, L. V. Kalé, A Case Study in
Tightly Coupled Multi-Paradigm Parallel Programming, in: Proceedings
of Languages and Compilers for Parallel Computing (LCPC ’08).

[16] L. V. Kale, M. Bhandarkar, Structured Dagger: A Coordination Language
for Message-Driven Programming, in: Proceedings of Second International
Euro-Par Conference, volume 1123-1124 of Lecture Notes in Computer Sci-
ence, pp. 646–653.

[17] D. J. Hardy, Multilevel Summation for the Fast Evaluation of Forces for
the Simulation of Biomolecules, Technical Report UIUCDCS-R-2006-2546,
Dept. of Computer Science, Univ. Illinois at Urbana-Champaign, 2006.

[18] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, L. V. Kale, Over-
coming scaling challenges in biomolecular simulations across multiple plat-
forms, in: Proceedings of IEEE International Parallel and Distributed
Processing Symposium 2008.

[19] J. B. Carter, J. K. Bennett, W. Zwaenepoel, Techniques for reducing
consistency-related communications in distributed shared memory systems,
ACM Transactions on Computers 13 (1995) 205–243.

[20] P. Keleher, S. Dwarkadas, A. L. Cox, W. Zwaenepoel, Treadmarks: Dis-
tributed shared memory on standard workstations and operating systems,
in: Proc. of the Winter 1994 USENIX Conference, pp. 115–131.

[21] C. Terboven, D. Mey, D. Schmidl, M. Wagner, First experiences with intel
cluster openmp, Lecture notes in computer science (2008).

[22] L. Huang, B. Chapman, Z. Liu, Towards a more efficient implementation
of openmp for clusters via translation to global arrays, J. Par. Co. (2005).

[23] J. Shirako, D. Peixotto, V. Sarkar, W. Scherer, Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization, Interna-
tional Conference on Supercomputing (2008).

[24] A. G. Shet, V. Tipparaju, R. J. Harrison, Asynchronous programming
in upc: A case study and potential for improvement, in: Workshop on
asynchrony in the PGAS model.

16



[25] George Karypis and Vipin Kumar, A coarse-grain parallel formulation of
multilevel k-way graph partitioning algorithm, in: Proc. of the 8th SIAM
conference on Parallel Processing for Scientific Computing.

[26] C. Chevalier, F. Pellegrini, PT-Scotch: A tool for efficient parallel graph
ordering, J. Parallel Computing (2008) 318–331.

17


