Asynchronous Collective Output With
Non-Dedicated Cores

Phil Miller, Shen Li, Chao Mei
Department of Computer Science
University of Illinois at Urbana Champaign
Urbana, Illinois 61801
Email: {mille121,shenli3,chaomei2} @illinois.edu

Abstract—Parallel applications are evolving to place larger
demands not just on computation and network capabilities, but
on storage systems as well. Storage hardware has scaled to keep
up, but the software to drive it must evolve alongside to service
this increased potential. This paper presents an output forward-
ing middleware for message-driven parallel applications written
in Charm++. This layer directs IO operations across the entire
system to a designated subset of processors in order to minimize
contention and overheads. Our implementation is distinctive in
that these processors are not dedicated to this task, but can still
contribute to the computational task. Other processors need not
block while waiting for the designated 10 processors to become
ready or make progress. Using this new layer, we demonstrate
speedups of 1.5 —2.5x in the popular scientific code NAMD over
its previous parallel output implementation, along with reduced
sensitivity to IO subsystem parameters.

I. INTRODUCTION

Existing parallel software is evolving to place increasing
demands on I/O performance of parallel computers, and
new applications that deal in immense volumes of data are
rapidly emerging. As software scales, application developers
are forced to use progressively more sophisticated techniques
to avoid I/O operations becoming a performance bottleneck
[1]. Many libraries and frameworks have arisen to address
these needs (e.g. [2], [3], [4], [5], [6]).

Because of the need for high-level information and wide-
ranging coordination to achieve high performance, these im-
plementations typically focus on optimizing collective 1/O
operations. By doing so, they set aside chunks of time in which
all processors will focus on I/O, with computation to resume
after some operation is complete. During this time, a subset of
processors will actually interact with the underlying filesystem,
while the others will wait to communicate the data involved.
The time spent waiting is time in which those processors are
not doing productive computation.

In large cluster and supercomputer installations, application
code runs on dedicated nodes. There may be operational
interference from the node OS or daemons, but other appli-
cations will not contend for computational resources once a
job is running. On Bluegene systems (which isolate distinct
job partitions) and full-bandwidth switched networks, applica-
tions are similarly not competing for shared communication
resources. However, no such isolation is present in the storage
subsystems of these computers. The potential contention can

make application I/O performance unpredictable and highly
variable. In a synchronized collective operation, the delay of
a single participant can degrade the performance of the entire
application, magnifying the impact of that variability.

The issues of wasted resources and unpredictable per-
formance can be mitigated by performing I/O operations
asynchronously with application logic. Instead of blocking
while data makes its way to or from the storage system, a
program can continue executing independent work, masking
the unpredictable and difficult to control latency until the
operation completes.

In this paper, we describe a fully asynchronous collective
I/O library implemented in the Charm++ runtime system [7].
Our library designates a subset of cores to interact with the
filesystem as each operation is started, but does not dedicate
the time of those cores or any others to the I/O task. Data is
transfered with minimal synchronization, but still in a fashion
suited to avoiding contention, while application code continues
to run.!

We evaluate our work by adapting the popular NAMD
molecular dynamics code to use our library. NAMD’s existing
release carries its own implementation of parallel I/O, aimed
at limiting per-node memory requirements and increasing
throughput over a single-process-I/O implementation. How-
ever, its design experiences substantial contention, and imple-
ments avoidance mechanisms that are ultimately performance-
limiting. Our library achieves effective bandwidth increases of
1.5 — 2.5x over that implementation.

II. MAPPING DATA TO PROCESSORS

According to measurements of Lustre by Cray and
ORNL [8], up to a few thousand processes, writing to a
separate file per processor can attain full bandwidth. However,
beyond a cutoff point, performance in this approach falls off.
On Lustre, there are many storage nodes, but only a single
centralized meta-data server. As the number of processes per-
forming IO increases, this creates contention at the metadata
server, and eventually creates contention on the storage nodes
as well.

Thus, scalability demands limiting the number of processes
making filesystem calls. In order to accomplish this, data from

IThis library is distributed as part of the Charm++ programming environ-
ment, available for download from http://charm.cs.illinois.edu/

Q

Q

AN

N 'LFM N

(Parallel File System

N

(:) Application Object

(:::D Parallel I/0 Proxies

Fig. 1.

the overall set of processes must be funneled to a smaller
operating set. Once data’s position in output is determined,
it is straightforward to map this to a subset of processes.
Simple experiments contrasting ‘round-robin’ and ’long-stripe’
arrangements have found that performance is generally higher
with each output process writing long contiguous stripes.
More detailed work [3], [9] exploits knowledge of how the
underlying filesystem will map file data to storage nodes to
minimize the number of interactions between compute and
storage nodes, and the contention within those nodes.

The stripe is the smallest unit of data in which a storage
subsystem happily deals. There is a tradeoff between amortiz-
ing overhead in transfers (favoring a larger stripe size), and
exposing more parallelism and hence offering higher potential
bandwidth (favoring a smaller stripe size). Keeping latency
and interference low also leans toward smaller stripes. For
any given parallel filesystem, the number of storage nodes is
an upper bound on the available parallelism in data transfers
to or from storage.

In this work, we do not directly consider how to optimize
the number of processors to use for I/O, leaving that as a
parameter to be set by application code. Given the number
of working processors and an amount of data to be written,
we can compute a reasonable chunk size to be assigned to
each processor. These chunks should generally come out to
multiples of the underlying storage system stripe size. Since
only one processor will operate on the stripes that make up
any given chunk, there is no risk of contention for locks from
storage nodes.

III. DESIGN

We have implemented an output forwarding layer for par-
allel applications written on top of the Charm++ parallel
runtime system. As shown in Figure 1, the application’s work
is divided among several objects on each processor. The

Processor

)

Architecture: Application objects communicate with local 10 proxy objects, which exchange data amongst themselves and interact with the filesystem.

objects communicate with each other by asynchronous method
invocation in an active-messaging scheme. Each processor
can be executing work in one object while transmitting or
receiving messages for others. This overlap of communication
and computation is important for high performance.

Normal application development practices in Charm++ sug-
gest the use of numbers of objects that correspond to a
‘natural’ decomposition of the problem being solved or the
system being simulated, without direct regard for the number
of processors in the system. The runtime can then map these
objects to optimize for load balance and communication pat-
terns. However, for an I/O library, the many considerations of
process- and node-level buffering, connection and contention
limiting, and others drive toward an implementation that
explicitly considers how many processors are available and
how work is distributed among them.

The central element of our implementation is a one-per-
processor collection of objects (known as a Chare Group
in Charm++) that we will interpose between application-
level objects that own the data and the underlying parallel
filesystem. Groups communicate by the same asynchronous
mechanisms as other Charm++ objects, but are addressed
by the processor on which they reside, rather than by an
abstract index. The ‘Parallel I/O Proxy’ objects of Figure 1
are implemented as a chare group, instantiated at application
startup. The interface to this group, including the message
entry points and sequencing logic, can be seen in Figure 2. The
corresponding implementation code can be seen in Figure 3.

When the application wants
signals this collection to prepare for that process
(Manager: :prepareOutout ()). The group signals
its readiness to the application through a callback (ready),
through which it delivers an opaque handle that the application
should pass in along with the data. That handle acts as a
‘parallel file descriptor, allowing the proxy objects to look

to perform output, it

group Manager {
entry void prepareOutput_central(std:: string name,
CkCallback ready,

size_t
CkCallback complete ,

bytes ,

Options opts);
entry void prepareOutput_distrib(int handle, std::string name,
size_t bytes, Options opts);

entry void prepareOutput_readied (CkReductionMsg *m);
/// Serialize setting up each file, so that
entry void run() {
for (filesOpened = 0; true; filesOpened++) {
if (CkMyPe() == 0)
when prepareOutput_central(std::string name,
CkCallback ready,

size_t
CkCallback complete ,

all PEs have the same sequence

bytes ,

Options opts) atomic {

// Default setting and error checking omitted
nextReady = ready;
thisProxy .prepareOutput_distrib (nextHandle , name, bytes, opts);
files [nextHandle] = FileInfo (name, bytes, opts);
files [nextHandle]. complete = complete;
}
when prepareOutput_distrib|[filesOpened](int handle, std::string name,

size_t bytes, Options opts) atomic {

if (CkMyPe() != 0)
files [handle] =
}

// Open file

FileInfo (name, bytes, opts);

if we’re one of the active PEs

if ((CkMyPe() — opts.basePE) % opts.skipPEs == 0 &&

CkMyPe () < lastActivePE (opts)) {
int fd = open(name.c_str(),

O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);

if (=1 == fd)
CkAbort(” Failed to open a file for
files [handle].fd = fd;

}

parallel

output”);

contribute (CkCallback (CkIndex_Manager:: prepareOutput_readied (0),

thisProxy [0]),
}

if (CkMyPe() == 0)

filesOpened);

when prepareOutput_readied[filesOpened](CkReductionMsg xm) atomic {

delete m;
nextReady .send (nextHandle ++);
}
}
}s
entry void write_forwardData(int handle, const
size_t bytes, size_t

b

char data[bytes],
offset);
entry void write_dataWritten(int handle, size_t bytes);

Fig. 2. The interface definition and coordination code for the I/O proxy group

up the parameters (which processors, stripe size, offsets,
etc.) associated with each particular target file. Once the
system is ready, the application objects will pass their
portions of the data to the local element of the group
(Manager: :write ()), which will redistribute the data
according to the plan and perform write operations as whole
stripes are assembled.

A. Control Flow

For each file, our IO forwarding layer takes as parameters a
stripe size, a number of processors to use, a starting processor,

and a numeric separation between those processors. It applies
these parameters in a straightforward fashion to direct data
provided by the application to the processor that will eventu-
ally pass it to the filesystem.

When application code is ready to write data to persistent
storage, it calls the IO forwarding layer with a file name, size,
and the parameters listed above. It also passes two callbacks,
for signaling readiness and completion. These callbacks can
represent a function to call or, more commonly, the target of
a subsequent message send. The 10 forwarding layer com-

O 0T B W —

struct Options {

111

How much contiguous data (in bytes)

size_t peStripe;

111

How much contiguous data (in bytes)

size_t writeStripe;

/11
int
/11
int
/11
int

}

How many PEs should participate in t
activePEs ;

should be assigned to each active PE

should a PE gather before writing

his activity

Which PE should be the first to participate in this activity

basePE ;
How should active PEs be spaced out?
skipPEs ;

struct FileInfo {

std

::string name;

Options opts;
size_t bytes, total_written;

int

fd;

CkCallback complete;

}s

class
/11

Manager : public CBase_Manager {
Application—facing methods, invoked

void prepareOutput(const char xname, siz
CkCallback ready, CkCallback complete,
Options opts = Options()) {

thisProxy [0]. prepareOutput_central (name, bytes, ready, complete, opts);

}

void write(int handle, const char xdata,
Options &opts = files[handle]. opts;
do {

size_t stripe = offset / opts.peStri
int pe = opts.basePE + stripe * opts
size_t bytesToSend = min(bytes, opts

locally on the calling PE
e_t bytes,

size_t bytes, size_t offset) {

pe;
.skipPEs;

.peStripe — offset % opts.peStripe);

thisProxy[pe]. write_forwardData (handle , data, bytesToSend, offset);

data += bytesToSend;
offset += bytesToSend;
bytes —= bytesToSend;

} while (bytes > 0);

111

Internal methods, used for interaction among IO managers across the system
char =xdata, size_t bytes, size_t

void write_forwardData(int handle, const
// Omitted error checking and interrup
pwrite (files [handle].fd, data, bytes_l1
thisProxy [0]. write_dataWritten (handle ,

}

tion handle code for simplicity
eft , offset);
bytes);

void write_dataWritten(int handle, size_t bytes) {
files [handle]. total_written += bytes;

if (files[handle].total_written == files[handle].bytes)

}

int
int

files [handle]. complete.send ();

filesOpened;
nextHandle ;

std ::map<int , Filelnfo> files;
CkCallback nextReady;

int lastActivePE (const Options &opts) {
return opts.basePE + (opts.activePEs —1)xopts.skipPEs;

Fig. 3.

The implementation of the I/O proxy group

() andyngaredaag

0

PrepareQutput_central

,,,,,, | O Processor
@ Parallel I0

Proxy
@) Object

t .
1]

(n)

! —> Setup messages
.,

1]

I ks W | SEEEEE F=s

i — ----» Ready messages
1]

\\ PrepareQutput_readied () ’/

Fig. 4. Flow of execution to prepare for writes to a file

Source
Processors

A 4 Yy vvY h 4 h 4 h 4 h 4 h 4 h 4 h 4 Output

| Processor
Distribution

Fig. 6. Mapping chunks of a file from different processors to whole stripes

municates internally to ensure that all processors know how
that file is to be handled. Every processor acknowledges these
instructions by contributing to a parallel reduction operation.
When the reduction reaches the root processor, it triggers the
ready callback, passing a handle object used to look up the
file. These steps are illustrated in Figure 4.

As shown in Figure 5, the application code sends this handle
to any objects with data to be written. Each of these objects
call the IO proxy object local to the processor on which
they reside, passing the handle along with their data buffers.
The local proxies forward data to proxies on other processors
as needed, via the Manager::write_forwardData ()
method. From the application’s point of view, the forwarding
process completes immediately, and buffers can be reused or
discarded without delay. When an IO proxy has written all
the data it is responsible for, it notifies the master. When
the master has heard from the IO proxies on every processor
writing data, it signals the completion callback.

B. Striping

Given the substantial documented effect of matching appli-
cation writes to filesystem striping, the optimization priority is
to constrain each output processor’s writes to distinct stripes.
For each segment of data that the application wishes to write,
we compute which stripes it intersects based on the stripe size
parameter (Figure 3 line 33), as shown in Figure 6. Then,

for each stripe, we compute which processor is responsible
for writing that stripe to the filesystem (line 34). We send
messages containing each stripe chunk to the IO proxy on its
respective processor (line 36). When the 10 proxy receives
the data, it passes it to the filesystem (line 46), secure in the
knowledge that it will not contend with other processors for
access to that stripe, and notifies the root processor (line 47)
so that we can tell when the process is complete (lines 50-55).

IV. EVALUATION

In order to evaluate the effectiveness of our approach, we
have adapted NAMD, an existing Charm++ application, to use
our output framework. NAMD is a popular (> 40,000 users)
code for classical (i.e. Newtonian) simulation of large (up to
100 million atoms) biomolecular systems at atomic scale. Its
behavior of periodically dumping the state of the computation
(i.e. the positions and velocities of all particles) to disk is
typical of many scientific applications.

In its present version, NAMD contains mechanisms to
do parallel output. Specifically, the particles’ positions are
collated on a subset of the processors, which coordinate to
write their data to the filesystem. This coordination amounts to
a control on how many of them will actually make write ()
calls simultaneously. This scheme was implemented to enable
scalability to large target systems without exceeding the avail-
able memory on individual nodes. It makes some expedient
choices to attain acceptable performance, and leaves several
knobs for the user to set ‘appropriately’. It takes no account
of the type or parameters of the filesystem on which it runs.

NAMD?’s parallel output scheme [10] introduces a layer
of indirection between the application objects and the 10
processors, to balance the I0 and memory load among the
processors performing 10. Depending on how many processors
are involved in output and when they perform their operation,
performance can vary wildly. Figure 7 shows execution traces
of NAMD for simulating a 2.8-million-atom virus molecule on

)
())
PN
= (4 N\ (I) 0)
£~
S
E S
>
=
5]
()
S
Y
o
oo
2 g
OutputComplete () =
o o
Y
5
Fig. 5. Flow of execution once a file is ready to be written

32 nodes of Jaguar PF (using 10 cores/node and one output
processor per node) before our modifications. In the figure, the
dark yellow bars represent the time spent on output, while bars
in other colors represent the time of different types of force
computation. Figure 7(a) shows each processor writing to a
separate file, a scheme not supported by surrounding tools or
NAMD'’s own input reader, as a point of reference; Figure 7(b)
shows all writes going to one file one after another while fig-
ure 7(c) shows all writes going to one file but simultaneously.
Note that these traces are presented on approximately the same
timescale, illustrating that an incautious ‘all-at-once’ mode of
output can be disastrous.

The disappointing performance in NAMD’s working output
code can be explained by the various kinds of contention that
it creates in the storage subsystem. Among the processors
performing output, data is divided among them evenly, for
the sake of load balance. Since the simulation data set does
not precisely divide into neat power-of-two size chunks, this
means that there is no alignment of each processor’s writes to
filesystem or storage hardware boundaries. Additionally, be-
cause each processor’s responsibility crosses stripe boundaries,
there are substantially more connections to the storage nodes
than are necessary.

In Figure 8, we present measurements of the average band-
width obtained by coordinate outputs from a 10-million atom
simulation on Jaguar, a Cray XT5 with a Lustre-based storage
system. Each output step wrote 283MiB of data, and the data
presented are the average of 8 output steps each. We can see
that NAMD’s existing implementation peaks around 220MiB/s
using 36 out of 480 processors for output, and falls off rapidly.
In contrast, when NAMD is adapted to use our library, it
sees substantially better performance on both 240 and 480
processors. Measured bandwidth ranges from 305MiB/s to
580MiB/s. Moreover, our attained bandwidth does not decay
as rapidly as one leaves the ‘sweet spot’ of output processor

count. Thus, it is less reliant on the user to choose a good
value for the number of output processors. Finally, because
it successfully uses a larger number of cores, we are able to
run much larger simulations (with a correspondingly larger
memory footprint) without output times increasing sharply.
Measurements by the machine’s operators [8] suggest that
the underlying Lustre filesystem can offer bandwidth of at least
1.5 GiB/s to this many processors. Thus, there is still a long
ways to go in minimizing time spent performing output.

V. RELATED WORK

Collective I/0 and asychronous I/O are necessarily popular
techniques used in large parallel applications to prevent /O
becoming a performance bottleneck [1]. There is plentiful
effort to provide efficient implementations of the standard
MPI-IO API (e.g., [2], [3]). Additional efforts are directed
at optimizing the use of lower-level APIs by data formatting
libraries such as the Hierarchical Data Format (HDF) [11] and
the Common Data Format (CDF) [12]. Following Cormen’s
dicta about storage transparency [13], these various efforts are
slowly exploiting the various bits of knowledge that are latent
in the filesystem and data formatting implementations.

Lang et al. [14] conduct several experiments to show how
the changes on configurations influence the aggregated band-
width of Intrepid (the Argonne Leadership Computing Facility
BG/P system) under different application I/O benchmarks.
Their work convinces us that, besides the applications’ 1/O
pattern, the system performance also heavily rely on tuning
parameters. Thus, researchers have to expend extra effort to
tune them when these data formats are employed in demanding
applications. For instance, Howison et al. [S] proposed several
detailed modifications on HDF5 to make it perform better
above the Lustre [15] file system as configured on a trio
of Cray supercomputers. For example, they align all objects
in a file over a particular size threshold since most parallel
file systems performs best when data access falls on chunk

(b) Single file, one at a time

(c) Single file, simultaneously

Fig. 7. Execution timelines of unmodified NAMD performing an output step generated by the PROJECTIONS tool (with comparable time scales).

600
]
*
pJ

500 | e

400 4 L *
Q
] \
s

|

S 300
2
3
©
f
©
o

200

> BW 480 New
- BW 240 New
100 -| ---A-—-- BW 480 Old
0 T T T T T)
0 50 100 150 200 250 300
Cores performing output

Fig. 8. NAMD’s output bandwidth on 240 and 480 processors of Jaguar and Kraken, with varying numbers of processors touching a single output file.

boundaries. This benefit of alignment motivates the present
work.

IBM’s GPFS [16] relies heavily on its distributed lock
manager and byte-range locking policies to achieve good per-
formance. The distributed lock manager hands out lock tokens
to particular nodes, and those nodes do not need to request new
locks for successive accesses to the same disk object. The byte-
range locking allows multiple nodes writing to different parts
of the same file simultaneously by negotiating for the token of
required range. As long as the access patterns are predicable,
their negotiation protocol will be able to minimize conflicts.
The access pattern has significant dependence on how files are
organized which GPFS itself cannot control. Thus, there is no
guarantee for the performance of prediction algorithm.

The striping technique is also employed by Lustre [15]
which, however, focuses on other benefits presented by strip-
ing, e.g., maximum file size is not limited by the size of a
single target and I/O bandwidth to a single file can aggregate
the bandwidth of all the objects that make up that file.
PVES [17] allows users to specify stripe size of each file.
But their minimum granularity is one file, i.e., all chunks of
the same file share identical size.

Much software that uses or coordinates parallel I/O uses a
small subset of compute nodes as I/O delegates that combine
data and perform interactions with low level APIs. Asy-
chronous I/O allows I/O workload to overlap with compu-
tational workload instead of impeding computing. Besides
the above two techniques, Ohta et al. [6] employ pipeline
techniques to further overlap I/O requests at the network and
filesystem layers. The present work is distinct from these
other systems in that the processors performing I/O need
not be dedicated to that task, but can also contribute to the
overall computational effort of the application. By reducing
the necessary number of distinct types of components, this
sharing can also potentially simplify system management and
reduce overall costs.

The Damaris project [4] describes the use of dedicated
cores in multicore nodes to offload and accelerate 1/0. Given
dedicated cores that were spending substantial time idling, they
explore various ways to use the ‘loose’ processing power. By
compressing the data to be stored, they increased the effective
bandwidth available to the application, and reduced load on the
storage system. By performing some analysis and visualization
calculations while a simulation is running, they shorten time
to result and enable earlier detection of failing runs that
might otherwise consume substantial computer resources. In
our setting, the Charm++ programming system, these can be
executed as additional asynchronous tasks that get slotted in
with the rest of an ongoing computation, sharing the system’s
computational resources in a flexible fashion to achieve an
application’s goals. For instance, the LiveViz library assembles
visualization data from a running program, and the Projections
performance tracing framework can be configured to compress
logs as they’re written when the user expects that to be
beneficial.

The layout-aware collective I/O system [3] matches the

delegated compute nodes directly to particular storage nodes,
in order to minimize contention. This is straightforward on
filesystems like Lustre, that simply round-robin stripes of
each file across a set of storage nodes, because the mapping
requires only simple arithmetic. On more variable distributed
filesystems, such as Ceph [18], determining which delegate
is responsible for transferring which bits may become more
complicated.

VI. FUTURE WORK

Beyond the simple stripe-separation optimization described
here, there are a few other techniques implemented by other
systems that would be suitable here.

A. Stripe Buffering

Storage systems at many levels gain performance when data
is written in whole blocks, lines, or stripes at a time. One
frequent source of this constraint is the potential need to read
some data in order to write other data nearby. For instance,
RAIDS5 and RAID6 arrays need to keep parity blocks up to
date when storing data blocks. If a store is presented as an
entire stripe, spanning as many disks as make up the array,
the parity can be calculated wholly from the input data, with
the old bits on disk making no contribution.

Once data is forwarded to a designated processor, which
knows how large a chunk it will write, there is a decision to
be made: dispose of the data immediately, or buffer it in order
to present fewer, neater requests to the storage system? The
tradeoffs here are not entirely clear. By writing immediately,
the system achieves some degree of pipelining, and storage
systems with sufficient write cache can still avoid the read-
modify-write slowdown. Buffering presents fewer requests to
the filesystem, and hence incurs lower overhead. If the buffer
is sized and aligned correctly to write as a unit, the storage
system may not need to cache it at all. However, it also
increases memory usage on processors servicing I/O requests,
which may be undesirable or potentially unacceptable.

B. Pipelining

As mentioned above, servicing write requests immediately
has the potential effect of pipelining a processor’s total I/O
load. However, this is a very crude way to do so. In particular,
if a processor receives a message carrying a large quantity of
data to be written, it might try to write that entire blob at
once. The latency incurred by doing so could be substantial,
blocking the processor from doing other work or receiving
other messages in the meantime.

Given a willingness to buffer at least some data, each
processor could write some fixed fraction of its data as
that portion is available. For instance, if a processor were
responsible for 64MiB of data, it could write it in 4 16MiB
chunks. This is large enough to attain good performance from
lower-level systems, without introducing needless delays.

C. Mapping

As discussed in section II, there are substantial considera-
tions involved in deciding which processor should be responsi-
ble for any given byte or block of data. Liao and Choudhary [9]
describe a set of algorithms that are tuned to the caching
and synchronization structure of the popular Lustre and GPFS
systems. These algorithms could be adapted to benefit from
an asynchronous communication structure.

Past work on parallel I/O has treated the processors in a job
uniformly, when that may not be the case. Particularly in the
torus networks of Cray and Bluegene systems, some compute
nodes may be much closer to the I/O service nodes than others.
In concert with choosing a suitable number of I/O processors
and the distribution of data among them, we can choose to
select which processors should fill that role based on their
proximity to the system’s connection to storage. The Charm++
runtime system embeds support for these optimizations, and
previous work has demonstrated that they can be applied to
great effect [19], [20], [21], [22].

VII. CONCLUSION

In this paper, we have described the implementation and
evaluation of an IO optimization framework for applications
built for the Charm++ parallel runtime environment. This
framework reduces contention for filesystem resources by
limiting the number of processors that interact directly with
the filesystem. It then avoids contention among those active
processors by making processors responsible for stripes of a
file, which can be sized according to the filesystem’s param-
eters. Unlike existing IO frameworks, the processors assigned
IO tasks are not set aside to perform just those tasks, but can
also participate in the computation occurring on the rest of
the system. In adapting NAMD, an application that already
implemented a parallel output scheme of its own, to the new
library, we saw speedups of 1.5 — 2.5, along with reduced
sensitivity to the exact parameters guiding the 10 process and
and increase in the number of processors that can feasibly
participate in IO.

VIII. ACKNOWLEDGMENTS

Development and performance measurement for the work
presented in this paper was done with the use of Jaguar at Oak
Ridge National Laboratory, under the DOE INCITE allocation
program, and of Kraken under NSF TeraGrid allocation TG-
ASCO050039N.

REFERENCES

[1] A. Shoshani, S. Klasky, and R. Ross, Scientific Data Management:
Challenges and Approaches in the Extreme Scale Era. Proceedings of
SciDAC, 2010.

[2] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in
romio,” Frontiers of Massively Parallel Processing, Symposium on the,
vol. 0, p. 182, 1999.

[3] Y. Chen, H. Song, R. Thakur, and X.-H. Sun, “A layout-aware opti-
mization strategy for collective i/0,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
HPDC ’10, (New York, NY, USA), pp. 360-363, ACM, 2010.

[4] M. Dorier, “Src: Damaris - using dedicated i/o cores for scalable post-
petascale hpc simulations,” in Proceedings of the international confer-
ence on Supercomputing, ICS "11, (New York, NY, USA), pp. 370-370,
ACM, 2011.

[5] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf, “Tuning
hdf5 for lustre file systems,” Workshop on Interfaces and Abstractions
for Scientific Data Storage September, September 2010.

[6] K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and Y. Ishikawa, Op-
timization Techniques at the I/O Forwarding Layer. 1EEE International
Conference on Cluster Computing, 2010.

[7] L. Kalé and S. Krishnan, “Charm++ : A portable concurrent object
oriented system based on C++,” in Proceedings of the Conference on
Object Oriented Programmi ng Systems, Languages and Applications,
September 1993.

[8] “I/o tips — lustre striping and parallel i/0.” http://www.nics.tennessee.
edu/io-tips, retrieved 2011-03-30.

[91 W. keng Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel file
system locking protocols,” in Proceedings of International Conference
for High Performance Computing, Networking, Storage and Analysis
(SCO08), Austin, Texas, November 2008.

[10] O. Sarood, “Benfits of parallelizing io of large data-intensive applica-
tions with a case study of namd,” Master’s thesis, Computer Science,
University of Illinois at Urbana-Champaign, 2009.

[11] T. H. Group, Hierarchical data format version 5. 2000-2010. http:
/Iwww.hdfgroup.org/HDF5.

[12] “Common data format (cdf).” http://cdf.gsfc.nasa.gov/.

[13] T. H. Cormen and D. Kotz, Integrating Theory and Practice in Parallel
File Systems. DAGS/PC Symposium on Parallel I/O and Databases,
1993.

[14] S. Lang, P. Carns, K. Harms, and W. Allcock, I/O performance Chal-
lenges at Leadership Scale. Proceedings of the Conference on High
Performance Computing, Networking, Storage and Analysis (Supercom-
puting), 2009.

[15] “Lustre.” http://www.lustre.org/.

[16] E. Schmuck and R. Haskin, GPFS: A Shared-Disk File System for Large
Computing Clusters. Proceeding of the Conference on File and Storage
Technologies, Berkeley, CA: USENIX, 2002.

[17] P. H. Carns, R. B. W. B. L. IIl, and R. Thakur, PVFS: A Parallel
File System For Linux Clusters. Proceedings of the 4th Annual Linux
Showcase and Conference, 2000.

[18] S. A. Weil, S. A. Brandt, E. L. Miller, and D. D. E. Long, Ceph: A
Scalable, High-Performance Distributed File System. Symposium on
Operating Systems Design and Implementation (OSDI), USENIX, 2006.

[19] A. Bhatelé and L. V. Kalé, “Benefits of Topology Aware Mapping
for Mesh Interconnects,” Parallel Processing Letters (Special issue on
Large-Scale Parallel Processing), vol. 18, no. 4, pp. 549-566, 2008.

[20] A. Bhatelé, L. V. Kalé, and S. Kumar, “Dynamic topology aware load
balancing algorithms for molecular dynamics applications,” in 23rd ACM
International Conference on Supercomputing, 2009.

[21] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, “Automated Mapping
of Regular Communication Graphs on Mesh Interconnects,” in Pro-
ceedings of International Conference on High Performance Computing
(HiPC), 2010.

[22] A. Bhatele and L. V. Kale, “Heuristic-based techniques for mapping
irregular communication graphs to mesh topologies,” in Proceedings
of Workshop on Extreme Scale Computing APplication Enablement -
Modeling and Tools, September 2011.

