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ABSTRACT

State space search problems abound in the artificial intelligence, planning and op-

timization literature. Solving such problems is generally NP-hard, so that a brute-force
approach to state space search must be employed. Given the exponential amount of

work that state space search problems entail, it is desirable to solve them on large paral-

lel machines with significant computational power. In this paper, we analyze the parallel
performance of several classes of state space search applications. In particular, we fo-

cus on the issues of grain size, the prioritized execution of tasks and the balancing of

load among processors in the system. We demonstrate the corresponding techniques that
are used to scale such applications to large scale. Moreover, we tackle the problem of

programmer productivity by incorporating these techniques into a general search engine

framework designed to solve a broad class of state space search problems. We demon-
strate the efficiency and scalability of our design using three example applications, and

present scaling results up to 32,768 processors.

Keywords: parallel state space search, adaptive grain size control, dynamic load balanc-
ing, prioritized execution

1. Introduction

The state space search technique has varied applications. The traveling salesman

problem and various scheduling problems are commonly encountered in the field

of operations research and artificial intelligence. Other examples include floor-plan

design in VLSI, genetic search for optimization, and game-playing programs such

as chess solvers. Given that no polynomial-time algorithms are known to exist for

these problems, they are solved through a systematic exploration of all possible

configurations of their inherent elements. Each such configuration is termed a state,

and the set of all possible configurations is called a state space. Generally, an opera-

tor is available to transform one state into another through the modification of the

former’s configuration. The objective of the state space search problem is to find a

path from a start state to a goal state (or to each among a set of goal states). Most
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often, the search is seen to be tree-based – at each step of the search, we transform

a stored parent state into several children states that do not violate the constraints

specified by the problem. In this sense, we also refer to states as nodes of a search

tree.

Although the basic mechanism employed in all state space search problems is

essentially the same, namely the dynamic enumeration of elements of the state space,

problem classes differ from each other in their requirements and the constraints

they place on the search procedure. This leads us to categorize state space search

problems in the following manner.

All solutions search. In this class of combinational search problem, the objective

is to find all feasible configurations of the search space. The N -Queens problem is a

classic example of this problem. A parallel exploration of the search tree is generally

organized as a depth-first traversal, each processor charged with the exploration of

a different portion of the tree. The various factors that determine the efficiency of

this parallel search are discussed in Section 3.

First solution search. The objective of certain problems is to identify any feasible

configuration among an exponential number of possibilities. The 3-SAT problem is

exemplary of this class of search problems. The search procedure must find an

assignment for a set of Boolean variables such that a given predicate is satisfiable.

Any satisfying assignment suffices. A parallel depth-first procedure may be used to

explore the state space. However, note the speculative nature of the computation:

regions of the tree that may not be visited in a sequential procedure are searched

concurrently in the hope of finding a solution more quickly. As documented in the

literature, this can lead to the problem of anomalous speedups [23]. The addition

of processors to the search may yield sublinear or superlinear speedups. This issue

is discussed in more detail in Section 3.

Optimal solution search. An important class of problems requires that the search

procedure report a solution which is better than all others with respect to some

metric. Therefore, the objective of such a problem is to find an optimal solution.

One could compute the optimal solution by considering each one found by a parallel

all-solutions search, but better techniques have been presented in the literature.

These are described below.

In many situations, it is possible to define a heuristic measure that provides, for

each tree node n, a lower bound l(n), which is the minimum path length from n to

any solution within the subtree rooted at n. When considering an intermediate node

n, such an admissible heuristic allows us to compute a lower bound f(n) on the total

cost of reaching a solution through n, f(n) = l(n)+c(n), where c(n) is the length of

the path from the start state to n. It has been shown that if nodes are processed in

ascending order of f(n), the first solution found will be optimal [3]. This observation

forms the basis for the A∗ search procedure. The best-first nature of the A∗ search

procedure leads to memory requirements that are exponential in the problem size.

When the solution cost is quantized (as is the case in the 15-puzzle) the Iterative
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Deepening A* (IDA∗) [24] technique may be applied. The procedure is arranged in

a series of iterations. Starting with an initial bound d on the solution cost, in each

iteration the state space is explored in a depth-first manner for solutions with cost

no greater than d. If no such solution d is incremented and the search is restarted.

The procedure is continued until a solution is found.

The branch-and-bound technique is a more general procedure used to find op-

timal solutions to state space search problems. As with IDA∗, it uses a heuristic to

rank nodes according to their estimated closeness to a solution. In this case, the

heuristic must be both admissible and monotonic, i.e. the cost of a child node can

be no smaller than that of its parent. The cost of the best known solution, B, is

maintained across processors. This allows the procedure to prune the tree at nodes

with greater cost than B. Whenever a solution s with a better cost than B is found,

B is updated to the cost of s. Such updates are exchanged between processors so

that the search does as little wasted work as possible.

Due to the high computational requirements and inherently parallel nature of

such tree-based search techniques, there has been a great deal of interest in de-

veloping parallel methods [2, 7] for such search problems. Whereas most work in

this context has been done more than twenty years ago, the combination of re-

cent improvements in hardware and dynamic, runtime enhancements such as load

balancing [4] allow us to scale to unprecedented levels, and consider much larger

problems. However, programming today’s large HPC clusters and supercomputers

based on multicore chips is a tremendous challenge. Developers need to consider

various algorithmic and performance issues such as different choices of search pro-

cedure, heuristic algorithms, grain size control and load balancing. Moreover, these

considerations must be addressed separately for each class of parallel state space

search problems.

In this paper, we address the questions of performance and productivity in the

context of parallel state space search methods. We present the Parallel State Space

Search Engine (ParSSSE), a framework that lightens the burden of programmers

in developing state space search applications by obviating the need to write parallel

code. It provides an abstract and extensible interface to the programmer. ParSSSE

ensures good performance by performing dynamic optimizations along several di-

mensions. In particular, we investigate performance issues such as grain size, specu-

lative computation, and load balancing. Corresponding optimization techniques are

developed and integrated into ParSSSE. Results of three well-known applications

written in the framework are presented to demonstrate its scalability.

The framework we describe in this paper supports all three modes of state space

search, namely all-solution, first-solution and optimal-solution search. In particular,

for optimal-solution search, the IDA∗ [24] and branch-and-bound [15] techniques are

currently supported by ParSSSE. The framework can be extended with relatively

little effort to support other forms of search, such as bidirectional, game-tree and

AND-OR tree search.
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2. Charm++

We begin with a brief description of Charm++, which is the parallel infrastructure

on which ParSSSE is based. Next, we describe the execution model of the framework,

which motivates the discussions on performance issues that follow.

Charm++ [12, 10] is a machine independent parallel programming language

with an accompanying runtime system that has been ported to most shared and

distributed memory machines. It employs an object-oriented approach to parallel

programming. The programmer decomposes the problem into collections of objects

that embody its natural elements. These objects are message-driven and migrat-

able. Their number is independent of, but typically much larger than, the number of

physical processors used to run the application. This over-subscription of processors

is termed object-based virtualization. The migratable objects are assigned to pro-

cessors by the underlying adaptive runtime system. An object communicates with

another by asynchronously invoking an entry method on it. Asynchronous messaging

and object-based virtualization enable the dynamic overlap of communication and

computation: a processor may overlap messaging latency with not only the object’s

succeeding computation, but also with useful computation of other objects on the

same processor. Some previous work [25, 13, 27] has used Charm++ to study load

balancing techniques in state space search problems. Below, we describe some of

the key features of the Charm++ model that pertain to the search engine.

In Charm++, each processor maintains a queue of messages to be delivered

to Charm++ objects placed on that processor. This is called the incoming queue.

There is also a corresponding outgoing queue that holds messages generated by

the objects to other processors. On the processor, a scheduler keeps checking the

incoming queue. When a message is available, the scheduler picks the message and

invokes the method associated with the message to the corresponding object.

In our implementation of the search engine, each object represents a task t with

an associated tree node nt. Each t maintains a LIFO node queue with which it

performs a local depth-first search under node nt. In the depth-first search, at each

step, t picks a node ntop from the head of the node queue and checks it for feasibility.

If ntop is found to be feasible, a solution is reported. If not, ntop may be expanded

to yield children nodes. Depending on the depth of ntop , and the amount of work

done by t thus far (cf. § 3.1), the children of ntop may be assigned to newly created

tasks. In this case, the search engine enqueues a seed message for each child in the

outgoing queue of the processor. Each of these messages results in the creation of a

new task object.

A new task may be placed on a different processor from the one that created it.

This placement decision is made by the distributed seed load balancer (cf. § 3.3).

Furthermore, the seed message may have a priority bit vector associated with it (cf.

§ 3.2). This is accounted for by placing the seed message at the correct position

within the recipient processor’s incoming queue.

Termination. For single-solution problems, the program must be terminated as
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quickly as possible after the solution is found. This may require an immediate mes-

sage, which skips the Charm++ scheduler and interrupts the execution of the task

currently occupying the processor. This ensures that the program does not per-

form unneeded computation. For all-solutions problems, the quiescence detection

algorithm implemented in Charm++ is exploited to detect the termination when

all tasks are finished. The quiescence state is reached when (a) all processors have

processed all messages in their incoming queues, (b) no messages remain in the

outgoing queue of any processor, and (c) there are no messages in flight, i.e., the

number of generated messages is equal to the number of messages processed.

Solution collection. In solving all-solutions problems on distributed-memory sys-

tems, care must be taken to reduce the time spent in collecting all the solutions. To

minimize the impact of solution collection on the search procedure itself, ParSSSE

collects solutions locally during the computation, instead of reporting them to pro-

cessor 0 as they are found. When quiescence is detected, a spanning-tree based

reduction operation is performed to collect all the solutions to processor 0.

3. Efficient Parallelization of State Space Search Problems

We now consider various aspects of parallel performance in a task-based paralleliza-

tion scheme, wherein each task is responsible for the exploration of a subset of the

state space. Tasks are short-lived, but may spawn new tasks. Depending on the

load balancing strategies, newly created tasks are either placed into a local task

pool on the creating processor or sent to the other processors. During execution,

tasks are distributed to other processors for load balancing. There are several issues

associated with the efficient execution of spawned tasks in this manner. We describe

some of these challenges next, and present techniques incorporated into ParSSSE

to overcome them.

3.1. Adaptive Grain Size Control

A key consideration in the design of a parallel search application is the paralleliza-

tion strategy. One must decompose the search space into tasks so as to create

enough parallelism, while keeping the overheads of task creation and scheduling to

a minimum.

We consider these overheads in the context of the two characteristic phases of

state space search algorithms, namely startup and saturation. The startup phase

begins with the expansion of the root or initial state into its children. During this

phase the goal of an efficient parallel search procedure is to quickly generate enough

work to saturate the processors available. Therefore, at this stage, a fine-grained

decomposition of tasks is required. Once there is enough work for all processors to

do (since tasks are short-lived, but generate child tasks, which are spread across

the parallel machine using a load balancing technique), we enter the saturation

phase. In this phase, the goal is to minimize the amount of overhead incurred in
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performing the parallel search. Therefore, each task must be of medium grain size,

so that the overheads of creating and scheduling it are small in comparison to the

amount of sequential computation it performs. Once the task has performed the

requisite amount of work, it may be allowed to spawn new children tasks, which are

executed in parallel. Since most of the application time is spent in the sequential

search on the leaves, it is crucial to control their workload for purposes of load

balance. We refer to this problem as a grain size control problem. Next, we propose

a heuristic that adaptively adjusts the grain size.

Single-node tasks

Adaptive task 1

Sequential task 1

Sequential task 2 Adaptive task 2

Sequential task 3 Sequential task 4

Sequential task 5

(a) (b)

Fig. 1. Adaptive grain size control. In (a) the following are shown: (i) shallower tasks comprise
single search nodes, (ii) tasks are dynamically created to adapt to imbalances in search depth and

(iii) parallel overhead is amortized over multiple nodes in sequential tasks; (b) shows schematically
the expected effect of grain size on parallel speedup.

ParSSSE adopts a three-level grain size control strategy. At the topmost level,

the finest grain size is used for decomposition in that each generated tree node

is processed as an independent task. In this way, newly generated parallel tasks

of increasing depth are spread across the processors as quickly as possible. If the

depth of a scheduled task exceeds a particular threshold τ1, the tree beneath its

corresponding node is explored sequentially, in a depth-first manner using a LIFO

queue. We choose a threshold of τ1 = logb p, where b is the branching factor and p

is the number of processors. However, this static grain size control is not very effec-

tive, especially in the case of unbalanced tree searches, where statically determined

sequential tasks have widely varying execution time, thereby creating load imbal-

ance. To overcome this problem, and to guarantee that no sequential execution is

extraordinarily long, the unprocessed nodes in the LIFO queue of the sequential

search are converted into parallel tasks when the sequential execution time exceeds

a threshold. Figure 1(a) shows the use of this strategy for an unbalanced search

tree.

The key to a good adaptive grain size control scheme is the decision of when

the LIFO queue of a task is split, causing new tasks to be generated. Figure 1(b)

shows a schematic depiction of the relationship between the average grain size of
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parallel tasks and the obtained speedup. Marked on this graph are two values for

grain size, g0 and g1, that occur on either side of the optimal value. If an application

generates tasks with average grain size less than g0, it suffers from large overheads

of parallelization. On the other hand, creating tasks with average grain size greater

than g1 reduces the utilization of processors, leading to a slowdown. In order to

achieve a good speedup, the grain size should be controlled between g0 and g1.

Assuming that the overhead of creation and scheduling of a parallel task is a constant

to, and the average grain size of a parallel task is tg, we estimate the total time taken

to complete an all-solutions search in parallel on p processors to be:

Tp =
Tseq
p

+ Toverhead + Tidle =
Tseq
p

+
to
tg

· Tseq + tg · (nmax − Tseq
p · tg

)

Here, nmax is the number of parallel tasks executed by the processor which

received the greatest number of tasks during the execution, and Tseq is the time

taken to complete the search sequentially. One straightforward solution to control

the grain size is to measure the time spent in expanding each subtree. When the

measured time is greater than some pre-defined threshold, the subtree is split into

multiple parallel tasks to maintain enough parallelism. However, in practice, the

cost of timer calls used to measure the expanding of a subtree is relatively high

comparing to the time expanding the tree node. To reduce the timer cost, we use

a solution based on sampling. When exploring a subtree sequentially, we assume

that the branching factor at each node in a subtree is roughly the same. Therefore,

by sampling the time taken to expand a few nodes, we can estimate the average

time to expand a single tree node. The total time of expanding a subtree can then

be estimated by extrapolating to the number of nodes expanded. If this calculated

time (the grain size) is more than a pre-defined threshold, T , the sequential task’s

LIFO queue is split and k new tasks are created. We calculate T as follows. Let t0
be the overhead of creating a parallel task. Then, since each task performs at least

T units of sequential work before firing k children tasks, the average grain size in

this case must be greater than or equal to T/(k+ 1). At the same time, no task can

take more than T units of time, so that the grain size can be no greater than T .

Averaging over these two extremes, we heuristically set the average grain size to be

0.5 ∗ (T/(k + 1) + T ). Assume that the desired sequential efficiency of the parallel

program is 0 < e < 1, i.e. the fraction of time taken up by parallel overhead is 1−e.
In order to keep the impact of overhead negligible, the average grain size must be

at least t0
1−e , so that T = 2t0(k+1)

(1−e)(k+2) .

Figure 2 presents two histograms which compare the adaptive, sampling-based

approach with the static threshold control scheme using an 18-queens problem.

In each subfigure, the x-axis represents the duration of task entry methods (i.e.

grain sizes) arranged into bins by certain resolutions, and y-axis depicts the total

execution time for all the tasks in the corresponding bin. Figure 2(a) shows the

result in the case of using the static grain size control scheme, where all nodes with
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(a) Only with static threshold (b) With adaptive grain size control

Fig. 2. Accumulated execution time for different grain-sized parallel tasks (18-Queens problem)

depths greater than a pre-determined threshold were processed as sequential tasks.

This scheme clearly creates a wide range of grain sizes, from a couple of micro-

seconds to 300 milliseconds. In contrast, adaptive grain size control (Figure 2(b))

generates tasks that are less than 2 milliseconds long, which leads to better load

balance and performance.

3.2. Speculation and Prioritized Execution

Performing a search in parallel involves some degree of speculative work, since nodes

that might not have been considered in the sequential search may be explored in a

parallel search of the state space. Rao et al. [23] have discussed the effects of this

speculation, leading to superlinear as well as sublinear speedups as the number of

processors is scaled up. The amount of speculative computation performed in the

distributed depth first search can be controlled by associating a priority with the

execution of each parallel task [27, 14]. The value of this priority corresponds to

the lexicographical labeling of nodes in the tree. Tasks are then executed in the

ascending order of priorities. This scheme has the following benefits:

Reduced memory footprint. For an all-solutions search, prioritized execution

helps to reduce memory usage in the following manner. A task corresponding to

the leftmost child of a node is given priority over its siblings. Furthermore, all

the descendants of such a left child are given priority over its siblings. Following

the delayed release technique of [14], the search attains a characteristic broomstick

sweep exploration of the state space. This limits the size of the search frontier to

O(bd+p). In contrast, if each processor were performing a depth-first traversal, the

memory requirements of the program would be O(bdp). Without any prioritization

at all, the search would be resemble a breadth-first exploration, with O(bd) memory

requirements.

Reduced speculation. For a heuristic-guided first-solution search, the usage of

priority is even more important. Each task is assigned a priority that corresponds

to the likelihood of finding a solution under its node, as determined by the heuristic

function. Thus, prioritization of tasks can guide the search in the direction of nodes

that are more likely to yield solutions, thereby reducing the amount of speculative
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computation performed.

To keep the search engine framework general, two types of priorities are sup-

ported, namely bit vector priorities and integer priorities. Integer priorities are useful

when there is an evaluation function according to which the nodes of the search tree

are ordered. The value of the evaluation function can be converted into an integer

priority, and attached to the parallel task created.

Bit vector priorities are somewhat more complicated. These are bit strings of

arbitrary length that represent fixed-point numbers in the range 0 to 1. For exam-

ple, the bit string “001001” represents the number .001001binary. As with integer

priorities, higher numbers represent lower priorities. Bit vector priorities tend to

create a left-to-right ordering of the tree, mimicking the sequential ordering. Local

heuristic can still be used to order the children of a given node by assigning more

promising children a lower rank. The root of the search tree is assigned a single bit

priority string, 0. The bit vector priority of a child is obtained by concatenating the

binary representation of the child’s rank to the bit vector of the parent. As shown

in Figure 3, the binary ranks for the two children of any node in a binary tree are

0 and 1. For a quad-tree, the ranks would be 00, 01, 10, and 11.

0 

00 
01 

000 
001 011 010 

0000 0001 0010 0011 0100 0101 0110 0111 
Fig. 3. Bit vector priorities in state space search

3.3. Distributed Task Scheduling

In order to dynamically achieve a good balance of load among the processors in a

parallel setting, created tasks need to be distributed evenly across all processors. It

is often done in a work-pool based method where newly created tasks are queued

in a work-pool for scheduling. Such work-pool based load balancing strategies have

been studied extensively in the literature [9, 26]. Given the wide variety of load

balancing algorithms, and the fact that each of them may work well for certain

scenarios, users must be given the freedom to write strategies best suited to their

applications, as well as the convenience of a set of commonly applicable schemes.

ParSSSE is designed in a modular fashion so as to allow a clean separation of the

load balancing procedure from the user code. The modular design makes it easy to
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plug in an existing load balancing algorithm or develop a new one using a generic

load balancing API.

We consider the design of the general and extensible load balancing framework

next. ParSSSE allows fully distributed load balancing strategies to be plugged in at

run-time. The load balancing module defines a core task dispersal function, which

places a newly created task into a work-pool, either locally or on some other pro-

cessor, depending on the load balance situation. When a new task is created by

the program on a processor, the dispersal function may choose to place it into a

pool of movable work. The work pool gradually shrinks as tasks are picked up and

executed, but in most cases there is a sufficient amount of movable work which

requires load balancing. As load conditions change, the load balancers may move

the work in the pool across processors. Therefore, a new task may travel multiple

hops among processors before it is executed. For reasons of efficiency, the number

of hops may be limited by a chosen upper bound. This allows work to be assigned

to the most lightly loaded processor, while ensuring that the overhead of doing so

remains bounded.

Currently two load balancing strategies have been implemented in ParSSSE.

The first one is a randomized load balancing strategy which assigns a newly gener-

ated task on a randomly selected processor. It is simple and has little overhead in

making a load balancing decision. Given a sufficient large number of tasks, random-

ized placement tends to achieve a uniform distribution of tasks across processors.

However, randomized strategy tends to incur higher communication overhead in the

application, since a new task tends to be assigned to a remote processor which is

far away from its original processor that it is likely to communicate with. Since the

probability that each task is sent to a remote processor is 1− 1
p (where p is the total

number of cores), when p is large, the probability approaches 1.

Randomized work stealing is a popular dynamic load balancing scheme, one

whose asymptotic optimality has been established in the context of divide-and-

conquer applications. It has been employed with some success in the Cilk [1] run-

time system. Although originally intended for shared memory systems, randomized

workstealing has recently been shown to improve performance on up to 8192 pro-

cessors of a distributed memory system [4]. In distributed work stealing, a newly

generated task is placed in the generating processor’s local task queue. An idle

processor (also called a thief, i.e. one with no tasks remaining in the local queue)

randomly selects a victim processor to steal work from. If the victim’s processor is

not empty, it responds to the steal request by sending a set of tasks to the thief.

Otherwise the victim sends the thief a negative acknowledgement, causing the thief

to look for a different victim. Our implementation of the work stealing scheme ex-

tends this basic protocol by taking the priority of tasks into account. In particular,

victims respond to thieves with tasks of higher priority, so that they may be exe-

cuted as soon as possible on the thief processors. One advantage of work stealing is

that it only moves tasks when processors are idle, which reduces the communica-

tion costs caused by moving the tasks away from its original processors. Section 5
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compares the communication volume of randomized work stealing and randomized

task placement.

Besides the two load balancing strategies above, new strategies can be easily

implemented in ParSSSEby overriding the task dispersal function mentioned previ-

ously.

3.4. Support for Branch-and-Bound Search

The branch-and-bound technique is a very general tree-based search technique.

In addition to adaptive grain size control, task prioritization and dynamic load

balancing, a branch-and-bound procedure requires the timely pruning of unfit nodes,

i.e. those nodes that have worse heuristic values than the current bound are not

expanded. This reduces the amount of time spent in processing nodes that cannot

possibly yield optimal solutions.

We follow an aggressive pruning strategy for branch-and-bound searches in

ParSSSE. Nodes are pruned when they meet one of the following two requirements.

First, a newly generated parallel or sequential node (task) is pruned when its lower

bound is worse than the best solution. In this way, sub-optimal nodes do not con-

sume much memory. Second, when a solution is found, its cost is compared with

the cost of the best solution on its local processor. If the new solution is better, the

cost is broadcast to all processors.

Finally, in order to reduce the communication latency of the bound information,

two additional optimization techniques are applied in the ParSSSE. (1) The broad-

cast message containing the bound information is executed as soon as it arrives at

a processor, even though that processor may have several tasks already waiting in

the queue. (2) The broadcast operation is optimized using a spanning tree to reduce

the communication overhead on the sending processor.

4. Application Programming Interface

In this section, we familiarize the reader with some of the specifics of the application

interface presented by the search engine. An example application written using

ParSSSE is also presented.

4.1. Application Interface

The code in Listing 1 shows the essential parts of the search engine framework.

It also presents the handful of functions that must be implemented by the user in

order to obtain a working parallel search program.

The BTreeState class must inherit from the StateBase class. It encapsulates

all the data and operations of the search state. The createInitialChildren function

creates the root node(s) of the search tree. The createChildren() function takes the

parent node as input and creates new children nodes. The parallelLevel function

informs the framework of the user-defined static parallel search depth threshold,
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Listing 1: Sample code written using ParSSSE

1 class BTreeState : public StateBase{

public:

3 int depth; /* user defined data structure */

};

5

void createInitialChildren(Solver *solver ){

7 BTreeState *root=( BTreeState *)solver ->registerRootState(

sizeof(BTreeState), 0, 1);

9 root ->depth = 0;

solver ->process(root);

11 }

13 inline void createChildren(StateBase *_base ,

Solver *solver , bool parallel ){

15 BTreeState &base = *(( BTreeState *)_base );

for(int childIndex =0; childIndex <branchfactor; childIndex ++)

17 {

if(base.depth == depth -1) solver ->reportSolution ();

19 else{

BTreeState *child=( BTreeState *)solver ->registerState(

21 sizeof(BTreeState), childIndex , branchfactor );

child ->depth = base.depth + 1;

23 if(parallel) solver ->process(child );

}

25 }

}

27

int parallelLevel () { return initial_grainsize; }

29
int searchDepthLimit () { return 1; }

31
SE_Register(BTreeState , createInitialChildren ,

33 createChildren , parallelLevel , searchDepthLimit );

which is discussed in Section 3.1. The searchDepthLimit function returns the initial

maximum search depth if it is an Iterative Deepening A* (IDA*) search problem.

The lowerBound function is only required in branch-and-bound problems in order

to assign lower bound values to nodes. The registerState function returns a pointer

to a newly generated state. Users do not have to explicitly allocate or manage the

memory – this is done internally by the search engine. Finally, process is called after

the child state has been set up and is ready to be searched.

Figure 4 illustrates the division of code and functionality between the user’s

program, ParSSSE and Charm++ runtime. From this figure, we can see that the

user code is devoid of details about its parallel execution. Performance issues such

as grain size control, prioritization and load balancing as described in Section 3

are handled by the search engine. Charm++ runtime provides the communication

substrate and memory management functionality.
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Fig. 4. ParSSSE Design and Implementation

4.2. Performance Optimization

In designing ParSSSE, our aim is to allow users to easily write state search pro-

grams using the framework to achieve the performance that matches specially tuned

parallel programs. Therefore, two important concerns had to be addressed carefully

in terms of productivity and performance. On the one hand, it is desirable that

the framework provides a clean and simple interface that hides the implementation

and optimization details from the users to enhance productivity, but on the other

hand, extensive performance optimization tends to complicate the user interface.

It is sometimes challenging to provide an abstract interface while minimizing the

overheads.

As an example, through performance analysis, we found that a significant obsta-

cle to achieve good performance is the copying of memory between buffers used by

the framework and user space memory. Excessive memory allocation and memory

copying incur significant overhead. In order to solve this problem, we designed a

simple interface that exploits a LIFO stack data structure, which is managed by

the framework. Meanwhile, interface functions are provided to the user code to ac-

cess the data structure. Thus, when new nodes are generated, user code explicitly

calls the interface functions to acquire memory from the stack. The memory region

is manipulated by both user code and the framework without copying. Another

optimization is that when the node on the top of the stack is processed, the mem-

ory region is recycled to a memory pool instead of being freed. Since creating and

processing nodes are the dominant operations in state space search problems, this

optimization saves a lot of time. Although optimizing the memory operations as

described above exposes the LIFO stack data structure to the users, the user inter-

face is carefully designed to be still simple with only two additional API functions

introduced to manipulate the LIFO stack data structure.
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5. Experimental Setup

In order to evaluate the performance of applications written with ParSSSE, we

ported a number of state space search benchmark programs to the framework.

Using these programs, we performed a number of strong scaling experiments on the

Intrepid supercomputer, which is a Blue Gene/P installation at Argonne National

Laboratory. Intrepid has 40 racks, each of them containing 1024 compute nodes. A

node consists of four PowerPC 450 cores running at 850 MHz. Each node has 2 GB

of memory. Brief descriptions of the benchmarks follow.

Balanced Tree Search (BTS). This problem searches an abstract complete bi-

nary tree in which some leaf nodes are solutions. This program was used to illustrate

anomalous speedups by Rao et al. [23], and therefore it serves as a good test of the

task prioritization mechanisms in ParSSSE. Our test dataset is configured so that

the first solution is located in the m-th leaf of the deepest level, where m is a

pre-defined value.

N-Queens. N -Queens is a backtracking search problem in which N queens must

be placed on an N×N chess board so that they do not attack each other. We search

for all solutions to the N -Queens problem, for various values of N .

Unbalanced Tree Search (UTS). This is a parallel exploration of an unbalanced

search tree[22]. This benchmark stresses the ability of ParSSSE to adaptively con-

trol grain size and perform load balancing proactively. Our experiments used two

instances of the problem, namely T1XXL and T3XXL. The parameters of these

instances (explained in [22]) are presented below:

UTS Instance t a d b r

T1XXL 1 3 15 4 19

T3XXL 0 2000 0.499995 2 318

Traveling Salesman Problem (TSP). Given a list of cities and their pairwise

distances, the objective of this problem is to find a shortest possible tour that

visits each city exactly once and returns to the starting city. The branch-and-bound

technique is used to prune nodes aggressively and reduce the size of the search space.

Although several sophisticated heuristics are available for the traveling salesman

problem, in our experiments, we use a simple one based on the work of Little et

al. [19], since our objective is to gain a sense of how well the framework performs

on optimal solution searches.
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6. Performance results

This section is presented in three parts, demonstrating the performance of ParSSSE

in three different aspects, namely grain size control, task prioritization and dynamic

load balancing.

Adaptive grain size control. In order to test the impact of adaptive grain size

control on parallel performance, we ran the 18-Queens and T1XXL UTS instances

with different initial grain sizes and compared the execution times with static and

adaptive grain size control schemes.
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Fig. 5. Execution time on 1024 processors

Figure 5(a) shows this comparison for the 18 Queens benchmark on 1024 pro-

cessors. The x axis of this graph shows the maximum depth up to which parallel

tasks are generated. Towards the left end, very few parallel tasks are created by the

static grain size control mechanism, causing large amounts of load imbalance. The

adaptive scheme does not suffer from this drawback, since tasks spawn new, paral-

lel tasks after a certain amount of sequential work has been performed. Therefore,

adaptive grain size control has significant benefits over the static scheme in this

region. However, as the parallel task cutoff depth is increased, we see that the static

scheme outperforms the dynamic one by about 10%. This is due to the overheads

that the adaptive scheme incurs in instrumenting the sequential work. Notice that

although the static scheme performs better in this region, the programmer must

invest significant time and resources in determining the optimal cutoff depth. As

maximum allowed depth is increased further (leading to finer grain sizes) we observe

that both schemes suffer from the high overheads of parallelization. This suggests

that it is a good strategy to first choose a small cutoff depth for parallel tasks, and

then use adaptive grain size control to fine-tune performance.

Similar results were obtained for the T1XXL test (Figure 5(b)). In fact, given

the large variations in tree depth, the advantage of using an adaptive grain size

control mechanism is even more significant. For a different UTS instance T3XXL



August 1, 2011 13:25 paper

16 Parallel Processing Letters

that is a highly unbalanced search tree, different sets of static threshold from 10 to

200 are tried in static grain size control tests. The best result we got is around 600

seconds. However, the version using ParSSSE’s adaptive control mechanism took

only 7 seconds.

Task prioritization. We used the BTS benchmark to test how the prioritized

execution helps reduce the number of speculative nodes processed by the search

engine framework. We used trees of depth 30, thereby creating 229 leaves. The search

procedure looks for the first solution node at the deepest level. This experiment

simulates heuristic-driven tree searches where solutions are more likely in the left

portion of the tree.
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tized execution

Figure 6 shows that prioritized execution helps to significantly reduce the num-

ber of nodes created and processed in balanced searches. Note that the difference

between prioritized and non-prioritized execution becomes smaller as the number

of processors increases. This is because the number of nodes per processor decreases

as the number of processors increases, therefore, it takes less amount of time for the

processors to find a solution, and so the saving of the prioritized execution is less

significant.

In branch-and-bound problems like TSP, not only does prioritized execution

help reduce speculative computation, it also helps find optimal solutions quicker.

When the heuristic value of each node is equated with its priority, better nodes are

processed first, thereby causing the global lower bound value to be reduced, so that

more suboptimal nodes are pruned. This amplified effect of task prioritization can

provide a significant boost to parallel performance. Figure 7 shows the execution

time for a 25-city TSP problem with and without prioritized execution. It can be

seen that prioritized execution improves performance by a factor of two across all

processor counts.

Comparing different task scheduling strategies. As mentioned in section 3.3,
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two task scheduling strategies are currently provided in ParSSSE. Whereas the

strategies were compared qualitatively in that section, here we provide an empirical

study of their differences. Figure 8(a) shows the execution times for the 18-Queens

benchmark with random task scheduling and work stealing strategy respectively.

Both strategies scale well from 512 to 4096 processors, although work stealing is

slightly more efficient than the random strategy. Recall that work stealing leads

to less communication overhead than the random strategy since tasks are moved

only when thief processors become idle. This effect is illustrated in Figure 8(b) for

the 18-Queens problem running on 512 processors. The total number of messages

transferred across the network with the work stealing strategy is 30% lower than

that with random balancing strategy.
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Fig. 8. Comparing random and work stealing strategies. Subfigure (a) shows strong scaling profiles
for random assignment and work stealing, whereas (b) compares the amount of communication

generated by each strategy on 512 processors.

Strong scaling. To evaluate the overall scalability of programs written in ParSSSE,

we performed strong scaling tests with the N -Queens and UTS benchmarks. Perfor-

mance was measured on up to 16,384 processors for N -Queens and 32,768 proces-

sors for UTS. The results for 18-Queens with an initial parallel cutoff depth of 5 are

shown in Figure 9(a). On 8,192 processors the code achieved a parallel efficiency of

85.25% relative to execution time on 512 processors. For T1XXL instance shown in

figure 9(b), ParSSSE achieved even better performance because of the higher ratio

of computation to communication. Based on the performance on 512 processors, the

efficiency on 8,192 processors was 98.75%, while on 16,384 processors it was still

88.28%. The code also scales well to 32,768 processors, with an efficiency of 69.78%.

7. Related Work

Much work has been done on parallel combinatorial search in the past. Good surveys

of the field have been provided by Grama and Kumar [7] and Nelson and Toptsis [21]



August 1, 2011 13:25 paper

18 Parallel Processing Letters

 512

 1024

 2048

 4096

 8192

 16384

 512  1024  2048  4096  8192  16384

S
pe

ed
up

Number of Cores

(a) 18-Queen

 512

 1024

 2048

 4096

 8192

 16384

 32768

 512  1024  2048  4096  8192  16384 32768

S
pe

ed
up

Number of Cores

(b) T1XXL
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and, in the context of parallel logic programming, by Gupta et al. [8]. Particular

paradigms in parallel combinatorial search have also been explored extensively –

see [17, 16] for discussions of techniques and heuristics in branch-and-bound, [24]

for parallel iterative deepening A∗, [5] for game-tree search and [11] for parallel

search of AND-OR trees. The importance of cutoff-based strategies in task parallel

languages is highlighted in [20]. A discussion of the impacts of granularity on the

performance of OR-parallel programs has been given by Furuichi et al. [6]. That

paper also provides a multi-level load balancing scheme for multiprocessor systems.

The use of priorities in a variety of parallel search contexts has been outlined by Kalé

et al. [13]. The use of work-stealing as a load balancing strategy was first described

by Lin and Kumar [18] and subsequently popularized by the Cilk system [2]. The

work on Cilk also provides in-depth asymptotic bounds on the performance of the

work-stealing approach.

8. Conclusion

Solving state space search problems is generally NP-hard, and requires parallel

processing to speed up the search process. However, writing efficient and scalable

parallel programs has traditionally been a challenging undertaking. The main con-

tribution of our paper is the design of the ParSSSE framework that separates the

issues of parallelism and scalability from those of specifying the search tree itself. In

this paper, we analyzed several performance characteristics common to all parallel

state space search applications. In particular, we focused on the issues of grain size,

prioritized execution of tasks and balancing of load among processors in the system,

and their corresponding techniques. We show how these techniques may be used to

scale such applications to very large scale. We have incorporated these techniques

into a general search engine framework ParSSSE, which is designed to solve a broad

class of state space search problems. We demonstrated the efficiency and scalability

of our design using three example applications, presenting good performance results

on up to 32,768 processors.
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