
Using BigSim to Estimate Application
Performance
Ryan Mokos
Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

October 19, 2010

Outline

• Overview
• BigSim Emulator
• BigSim Simulator

Using BigSim to Estimate Application Performance 2

BigSim

• Built on Charm++
• Object-based processor virtualization

• Virtualized execution environment that allows
running large-scale simulations on small-scale
systems

• Runs Charm++ and AMPI applications at large
scale

3Using BigSim to Estimate Application Performance

Performance Prediction

• Two components:
• Time to execute blocks of sequential, computation

code
• SEBs = Sequential Execution Blocks

• Communication time based on a particular network
topology

4Using BigSim to Estimate Application Performance

BigSim Components
• Emulator

• Generates traces that capture SEB execution
times, dependencies, and messages

• Simulator (BigNetSim)
• Trace-driven
• PDES (Parallel Discrete Event Simulation)
• Calculates message timing based on the specified

network model

5Using BigSim to Estimate Application Performance

BigSim Architecture

6Using BigSim to Estimate Application Performance

Charm++/AMPI applications

Simulation trace logs

BigSim Simulator

Performance visualization (Projections), Link utilization stats,
Terminal output

BigSim Emulator

AMPI Runtime Charm++ Runtime

POSE

Limitations

• BigSim does not:
• Include cycle-accurate/instruction-level simulation

• But can be integrated with external simulators
• Predict cache and virtual memory effects
• Model interference

• Operating system
• External job

• Model non-deterministic applications

7Using BigSim to Estimate Application Performance

Outline

• Overview
• BigSim Emulator
• BigSim Simulator

Using BigSim to Estimate Application Performance 8

Emulator

• Implemented on Charm++
• Libraries link to user application

• Virtualized execution environment
• Each physical processor emulates multiple target

processors
• Be careful of increased memory footprint
• Efficiencies realized

• NAMD: virt. ratio 128 => 7x memory, 19x run time

9Using BigSim to Estimate Application Performance

Using the Emulator (64-Bit Linux Example)
• Convert MPI application to AMPI (or use a

Charm++ application)
• Install emulator

• Download Charm++
• http://charm.cs.uiuc.edu/download/

• Compile Charm++/AMPI with “bigemulator” option
• ./build AMPI net-linux-x86_64 bigemulator -j8 -O
• This builds Charm++ and emulator libraries under

net-linux-x86_64-bigemulator (work in this directory)

10Using BigSim to Estimate Application Performance

Using the Emulator (continued)
• Set parameters in a config file

• Note: the same topology (x, y, z dimensions and
number of worker threads) will be used by the
simulator

• wth = # worker threads = # cores / node
• Compile the application to be emulated in the

<net-layer>-bigemulator directory
• Run the application with the config file via

+bgconfig <config file>

11Using BigSim to Estimate Application Performance

Example – AMPI Cjacobi3D
• cd charm/net-linux-x86_64-bigemulator/examples/ampi/Cjacobi3D
• make
• Modify config file bg_config as desired:

x 4
y 2
z 2
Cth 1
wth 8
stacksize 10000
timing walltime
#timing bgelapse
#timing counter
cpufactor 1.0
fpfactor 5e-7
traceroot .
log yes
correct no
network bluegene
#projections 2,4-8

12Using BigSim to Estimate Application Performance

Example – AMPI Cjacobi3D (continued)

• Run emulation of 8 target processors (virtual
processors) on 2 physical processors
• ./charmrun +p2 ./jacobi 2 2 2 +vp8 +bgconfig bg_config

• As long as “log yes” is specified in the config file,
3 trace files will be written:
• bgTrace – summary file
• bgTrace0 – trace file for the 4 vps on processor 0
• bgTrace1 – trace file for the 4 vps on processor 1

13Using BigSim to Estimate Application Performance

LogAnalyzer
• Tool for analyzing emulator traces
• Run as ./LogAnalyzer –i (interactive) or

./LogAnalyzer –c <choice #> (good for scripting)
• Options:

• Display time line lengths
• Convert traces to ASCII files
• Display the number of messages sent and received by each target

processor
• Display the total execution time of all events on each target

processor
• Display the number of packets sent by each target processor
• Execution time estimation (experimental)

14Using BigSim to Estimate Application Performance

Skip Points
• Add to actual application code at places where

control is completely given back to processor 0
(e.g., after allreduce, barrier, load balancing, etc.)
• BgSetStartEvent()

• Skip points marked in trace files
• Simulator can execute between skip points
• Uses:

• Bypass start-up sequence
• Simulate only one application step

15Using BigSim to Estimate Application Performance

Projections

• Visual tool for analyzing program runs
• Link the emulated application with –tracemode

projections to get projections traces
• Can be modified by the simulator

16Using BigSim to Estimate Application Performance

Projections Example – MPI AlltoAll Timeline

17Using BigSim to Estimate Application Performance

Emulator – Other Features
• Different levels of fidelity available for predicting

performance
• Wallclock time with cpu scaling factor (already discussed)
• Manually elapse time with BgElapse() calls
• Performance counters
• Instruction-level/cycle-accurate simulation
• Model-based (time most-used functions and iterpolate to

create model)
• Out-of-core execution when emulation won’t fit in main

memory
• Record/replay subset of traces

18Using BigSim to Estimate Application Performance

Outline

• Overview
• BigSim Emulator
• BigSim Simulator

Using BigSim to Estimate Application Performance 19

Simulator (BigNetSim)

• PDES simulator built on top of Charm++
• Run BigNetSim on emulator traces to get final run

results for a particular network model
• Pre-compiled binaries supplied for this workshop
• To download and build source code from public

repository (does not contain Blue Waters model),
see the 2009 Charm++ Workshop BigSim tutorial
• http://charm.cs.uiuc.edu/workshops/charmWorkshop2009/program.html

20Using BigSim to Estimate Application Performance

Running BigNetSim on Blue Print

• Ensure bgTrace files, charmrun, and charmrun.ll
are in the same directory as the executable

• Update charmrun.ll with desired output and error
file names

• Submit job to loadleveler
• ./charmrun +p <# procs> +n <# nodes> ./<executable> <BigNetSim arguments>
• E.g.: ./charmrun +p 1 +n 1 ./bigsimulator -linkstats -check
• Note: there must be a space between +p and +n and their numbers
• Note: the +p parameter specifies the total number of processors

• E.g., running on all 16 procs of each of 4 nodes (64 procs total) would be +p
64 +n 4

21Using BigSim to Estimate Application Performance

Simple Latency Model vs. Blue Waters Model
• Simple Latency includes processors and nodes

and implements the network with an equation:
• lat + (N / bw) + [cpp * (N / psize)]

• lat = latency in µs
• bw = bandwidth in GB/sec
• cpp = cost per packet in µs
• psize = packet size in bytes
• N = number of bytes sent

• Blue Waters includes processors, nodes,
Torrents, and links between the Torrents

22Using BigSim to Estimate Application Performance

Command-Line Arguments – Simple
Latency
• Bandwidth and latency must be specified:

• -bw <double> Link bandwidth in GB/s
• -lat <double> Link latency in µs

• Other optional arguments:
• -help Displays all available arguments
• -cpp <double> Cost per packet in µs
• -psize <int> Packet size in bytes
• -bw_in <double> Intra-node bandwidth in GB/s

Defaults to -bw value if not specified
• -lat_in <double> Intra-node latency in µs

Defaults to 0.5µs if not specified

23Using BigSim to Estimate Application Performance

Command-Line Arguments – Simple
Latency (continued)

• -check Checks for unexecuted events at the end of the
simulation

• -cpufactor <double> A constant by which SEB execution times are
multiplied; defaults to 1.0

• -debuglevel <0|1> 0: no debug statements
1: high-level debug statements and summary info

• -projname <string> Sets the name of the projections logs that will be
corrected based on network simulation

• -skip_start <int> Sets the skip point at which simulation execution begins
• -skip_end <int> Sets the skip point at which simulation execution ends
• -tproj Generate projections logs based only on network

simulation

24Using BigSim to Estimate Application Performance

Command-Line Arguments – Blue Waters
• No arguments are required; all are optional:

• -help Displays all available arguments
• -check Checks for unexecuted events at the end of the simulation
• -cpufactor <double> A constant by which SEB execution times are

multiplied; defaults to 1.0
• -debuglevel <0|1> 0: no debug statements

1: high-level debug statements and summary info
• -linkstats Enable link stats for display at the end of the simulation
• -projname <string> Sets the name of the projections logs that will be

corrected based on network simulation
• -skip_start <int> Sets the skip point at which simulation execution begins
• -skip_end <int> Sets the skip point at which simulation execution ends
• -tproj Generate projections logs based only on network

simulation

25Using BigSim to Estimate Application Performance

Command-Line Arguments – Blue Waters
(continued)

• -tracelinkstats Enable tracing of link stats
• -tracecontention Enable tracing of contention

26Using BigSim to Estimate Application Performance

BigNetSim Output – Terminal (Text)

• BgPrintf(char *) statements
• Added to actual application code
• “%f” in function call argument converted to

committed time during simulation
• GVT = Global Virtual Time

• Final simulation virtual time expressed in GVT
ticks

• 1 GVT tick = 1 ns for the provided binaries
• Link utilization statistics

27Using BigSim to Estimate Application Performance

BigNetSim Output – Terminal (Text) –
Example
Charm++: standalone mode (not using charmrun)
Charm++> Running on 1 unique compute nodes (8-way SMP).
================= Simulation Configuration =================
Production version: 1.0 (10/13/2010)
Simulation start time: Fri Oct 15 13:11:09 2010
Number of physical PEs: 1
POSE mode: Sequential
Network model: Blue Waters
...
==
Construction phase complete
Initialization phase complete
Info> invoking startup task from proc 0 ...
Info> Starting at the beginning of the simulation
Info> Running to the end of the simulation
Entire first pass sequence took about 18.532318 seconds
[0:user_code] #MILC# - WHILE Loop Iterarion Starting at 0.509469
[0:user_code] #MILC# - LL-Fat Starting at 0.510801
...
Sequential Endtime Approximation: 906988512
Final link stats [Node 0, Channel 0, LL Link]: ovt: 906953211, utilization

time: 257562, utilization %: 0.028397, packets sent: 2290 gvt=906988512
Final link stats [Node 0, Channel 11, LR Link]: ovt: 906953211, utilization

time: 631426, utilization %: 0.069618, packets sent: 1827 gvt=906988512
1 PE Simulation finished at 74.104628.
Program finished.

28Using BigSim to Estimate Application Performance

BigNetSim Output – Projections
• Copy emulation Projections logs and sts file into

directory with executable
• Two ways to use:

• Command-line parameter: -projname <name>
• Creates a new set of logs by updating the emulation logs
• Assumes emulation Projections logs are: <name>.*.log
• Output: <name>-bg.*.log
• Disadvantage: emulation Projections overhead included

• Command-line parameter: -tproj
• Creates a new set of logs from the trace files, ignoring the

emulation logs
• Must first copy <name>.sts file to tproj.sts
• Output: tproj.*.log
• Advantage: no emulation Projections overhead included

29Using BigSim to Estimate Application Performance

Projections – Ring Example

30Using BigSim to Estimate Application Performance

Emulation

Simulation: -lat 1 (latency = 1µs) generated with -tproj

BigNetSim Output – Link Stat and Contention
Traces (experimental)
• Enabled on the command line at run time
• Placed in a unique folder named

link_traces_<simulation start time>
• May significantly increase run time and memory

footprint
• LinkStatTraceAnalyzer tool examines link stat

traces for links with high utilization and contention
• Writes reports listing links in order from most to

least utilized

31Using BigSim to Estimate Application Performance

BigNetSim Validation

• Network traffic generator tests of the BigNetSim
Blue Waters network model give simulation
results within a couple percent of those of IBM’s
hardware simulator

32Using BigSim to Estimate Application Performance

BigNetSim Performance

Simulation

Memory
Footprint

Estimate (GB)

Startup Time
(hours)

Execution
Time (hours)

Total Run
Time (hours)

Sim Lat BW Sim Lat BW Sim Lat BW Sim Lat BW

4k-VP MILC 2.3 2.6 0.72 0.73 3.08 5.38 3.80 6.11

256k-VP 3D Jabobi
(10x10x10 grid, 3 iters)

17.5 18.3 0.51 0.51 0.47 1.50 0.98 2.01

256k-VP NAMD (1M atoms,
8 iters, skip startup)

14.9 15.9 0.49 0.47 0.52 3.81 1.01 4.28

33Using BigSim to Estimate Application Performance

• Examples of sequential simulator performance on Blue Print

• Parallel performance is comparable to sequential but does not
scale well yet outside a single node on Blue Print

BigNetSim – Other Features

• Other network models (e.g., BlueGene)
• Transceiver (traffic pattern generator) for testing

network models without traces
• Checkpoint-to-disk to allow restart if hardware on

which BigNetSim is running goes down
• Load balancing

34Using BigSim to Estimate Application Performance

Additional Resources
• BigSim manuals:

• http://charm.cs.uiuc.edu/manuals/
• Recent Charm++ Workshop tutorials and talks

• 2008 BigSim tutorial (bottom of page)
• http://charm.cs.illinois.edu/workshops/charmWorkshop2008/slides.html

• 2009 BigSim tutorial (bottom of page)
• http://charm.cs.uiuc.edu/workshops/charmWorkshop2009/program.html

• 2010 BigSim talk (near top of page)
• http://charm.cs.uiuc.edu/charmWorkshop/program.php

• E-mail PPL for help: ppl@cs.uiuc.edu

35Using BigSim to Estimate Application Performance

	Using BigSim to Estimate Application Performance
	Outline
	BigSim
	Performance Prediction
	BigSim Components
	BigSim Architecture
	Limitations
	Outline
	Emulator
	Using the Emulator (64-Bit Linux Example)
	Using the Emulator (continued)
	Example – AMPI Cjacobi3D
	Example – AMPI Cjacobi3D (continued)
	LogAnalyzer
	Skip Points
	Projections
	Projections Example – MPI AlltoAll Timeline
	Emulator – Other Features
	Outline
	Simulator (BigNetSim)
	Running BigNetSim on Blue Print
	Simple Latency Model vs. Blue Waters Model
	Command-Line Arguments – Simple Latency
	Command-Line Arguments – Simple Latency (continued)
	Command-Line Arguments – Blue Waters
	Command-Line Arguments – Blue Waters (continued)
	BigNetSim Output – Terminal (Text)
	BigNetSim Output – Terminal (Text) – Example
	BigNetSim Output – Projections
	Projections – Ring Example
	BigNetSim Output – Link Stat and Contention Traces (experimental)
	BigNetSim Validation
	BigNetSim Performance
	BigNetSim – Other Features
	Additional Resources

