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BigSim

• Built on Charm++
• Object-based processor virtualization

• Virtualized execution environment that allows 
running large-scale simulations on small-scale 
systems

• Runs Charm++ and AMPI applications at large 
scale
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Performance Prediction

• Two components:
• Time to execute blocks of sequential, computation 

code
• SEBs = Sequential Execution Blocks

• Communication time based on a particular network 
topology
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BigSim Components
• Emulator

• Generates traces that capture SEB execution 
times, dependencies, and messages

• Simulator (BigNetSim)
• Trace-driven
• PDES (Parallel Discrete Event Simulation)
• Calculates message timing based on the specified 

network model
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BigSim Architecture
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Charm++/AMPI applications

Simulation trace logs

BigSim Simulator

Performance visualization (Projections), Link utilization stats, 
Terminal output 

BigSim Emulator

AMPI Runtime Charm++ Runtime

POSE



Limitations

• BigSim does not:
• Include cycle-accurate/instruction-level simulation

• But can be integrated with external simulators
• Predict cache and virtual memory effects
• Model interference

• Operating system
• External job

• Model non-deterministic applications
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Emulator

• Implemented on Charm++
• Libraries link to user application

• Virtualized execution environment
• Each physical processor emulates multiple target 

processors
• Be careful of increased memory footprint
• Efficiencies realized

• NAMD: virt. ratio 128 => 7x memory, 19x run time
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Using the Emulator (64-Bit Linux Example)
• Convert MPI application to AMPI (or use a 

Charm++ application)
• Install emulator

• Download Charm++
• http://charm.cs.uiuc.edu/download/

• Compile Charm++/AMPI with “bigemulator” option
• ./build AMPI net-linux-x86_64 bigemulator -j8 -O
• This builds Charm++ and emulator libraries under 

net-linux-x86_64-bigemulator (work in this directory)
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Using the Emulator (continued)
• Set parameters in a config file

• Note: the same topology (x, y, z dimensions and 
number of worker threads) will be used by the 
simulator

• wth = # worker threads = # cores / node
• Compile the application to be emulated in the 

<net-layer>-bigemulator directory
• Run the application with the config file via 

+bgconfig <config file>
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Example – AMPI Cjacobi3D
• cd charm/net-linux-x86_64-bigemulator/examples/ampi/Cjacobi3D
• make
• Modify config file bg_config as desired:

x  4
y  2
z  2
Cth 1
wth 8
stacksize  10000
timing walltime
#timing bgelapse
#timing counter
cpufactor 1.0
fpfactor 5e-7
traceroot  .
log  yes
correct  no
network  bluegene
#projections 2,4-8
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Example – AMPI Cjacobi3D (continued)

• Run emulation of 8 target processors (virtual 
processors) on 2 physical processors
• ./charmrun +p2 ./jacobi 2 2 2 +vp8 +bgconfig bg_config

• As long as “log yes” is specified in the config file, 
3 trace files will be written:
• bgTrace – summary file
• bgTrace0 – trace file for the 4 vps on processor 0
• bgTrace1 – trace file for the 4 vps on processor 1
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LogAnalyzer
• Tool for analyzing emulator traces
• Run as ./LogAnalyzer –i  (interactive) or 

./LogAnalyzer –c <choice #>  (good for scripting)
• Options:

• Display time line lengths
• Convert traces to ASCII files
• Display the number of messages sent and received by each target 

processor
• Display the total execution time of all events on each target 

processor
• Display the number of packets sent by each target processor
• Execution time estimation (experimental)
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Skip Points
• Add to actual application code at places where 

control is completely given back to processor 0 
(e.g., after allreduce, barrier, load balancing, etc.)
• BgSetStartEvent()

• Skip points marked in trace files
• Simulator can execute between skip points
• Uses:

• Bypass start-up sequence
• Simulate only one application step
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Projections

• Visual tool for analyzing program runs
• Link the emulated application with –tracemode 

projections to get projections traces
• Can be modified by the simulator
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Projections Example – MPI AlltoAll Timeline
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Emulator – Other Features
• Different levels of fidelity available for predicting 

performance
• Wallclock time with cpu scaling factor (already discussed)
• Manually elapse time with BgElapse() calls
• Performance counters
• Instruction-level/cycle-accurate simulation
• Model-based (time most-used functions and iterpolate to 

create model)
• Out-of-core execution when emulation won’t fit in main 

memory
• Record/replay subset of traces
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Simulator (BigNetSim)

• PDES simulator built on top of Charm++
• Run BigNetSim on emulator traces to get final run 

results for a particular network model
• Pre-compiled binaries supplied for this workshop
• To download and build source code from public 

repository (does not contain Blue Waters model), 
see the 2009 Charm++ Workshop BigSim tutorial
• http://charm.cs.uiuc.edu/workshops/charmWorkshop2009/program.html
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Running BigNetSim on Blue Print

• Ensure bgTrace files, charmrun, and charmrun.ll 
are in the same directory as the executable

• Update charmrun.ll with desired output and error
file names

• Submit job to loadleveler
• ./charmrun +p <# procs> +n <# nodes> ./<executable> <BigNetSim arguments>
• E.g.:  ./charmrun +p 1 +n 1 ./bigsimulator -linkstats -check
• Note: there must be a space between +p and +n and their numbers
• Note: the +p parameter specifies the total number of processors

• E.g., running on all 16 procs of each of 4 nodes (64 procs total) would be +p 
64 +n 4
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Simple Latency Model vs. Blue Waters Model
• Simple Latency includes processors and nodes 

and implements the network with an equation:
• lat + (N / bw) + [cpp * (N / psize)]

• lat = latency in µs
• bw = bandwidth in GB/sec
• cpp = cost per packet in µs
• psize = packet size in bytes
• N = number of bytes sent 

• Blue Waters includes processors, nodes, 
Torrents, and links between the Torrents
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Command-Line Arguments – Simple 
Latency
• Bandwidth and latency must be specified:

• -bw <double>       Link bandwidth in GB/s
• -lat <double>        Link latency in µs

• Other optional arguments:
• -help                     Displays all available arguments
• -cpp <double>      Cost per packet in µs
• -psize <int>           Packet size in bytes
• -bw_in <double>   Intra-node bandwidth in GB/s

Defaults to -bw value if not specified
• -lat_in <double>    Intra-node latency in µs

Defaults to 0.5µs if not specified
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Command-Line Arguments – Simple 
Latency (continued)

• -check                       Checks for unexecuted events at the end of the
simulation

• -cpufactor <double>  A constant by which SEB execution times are
multiplied; defaults to 1.0

• -debuglevel <0|1>     0: no debug statements
1: high-level debug statements and summary info

• -projname <string>    Sets the name of the projections logs that will be
corrected based on network simulation

• -skip_start <int>         Sets the skip point at which simulation execution begins
• -skip_end <int>          Sets the skip point at which simulation execution ends
• -tproj                          Generate projections logs based only on network

simulation
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Command-Line Arguments – Blue Waters
• No arguments are required; all are optional:

• -help                         Displays all available arguments
• -check                      Checks for unexecuted events at the end of the simulation
• -cpufactor <double>  A constant by which SEB execution times are

multiplied; defaults to 1.0
• -debuglevel <0|1>     0: no debug statements

1: high-level debug statements and summary info
• -linkstats                    Enable link stats for display at the end of the simulation
• -projname <string>    Sets the name of the projections logs that will be

corrected based on network simulation
• -skip_start <int>         Sets the skip point at which simulation execution begins
• -skip_end <int>          Sets the skip point at which simulation execution ends
• -tproj                          Generate projections logs based only on network

simulation
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Command-Line Arguments – Blue Waters 
(continued)

• -tracelinkstats            Enable tracing of link stats
• -tracecontention        Enable tracing of contention
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BigNetSim Output – Terminal (Text)

• BgPrintf(char *) statements
• Added to actual application code
• “%f” in function call argument converted to 

committed time during simulation
• GVT = Global Virtual Time

• Final simulation virtual time expressed in GVT 
ticks

• 1 GVT tick = 1 ns for the provided binaries
• Link utilization statistics
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BigNetSim Output – Terminal (Text) –
Example
Charm++: standalone mode (not using charmrun)
Charm++> Running on 1 unique compute nodes (8-way SMP).
================= Simulation Configuration =================
Production version: 1.0 (10/13/2010)
Simulation start time: Fri Oct 15 13:11:09 2010
Number of physical PEs: 1
POSE mode: Sequential
Network model: Blue Waters
...
============================================================
Construction phase complete
Initialization phase complete
Info> invoking startup task from proc 0 ...
Info> Starting at the beginning of the simulation
Info> Running to the end of the simulation
Entire first pass sequence took about 18.532318 seconds
[0:user_code] #MILC# - WHILE Loop Iterarion Starting at 0.509469
[0:user_code] #MILC# - LL-Fat Starting at 0.510801
...
Sequential Endtime Approximation: 906988512
Final link stats [Node 0, Channel  0, LL Link]: ovt: 906953211, utilization 

time: 257562, utilization %: 0.028397, packets sent: 2290 gvt=906988512
Final link stats [Node 0, Channel 11, LR Link]: ovt: 906953211, utilization 

time: 631426, utilization %: 0.069618, packets sent: 1827 gvt=906988512
1 PE Simulation finished at 74.104628.
Program finished.
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BigNetSim Output – Projections
• Copy emulation Projections logs and sts file into 

directory with executable
• Two ways to use:

• Command-line parameter: -projname <name>
• Creates a new set of logs by updating the emulation logs
• Assumes emulation Projections logs are: <name>.*.log
• Output: <name>-bg.*.log
• Disadvantage: emulation Projections overhead included

• Command-line parameter: -tproj
• Creates a new set of logs from the trace files, ignoring the 

emulation logs
• Must first copy <name>.sts file to tproj.sts
• Output: tproj.*.log
• Advantage: no emulation Projections overhead included
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Projections – Ring Example
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Emulation

Simulation: -lat 1  (latency = 1µs)  generated with -tproj



BigNetSim Output – Link Stat and Contention 
Traces (experimental)
• Enabled on the command line at run time
• Placed in a unique folder named 

link_traces_<simulation start time>
• May significantly increase run time and memory 

footprint
• LinkStatTraceAnalyzer tool examines link stat 

traces for links with high utilization and contention
• Writes reports listing links in order from most to 

least utilized
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BigNetSim Validation

• Network traffic generator tests of the BigNetSim 
Blue Waters network model give simulation 
results within a couple percent of those of IBM’s 
hardware simulator
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BigNetSim Performance

Simulation

Memory 
Footprint 

Estimate (GB)

Startup Time 
(hours)

Execution 
Time (hours)

Total Run
Time (hours)

Sim Lat BW Sim Lat BW Sim Lat BW Sim Lat BW

4k-VP MILC 2.3 2.6 0.72 0.73 3.08 5.38 3.80 6.11

256k-VP 3D Jabobi
(10x10x10 grid, 3 iters)

17.5 18.3 0.51 0.51 0.47 1.50 0.98 2.01

256k-VP NAMD (1M atoms, 
8 iters, skip startup)

14.9 15.9 0.49 0.47 0.52 3.81 1.01 4.28

33Using BigSim to Estimate Application Performance

• Examples of sequential simulator performance on Blue Print

• Parallel performance is comparable to sequential but does not 
scale well yet outside a single node on Blue Print



BigNetSim – Other Features

• Other network models (e.g., BlueGene)
• Transceiver (traffic pattern generator) for testing 

network models without traces
• Checkpoint-to-disk to allow restart if hardware on 

which BigNetSim is running goes down
• Load balancing
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Additional Resources
• BigSim manuals:

• http://charm.cs.uiuc.edu/manuals/
• Recent Charm++ Workshop tutorials and talks

• 2008 BigSim tutorial (bottom of page)
• http://charm.cs.illinois.edu/workshops/charmWorkshop2008/slides.html

• 2009 BigSim tutorial (bottom of page)
• http://charm.cs.uiuc.edu/workshops/charmWorkshop2009/program.html

• 2010 BigSim talk (near top of page)
• http://charm.cs.uiuc.edu/charmWorkshop/program.php

• E-mail PPL for help: ppl@cs.uiuc.edu
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