
Optimizing a Parallel Runtime System
for Multicore Clusters: A Case Study ∗

Chao Mei
Department of Computing Science

University of Illinois at Urbana-Champaign
chaomei2@illinois.edu

Gengbin Zheng
Department of Computing Science

University of Illinois at Urbana-Champaign
gzheng@illinois.edu

Filippo Gioachin
Department of Computing Science

University of Illinois at Urbana-Champaign
gioachin@ieee.org

Laxmikant V. Kalé
Department of Computing Science

University of Illinois at Urbana-Champaign
kale@illinois.edu

ABSTRACT
Clusters of multicore nodes have become the most popular option
for new HPC systems due to their scalability and performance/cost
ratio. The complexity of programming multicore systems under-
scores the need for powerful and efficient runtime systems that
manage resources such as threads and communication sub-systems
on behalf of the applications.

In this paper, we study several multicore performance issues on
clusters using Intel, AMD and IBM processors in the context of the
CHARM++ runtime system. We then present the optimization tech-
niques that overcome these performance issues. The techniques
presented are general enough to apply to other runtime systems as
well. We demonstrate the benefits of these optimizations through
both synthetic benchmarks and production quality applications in-
cluding NAMD and ChaNGa on several popular multicore plat-
forms. We demonstrate performance improvement of NAMD and
ChaNGa by about 20% and 10%, respectively.

1. INTRODUCTION
Multicore clusters based on various architectures have become

the most popular option for new HPC systems due to their scala-
bility and performance/cost ratio. From Terascale to Petascale and
beyond, the number of components (cores, interconnect, storage)
within such HPC systems is growing enormously. It is estimated
that in the near future very large multicore clusters with core num-
bers in the range of one-hundred thousand to one million and more
will appear. It is obvious that these highly parallel systems will
raise questions about parallel software development and especially
how to write parallel software that runs efficiently on these multi-
core architectures.

Threads are considered a convenient and efficient mechanism to
exploit multicore nodes. However, dealing with shared process re-
∗This work was supported in part by the NSF Grant OCI-0725070
for Blue Waters, and by the Institute for Advanced Computing Ap-
plications and Technologies (IACAT).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

sources with locking and serialization creates a great burden on ap-
plication developers. This may limit the scalability when not prop-
erly handled. Further, a real problem that multicore programming
faces is the limited bandwidth of memory access. Efficient han-
dling of data locality is often the key to optimal performance. High
level parallel programming languages with underlying runtime sys-
tems that can effectively manage resource such as threads and com-
munication sub-systems and exploit data locality in the multicore
environment on behalf of the applications are desirable for applica-
tion developers.

Several popular options for programming multicore systems are
available. Some are MPI on distributed memory, OpenMP [1] on
shared memory, and MPI+OpenMP [2] on hybrid shared/distributed
memory architectures. Additionally, Partitioned Global Address
Space (PGAS) languages, such as Unified Parallel C (UPC) [3],
are emerging alternatives that allow shared memory-like program-
ming on distributed memory systems. Performance studies [4] have
shown that MPI is still the best performer in a hybrid setup of multi-
core clusters when compared with OpenMP [1] and UPC [3] thanks
to MPI’s efficient handling of data locality. Another example is
CHARM++ [5], which supports migratable object-based program-
ming model via a powerful runtime system (RTS) for various hy-
brid shared/distributed memory architectures. With the encapsula-
tion of data and work in objects, CHARM++ naturally promotes the
data locality needed to exploit multicore architectures.

Using the CHARM++ runtime system as an example, we address
the following key questions: 1) What are the issues that impact
multicore/SMP performance inside a runtime system? 2) How can
we optimize a runtime system to overcome these issues? 3) How
do these optimizations work on different architectures?

In this paper, we identify several performance issues that one
may encounter when optimizing a runtime system in the scenario
of multicore systems, and propose a series of optimizations to over-
come the problems found. The techniques we use include: a scheme
based on CPU affinity to improve the locality of memory access
and reduce the conflict in performing load balancing; a lock free
scheduling scheme that uses memory fences to minimize contention
among threads; and techniques to handle processor private vari-
ables using Thread Local Storage (TLS). These techniques work
on a variety of multicore architectures through a portable API we
defined. While the techniques employed to overcome the perfor-
mance bottlenecks are relatively simple, we demonstrate significant
performance improvement using the proposed techniques.

The remainder of the paper is organized as follows. Section 2
presents an overview of CHARM++ for multicore clusters. In Sec-

tion 3 we illustrate a series of performance issues we encountered
when optimizing CHARM++’s runtime system, and the correspond-
ing techniques we used to overcome these problems. A synthetic
benchmark is used as an example. Later, in Section 4, we demon-
strate the performance improvement using two real-world appli-
cations, NAMD and ChaNGa. We discuss some related work in
Section 5, and conclude with future plans.

2. ARCHITECTURE OVERVIEW OF
CHARM++ FOR MULTICORE CLUSTERS

CHARM++ [6] is a parallel programming system based on a
message-driven migratable-objects programming model. In this
model, the programmer decomposes his application into fine grain
objects, called chares, which perform the computation, and com-
municate through asynchronous method invocation by sending each
other messages. These chares can be grouped into arrays for ease
of indexing, and are free to migrate between processors when needed,
for example, for load balancing purposes. Over the years, it has
been successfully used to develop several highly scalable parallel
applications, such as NAMD [7], ChaNGa [8], and OpenAtom [9].
Furthermore, CHARM++ is a highly portable parallel runtime sys-
tem, and is deployed on the vast majority of existing parallel ma-
chines, many of which are provided by TeraGrid resources.

In many programming models, such as MPI, there is no inher-
ent concept of SMP. To take advantage of the shared address space
provided by multicore machines, the programmer has to explicitly
consider it in his code, for example by using the OpenMP program-
ming model or threads directly. In contrast, in CHARM++ the user
can take advantage of the shared address space without any mod-
ification to the source code. This is provided transparently by the
runtime system itself. Shared variables are not a problem since in
CHARM++ the programming model is object oriented, and global
variables are inherently deprecated (CHARM++ provides readonly
variables as a substitute).

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

(a) Non-SMP

Node 1Node 0

Node 3Node 2

0 1

2 3

4 5

6 7

12 13

14 15

8 9

10 11

(b) SMP

The traditional way of running programs is shown in Figure 1(a)—
which we call “non-SMP”. Here, in an application running on 16
processors, each processor communicates with others via an exter-
nal communicator. Communicators range from TCP or UDP con-
nections to high speed interconnects such as Infiniband or LAPI.
Note that processors are represented by system-level processes,
and every time a message is sent, the message must be transmit-
ted through the kernel to the other process address space. On a
multicore-based cluster node where multiple processes share the
physical memory, POSIX shared memory can be used to transfer
messages more efficiently between the communicating processes
within the node while the data still ought to be copied. This mode
of CHARM++ is still categorized as “non-SMP” but with a different
name as “PXSHM” which will be used in the rest of the paper. This
PXSHM mode is fundamentally inferior, because it gives up many

potential advantages of shared memory: read-only data exists as
multiple copies, for example, and node-level shared data structures
are not possible.

A more efficient way to handle communication in CHARM++ is
to use the configuration represented in Figure 1(b). In this configu-
rations, which we call “SMP” mode, the user still allocates 16 pro-
cessors, but these are collected in groups of four to form nodes. In
this scenario, a node is internally represented by a system process,
and each “processors” by a system-level thread. A node shares
the same address space and therefore allows a very fast zero-copy
message sending. When communicating to processors outside the
shared address space, external communicators are used. Depend-
ing on the interconnection used, communication may be channeled
through a single dedicated communication thread, or handled di-
rectly by each worker thread. Note that the number of external
connections is reduced.

The combination of the object-based programming model and
the SMP runtime makes CHARM++ a potentially suitable program-
ming model for exploiting shared memory multicore nodes. Using
objects, it respects data locality that improves cache performance.
It supports node level shared data structures, read-only variables,
and communication primitives that are designed to take advantage
of the shared memory.

However, our first experience with CHARM++ on SMP led to
the same conclusion that others have about MPI: using a separate
process for each core was faster than using the SMP version [4].
For example, NAMD’s performance decreased by about 10% on
SMP version, while ChaNGa’s performance decreased slightly by
about 2% as we will see in Section 4. This motivated the work in
this paper to investigate the performance issues in the CHARM++
runtime. As we will see, the culprit was not the application, but the
runtime system itself.

This experience led us to embark on a series of analysis and op-
timizations that are the topic of this paper. We hope and expect
that the optimizations we carried out are of use to other runtime
systems, as well as to those applications that must deal with shared
memory nodes explicitly.

3. OPTIMIZATION TECHNIQUES FOR
CHARM++ RUNTIME SYSTEM

Optimizing the CHARM++ runtime system consists of two as-
pects: 1) performance on a single multicore node, and 2) perfor-
mance on a cluster of nodes. This paper mainly focuses on the first
aspect. During our analysis, we have extensively studied various
synthetic benchmarks and real-world applications. However, due
to space constraints, we will only use one synthetic benchmark as
an example to walk through the series of optimization techniques
we developed. Performance on real applications will be presented
in the next section.

The synthetic benchmark we used in this section is “kNeighbor”,
a program written in CHARM++ using the chare arrays construct.
kNeighbor creates a certain number of objects distributed on the
parallel machine, and arranged in a 1-dimensional array. In each
iteration, each chare element sends a message to its k neighbor
chares on both sides in a wraparound fashion. When an object has
received all the expected messages (2 ∗K), it proceeds to the next
iteration. Throughout this section, k is set to 3 and the number of
chare elements is equal to the number of cores used so that every
core has exactly one element. The iteration time reported is aver-
aged over ten thousand iterations.

The multicore platforms we studied are shown below:

• A: AIX 6.1/IBM Power 5, a 16-core (SMT=2) node

CPU 0 CPU 2

6MB

Shared L2

CPU 4 CPU 6

6MB

Shared L2

CPU 1 CPU 3

6MB

Shared L2

CPU 5 CPU 7

6MB

Shared L2

Chip 0 Chip 1

Intra-die Inter-dieInter-chip

FSB FSB

Chipset

Figure 1: The architecture of the representative node and the
CPU topology viewed by Linux.

• B: Ubuntu 8.04/Intel Nehalem Xeon E5520, a 8-core (SMT=2)
node

• C: Ubuntu 8.04/Intel Harpertown Xeon E5405 , a 8-core node
• D: Ubuntu 8.04/AMD Barcelona Opteron 2356, a 8-core node
• E: CentOS 5.4/Intel Dunnington Xeon E7450, a 24-core node

Such hardware configurations for a compute node are quite com-
mon in TeraGrid machines. Since the result were similar for all the
architectures, we will refer only to platform C in our discussions,
but also report results on the other platforms when necessary. The
eight cores of the representative platform C are illustrated in Fig-
ure 1 together with their topology. We categorize data transfers
between CPUs as “intra-die”, “inter-die” and “inter-chip”, ordered
by increasing data transfer latency. In our experiments, we left one
core free to accommodate noise from OS daemons.

Ite
ra

tio
n

tim
e

(u
s)

0

100

200

300

400

500

600

700

800

Message size (Bytes)
16 32 64 128 256 512 1024 2048 4096 8192

SMP original (v0)

non−SMP

PXSHM

Figure 2: Initial Comparison between non-SMP and SMP.

We demonstrate the impact of each optimization technique by
comparing the performance before and after the optimization is ap-
plied. Figure 2 shows the performance comparison between the
non-SMP modes (non-SMP and PXSHM) and the very initial SMP
mode in CHARM++ for the kNeighbor benchmark running on 7
cores with varying message sizes. Clearly, the performance of
SMP mode lags far behind that of the non-SMP modes. This was
a surprise, as we expected the SMP mode to outperform non-SMP
modes due to the faster intra-node communication. Nevertheless,
several other bottlenecks were preventing SMP from performing
well.

3.1 Network Progress Engine Issues
Parallelizing the CHARM++ runtime system for multicore not

only involves engineering the whole runtime to be thread safe, but

also invites us to re-think the trade-off of dividing work respon-
sibility between worker and communication threads. As a design
choice, each worker thread calls the network progress engine af-
ter sending a message to make sure the outgoing message gets put
on the network right away, and to check for incoming messages
to improve responsiveness. Another choice is to let each worker
thread put outgoing messages in a communication thread’s wait-
ing queue, and let the communication thread handle the message
at a later time. This second choice reduces the contention of hav-
ing multiple threads access the network engine, but at the cost of
potentially increasing message latency.

Ite
ra

tio
n

tim
e

(u
s)

200

300

400

500

600

700

Message size (Bytes)
16 32 64 128 256 512 1024 2048 4096 8192

non−SMP

SMP original (v0)

SMP skip progress (v1)

Figure 3: Performance before/after skipping network calls.

In the original implementation, which used the first design, we
observed a very high overhead due to expensive network progress
engine calls. As a trade-off, we decided to use a combination of the
two schemes: we call the network progress engine only for inter-
node messages, and skip the calls for intra-node messages. The
results of using this optimized scheme as compared to the original
scheme are shown in Figure 3. On average, we see about 35%
improvement. With this optimization, kNeighbor performs better
in SMP than in non-SMP for message sizes larger than 8KB. The
SMP mode is still worse for message sizes below 8KB, leading to
the further investigation.

3.2 Multi-threaded Performance Issues
We looked at performance issues involved in the conventional

multi-threaded programming pitfalls as we optimize the intra-node
communication. In retrospect, we found that efficiently handling
locking and synchronization among threads in the runtime is the
key factor for obtaining fast fine grained intra-node communica-
tion.

3.2.1 Memory Management
CHARM++ implements its own memory allocators for various

reasons including being SIGIO safe in an interrupt mode, and sup-
porting special purpose memory allocation schemes such as iso-
malloc [10]. The default memory allocator in the CHARM++ was
based on a GNU memory allocator extracted from Linux glibc source
seven years ago. Lacking of robust support for multi-threading at
that time, we “protected” every GNU malloc and free call with
a lock in CHARM++ SMP. It was no surprise that we found that
kNeighbor performed poorly because of severe lock contention due
to message allocation, amplified by the intensive communication.
As multi-threading support in the memory allocator of glibc has
now become good enough to be directly used in CHARM++, we
switched to it in CHARM++ SMP. The second curve in Figure 4 il-
lustrates kNeighbor’s improved iteration time. We see an improve-

#thds A(us) A/M(us) B(us) C(us) D(us) E(us)
1 1.06 1.03 0.78 0.80 1.13 0.68
2 2.23 1.02 1.30 1.44 1.53 2.03
4 6.06 1.05 3.95 2.14 2.36 2.73
8 15.35 1.03 8.71 3.69 4.72 7.06
16 36.89 1.06 22.63 n/a n/a 14.58
24 n/a n/a n/a n/a n/a 21.31
32 210.96 1.02 n/a n/a n/a n/a

Table 1: Memory allocation time on different platforms.

ment of 2.4 fold on average after switching to the OS malloc, which
is significant.

Ite
ra

tio
n

tim
e

(u
s)

0

100

200

300

400

500

600

700

Message size (Bytes)
16 32 64 128 256 512 1024 2048 4096 8192

non−SMP

SMP skip progress (v1)

SMP with OS malloc (v2)

PXSHM

Figure 4: Performance comparison before/after using OS-
provided memory allocator.

The above finding intrigued us to find how the OS-provided mem-
ory module performs when the number of threads increases in a
process. We synthesized a benchmark that every thread continu-
ously allocates memory of the same size and deallocates at the end
for 100,000 times. We run the benchmark with the varying num-
ber of threads, and take the average memory allocation time on 5
different multicore platforms mentioned earlier.

Table 1 shows that the default OS memory allocators tend not
to scale when number of threads increases up to the maximum
number of logical CPUs on each platform. Among these, the AIX
6.1/Power 5 platform, illustrated by the second column, did the
worst with the default setting. Setting system environment variable
“MALLOCMULTIHEAP” under AIX, however, improves the per-
formance significantly as shown in the third column which shows
no contention at all. The trick here is to use multiple heaps, one
serving several threads to reduce contention on heap allocation. Al-
though this is at the cost of increased overall memory usage, it is a
good optimization to consider.

We should be cautious to interpret these results as real applica-
tions may not be memory intensive. However, it very likely implies
the upper-bound of overhead, and motivates the adoption of a bet-
ter memory management on the Linux platform for multi-threaded
programs, which will also benefit CHARM++ RTS.

It is obvious based on Figure 4 that kNeighbor in the current
SMP mode becomes much better after switching to OS-provided
memory module (third curve vs. first curve), even exceeds the per-
formance in the non-SMP mode (second curve). However, com-
pared with PXSHM (fourth curve), SMP mode is still worse (by
4.3 times on average) for message sizes below 4KB. We continued
this journey by challenging ourselves to beat the performance of
the PXSHM mode.

3.2.2 Granularity of Critical Sections
It is really enticing to use a big critical section to make runtime

thread-safe, which however leads to a serialization of program and
poor performance. In our development for SMP mode, we had also
made such mistakes from the perspective of performance. After
carefully reviewing the code base of CHARM++ runtime, we re-
moved the locks that are unnecessary and reduced the granularity
of critical sections to minimize synchronization overhead, e.g., we
put the lock only around the part of function that is not thread-safe
instead of blindly putting it around the whole function body. In-
deed, this is a trade-off between productivity and performance, be-
cause larger critical sections tend to be safer, while reducing their
scope requires analyzing complex interactions for race conditions,
and tedious debugging efforts. However, for a runtime that is at the
foundation of a parallel programming system, and one that is used
very often, the effort to improve performance is worthwhile.

Ite
ra

tio
n

tim
e

(u
s)

0

50

100

150

200

250

300

350

Message size (Bytes)
16 32 64 128 256 512 1024 2048 4096 8192

PXSHM

SMP with OS malloc (v2)

SMP with smaller critical sections (v3)

Figure 5: Performance before/after reducing granularity of
critical sections.

This turned out to be a significant performance improvement as
indicated by Figure 5. Compared with the previous SMP version,
kNeighbor benchmark speeds up by an average of 2.7 times up
to message size 2KB. Beyond that, we can observe a trend that
the performance gain is diminishing, but still with 35.1% improve-
ment on average for message sizes 4KB and 8KB. We believe such
performance trend is caused by the fact that the execution time of
kNeighbor begins to be dominated by touching every byte of the
message on the receiver side. Comparing with the PXSHM ver-
sion, we can see now the two performance lines cross at a mes-
sage size smaller than 2KB. Additionally, it is clearly shown the
PXSHM mode has a steeper execution time increase rate than that
in SMP mode because we cannot avoid an extra copy from the
POSIX-shared memory region to the user space for receiving the
message, while such a copy is not needed in SMP mode as only the
message pointer is passed to the receiver.

3.2.3 Message Queues
Producer-Consumer Queue (PCQueue) is a commonly used data

structure in parallel language RTS to synchronize multiple threads.
For example, it is used in the Cilk [11] scheduler for work-stealing.
CHARM++ RTS uses PCQueue for various purposes to synchronize
the worker threads and communication thread with messages. For
example, the communication thread as a producer pushes a mes-
sage into a worker thread’s message queue for processing. The
simplest way to ensure correctness is to enforce a lock every time
a thread accesses the queue. This was the original implementation
in CHARM++, and it suffered severe thread contention, especially
when the number of producers increased.

Lock free implementation is possible for PCQueue, and has been
used in the past [12, 13]. In CHARM++, each PCQueue always
has a single consumer (the thread for which the messages are des-
tined), but can have multiple producers (all the other cores in the
node). Our first change was to use memory fences to preserve the
correctness of the PCQueue operations while allowing producers
and consumers to overlap. To take care of the multiple producers
scenario, we still used a lock shared among the producers. Mem-
ory fence operations, however, are highly architecture specific. To
simplify the implementation of PCQueue, we defined a portable
API that consists of two functions: CmiMemoryReadFence() and
CmiMemoryWriteFence(), which serialize the load and store op-
erations respectively. These two APIs call platform specific mem-
ory fence instructions, for example lfence and sfence on X86-based
platforms, mf for IA64 platforms, and eieio for PowerPC platforms.
We use the lock-based scheme as a fallback implementation for
the cases when memory fence is not supported. Replacing locks
with inexpensive memory fence operations does improve the per-
formance as shown in the second curve in Figure 6. We observe up
to 9.7% improvement, especially for messages smaller than 2KB,
compared with the performance before using memory fences, as
represented by the top curve.

Ite
ra

tio
n

tim
e

(u
s)

40

90

140

190

240

Message size (Bytes)
16 32 64 128 256 512 1024 2048 4096 8192

SMP with smaller critical sections (v3)

SMP with memory fence (v4)

SMP with multiple queues (v5)

Figure 6: performance comparison with memory fence and
multiple queues respectively.

Further, we looked at removing the lock still remaining on the
producers side of the queue. While a totally lock-free implemen-
tation is possible for multiple-producer-single-consumer, the over-
head associated with this implementation was significantly high,
and the implementation was not stable, especially on some archi-
tectures. Therefore, we removed the lock by introducing multi-
ple queues, one for each producer and consumer pair, so that the
pure lock-free PCQueue could be used. Clearly, this optimiza-
tion comes at the cost of a consumer having to poll all the queue
pairs, which can be as many as the number of cores on a node.
Therefore, the overhead increases as the size of a multicore node
grows. This is observed in our experiments. On the representative
platform C, we see that the benefit of removing locks outweighs
the incurred polling overhead (about 19.5% improvement on aver-
age in kNeighbor benchmark), which is illustrated in the bottom
curve of Figure 6. On the other hand, on platform E with 24 cores,
kNeighbor shows no speedup at all with this optimization due to
the higher polling overhead. As cluster nodes become increasingly
large, further investigation are required to reduce the overhead of
producers locks.

3.3 Handling Processor Private Variables
Similar to the thread private variables used in OpenMP, CHARM++

uses processor private variables that is used in its runtime imple-
mentation and user applications. Applications do not need to be
changed to execute in the SMP mode, thanks to the annotation of
variables for distinguishing between processor private and shared
variables (noted by Cpv and Csv macros respectively). For exam-
ple, “CpvAccess(var)” is to access a processor private variable. In
non-SMP mode, Cpv variables are defined same as Csv variables,
because there is only one single thread. In SMP mode, however,
Cpv variables are done differently, which have one dedicated copy
for each thread, similar to thread private variables.

Our initial solution (which was developed more than 5 years ago)
is to use an array of size equal to the number of “processors” on a
node to represent the processor private variables. Each rank of pro-
cessors uses its own copy of the variable in the array, so accessing a
processor private variable var is expanded to “var[myrank]". This
solution has a significant disadvantage of cache “false sharing” in
SMP mode, as we observed using Intel Performance Tuning Utility
(PTU).

Ite
ra

tio
n

tim
e

(u
s)

0

50

100

150

200

250

300

350

Message size (Bytes)
16 32 64 128 256 512 1024 2048 4096 8192

PXSHM

SMP with multiple queues (v5)

SMP with TLS (v6)

Figure 7: Performance before/after using TLS.

To avoid this, we used the thread local storage (TLS) scheme ei-
ther implicitly if the “__thread” keyword is supported by the com-
piler and assembler, or explicitly through function calls such as
“pthread_setspecific/pthread_getspecific” on Unix-like platforms or
“TlsSetValue/TlsGetValue” on Windows. To set an idea of how
TLS performs against the array-based solution, we evaluated the
time taken to update a processor private integer variable on the 5
platforms mentioned before Section 3.3 with 8 “processor”s (i.e.
8 threads in total on the node). Table 2 illustrates the significant
advantage of TLS over the array-based solution because the lat-
ter suffers greatly from cache false sharing induced by the cache-
coherence protocol.

Platform A (ns) B (ns) C (ns) D (ns) E (ns)
TLS 0.40 1.27 1.5 1.75 1.26

Array-based 51.58 17.52 10.03 9.61 8.50

Table 2: Time of updating processor private variable on differ-
ent platforms.

Figure 7 shows kNeighbor’s performance improvement by 26.5%
on average after switching to TLS scheme for processor private
variables. We can also see a decreasing return for this optimiza-
tion for messages of relatively larger size due to the reason men-
tioned in the end of Section 3.2.2. In addition, we have moved
the performance of SMP mode closer to that of PXSHM mode in
that PXSHM only outperforms SMP for very small messages below
128B.

3.4 CPU Affinity
We noted that the way operating systems binding SMP threads

to cores, and how they move the threads between cores has great
impact on the multicore performance.

There has been extensive research on the scheduling algorithms
in operating systems for multcore systems to improve overall per-
formance by using process and thread affinity [14]. However, op-
timizations performed in this category tend to improve the overall
performance of a multicore system and its utilization, they may not
benefit the particular application of concern. Instead of being intru-
sive, most operating systems on multicore systems adopt soft affin-
ity, also called natural affinity, which is the tendency of a scheduler
to try to keep processes on the same CPU as long as possible. How-
ever, this is merely an attempt; if it is ever infeasible, the processes
certainly will migrate to another processor. For example, using the
same kNeighbor benchmark, we observe that the OS keeps chang-
ing the core of a particular thread on a 8-core machine, as shown in
Figure 8.

C
or

e
N

um
be

r

0

2

4

6

8

Step Number
0 100 200 300 400 500 600 700 800 900

core number

Figure 8: OS keeps changing the core of a thread.

Our first experiment was to see how performance is affected
when fixing threads to their cores. There are a few reasons do-
ing this. First, CPU affinity can optimize cache performance, since
it avoids the OS moving a thread to a core which has cold cache.
When threads bounce between cores, they constantly cause cache
invalidation. Therefore, in performance critical situations, it makes
sense to enforce the affinity as a hard requirement. Secondly, OS
moving threads around may conflict with application load balanc-
ing effort. Moving threads and their work unexpectedly could result
changing of the already balanced load.

w/o CPU affinitywith CPU affinity

16 137.1 110.3 72.28 61.88
64 138.5 109.9 73.92 62.96

256 141.8 114.6 77.72 67.44
1024 173.6 147.7 96.08 87.13
4096 272.6 256.6 170.32 164.62

16 64 256 1024 4096
0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

300

350

400

450
w/o CPU affinity
with CPU affinity

Message size (Bytes)

It
e

ra
tio

n
tim

e
 (

us
)

L
1

ca
ch

e
 m

is
se

s
(m

ill
io

ns
)

Figure 9: kNeighbor L1 cache misses and iteration time.

The result of fixing threads to cores is shown in Figure 9 (lines)
using the same kNeighbor benchmark running on a 8-core multi-

core desktop using various message sizes. We observe up to 15%
performance improvement in the total execution time by just doing
that! To better understand this, we measured the L1 cache misses
for the same runs, as illustrated in the same Figure (bars). We see
that for small messages, the number of L1 cache misses are reduced
by around 20% by binding threads to their cores, while the reduc-
tion of cache misses decreased to around 10% for larger messages.
We also observed similar performance boost with several other ap-
plications such as NAMD as well. This demonstrated that simply
enforcing hard thread affinity is beneficial to applications.

With these encouraging results, we further consider the effect of
affinity bindings on application performance. Intuitively, mapping
communicating threads to closer cores in the memory hierarchy
incurs less data transfer latencies between cores, which leads to
better overall application performance.

The impact of bindings on performance really depends on the
communication pattern of the application. For the kNeighbor bench-
mark when k=3 running on 7 cores of a 8-core machine, perfor-
mance does not vary by the different bindings. This is because
each element communicates with all 6 other elements on 6 dif-
ferent cores, making bindings unimportant. However, when k=1,
every element only communicates with its two neighbors, the bind-
ing shows significant impact on the performance. For example,
when message size is 256 bytes, a mapping of 0,1,2,3,4,5,6 yields
iteration time of 13.37 us, while a mapping of 0,2,4,6,1,3,5 yields
iteration time of 11.66 us.

The execution time difference is primarily due to the different
number of inter-chip, inter-die and intra-die messages. In the case
of mapping 1, there are 4 inter-die messages, and 24 inter-chip
messages per iteration in total. In comparison, the second map-
ping caused fewer inter-chip messages (reduced from 24 to 8) with
cheaper messages of the other two types (increased from 4 to 8,
and 0 to 12 respectively). Therefore, the overall performance of the
second mapping is better.

We extended CHARM++ RTS with a portable function API
(CmiSetCPUAffinity) to allow programmers to manually bind
pthreads to processors. The implementation uses the low level sys-
tem call to bind threads, for example:

• pthread_setaffinity_np for Linux and pthreads,

• bindprocessor for IBM AIX, and

• SetThreadAffinityMask for Fibers on Windows.

In the future, we plan to extend this work with an automatic and
adaptive affinity binding scheme at runtime. We also plan to study
the effect of thread affinity on CHARM++’s load balancing.

3.5 Other Issues
We further analyzed the fine grained message performance using

Intel PTU, trying to find the most expensive instruction blocks in
terms of CPU cycles. We identified that the push/pop operations on
the message queue still constituted a high overhead. These opera-
tions, despite being simple and short, still had very high cycles per
instruction because they contain multiple memory accesses which
are particularly expensive due to frequent execution. This over-
head manifests itself when message sizes are small. We simplified
the data structure of the message queue to reduce the number of
memory accesses. Consequently, as demonstrated in Figure 10, the
kNeighbor in SMP mode improved by 8.1% on average for mes-
sages up to 1KB. We have omitted data points from message size
2KB because this optimization shows negligible improvement due
to the fact of touching message data mentioned in the end of Sec-
tion 3.2.2. Compared with the PXSHM mode, it now performs

equally well for very small messages and much better for message
sizes beyond 512B (due to the copy-free message delivery in SMP)!

Although this is demonstrated on an Intel architecture, we found
our optimization generally helps kNeighbor on other platforms we
have access to.

Ite
ra

tio
n

tim
e

(u
s)

0

10

20

30

40

50

60

70

Message size (Bytes)
16 32 64 128 256 512 1024

PXSHM

SMP with TLS (v6)

SMP with simple queue (v7)

Figure 10: Performance before/after using simple PCQueue.

Up to this point, it is a triumph that SMP mode of CHARM++
achieves the best performance over the wide range of message sizes.
It beats both the plain non-SMP mode and the PXSHM mode by
about 486.6% and 20.7% respectively. Amazingly, we have ob-
tained about 14.4 fold performance improvement for kNeighbor
from the initial SMP implementation of CHARM++.

4. APPLICATION CASE STUDIES
In addition to synthetic benchmarks, we used two production-

level scientific applications to demonstrate the performance impact
of our optimization techniques. These two applications are NAMD
and ChaNGa.

4.1 NAMD
NAMD [7] is a scalable parallel application for Molecular Dy-

namics simulations written using the CHARM++ programming model.
It is used for the simulation of bio-molecules, and to understand
their function. Figure 11 shows the performance results of NAMD
for the standard benchmark Apolipoprotein-A1 (ApoA1) molecule
system on two multicore platforms C and E described in the Sec-
tion 3. On these two platforms, performance changes in NAMD,
due to the switch in CHARM++ runtime mode from non-SMP to
SMP and the aforementioned series of optimization techniques, are
quite representative. On a platform having a smaller number of
cores per node such as C, NAMD in SMP mode is better by 5.2%
than it is in non-SMP mode. In contrast, on the platform that has a
larger number of cores per node such as E, NAMD in SMP mode
demonstrates more benefits as it beats the non-SMP one by 21.1%.
Such difference in performance improvement is primarily due to
the difference in the number of cores in the node. Since the SMP
mode reduces the message latencies significantly within a node, a
larger node size, implying more chances for an application to have
messages sent within a node, will benefit more as demonstrated in
this case. In addition, we can see from the figure that the optimiza-
tion of having multiple queues mentioned in Section 3.2.3 incurs
a slightly performance degradation for NAMD on platform E be-
cause of the increased polling overhead for message queues. Fi-
nally, we noticed that using the OS-provided memory management
instead of the old memory module as mentioned in Section 3.2.1
alone contributes the most performance gains for both platforms.

 75

 80

 85

 90

 95

 100

 105

 110

NAMD_plat.E NAMD_plat.C ChaNGa.dwf1 ChaNGa.cube300

T
o

ta
l

T
im

e
p

er
 I

te
ra

ti
o

n
 (

n
o
rm

al
iz

ed
)

non−SMP
PXSHM
SMP original (v0)
SMP skip progress (v1)
SMP memory OS (v2)
SMP small critical sec. (v3)
SMP fence (v4)
SMP multi−queue (v5)
SMP with TLS (v6)
SMP simple queue (v7)

Figure 11: Applications Performance.

4.2 ChaNGa
ChaNGa [8] is a cosmological application used for the simula-

tions of the evolution of the universe. It handles forces generated
by both gravitational and hydrodynamic interaction. ChaNGa con-
siders SMP optimizations at the application level, and makes ex-
tensive use of CHARM++ nodegroups. With these optimizations,
during the computation of the forces it leverages the shared mem-
ory and avoids all intra-node communication. Communication is
present during other phases of the iterative process, such as during
construction of the global tree.

Figure 11 shows also two executions of ChaNGa with two differ-
ent datasets on platform C. The first dataset consists of nearly five
million particles highly clustered in the center of the simulation
(dwf1); the second consists of about 110,000 particles uniformly
distributed in space (cube300). The first system takes about 500
seconds to perform 3 iterations, while the second requires about 30
seconds to perform 5 iterations of the algorithm, and is more com-
munication intensive. We can see that the performance of SMP was
worse than non-SMP with the initial SMP version. As in NAMD,
switching to the OS memory system provides the greater benefit
to ChaNGa. This is due to two reasons: 1) since all threads allo-
cate memory at the same time, by releasing the locks the total time
spent allocating memory is greatly reduced; 2) since the memory
is allocated from separate pools for different threads, the resulted
memory blocks are less spread in the address space, and accessing
it is faster.

For the first dataset, the performance benefit is only 4% from
non-SMP mode (6% from the original SMP implementation). This
is mainly due to the fact that the majority of the time is spent com-
puting forces, without any communication. For the smaller dataset,
which constitutes a more typical computation/communication ra-
tio when scaling simulations to large machines, the improvement
is 6% from non-SMP mode with POSIX shared memory, and 11%
when the processes are communicating through the OS kernel.

We can see that by simply switching from non-SMP (with or
without POSIX shared memory) to SMP mode the performance is
automatically boosted by 9%. When applying the optimizations de-
scribed in this paper, another 2% is gained. As mentioned, ChaNGa
has many internal optimization for SMP mode, and therefore bene-
fits less from the optimizations of the runtime system. However, the
improvements just mentioned are still very significant considering

that the application did not need to be changed to obtain them.

5. RELATED WORK
Through running benchmarks, applications and simulations, stud-

ies have been conducted to evaluate the impact of current multicore
chips for cluster computing, and identify the performance issues
that include optimizing intra-node communication and relieving
cache and memory contention[15][16]. This paper also describes
such performance issues, but in the context of a parallel language
RTS. In addition, we applied optimization techniques to actually
resolve those issues and demonstrated their effectiveness.

Our work to optimize the CHARM++ runtime system shares a
common purpose with new implementations[17][18][19] for MPI
communication subsystem in that both utilized the shared mem-
ory of the compute node in clusters to optimize message latencies
within a node. But the latter ones are achieved by using the exist-
ing[17] or newly[18][19] developed inter-process memory transfer
techniques, while ours is achieved naturally by having threads in-
stead of processes on each core despite the performance issues in
shared-memory programming as described in the paper.

Much work has been done for parallelizing or optimizing user-
level applications for multicore systems such as the work on lattice
Boltzmann computation[20]. Such work probably shares a similar
engineering process as we went through in this paper. However,
since the language RTS is coupled with applications, the develop-
ment of general optimization techniques for it becomes more com-
plex and is likely to require more efforts.

6. CONCLUSION AND FUTURE WORK
In this paper, we described various performance issues we en-

countered when optimizing CHARM++ RTS on multicore systems.
Many of these issues are common to other multi-threaded runtime
systems. We present a series of optimization techniques that over-
come these performance issues, focusing mainly on optimizing intra-
node fine grained communication. The techniques apply to a vari-
ety of multicore architectures and operating systems.

In the future, we would like to extend our optimization tech-
niques to improve inter-node communication performance on mul-
ticore clusters for scalability. We will also continue to explore the
techniques of using CPU affinity to further improve the multicore
performance. One idea is to develop adaptive load balancing strate-
gies that take SMP memory hierarchy into account to minimize ex-
pensive data movement and communication between cores.

7. REFERENCES
[1] L. Dagum and R. Menon, “OpenMP: An Industry-Standard

API for Shared-Memory Programming,” IEEE
Computational Science & Engineering, vol. 5, no. 1,
January-March 1998.

[2] L. Smith and M. Bull, “Development of mixed mode mpi /
openmp applications,” Scientific Programming, vol. 9, no.
2-3/2001, pp. 83–98.

[3] T. El-Ghazawi and F. Cantonnet, “Upc performance and
potential: a npb experimental study,” in Proceedings of the
2002 ACM/IEEE conference on Supercomputing. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2002,
pp. 1–26.

[4] D. A. MallÃşn, G. L. Taboada, C. Teijeiro, J. TouriÃśo,
B. B. Fraguela, A. GÃşmez, R. Doallo, and J. C. MouriÃśo,
“Performance evaluation of mpi, upc and openmp on
multicore architectures.” in PVM/MPI, ser. Lecture Notes in
Computer Science, M. Ropo, J. Westerholm, and
J. Dongarra, Eds., vol. 5759. Springer, 2009, pp. 174–184.

[5] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive
Runtime Strategies via Migratable Objects,” in Advanced
Computational Infrastructures for Parallel and Distributed
Applications, M. Parashar, Ed. Wiley-Interscience, 2009,
pp. 265–282.

[6] L. Kalé and S. Krishnan, “CHARM++: A Portable
Concurrent Object Oriented System Based on C++,” in
Proceedings of OOPSLA’93, A. Paepcke, Ed. ACM Press,
September 1993, pp. 91–108.

[7] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and
L. V. Kale, “Overcoming scaling challenges in biomolecular
simulations across multiple platforms,” in Proceedings of
IEEE International Parallel and Distributed Processing
Symposium 2008, April 2008.

[8] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R.
Quinn, “Massively parallel cosmological simulations with
ChaNGa,” in Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2008, 2008.

[9] E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman,
S. Kumar, J. A. Gunnels, and G. J. Martyna, “Fine Grained
Parallelization of the Car-Parrinello ab initio MD Method on
Blue Gene/L,” IBM Journal of Research and Development:
Applications of Massively Parallel Systems, vol. 52, no. 1/2,
pp. 159–174, 2008.

[10] G. Zheng, O. S. Lawlor, and L. V. Kalé, “Multiple flows of
control in migratable parallel programs,” in 2006
International Conference on Parallel Processing Workshops
(ICPPW’06). Columbus, Ohio: IEEE Computer Society,
August 2006, pp. 435–444.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient
multithreaded runtime system,” J. Parallel Distrib. Comput.,
vol. 37, no. 1, pp. 55–69, 1996.

[12] H. Massalin and C. Pu, “A lock-free multiprocessor os
kernel,” 1991.

[13] M. M. Michael and M. L. Scott, “Fast and practical
non-blocking and blocking concurrent queue algorithms,” in
Proc. 15th ACM Symp. on Principles of Distributed
Computing, 1996, pp. 267–275.

[14] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient
operating system scheduling for performance-asymmetric
multi-core architectures,” in SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing. New York, NY,
USA: ACM, 2007, pp. 1–11.

[15] A. Kayi, T. El-Ghazawi, and G. B. Newby, “Performance
issues in emerging homogeneous multi-core architectures,”
Simulation Modelling Practice and Theory, vol. 17, no. 9,
pp. 1485 – 1499, 2009.

[16] L. Chai, Q. Gao, and D. K. Panda, “Understanding the
impact of multi-core architecture in cluster computing: A
case study with intel dual-core system,” in Seventh IEEE
International Symposium on Cluster Computing and the
Grid - Table of Contents, 2007.

[17] D. Buntinas, G. Mercier, and W. Gropp, “Design and
evaluation of nemesis, a scalable, low-latency,
message-passing communication subsystem,” in CCGRID
’06: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid, Washington, DC, USA,
2006, pp. 521–530.

[18] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda, “Designing an
efficient kernel-level and user-level hybrid approach for mpi
intra-node communication on multi-core systems,” in ICPP
’08: Proceedings of the 2008 37th International Conference
on Parallel Processing, Washington, DC, USA, 2008, pp.
222–229.

[19] R. Brightwell, “Exploiting direct access shared memory for
mpi on multi-core processors,” Int. J. High Perform. Comput.
Appl., vol. 24, no. 1, pp. 69–77, 2010.

[20] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick,
“Optimization of a lattice boltzmann computation on
state-of-the-art multicore platforms,” Journal of Parallel and
Distributed Computing, vol. 69, no. 9, pp. 762 – 777, 2009.

