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Abstract. This paper presents a simple, but powerful memory-aware
scheduling mechanism that adaptively schedules tasks in a message driven
parallel program. The scheduler adapts its behavior whenever memory
usage exceeds a threshold by scheduling tasks known to reduce memory
usage. The usefulness of the scheduler and its low overhead are demon-
strated in the context of an LU matrix factorization program. In the LU
program, only a single additional line of code is required to make use
of the new general-purpose memory-aware scheduling mechanism. With-
out memory-aware scheduling, the LU program can only run with small
problem sizes, but with the new memory-aware scheduling, the program
scales to larger problem sizes.

1 Introduction

It is well known that some parallel algorithms require large quantities of memory.
Unfortunately, parallel systems have limited amounts of memory, and hence
parallel programs must use algorithms that do not exceed the available memory
bounds.

This paper describes a general purpose memory-aware scheduling technique
that can automatically restrict the memory usage for a class of parallel algo-
rithms that would otherwise run out of memory. Because the scheduling tech-
nique is included in a general purpose parallel runtime system, the parallel pro-
gram needs only minor changes to use the scheduler.

Often it is easier to implement a simple naive algorithm instead of a more
complicated explicitly memory-aware algorithm. The productivity of a program-
mer will likely be higher if a simpler memory-oblivious algorithm can be written
while allowing the runtime system’s scheduler to restrict memory consumption.

The memory-aware scheduling scheme described in this paper could be used
for different programs. The scheduling scheme effectively reduces the memory
requirements for an algorithm implemented in a manner that is mostly oblivious
to its own memory usage. Specifically, this paper demonstrates the scheduler’s
utility in the context of an LU dense matrix factorization program.

All the scalable LU dense matrix factorization schemes frequently used to-
day are written using algorithms that explicitly restrict the progress of tasks to
ensure that there always is enough memory available to make forward progress.
Some algorithms, such as the one used in the High Performance Linpack imple-
mentation use a fixed parameter that statically controls the lookahead depth, or
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number of algorithm stages that can be executed ahead of the oldest currently
executing algorithm stage [2]. When the amount of lookahead permitted is small,
the degree of concurrency is small and the required memory buffer overhead is
small. Conversely, if the amount of lookahead permitted is high, the degree of
concurrency is high but the required memory footprint becomes large. The ex-
panded memory footprint stores more blocks of incoming data blocks sent to
each processor before pairs of these blocks are consumed in a trailing update
operations.

Other LU implementations use dynamic lookahead so they can fully exploit
as much concurrency as will fit in the available memory [6]. Memory buffers are
reserved for specific tasks in a certain order and sending and receiving processors
coordinate the accesses to the reserved buffers to ensure that deadlock will not
occur if memory is exhausted for some processor. Such implementations use an
application specific scheduler with a user-level threading package to allow the
program to proceed in a safe manner.

One key goal that all implementations share is to achieve high performance.
This can be achieved by performing computation aggressively along the critical
path so that the parallel machine achieves high utilization. A message driven
style of programming such as Charm++ [8] allows this pattern of computation
to be expressed naturally. The case study presented in this paper, an LU imple-
mentation, was written in Charm+-.

2 Memory Aware Scheduling

This paper describes a memory-aware scheduler that can constrain the memory
consumption of a class of naive parallel algorithms that are oblivious to memory
consumption. The memory usage is reduced by the scheduler as it chooses to
schedule tasks known to reduce the memory footprint whenever available mem-
ory resources are low. This new scheduler was created by modifying the existing
scheduler in the Charm+-+ Runtime System. The new scheduler can therefore be
used by any Charm++ program, and hence it is general purpose. In order for the
scheduler to know which tasks should be scheduled when memory resources are
limited, the system requires only minor changes to the Charm++ program. The
programmer simply needs to add an annotation for each of the tasks that reduce
memory consumption. This section describes the existing Charm++ scheduling
system and the modifications that result in a simple memory-aware scheduler.

2.1 Existing Charm-++ Scheduler

The existing Charm++ Runtime System uses a flexible scheduling mechanism
to execute tasks spawned locally and tasks associated with incoming messages
from other processors. In a Charm+-+ program, the tasks are Entry Method
Invocations on Chare Objects, Chare Groups, or Chare Node Groups [10]. The
flow of control for a Charm-++ parallel program proceeds as entry methods are
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invoked. These entry methods perform computations and asynchronously invoke
other entry methods.

The existing scheduler in the Charm+4 Runtime System, which runs on
each processor, supports prioritized execution in both LIFO and FIFO modes.
Priorities or LIFO/FIFO designations can be associated with each entry method
invocation. If no priority is specified, a default medium priority is implicitly
assumed. When an entry method is invoked, its designated queuing scheme is
stored along with any parameters to the method inside a message. Each message
is then delivered to the destination processor or processors. Each destination
processor will enqueue the message using the queuing scheme specified in the
message’s header.

Although the primary Charm++ scheduler queue acts just like a priority
queue, it is actually composed of three data structures: a high priority heap, a
default (or zero) priority queue, and a low priority heap. Charm++ entry method
invocations are stored in messages recorded in one of these three data structures.
The reason that three separate structures are used instead of a single priority
queue is that the double ended queue used for the frequent default priority case
can be slightly faster than a more complicated heap data structure.

2.2 New Adaptive Charm++ Scheduler

The new adaptive scheduler is a simple variant of the existing scheduler. The
new scheduler adapts its behavior whenever the current memory usage for the
processor exceeds a threshold. The threshold can be specified at runtime as a
command line argument.

As long as the current memory usage is below a threshold, the scheduler
acts as it normally would, processing messages one at a time in prioritized order
from the primary scheduler queue. When the current memory usage exceeds the
specified threshold, certain types of tasks are scheduled immediately even though
they might have priorities lower than other tasks in the queue. Specifically, tasks
that potentially reduce memory usage will be scheduled ahead of all other tasks
whenever a processor’s memory usage exceeds the threshold.

To modify the behavior of the scheduler when the memory usage is high, a call
is made to a function that modifies the scheduler queue just prior to determining
which task ought to be executed next. The modification function simply performs
a linear scan through the three priority queue data structures, searching for
the first task known to reduce memory usage. Once such a task is found, the
task’s entry in the priority queue is removed, and the task is re-enqueued with
maximum priority. Then the scheduler resumes its normal operations, resulting
in that task being executed next.

Of course, the scheduler needs to know which tasks are candidates for re-
scheduling. The adaptive scheduler therefore contains a list of such tasks. The
list is populated with tasks specified by the application programmer in an inter-
face file. All Charm++ programs contain one or more simple interface files that
specify the entry methods and other parallel constructs in the program. A sim-
ple translator parses the interface file and generates C++ code that is compiled
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into the program to support the specified entry methods and other constructs.
A new tag called [memcriticall] has been added to the interface file’s grammar
and parser. When this new tag is added as an annotation to any entry method,
the entry method will be included in the scheduler’s list.

3 LU Case study

To evaluate the usefulness of the memory adaptive scheduler described in section
2.2, an LU program was modified to enable the adaptive scheduler. This section
describes the LU implementation as well as its performance characteristics both
with and without the adaptive scheduler. The resulting memory consumption
patterns for the program are analyzed to show that the memory-aware scheduling
technique does indeed reduce memory usage in a useful manner. The section
concludes with a set of insights gained from this case study.

3.1 Experimental Setup

All runs of the Charm++ LU implementation are performed on 64 nodes of an
IBM Bluegene/P system at the Argonne Leadership Computing Facility. Only
one core per node is used, because the memory utilization patterns are the focus
of this paper. Each node contains four processor cores running at 850MHz and
2GB of memory. All measurements of GFlop/s are counted in a manner consis-
tent with the standard HPL benchmark. All visualizations of processor timelines
are generated from actual application traces analyzed using the Projections per-
formance analysis toolkit [9].

For the performance critical numerical kernels, when using an IBM Blue-
gene/P system, the Charm++ LU program uses the dgemm and dtrsm routines
from the Engineering and Scientific Subroutine Library (ESSL).

For performance comparisons, the well-known High Performance Linpack
Benchmark (HPL) version 2.0 was run on the same system with identical block
sizes and matrix sizes.

3.2 Charm++ LU Implementation

To write a dense LU algorithm, there are many implementation choices to be
made. This section describes some of the design decisions made when develop-
ing a Charm++ implementation of dense square LU matrix factorization. The
LU program was written as simply as possible, without any explicit memory-
awareness in the parallel program’s code. This implementation does not perform
pivoting. Hence some numerical stability is lost, but the same number of float-
ing point operations are still performed when compared to an LU program that
implements pivoting [4].

The program uses a 2-D chare array to decompose the 2-D matrix into b x b
square blocks. Each matrix block is stored in one of the chare array elements.
The mapping of the chare array elements to processors is flexible. The default
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Charm++ mapping is a block mapping, but the program can easily specify
other mappings, and for this LU program two custom mappings were developed.
Section 3.3 describes the advantages and tradeoffs for these mappings.

The main communication pattern that occurs in an LU matrix factorization
is a multicast of a data block from a source block to all subsequent blocks in
the same row, and a downward multicast of a data block from its source to all
blocks below it in the same column. The Charm++ language natively supports
chare array section sends, which are a mechanism for sending a single message
to a set of destination chare array elements. The programmer can choose one
of many predefined algorithms for each section send [10]. The Charm++ LU
implementation can therefore easily represent the pattern of communication that
needs to occur. The multicast algorithm that appears to perform well for the
cases described below uses a simple processor spanning tree of degree 4.

The main computations performed in a dense LU algorithm are matrix-
matrix multiplications that update the values in a block. This update opera-
tion is referred to as a trailing update. For block (4, j), the block LU algorithm
performs min (i, j) trailing updates. The closer a block is to the bottom right
corner of the overall matrix, the more computation is performed for it. Other
computationally intensive portions of the algorithm involve local single-block LU
factorizations to be performed for blocks along the diagonal, and updates along
the topmost active row and leftmost active column.

To factorize an n X n matrix, approximately % floating point operations
are required. Assuming the matrix is decomposed into b x b square blocks, the
fraction of the floating point operations spent inside the matrix-matrix multiply
operation approaches 1 — b% as b increases [4]. Thus for large LU factorizations,
almost all floating point operations occur in the context of matrix multiplication.
Therefore, a performance of a good LU implementation should approach the
performance achieved by the double precision matrix-matrix multiply.

3.3 Mapping Blocks to Processors

There are two mapping schemes implemented in the LU program. The mapping
schemes define the processor that creates and perform operations on each chare
array element and its corresponding matrix block. The first is a traditional block-
cyclic mapping. A second mapping is proposed in this paper, as it achieves better
performance than the block-cyclic mapping scheme for certain problem sizes and
numbers of processors. The mapping schemes are static, so the blocks do not
migrate between processors. All work associated with a block will be performed
on the processor owning the block.

Block-Cyclic Mapping The block-cyclic mapping scheme is the traditional
method used by many parallel LU implementations [7]. The advantages of a
block-cyclic mapping are its simplicity and its relatively low communication vol-
ume. Each row or column of blocks spans only ,/p of the p processors. Thus all
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Fig.1. A timeline view, colored by memory usage, of an LU program run on
64 processors using a traditional Block-Cyclic Mapping for a N = 32768 sized
matrix with 512 x 512 sized blocks. The traditional block-cyclic mapping suffers
from limited concurrency at the end (the right portion of this plot).

PPL Technical Report 2010 6



3. LU CASE STUDY

of the multicasts have at most /p destination processors. However, the disad-
vantage is that the work is unevenly balanced near the end of the computation.
Figure 1 visualizes the entire computation for a run of the LU program on 64
processors. In an attempt to fix the imbalance near the end of the computation,
a second mapping scheme was developed.

N-1

N-2

Mapping starts here

Fig. 2. The traversal order for the balanced snake mapping.

Balanced Snake Mapping In order to balance the amount of work that is
performed on each processor, a new mapping scheme was developed called a
balanced snake mapping. Figure 2 helps illustrate the order in which blocks are
mapped in this scheme. The blocks are traversed in the order shown by the
arrows. This traversal order visits the blocks in roughly decreasing order of the
amount of work expected to be performed by each block. As each block is visited,
it is assigned to the processor which has been assigned the smallest amount of
work so far. Thus the first p heaviest blocks will be assigned in a round robin
manner to the processors, and the remaining blocks will be assigned in a manner
that attempts to balance the load across the processors. The assignment function
also forces subsequent blocks in traversal order to be on different processors.

It is expected that the number of processors spanning each row of blocks
is larger than /p. In the case of 64 processors, with a matrix partitioned into
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64 x 64 blocks, there are on average 43 unique processors spanning each column
of the matrix and 49 unique processors spanning each row of the matrix. So in
this case, the average number of unique processors on each row and column is
much higher than /p = V64 = 8. Thus the multicast of a block along a row
or column will involve more processors than the traditional block-cyclic scheme,
and the multicasts will therefore incur a higher overhead. For large numbers of
processors, the block-cyclic mapping performs better than this newly proposed
balanced snake mapping.

Comparison of the Two Mapping Schemes Although the balanced snake
mapping does a much better job of evenly distributing the workload, the in-
creased overhead for communication results in small delays between many of the
matrix-matrix multiplications when compared to the block-cyclic mapping. Fig-
ure 1 shows that there the block-cyclic mapping exhibits a load imbalance near
the end of the computation, while the balanced snake mapping for the same
problem exhibits a much better load balanced, as seen in figure 3. When the
N = 32768 problem with 512 x 512 block sizes is run on 64 processor cores the
balanced snake mapping performs better, achieving 138 GFlop/s, whereas the
block-cyclic mapping yields 131 GFlop/s. A theoretical analysis of the computa-
tion and communication properties of the block-cyclic mapping and some other
matrix decomposition schemes are provided elsewhere [5].

Automatically Determining The Optimal Mapping Scheme Although
it is clear that the block cyclic scheme has benefits for large numbers of proces-
sors, and the balanced snake mapping exhibits a better load balance for small
matrix sizes, the decision of which scheme to use for a specific problem size and
machine depends upon the performance characteristics of the machine as well as
the problem size. Thus it is advantageous for the choice to be made automati-
cally. This section describes one such method for choosing between the mapping
schemes at runtime. It is possible to automate the choice between the two map-
ping schemes. The automatic decision can utilize the fact that the block-cyclic
mapping scheme produces larger amounts of idle time for some of the processors
toward the end of the factorization.

To automatically determine which scheme to use, the LU program is adapted
to use the measurement based steering framework provided by the Charm++
runtime system [10]. The program provides to the steering framework a tun-
able knob and some information about the effects of the knob. In this case the
program specifies that one mapping scheme can possibly reduce the amount of
idle time wasted by the processors. The steering framework will therefore be
able to turn the application provided knob when a large amount of idle time
is detected. Figure 4 shows a performance visualization of an execution of the
program performing 10 consecutive LU factorizations. The initial LU factor-
izations result in a large amount of idle time because the matrix blocks are
not well distributed across the processors. Hence after a period of observation
for the first 3 factorizations, the steering framework decides to turn the appli-

PPL Technical Report 2010 8



3. LU CASE STUDY

Without Adaptive Memory Scheduling

a0 ammas o aavsas  sseeme  esesdls  soa  ssWass  sess WS IIes  S26eR  BSISIN WSIoss 1soiow 020 s

]
H

0
1 ——
:  —— 3 L ———
50— —  —————
i —— —————
5 —— L ——
H T — e —————————
7 e — L —
5 1 — L —————————
H e — L ——
0 i —— e —— e ———
1 T — L ———
2 C— L ——————————— L —
i — T e ————————
i — L O ——
e — L ————— L —————————
L — N ——— L ——————
B —  ——— .
A — ——— e ———
e — e — L e—
I — e ———— e ——{
e — L —————— O —
—i I
— — —— e ————
S  ———  ———
e — e ——— ———————
S —— e ——  ——————
e ——————————— e ——————————
O mm— e — e ——————————
e — L ——— e ————
e — —————— T —— -+ ——
o —— S ———
b — e ——— L ——————————
e — T L —————————
I — e —————————— s ——
e — e —————— e ——————————————— 1
I — T — T ————
i — L ——— L ————————
i —— L — ——
E— ———— e —
e — e — ———
I ——— | T —— |
I — L ———————————————————— e ——
T — L —— e —_
§ — S L e—
L — S L ——————
H ——— ——————— e ———————
- —— — e —————————
I — S e ——— |
|— L ———————————— s —
S — e ——————————
i —— L ——————————
o — x e ———
 —— n m ———
e — e L —
—— e———
I —— e ——— ||
e — C — e ———
T — T ——————————
i — T L —
e — e —————
e — ———
e — —
Cee—— e =mTmi

With Adaptive Memory Scheduling

Legend: _ -

0 MB 633 MB 1266 MB 1900 MB

Fig. 3. Plot of memory usage on each processor over time, both without and
with adaptive scheduling using a 1000MB threshold.
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cation provided knob that switches from the block-cyclic mapping scheme to
the balanced-snake scheme. The subsequent LU factorizations complete more
quickly, although a larger amount of overhead time is present. The increased
overhead time is caused by the increased multicast communication volume in-
herent in the mapping scheme.

Time Profile

) \.Mwm Wwwm«, : MMN MW,MW MNIMMW Wi i NMM WMWMW kil

72475 17.44955 2607425 3489905 4362375 5234855 GLO7IZS 6079805 7852275 72475 9597225 1046970s 11342175 12214655 13087125 1395960s 14532075 15704555 16577025  174.49505
Time (174.495ms resolution)

Legend

Trailing Update -

Idle

Overhead -
Compute L

Compute U -
Initialize

Fig. 4. Visualization of a program performing 10 LU factorizations. After the
third LU factorization, the measurement based automatic steering framework
instructs the program to use the snake-mapping instead of the block-cyclic map-
ping. This adaptation reduces the amount of idle time found in the subsequent
7 factorizations.

3.4 Priority Based Dynamic Lookahead

One general goal when writing parallel programs is to expose as much concur-
rency as possible to provide for the greatest opportunities to fully exploit the
available processors and obtain high application performance. In common par-
allel LU algorithms, there are important tasks along the critical path of the
computation, namely the block LU factorizations and the following topmost ac-
tive row and leftmost active column block updates. Scheduling such tasks as
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early as possible results in greater exposed concurrency earlier in the program.
The other tasks, namely block trailing updates, can sometimes be delayed rela-
tive to the other tasks. If the trailing updates are executed with high priority,
the program will not expose enough concurrency to keep all processors busy
because the other critical path tasks are delayed in time. Alternatively, if the
trailing updates are executed with low priority, then the critical path tasks will
execute sooner, causing an avalanche of enqueued block trailing updates across
all processors. The enqueued block trailing updates necessitate the buffering of
two incoming data blocks. These blocks will occupy space in memory, and an
increase in delayed trailing updates will directly relate to increase in memory
usage.

When writing an LU program, there are a few options regarding how much
lookahead to support. High degrees of lookahead cause more trailing updates
to be delayed, increasing memory usage. Low degrees of lookahead ensure that
trailing updates cannot be buffered for too long, and hence the memory usage
will not be as high.

The simplest LU implementations ignore the issue of lookahead and allow
the program to proceed without regard to how far ahead one processor can
compute relative to tasks buffered on itself or other processors [3]. Such an
unlimited lookahead scheme is not scalable because memory usage can grow as
the problem size is scaled up. At some point the program cannot run because
memory is exhausted and the program will deadlock. Other algorithms, such as
the one used in the High Performance Linpack implementation include a static
parameter specifying the allowed degree of lookahead [2]. Other implementations
support dynamic lookahead, but restrict some tasks so that deadlock will not
occur when memory is exhausted [6].

Dynamic lookahead is important because better performance can be achieved
due to the greater amount of available concurrency than is found in a static
lookahead algorithm. Hence dynamic lookahead is typically preferred over static
lookahead [6]. However, existing dynamic lookahead schemes require applications
to include specific code that explicitly coordinates between sending and receiving
processors to ensure memory is not exhausted.

The Charm++ LU implementation described in this paper is written to
provide unlimited lookahead, with no code attempting to reduce concurrency.
Priorities are assigned to tasks with higher priorities for block LU operations
occurring in the upper-leftmost active blocks and lower priorities for the trailing
updates, with priorities decreasing for each type of event from top left to bottom
right. The priority scheme should provide as much concurrency as is available
at any point in time.

This section shows that although the LU program itself is written with unlim-
ited lookahead and hence a high level of available concurrency, a general purpose
memory-aware scheduling technique provides a sufficient mechanism to reduce
the memory consumption of the simple LU program. This scheduling technique
will dynamically vary the lookahead in the case of LU, but could also be used
to control the memory usage patterns of other Charm++ programs.
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3.5 Enabling Memory-Aware Scheduling

To enable the new memory-aware Charm++ scheduler, the user is only required
to modify the Charm++ interface file (.ci file) for the program by adding one
annotation to each entry method that could be used for reducing memory us-
age. The reason this current implementation uses annotations is that the user
has knowledge of the program behavior, particularly which entry methods will
decrease memory usage. In the LU implementation, the trailing update entry
method is the sole method that is annotated for possible rescheduling when the
memory threshold is reached.

Figure 3 visualizes the memory usage over time for two runs of the LU pro-
gram. The first run does not use the memory adaptive scheduler, while the second
one does. The figure demonstrates that the memory utilization is reduced once
the memory adaptive scheduling is enabled for the trailing updates. Because
for this case, the memory usage approaches the physical memory on a BG/P
node, this is the largest problem size, N=32K, that can be run on 64 nodes of
BG/P with the traditional Charm++ scheduler. The maximum memory usage is
1873MB without memory-aware scheduling, and 1122MB with memory adaptive
scheduling.

3.6 Analysis of Resulting LU memory patterns

To analyze the effects of the memory-aware scheduler, the LU program was
run with varying thresholds. Figure 5 displays the memory utilization over time
with varying thresholds, for an N = 32768 sized matrix with 512 x 512 sized
blocks. The horizontal red line displays the corresponding memory threshold for
each run. This figure shows that adapting the scheduler queue does constrain
the memory that is used on each processor. It appears that 300MB was the
minimum effective threshold for this problem size, which is evidenced in figure
5 where the actual memory usage for all the processors is mostly above memory
threshold. In the runs where the threshold is higher (600MB and 1200MB), the
range of memory footprints for all processors mostly straddles the threshold. In
all three cases where a threshold is applied, the memory usage is reduced from
the original version where no adaptation was performed in the scheduler.

3.7 Analysis of Performance

When running with the N=32768 matrix problem size and 512 x 512 block size,
the Charm++ LU implementation using the balanced snake mapping performs
at 138 GFlop/s. The same implementation using a block-cyclic mapping per-
forms at 131 GFlop/s. Both of these configurations perform better than the
standard HPL benchmark [2]. Figure 8 shows the resulting performance of 93
different configurations for the HPL benchmark. All of these configurations use
the same N=32768 matrix problem size and 512 x 512 block size, but the other
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Fig. 5. Ranges of maximal memory utilization across all processors over time for
different thresholds. The adapting scheduler causes the memory usage to remain
close to the threshold for this LU factorization.

configurable parameters are varied. The broadcast method, processor grid ar-
rangement, depth of lookahead, panels in recursion, and recursive stopping cri-
terion were all varied. The maximal observed performance for HPL among these
93 different configurations is only 111 GFlop/s.

3.8 Costs of Modifying the Scheduler Queue

The overhead of adapting the scheduler queue for the LU factorization program
is small. To measure the overhead, timer calls were added around the code that
adapts the scheduler queue. Included in this code is the function that determines
the current memory usage and compares it to a threshold. When the LU program
isrun with an N = 32768 sized matrix and a 512x512 block size, the average time
spent in the scheduler modification code on each of the 64 processors was 0.0239
seconds while the whole LU factorization takes 168.4 seconds. This corresponds
to a negligible overhead of 0.014%.

3.9 Insights Gained From This LU Implementation

The naively written LU program exhibits a simple memory usage pattern: mem-
ory usage changes slowly, and is relatively uniform across processors at each
point in time. The memory usage generally grows to a single maximum value on
each processor and then shrinks back down to the minimum required to store the
matrix. The memory patterns are different however when a memory-aware adap-
tive scheduler is used, or when lookahead is restricted by other means. Hence,
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Fig. 6. A timeline view of an execution of LU on 64 processors for a larger matrix
N=51,200 using the adaptive scheduler. This same program dies when it runs
out of memory when not using the adaptive scheduler. Each row in the figure
corresponds to one of the processors, with colors indicating memory usage. Black
tick marks on the top of each row indicate a point where a trailing update is
immediately executed because the memory usage is over the specified threshold.
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Fig. 7. Performance of LU program for various memory thresholds. The problem
is a factorization of an N = 32768 sized matrix with 512 x 512 sized blocks run
on 64 processor cores of BG/P.

using memory adaptive scheduling on each processor can constrain the memory
usage in a useful manner.

The performance of the LU program over a range of memory thresholds shows
two performance regimes. The first exhibits decreasing performance when lower
thresholds are used, while the second regime is a large plateau of sufficiently
large thresholds. Figure 7 shows that these two performance regimes meet at
some point, namely the knee in the plotted curve knee in the curve.

A simple straightforward implementation of LU in the Charm++ language
can achieve reasonable performance, while remaining flexible and not requiring
complicated application-specific schedulers or static limitations on lookahead.
Charm++ makes it easy to specify the mapping of blocks to processors and to
specify the priorities of each task. When developing the LU program, we found
that a non-standard mapping outperformed the traditional block cyclic mapping.

Finally, the new adaptive scheduling technique enables larger LU factoriza-
tions to be performed, even ones that previously would have failed by depleting
all available memory. Figure 6 shows a timeline visualization of one such larger
factorization of an N = 51200 matrix size.
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4. AUTOMATICALLY FINDING AN OPTIMAL MEMORY THRESHOLD
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Fig. 8. HPL performance on 64 processors for 93 different configurations for a
N = 32768 sized matrix with a 512 x 512 block size. The configurations were
tested in two phases. The first phase varied some parameters to find a good
lookahead value. Then the best lookahead depth of 2 was fixed and more config-
urations were evaluated. The best observed HPL performance is 111 GFlop/s,
which is .

4 Automatically Finding An Optimal Memory Threshold

Although the scheduling scheme presented earlier in this paper can reduce mem-
ory consumption for a certain class of programs, the memory aware scheduling
scheme does not provide hard upper limits on the amount of memory used by
a program. Thus a reasonable threshold needs to be chosen for a run of the
program. The simplest scheme would be to set the threshold to a fixed fraction
of the system’s memory. A safer, and better solution is to automatically find the
threshold that yields the best performance. This section describes an automatic
scheme that slowly increases the threshold while observing memory consumption
measurements across all processors.

The proposed scheme is simple. The memory threshold is initially set to a safe
low value, but it is automatically increased when previously observed memory
usage measurements are low enough. After the threshold has been increased
to a level where further increases are likely to exceed the desirable limits, the
tuning framework [10] scans through its recorded history to find the best known
configuration. The best known configuration can then be used for all future
factorizations. This automatic tuning system can find a configuration providing
good performance while restraining the actual memory consumption even when
it exceeds the specified threshold. Figure 9 displays the actual memory usage
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over successive LU factorizations for a program using the automatic threshold
determination scheme described in this section.

Memory Usage (at 2.000s resolution)
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Fig. 9. Actual memory usage for each of 44 processors while the LU program
performs 30 successive factorizations. The memory threshold is increased by

an automatic tuning mechanism whenever memory usage measurements from
previous factorizations are still low.

5 Related Work

One implementation of LU uses virtualized descriptors for the blocks allowing an
arbitrary mapping to processors, specifically to enable work stealing and adap-
tation to newly available processors in a grid context [3]. That implementation
achieves 21% of peak on 128 Xeon processors connected via Gigabit Ethernet
with matrix width of N = 46, 080. That implementation is similar in many ways
to the asynchronous implementation in this paper. It does not perform pivoting,
and it uses asynchronous unlimited lookahead and virtualized locations of the
blocks. It however only uses a ring multicast strategy. Their implementation suf-
fers from the memory constraints described in this paper, and it is specifically
noted that the implementation cannot run the N=46,080 problem for the infinite
lookahead priority configuration.

Memory-aware scheduling has also been used in other contexts. The construc-
tive algorithm [12] considers data and memory constraints in addition to other
constraints for scheduling tasks in real-time systems. The scheme described in
[11] collects memory performance related data online and then feeds those to an
analytical model of cache and memory behavior, trying to minimize the overall
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miss-rate in scheduling a collection of processes time-sharing or space-sharing a
cache. In contrast, our memory-aware scheduling limits the amount of memory
usage for a running parallel application on clusters, which indirectly controls
the amount of concurrency (the lookahead depth in the LU case) during the
execution.

The hybrid scheduling [1] scheme, applied in the parallel solution of lin-
ear systems, first estimates the memory usage besides the workload on a static
optimistic scenario during the analysis phase, and then such estimations are
used during the factorization phase to constrain the dynamic decisions to better
balance the workload. In comparison, our scheme does not perform any static
analysis but instead depends on the dynamic memory footprint for adaptive
decisions and trades off the amount of concurrency for reducing the maximum
memory usage.

It may appear at first glance that the LU implementation described in this
paper would benefit from dynamic load balancing, however, there is no dynamic
load imbalance within a single LU factorization, if all processors are identical.
Hence techniques such as work-stealing are irrelevant for dense LU factorization
implementations that run on many homogeneous processors as is the norm in
large scale parallel machines. Other potential uses for work stealing techniques
would include stealing tasks to balance the memory consumption across pro-
cessors. Again, such techniques would be irrelevant because the memory usage
across processors is nearly uniform, and hence there is no obvious benefit to
work-stealing for that purpose.

6 Conclusion

In this paper, we introduced a new method for constraining memory usage dy-
namically over the lifetime of an application. We showed that this method can be
utilized by a programmer who simply annotates methods that reduce memory
usage. Furthermore, the utility of this new scheduling mechanism was demon-
strated by showing that an LU factorization algorithm can be scaled beyond
the N = 32768 problem size, without any other modifications to the program.
Typically, there is a tradeoff between implementing dynamic lookahead, which
introduces many problems and increases the complexity of the program signifi-
cantly, and using static lookahead, which constrains the concurrency. We showed
that the best of these extremes can be realized in Charm++ using a simple LU
factorization program, which implicitly allows for infinite lookahead but is con-
strained by our memory-aware scheduler so it can scale to large problem sizes.

In the future, we may explore the possibility of automatically selecting tasks
to be rescheduled to eliminate the use of annotations by the programmer.
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