
Thesis Defense - 11/10/2009
By Chee Wai Lee

1

  Introduction.
  Scalable Techniques:
◦  Support for Analysis Idioms
◦ Data Reduction
◦  Live Streaming
◦ Hypothesis Testing

 Conclusion.

2

 What does performance analysis of
applications with visual tools entail?

 What are the effects of application scaling
on performance analysis?

3

 Enlarged performance-space.

  Increased performance data volume.

 Reduces accessibility to machines and
increases resource costs
◦ Time to queue.
◦ CPU resource consumption.

4

 Tool feature support for Scalable Analysis
Idioms.

 Online reduction of performance data
volume.

 Analysis Idioms for applications through
live performance streaming.

 Effective repeated performance
hypothesis testing through simulation.

5

 Tool feature support for Scalable Analysis
Idioms.

 Online reduction of performance data
volume.

 Analysis Idioms for applications through
live performance streaming.

 Effective repeated performance
hypothesis testing through simulation.

6

 Performance analysis idioms need to be
effectively supported by tool features.

  Idioms must avoid using tool features that
become ineffectual at large processor
counts.

 We want to catalog common idioms and
match these with scalable features.

7

 Non-scalable tool features require
analysts to scan for visual cues over the
processor domain.

 How do we avoid this requirement on
analysts?

8

 Aggregation across processor domain:
◦ Histograms.
◦ High resolution Time Profiles.

 Processor selection:
◦  Extrema Tool.

9

 Bins represent time spent by activities.
 Counts of activities across all processors

are added to appropriate bins.
 Total counts for each activity are

displayed as different colored bars.

10

 Apparent load imbalance.
 No strategy appeared to solve imbalance.
 Picked overloaded processor timelines.*
  Found longer-than-expected activities.
 Longer activities associated with specific

objects.
 Possible work grainsize distribution

problems.

11

*As we will see later, not effective with large numbers of processors.

12

 Need to find way to pick out overloaded
processors. Not scalable!

  Finding out if work grainsize was a
problem simply required the histogram
feature.

13

  Shows activity-overlap over time summed
across all processors.

 Heuristics guide the search for visual cues
for various potential problems:
◦ Gradual downward slopes hint at possible

load imbalance.
◦ Gradual upward slopes hint at communication

inefficiencies.
 At high resolution, gives insight into

application sub-structure.

14

Possible Load Imbalance After Greedy Load Balancing Strategy
15

Bigger!

 A recurring theme in analysis idioms.
 Easy to pick out timelines in datasets with

small numbers of processors.
 Examples of attributes and criteria:
◦  Least idle processors.
◦  Processors with late events.
◦  Processors that behave very differently from

the rest.

16

  Semi-automatically picks out interesting
processors to display.

 Decisions based on analyst-specified
criteria.

 Mouse-clicks on bars load interesting
processors onto timeline.

17

18

 Effective analysis idioms must avoid non-
scalable features.

 Histograms, Time Profiles and the
Extrema Tool offer scalable features in
support of idioms.

19

 Tool feature support for Scalable Analysis
Idioms.

 Online reduction of performance data
volume.

 Analysis Idioms for applications through
live performance streaming.

 Effective repeated performance
hypothesis testing through simulation.

20

 Normally, scalable tool features are used
with full event traces.

 What happens if full event traces get too
large?

 We can:
◦ Choose to keep event traces for only a subset

of processors.
◦ Replace event traces of discarded processors

with interval-based profiles.

21

  Small files. File size is a function of
duration of instrumentation and
resolution of each time interval recorded.

  Suitable for Time Profiles.

22

 What are the challenges?
◦ No a priori information about performance

problems in dataset.
◦ Chosen processors need to capture details of

performance problems.

23

 Observations:
◦  Processors tend to form equivalence classes

with respect to performance behavior.
◦ Clustering can be used to discover

equivalence classes in performance data.
◦ Outliers in clusters may be good candidates

for capturing performance problems.

24

  k-Means Clustering algorithm is
commonly used to classify objects in data
mining applications.

 Treat the vector of recorded performance
metric values on each processor as a data
point for clustering.

25

 Measure similarity between two data
points using the Euclidean Distance
between the two metric vectors.

 Given k clusters to be found, the goal is
to minimize similarity values between all
data points and the centroids of the k
clusters.

26

 Choosing Cluster Outliers.
◦  Pick processors furthest from cluster

centroid.
◦ Number chosen by proportion of cluster size.

 Choosing Cluster Exemplars.
◦  Pick a single processor closest to the cluster

centroid.

 Outliers + Exemplars = Reduced Dataset.

27

 Decisions on data retention are made
before data is written to disk.

 Requires a low-overhead and scalable
parallel k-Means algorithm which was
implemented.

28

29

Root Worker

Contribute metric vector.

Receive aggregated metric vector stats.
Calculate normalization factors.
Get initial cluster centroids.
Broadcast factors and centroids.

Normalize local metric vector.
Find closest centroid.
Contribute centroid modification.

Update centroids.
If no centroid changes,
 Done
Else
 Broadcast centroids

 Choice of metrics from domains:
◦ Activity time.
◦ Communication volume (bytes).
◦ Communication (number of messages).

 Normalization of metrics:
◦  Same metric domain = no normalization.
◦ Min-max normalization across different metric

domains to remove inter-domain bias.

30

  Find minm values for each metric m over
all processor data points.

  Find maxd values for metrics within each
metric domain d over all processor data
points.

  For each data point, re-compute each
metric value m, where m is a member of
domain d, as: (m – minm)/maxd

31

32

Metric X

Metric Y

Idle Time

33

 Clustering and choice heuristics
presented us with a reduced dataset.

 How useful is the reduced dataset to
analysis?

 We know least-idle processors can be
useful for analysis.

 How many top least-idle processors will
show up in the reduced dataset?

 What was the overhead?
34

Top x
Least Idle

5% Retention 10% Retention 15% Retention

5 100% 100% 100%

10 70% 90% 100%

20 45% 70% 95%

5% Retention = 102 processors
10% Retention = 204 processors
15% Retention = 306 processors

35

Percentage of Top Least Idle processors
picked for the reduced dataset.

Top x
Least Idle

5% Retention 10% Retention 15% Retention

5 20% 40% 60%

10 20% 40% 50%

20 10% 20% 30%

5% Retention = 51 processors
10% Retention = 102 processors
15% Retention = 153 processors

36

Percentage of Top Least Idle processors
picked for the reduced dataset.

Top x
Least Idle

2.5% Retention 5% Retention 7.5% Retention

5 40% 100% 100%

10 20% 70% 100%

20 10% 45% 100%

2.5% Retention = 102 processors
5% Retention = 204 processors
7.5% Retention = 306 processors

37

Percentage of Top Least Idle processors
picked for the reduced dataset.

0

0.075

0.150

0.225

0.300

240 1200 2400 4800 9600 19200

Number of Processor Cores

S
e
c
o

n
d

s

Time to Perform K-Means Clustering

38

  Showed combination of techniques for
online data reduction is effective*.

 Choice of processors included in reduced
datasets can be refined and improved
◦  Include communicating processors.
◦  Include processors on critical path.

 Consideration of application phases can
further improve quality of reduced
dataset.

39

*Chee Wai Lee, Celso Mendes and Laxmikant V. Kale. Towards Scalable
Performance Analysis and Visualization through Data Reduction.
13th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, Miami, Florida, USA, April 2008.

 Tool feature support for Scalable Analysis
Idioms.

 Online reduction of performance data
volume.

 Analysis Idioms for applications through
live performance streaming.

 Effective repeated performance
hypothesis testing through simulation.

40

 Live Streaming mitigates need to store a
large volume of performance data.

 Live Streaming enables analysis idioms
that provide animated insight into the
trends application behavior.

 Live Streaming also enables idioms for the
observation of unanticipated problems,
possibly over a long run.

41

 Must maintain low overhead for
performance data to be recorded, pre-
processed and disposed-of.

 Need efficient mechanism for
performance data to be sent via out-of-
band channels to one (or a few)
processors for delivery to a remote
client.

42

 Charm++ adaptive runtime as medium for
scalable and efficient:
◦ Control signal delivery.
◦  Performance data capture and delivery.

 Converse Client-Server (CCS) enables
remote interaction with running Charm+
+ application through a socket opened by
the runtime.

43

 What kinds of performance data should
we stream?

 How frequently should we deliver the
data to the client?

44

45

 A Utilization Profile similar to high
resolution Time Profiles.

 Performance data is compressed by only
considering significant metrics in a special
format.

  Special reduction client merges data from
multiple processors.

46

47

512 1024 2048 4096 8192

With instrumentation,
data reductions to root
with remote client
attached.

0.94% 0.17% -0.26% 0.16% 0.83%

With instrumentation,
data reductions to root
but no remote client
attached.

0.58% -0.17% 0.37% 1.14% 0.99%

48

% Overhead when compared to baseline system:
Same application with no performance
instrumentation.

For bandwidth consumed when streaming
performance data to the remote
visualization client.

49

 Adaptive runtime allowed out-of-band
collection of performance data while in
user-space.

 Achieved with very low overhead and
bandwidth requirements.

50

*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. Continuous
Performance Monitoring for Large-Scale Parallel Applications.
Accepted for publication at HiPC 2009, December-2009.

 Tool feature support for Scalable Analysis
Idioms.

 Online reduction of performance data
volume.

 Analysis Idioms for long-running
applications through live performance
streaming.

 Effective repeated performance
hypothesis testing through simulation.

51

 Large-Scale runs are expensive:
◦  Job submission of very wide jobs to

supercomputing facilities.
◦ CPU resources consumed by very wide jobs.

 How do we make repeated but
inexpensive hypothesis testing
experiments?

52

 Capture event dependency logs from a
baseline application run.

  Simulation produces performance event
traces from event dependency logs.

53

 The time and memory requirements at
simulation time are divorced from
requirements at execution time.

  Simulation can be executed on fewer
processors.

  Simulation can be executed on a cluster
of workstations and still produce the
same predictions.

54

 BigSim emulator captures:
◦ Relative event time stamps.
◦ Message dependencies.
◦  Event dependencies.

 BigSim emulator produces event
dependency logs.

55

 BigSim simulator uses a PDES engine to
process event dependency logs to predict
performance.

 BigSim simulator can generate
performance event traces based on the
predicted run.

56

 Hypothetical Hardware changes:
◦ Communication Latency.
◦ Network properties.

 Hypothetical Software changes:
◦ Different load balancing strategies.
◦ Different initial object placement.
◦ Different number of processors with the

same object decomposition.

57

  Study the effects of network latency on
performance of seven-point stencil
computation.

58

59

 Load Balancing Strategies make decisions
as object-to-processor maps based on
object load and inter-object
communication costs.

 How do we make the simulator produce
predictions about new load balancing
strategies without re-executing the
original code?

60

 Record object-load and communication
information of baseline run.

 Different Load Balancing strategies create
different object-to-processor maps.

 A log transformation tool I wrote,
transforms event dependency logs to
reflect new object-to-processor mapping.

61

Baseline Load Imbalance: Half the processors perform
twice the work with 2 objects per processor.
Greedy Strategy: Objects balanced across processors
perfectly.

62

 BigSim emulator can emulate k
processors on p physical processors

 Ratio of k to p can be increased by
memory aliasing where appropriate.

63

  Flexible repeated performance hypothesis
testing can be achieved via trace-based
simulation.

 No analytical models need to be
constructed for each application to enable
software changes such as load balancing
strategies.

64

 Can the techniques described in this
thesis be adopted by other tools quickly?

 This was investigated through the results
of a collaboration with the TAU group*.

  Flexible Performance call-back interface in
Charm++ enabled an easy mechanism for
a popular tool like TAU to record and
process key runtime and application
events.

65

*Scott Biersdorff, Chee Wai Lee, Allen D. Malony and Laximkant V. Kale.
Integrated Performance Views in Charm++: Projections Meets TAU.
ICPP-2009, Vienna, Austria, September 22-25, 2009.

  Scalable TAU tools features can be used
to grant different performance insights
into Charm++ applications.

 TAU can make use of the adaptive
runtime for live streaming of TAU data.

 TAU can make use of BigSim for repeated
hypothesis testing.

66

  Identified and developed scalable tool
feature support for performance analysis
idioms.

  Showed the combination of techniques
and heuristics effective for data reduction.

  Showed how an adaptive runtime can
efficiently stream live performance data
out-of-band in user-space to enable
powerful analysis idioms.

67

  Showed trace-based simulation to be an
effective method for repeated hardware
and software hypothesis testing.

 Highlighted importance of flexible
performance frameworks for the
extension of scalability features to other
tools.

68

