Techniques in Scalable and Effective Performance Analysis

Thesis Defense - 11/10/2009

By Chee Wai Lee

0

∧ ∨ D) 1 1 B F < > ∧ < 1 < ∧</p>

🏘 👫 🏘 🧔 🖲 🔴

Overview

- Introduction.
- Scalable Techniques:
 - Support for Analysis Idioms
 - Data Reduction
 - Live Streaming
 - Hypothesis Testing
- Conclusion.

Introduction

- What does performance analysis of applications with visual tools entail?
- What are the effects of application scaling on performance analysis?

Effects of Application Scaling

- Enlarged performance-space.
- Increased performance data volume.
- Reduces accessibility to machines and increases resource costs
 - Time to queue.
 - CPU resource consumption.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.

Scalable Tool Features: Motivations

- Performance analysis idioms need to be effectively supported by tool features.
- Idioms must avoid using tool features that become ineffectual at large processor counts.
- We want to catalog common idioms and match these with scalable features.

Scalable Tool Feature Support (1/2)

- Non-scalable tool features require analysts to scan for visual cues over the processor domain.
- How do we avoid this requirement on analysts?

Scalable Tool Feature Support (2/2)

- Aggregation across processor domain:
 - Histograms.
 - High resolution Time Profiles.
- Processor selection:
 - Extrema Tool.

Histogram as a Scalable Tool Feature

- Bins represent time spent by activities.
- Counts of activities across all processors are added to appropriate bins.
- Total counts for each activity are displayed as different colored bars.

Case Study:

- Apparent load imbalance.
- No strategy appeared to solve imbalance.
- Picked overloaded processor timelines.*
- Found longer-than-expected activities.
- Longer activities associated with specific objects.
- Possible work grainsize distribution problems.

*As we will see later, not effective with large numbers of processors.

Case Study: Validation using Histograms

Effectiveness of Idiom

- Need to find way to pick out overloaded processors. Not scalable!
- Finding out if work grainsize was a problem simply required the histogram feature.

High Resolution Time Profiles

- Shows activity-overlap over time summed across all processors.
- Heuristics guide the search for visual cues for various potential problems:
 - Gradual downward slopes hint at possible load imbalance.
 - Gradual upward slopes hint at communication inefficiencies.
- At high resolution, gives insight into application sub-structure.

Case Study: Using Time Profiles

Refer to Badencing Strategy

Finding Extreme or Unusual Processors

- A recurring theme in analysis idioms.
- Easy to pick out timelines in datasets with small numbers of processors.
- Examples of attributes and criteria:
 - Least idle processors.
 - Processors with late events.
 - Processors that behave very differently from the rest.

The Extrema Tool

- Semi-automatically picks out interesting processors to display.
- Decisions based on analyst-specified criteria.
- Mouse-clicks on bars load interesting processors onto timeline.

Using the Extrema Tool

✓ Project	tions Timelines - nar	md2.proj.sts										- 5 X
File Too	ols Colors											Help
	0 265,494,500	265,495,000	265,495,500	265,496,000	265,496,500	265,497,000	265,497,500	265,498,000	265,498,500	265,499,000	265,499,500	265,500,C
PE 980												
(95,80) PE 2940												
(96,79)		un l'al-bat					, i i ii PHP	- APAR				
	0 265,494,500	265,495,000	265,495,500	265,496,000	265,496,500	265,497,000	265,497,500	265,498,000	265,498,500	265,499,000	265,499,500	265,500,C
	Display Pack Ti	mes		M Display Mess	age Sends		₩ Displa	ry Idle Time		⊡View	User Events (15)	-
	Select Ranges	Chi	ange Entry Point C	Colors	< <		SCALE	8	2	>>	F	leset
							alles December					
7	oom Selected	Low	i Selecteri	High 265, 499 278	light Time	265,495,892	ction Begin Time	265.44	Selection End 1	ime 1	Selection I	Length
-	Service of the later of the lat		31	mer enery runnis	Select New	nange save	entry colors	cose chery co	No. 2			

Scalable Tool Features: Conclusions

- Effective analysis idioms must avoid nonscalable features.
- Histograms, Time Profiles and the Extrema Tool offer scalable features in support of idioms.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.

Data Reduction

- Normally, scalable tool features are used with full event traces.
- What happens if full event traces get too large?
- We can:
 - Choose to keep event traces for only a subset of processors.
 - Replace event traces of discarded processors with interval-based profiles.

Interval-Based Profiles

- Small files. File size is a function of duration of instrumentation and resolution of each time interval recorded.
- Suitable for Time Profiles.

Choosing Useful Processor Subset (1/2)

- What are the challenges?
 - No a priori information about performance problems in dataset.
 - Chosen processors need to capture details of performance problems.

Choosing Useful Processor Subsets (2/2)

- Observations:
 - Processors tend to form equivalence classes with respect to performance behavior.
 - Clustering can be used to discover equivalence classes in performance data.
 - Outliers in clusters may be good candidates for capturing performance problems.

Applying k-Means Clustering to Performance Data (1/2)

- k-Means Clustering algorithm is commonly used to classify objects in data mining applications.
- Treat the vector of recorded performance metric values on each processor as a data point for clustering.

Applying k-Means Clustering to Performance Data (2/2)

- Measure similarity between two data points using the Euclidean Distance between the two metric vectors.
- Given k clusters to be found, the goal is to minimize similarity values between all data points and the centroids of the k clusters.

Choosing from Clusters

- Choosing Cluster Outliers.
 - Pick processors furthest from cluster centroid.
 - Number chosen by proportion of cluster size.
- Choosing Cluster Exemplars.
 - Pick a single processor closest to the cluster centroid.
- Outliers + Exemplars = Reduced Dataset.

Applying k-Means Clustering Online

- Decisions on data retention are made before data is written to disk.
- Requires a low-overhead and scalable parallel *k*-Means algorithm which was implemented.

Parallel k-Means

Root	Worker						
	Contribute metric vector.						
Receive aggregated metric vector stats. Calculate normalization factors. Get initial cluster centroids. Broadcast factors and centroids.							
	Normalize local metric vector. Find closest centroid. Contribute centroid modification.						
Update centroids. If no centroid changes, Done Else Broadcast centroids							

Important k-Means Parameters

- Choice of metrics from domains:
 - Activity time.
 - Communication volume (bytes).
 - Communication (number of messages).
- Normalization of metrics:
 - Same metric domain = no normalization.
 - Min-max normalization across different metric domains to remove inter-domain bias.

Min-Max Normalization for Multiple Metric Domains

- Find *min_m* values for each metric *m* over all processor data points.
- Find max_d values for metrics within each metric domain d over all processor data points.
- For each data point, re-compute each metric value *m*, where *m* is a member of domain *d*, as: (*m* – *min_m*)/*max_d*

k-Means Clustering

Clustering Nuances

Evaluating the technique

- Clustering and choice heuristics presented us with a reduced dataset.
- How useful is the reduced dataset to analysis?
- We know least-idle processors can be useful for analysis.
- How many top least-idle processors will show up in the reduced dataset?
- What was the overhead?

Results (2048 Processors NAMD)

Percentage of Top Least Idle processors picked for the reduced dataset.

Top x Least Idle	5% Retention	10% Retention	I5% Retention
5	100%	100%	100%
10	70%	90%	100%
20	45%	70%	95%

5% Retention = 102 processors 10% Retention = 204 processors 15% Retention = 306 processors

Results (1024 Processors NAMD)

Percentage of Top Least Idle processors picked for the reduced dataset.

Top x Least Idle	5% Retention	10% Retention	15% Retention
5	20%	40%	60%
10	20%	40%	50%
20	10%	20%	30%

5% Retention = 51 processors 10% Retention = 102 processors 15% Retention = 153 processors

Results (4096 Processors NAMD)

Percentage of Top Least Idle processors picked for the reduced dataset.

Top x Least Idle	2.5% Retention	5% Retention	7.5% Retention
5	40%	100%	100%
10	20%	70%	100%
20	10%	45%	100%

2.5% Retention = 102 processors5% Retention = 204 processors7.5% Retention = 306 processors

Overhead of parallel k-Means

Time to Perform K-Means Clustering

Data Reduction: Conclusions

- Showed combination of techniques for online data reduction is effective*.
- Choice of processors included in reduced datasets can be refined and improved
 - Include communicating processors.
 - Include processors on critical path.
- Consideration of application phases can further improve quality of reduced dataset.

*Chee Wai Lee, Celso Mendes and Laxmikant V. Kale. **Towards Scalable Performance Analysis and Visualization through Data Reduction.** 13th International Workshop on High-Level Parallel Programming Models and Supportive Environments, Miami, Florida, USA, April 2008.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.

Live Streaming of Performance Data

- Live Streaming mitigates need to store a large volume of performance data.
- Live Streaming enables analysis idioms that provide animated insight into the trends application behavior.
- Live Streaming also enables idioms for the observation of unanticipated problems, possibly over a long run.

Challenges to Live Streaming

- Must maintain low overhead for performance data to be recorded, preprocessed and disposed-of.
- Need efficient mechanism for performance data to be sent via out-ofband channels to one (or a few) processors for delivery to a remote client.

Enabling Mechanisms

- Charm++ adaptive runtime as medium for scalable and efficient:
 - Control signal delivery.
 - Performance data capture and delivery.
- Converse Client-Server (CCS) enables remote interaction with running Charm+
 + application through a socket opened by the runtime.

Questions

- What kinds of performance data should we stream?
- How frequently should we deliver the data to the client?

A) Gathering Performance Data in Parallel Runtime System:

B) Visualizing Performance Data:

What is Streamed?

- A Utilization Profile similar to high resolution Time Profiles.
- Performance data is compressed by only considering significant metrics in a special format.
- Special reduction client merges data from multiple processors.

46

Visualization

Overheads (1/2)

% Overhead when compared to baseline system: Same application with no performance instrumentation.

	512	1024	2048	4096	8192
With instrumentation, data reductions to root with remote client attached.	0.94%	0.17%	-0.26%	0.16%	0.83%
With instrumentation, data reductions to root but no remote client attached.	0.58%	-0.17%	0.37%	1.14%	0.99%

Overheads (2/2)

For bandwidth consumed when streaming performance data to the remote visualization client.

Live Streaming: Conclusions*

- Adaptive runtime allowed out-of-band collection of performance data while in user-space.
- Achieved with very low overhead and bandwidth requirements.

*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. **Continuous Performance Monitoring for Large-Scale Parallel Applications**. Accepted for publication at HiPC 2009, December-2009.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for long-running applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.

Repeated Large-Scale Hypothesis Testing

- Large-Scale runs are expensive:
 - Job submission of very wide jobs to supercomputing facilities.
 - CPU resources consumed by very wide jobs.

 How do we make repeated but inexpensive hypothesis testing experiments?

Trace-based Simulation

- Capture event dependency logs from a baseline application run.
- Simulation produces performance event traces from event dependency logs.

Advantages

- The time and memory requirements at simulation time are divorced from requirements at execution time.
- Simulation can be executed on fewer processors.
- Simulation can be executed on a cluster of workstations and still produce the same predictions.

Using the BigSim Framework (1/2)

- BigSim emulator captures:
 - Relative event time stamps.
 - Message dependencies.
 - Event dependencies.
- BigSim emulator produces event dependency logs.

Using the BigSim Framework (2/2)

- BigSim simulator uses a PDES engine to process event dependency logs to predict performance.
- BigSim simulator can generate performance event traces based on the predicted run.

Examples of Hypothesis Testing Possible

- Hypothetical Hardware changes:
 - Communication Latency.
 - Network properties.
- Hypothetical Software changes:
 - Different load balancing strategies.
 - Different initial object placement.
 - Different number of processors with the same object decomposition.

 Study the effects of network latency on performance of seven-point stencil computation.

Latency Trends – Jacobi 3d 256x256x192 on 48 pes

Simulated Impact of Latency Variation on Performance (3D Jacobi 256x256x192)

Testing Different Load Balancing Strategies (1/2)

- Load Balancing Strategies make decisions as object-to-processor maps based on object load and inter-object communication costs.
- How do we make the simulator produce predictions about new load balancing strategies without re-executing the original code?

Testing Different Load Balancing Strategies (2/2)

- Record object-load and communication information of baseline run.
- Different Load Balancing strategies create different object-to-processor maps.
- A log transformation tool I wrote, transforms event dependency logs to reflect new object-to-processor mapping.

Example: Load Balancing Strategies

00	0						F	rojections	5 Timeline	s – tproj.s	ts								
File	Ranges	Screenshot	Colors	Tracing	View	Experimenta	Feature	s											
			100.555	-		500.000		700.005	Time In N	Aicrosecond:	5	-			1 5 6 7		1 705		1 005 554
		0 ++++++++++++++++++++++++++++++++++++	199,666	3 ••••••	++++++++++++++++++++++++++++++++++++++			798,665	998 	5,332 	1,19	97,998 ++++++++	1,35	э7,665 + +++++++ +	1,597	,331	1,796,9	997 ++++++	1,996,664
PE 0																			_
(10)	0,60)																		
(10)	0.77)																		
PE 2																			
(10	0,37)																		
PE 3	0 77)																		
PE 4	0, 77)							_				_							
(10	0,38)																		
PE 5	0 77)																		
(10) PE 6	0, 77)																		
(10)	0,38)																		
PE 7																			
(10)	0,77)						1 1				i i	1 i i							
PE 8 (10)	0.38)				╞╾┼┼╂═╉┦		┥┙┥												
PE 9																			
(10	0,77)																		
PE 1	0 38)				┝━┼┼╂═┨														_
PE 1	1																		
(10	0, 77)																		
1	🗌 Displ	ay Pack Times		√ [Display M	lessage Sends		\checkmark	Display Id	le Time			🛛 Displa	ıy User Ev	ents		🗌 Vie	ew User E	vents (0)
	e	6		Zo	om Ratio	:	1.0						Æ				Res	et Zoom	
	Load No	w Time / PE Pag					Tie		co Curcor		Coloct	ion Pogin	Time		Coloction	End Tim		Salast	ion Longth
_	LOAU NE	w rine/PE Kan	ige				lir	ne At Môu	se cursor		Select	ion Begin	Time		Selection	End IIm	ie	Select	ion Length
	Zo	om Selection			Load Sel	ection													

BaselilyeStoadegybalabjeettslahlaheeptaceosonsrpeefssons perfectlye work with 2 objects per processor.

Reduction of Processors during Emulation

- BigSim emulator can emulate k
 processors on p physical processors
- Ratio of k to p can be increased by memory aliasing where appropriate.

Hypothesis Testing: Conclusions

- Flexible repeated performance hypothesis testing can be achieved via trace-based simulation.
- No analytical models need to be constructed for each application to enable software changes such as load balancing strategies.

Extending Scalability Techniques

- Can the techniques described in this thesis be adopted by other tools quickly?
- This was investigated through the results of a collaboration with the TAU group*.
- Flexible Performance call-back interface in Charm++ enabled an easy mechanism for a popular tool like TAU to record and process key runtime and application events.

*Scott Biersdorff, Chee Wai Lee, Allen D. Malony and Laximkant V. Kale. Integrated Performance Views in Charm++: Projections Meets TAU. ICPP-2009, Vienna, Austria, September 22-25, 2009.

Benefits of Extension of Capabilities

- Scalable TAU tools features can be used to grant different performance insights into Charm++ applications.
- TAU can make use of the adaptive runtime for live streaming of TAU data.
- TAU can make use of BigSim for repeated hypothesis testing.

Thesis Contributions (1/2)

- Identified and developed scalable tool feature support for performance analysis idioms.
- Showed the combination of techniques and heuristics effective for data reduction.
- Showed how an adaptive runtime can efficiently stream live performance data out-of-band in user-space to enable powerful analysis idioms.

Thesis Contributions (2/2)

- Showed trace-based simulation to be an effective method for repeated hardware and software hypothesis testing.
- Highlighted importance of flexible performance frameworks for the extension of scalability features to other tools.