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Outline
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Overview

● Need for real-time communication with parallel 
applications
– Steering computation
– Visualizing/Analyzing data
– Debugging problems

● Long running applications
– Time consuming to recompile the code (if at all 

available)
– Need to wait for application to re-execute

● Communication requirements:
– Fast (low user waiting time)                 Scalable
– Uniform method of connection
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Charm++ Overview
● Middleware written in C++

– Message passing paradigm (asynchronous comm.)
● User decomposes work among objects (chares)

– The objects can be virtual MPI processors
● System maps chares to processors

– automatic load balancing
– communication optimizations
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Adaptive overlap and modules

● Allow easy integration of different modules
● Automatic overlap of communication an 

computation
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Charm++ RTS
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Case study:
Parallel Debugging
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Large Scale Debugging: 
Motivations
● Bugs on sequential programs

– Buffer overflow, memory leaks, pointers, ...
– More than 50% programming time spent debugging
– GDB and others

● Bugs on parallel programs
– Race conditions, non-determinism, ...
– Much harder to find

● Effects not only happen later in time, but also on different 
processors

– Bugs may appear only on thousands of processors
● Network latencies delaying messages
● Data decomposition algorithm

– TotalView, Allinea DDT
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CharmDebug Overview

CharmDebug Java GUI
(local machine)

Firewall Parallel Application
(remote machine)

CharmDebug

Application

CCS
(Converse Client-Server)

GDB
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Main Program View
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CharmDebug at scale

● Current parallel debuggers don't work
– Direct connection to every processor
– STAT (MRNet) not a full debugger

● Kraken: Cray XT4 at NICS
– Parallel operation collecting total allocated memory
– Time at the client 16~20 ms
– Up to 4K processors
– Other tests to come

● Attaching to the running program took also very 
little (few seconds)
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CharmDebug: Introspection
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Severe leak:
ghost layer messages
leaked every iteration
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Case study:
Performance Analysis



16Filippo Gioachin - PPL @ UIUCTeragrid 2009

Online, Interactive Access to Parallel 
Performance Data: Motivations

● Observation of time-varying performance of long-
running applications through streaming
– Re-use of local performance data buffers

● Interactive manipulation of performance data  
when parameters are difficult to define a priori
– Perform data-volume reduction before application 

shutdown
● k-clustering parameters (like number of seeds to use)
● Write only one processor per cluster
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Projections: Online Streaming of 
Performance Data

● Parallel Application records performance data on 
local processor buffers

● Performance data is periodically processed and 
collected to a root processor

● Charm++ runtime adaptively co-schedules the data 
collection's computation and messages with the 
host parallel application's

● Performance data buffers can now be re-used
● Remote tool collects data through CCS
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Impact of Online Performance Data 
Streaming

Simple Charm++ Parallel Application
(Iterations of Work + Barriers)

# Cores Exec Time in seconds
(no Data Collection and Streaming)

Exec Time in seconds
(with Data Collection and Streaming*)

4095 21.44s 21.46s

8191 37.84s 37.71s

* Global Reduction of 8 kilobyte messages from each processor every second.

NAMD 1-million atom simulation (STMV)
# Cores 512 1024 2048 4096 8192

Overhead (%) no Data Collection 
and Streaming to visualization 
client.

0.69% 0.55% -3.44% 1.56% 1.29%

Overhead (%) with Data Collection 
and Streaming@

0.30% 0.43% -3.94% 3.47% 6.63%

@ Global Reductions per second of between 3.5 to 11 kilobyte messages from
each processor. The visualization client receives 12 kilobytes/second.
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Online Visualization of Streamed 
Performance Data

● Pictures show 10-second snapshots of live NAMD detailed 
performance profiles from start-up (left) to the first major load-
balancing phase (right) on 1024 Cray XT5 processors

● Ssh tunnel between client and compute node through head-node
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Case study:
Cosmological Data Analysis
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Comsological Data Analysis: 
Motivations

● Astronomical simulations/observations generate 
huge amount of data

● This data cannot be loaded into a single machine
● Even if loaded, interaction with user too slow

● Need to parallel analyzer tools capable of
– Scaling well to large number of processors
– Provide flexibility to the user
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Salsa
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(U. Washington) 
and Prof. Lawlor
(U. Alaska)
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LiveViz

● Every piece is represented by a chare

● Under integration in ChaNGa (simulator)
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How well are we doing?

● JPEG is CPU bound
– Inefficient on high bandwidth networks

● Bitmap is network bound
– Bad on slow networks

● The bottleneck is on the client (network or processor)
– Parallel application: use enough processors

Window size
2MB/s wireless

Bitmap JPEG Bitmap JPEG
256x256 333 25 6 25
512x512 166 24 2 15
1024x1024 50 15 < 1 13
2048x2048 13 4 << 1 4

Gigabit network

Courtesy of Prof. Lawlor, U.Alaska

Salsa application framerate
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Impostors: Basic Idea

Camera

Impostor

Geometry

Courtesy of Prof. Lawlor, U.Alaska
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Particle Set to Volume Impostors

Courtesy of Prof. Lawlor, U.Alaska
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Summary

● Generic framework (CCS) to connect to a running 
parallel application, and interact with it

● Demonstration in different scenarios:
– Parallel debugging

● Low response time
– Performance analysis

● Low runtime overhead
– Application (cosmological) data analysis

● High frame rate
● All code is open source and available on our 

website



28Filippo Gioachin - PPL @ UIUCTeragrid 2009

Questions?

Thank you

http://charm.cs.uiuc.edu/
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