
Teragrid 2009

Scalable Interaction with
Parallel Applications

Filippo Gioachin
Chee Wai Lee

Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

2Filippo Gioachin - PPL @ UIUCTeragrid 2009

Outline

● Overview
– Charm++ RTS
– Converse Client Server (CCS)

● Case Studies
– CharmDebug (parallel debugger)
– Projections (performance analysis tool)
– Salsa (particle analysis tool)

● Conclusions

3Filippo Gioachin - PPL @ UIUCTeragrid 2009

Overview

● Need for real-time communication with parallel
applications
– Steering computation
– Visualizing/Analyzing data
– Debugging problems

● Long running applications
– Time consuming to recompile the code (if at all

available)
– Need to wait for application to re-execute

● Communication requirements:
– Fast (low user waiting time) Scalable
– Uniform method of connection

4Filippo Gioachin - PPL @ UIUCTeragrid 2009

Charm++ Overview
● Middleware written in C++

– Message passing paradigm (asynchronous comm.)
● User decomposes work among objects (chares)

– The objects can be virtual MPI processors
● System maps chares to processors

– automatic load balancing
– communication optimizations

S
ys

te
m

 v
ie

w

U
se

r
vi

ew

5Filippo Gioachin - PPL @ UIUCTeragrid 2009

Adaptive overlap and modules

● Allow easy integration of different modules
● Automatic overlap of communication an

computation

6Filippo Gioachin - PPL @ UIUCTeragrid 2009

Parallel Objects,

Adaptive Runtime
System

Libraries and Tools

Computational
Cosmology

Rocket Simulation

Protein FoldingNAMD: Molecular
Dynamics

STMV virus
simulation

Develop Abstractions in Context
of Full-Scale Applications

Dendritic Growth Space-time meshes

Crack Propagation

Quantum Chemistry
LeanCP

7Filippo Gioachin - PPL @ UIUCTeragrid 2009

Charm++ RTS

Python
Module

Python
Module

Python
Module

External
Client Converse C

lie

nt
 S

er
ve

r

1) Send request

4) Send back reply later

2) Execute the request

3) Combine results

Client

Server frontend

Parallel program

8Filippo Gioachin - PPL @ UIUCTeragrid 2009

Case study:
Parallel Debugging

9Filippo Gioachin - PPL @ UIUCTeragrid 2009

Large Scale Debugging:
Motivations
● Bugs on sequential programs

– Buffer overflow, memory leaks, pointers, ...
– More than 50% programming time spent debugging
– GDB and others

● Bugs on parallel programs
– Race conditions, non-determinism, ...
– Much harder to find

● Effects not only happen later in time, but also on different
processors

– Bugs may appear only on thousands of processors
● Network latencies delaying messages
● Data decomposition algorithm

– TotalView, Allinea DDT

10Filippo Gioachin - PPL @ UIUCTeragrid 2009

CharmDebug Overview

CharmDebug Java GUI
(local machine)

Firewall Parallel Application
(remote machine)

CharmDebug

Application

CCS
(Converse Client-Server)

GDB

11Filippo Gioachin - PPL @ UIUCTeragrid 2009

Main Program View

output

entry
methods processor

subsets

messages

queued message details

12Filippo Gioachin - PPL @ UIUCTeragrid 2009

CharmDebug at scale

● Current parallel debuggers don't work
– Direct connection to every processor
– STAT (MRNet) not a full debugger

● Kraken: Cray XT4 at NICS
– Parallel operation collecting total allocated memory
– Time at the client 16~20 ms
– Up to 4K processors
– Other tests to come

● Attaching to the running program took also very
little (few seconds)

13Filippo Gioachin - PPL @ UIUCTeragrid 2009

CharmDebug: Introspection

14Filippo Gioachin - PPL @ UIUCTeragrid 2009

Severe leak:
ghost layer messages
leaked every iteration

15Filippo Gioachin - PPL @ UIUCTeragrid 2009

Case study:
Performance Analysis

16Filippo Gioachin - PPL @ UIUCTeragrid 2009

Online, Interactive Access to Parallel
Performance Data: Motivations

● Observation of time-varying performance of long-
running applications through streaming
– Re-use of local performance data buffers

● Interactive manipulation of performance data
when parameters are difficult to define a priori
– Perform data-volume reduction before application

shutdown
● k-clustering parameters (like number of seeds to use)
● Write only one processor per cluster

17Filippo Gioachin - PPL @ UIUCTeragrid 2009

Projections: Online Streaming of
Performance Data

● Parallel Application records performance data on
local processor buffers

● Performance data is periodically processed and
collected to a root processor

● Charm++ runtime adaptively co-schedules the data
collection's computation and messages with the
host parallel application's

● Performance data buffers can now be re-used
● Remote tool collects data through CCS

18Filippo Gioachin - PPL @ UIUCTeragrid 2009

Impact of Online Performance Data
Streaming

Simple Charm++ Parallel Application
(Iterations of Work + Barriers)

Cores Exec Time in seconds
(no Data Collection and Streaming)

Exec Time in seconds
(with Data Collection and Streaming*)

4095 21.44s 21.46s

8191 37.84s 37.71s

* Global Reduction of 8 kilobyte messages from each processor every second.

NAMD 1-million atom simulation (STMV)
Cores 512 1024 2048 4096 8192

Overhead (%) no Data Collection
and Streaming to visualization
client.

0.69% 0.55% -3.44% 1.56% 1.29%

Overhead (%) with Data Collection
and Streaming@

0.30% 0.43% -3.94% 3.47% 6.63%

@ Global Reductions per second of between 3.5 to 11 kilobyte messages from
each processor. The visualization client receives 12 kilobytes/second.

19Filippo Gioachin - PPL @ UIUCTeragrid 2009

Online Visualization of Streamed
Performance Data

● Pictures show 10-second snapshots of live NAMD detailed
performance profiles from start-up (left) to the first major load-
balancing phase (right) on 1024 Cray XT5 processors

● Ssh tunnel between client and compute node through head-node

20Filippo Gioachin - PPL @ UIUCTeragrid 2009

Case study:
Cosmological Data Analysis

21Filippo Gioachin - PPL @ UIUCTeragrid 2009

Comsological Data Analysis:
Motivations

● Astronomical simulations/observations generate
huge amount of data

● This data cannot be loaded into a single machine
● Even if loaded, interaction with user too slow

● Need to parallel analyzer tools capable of
– Scaling well to large number of processors
– Provide flexibility to the user

22Filippo Gioachin - PPL @ UIUCTeragrid 2009

Salsa

Write
 yo

ur o
wn piece

of P
yth

on scri
pt

Collaboration with
Prof. Quinn,
(U. Washington)
and Prof. Lawlor
(U. Alaska)

23Filippo Gioachin - PPL @ UIUCTeragrid 2009

LiveViz

● Every piece is represented by a chare

● Under integration in ChaNGa (simulator)

24Filippo Gioachin - PPL @ UIUCTeragrid 2009

How well are we doing?

● JPEG is CPU bound
– Inefficient on high bandwidth networks

● Bitmap is network bound
– Bad on slow networks

● The bottleneck is on the client (network or processor)
– Parallel application: use enough processors

Window size
2MB/s wireless

Bitmap JPEG Bitmap JPEG
256x256 333 25 6 25
512x512 166 24 2 15
1024x1024 50 15 < 1 13
2048x2048 13 4 << 1 4

Gigabit network

Courtesy of Prof. Lawlor, U.Alaska

Salsa application framerate

25Filippo Gioachin - PPL @ UIUCTeragrid 2009

Impostors: Basic Idea

Camera

Impostor

Geometry

Courtesy of Prof. Lawlor, U.Alaska

26Filippo Gioachin - PPL @ UIUCTeragrid 2009

Particle Set to Volume Impostors

Courtesy of Prof. Lawlor, U.Alaska

27Filippo Gioachin - PPL @ UIUCTeragrid 2009

Summary

● Generic framework (CCS) to connect to a running
parallel application, and interact with it

● Demonstration in different scenarios:
– Parallel debugging

● Low response time
– Performance analysis

● Low runtime overhead
– Application (cosmological) data analysis

● High frame rate
● All code is open source and available on our

website

28Filippo Gioachin - PPL @ UIUCTeragrid 2009

Questions?

Thank you

http://charm.cs.uiuc.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

