# Dynamic Topology Aware Load Balancing Algorithms for MD Applications

Abhinav Bhatele, Laxmikant V. Kale University of Illinois at Urbana-Champaign Sameer Kumar IBM T. J. Watson Research Center

## **Motivation: Contention Experiments**



Bhatele, A., Kale, L. V. 2008 **An Evaluation of the Effect of Interconnect Topologies on Message Latencies in Large Supercomputers**. In *Proceedings of Workshop on Large-Scale Parallel Processing (IPDPS)*, Rome, Italy, May 2009.

## Results: Blue Gene/P



## Results: Cray XT3



## Molecular Dynamics

- A system of [charged] atoms with bonds
- Use Newtonian Mechanics to find the positions and velocities of atoms
- Each time-step is typically in femto-seconds
- At each time step
  - calculate the forces on all atoms
  - calculate the velocities and move atoms around

## NAMD: NAnoscale Molecular Dynamics

- Naïve force calculation is O(N²)
- Reduced to O(N logN) by calculating
  - Bonded forces
  - Non-bonded: using a cutoff radius
    - Short-range: calculated every time step
    - Long-range: calculated every fourth time-step (PME)

## NAMD's Parallel Design

Hybrid of spatial and force decomposition



## Parallelization using Charm++



Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 **Overcoming Scaling Challenges in Biomolecular Simulations across Multiple Platforms**. In *Proceedings of IEEE International Parallel and Distributed Processing Symposium*, Miami, FL, USA, April 2008.

#### Communication in NAMD

- Each patch multicasts its information to many computes
- Each compute is a target of two multicasts only
- Use 'Proxies' to send data to different computes on the same processor



## **Topology Aware Techniques**

Static Placement of Patches



## Topology Aware Techniques (contd.)

Placement of computes



June 09th, 2009 Abhinav S Bhatele @ ICS '09

11

## Load Balancing in Charm++

- Principle of Persistence
  - Object communication patterns and computational loads tend to persist over time
- Measurement-based Load Balancing
  - Instrument computation time and communication volume at runtime
  - Use the database to make new load balancing decisions

## NAMD's Load Balancing Strategy

- NAMD uses a dynamic centralized greedy strategy
- There are two schemes in play:
  - A comprehensive strategy (called once)
  - A refinement scheme (called several times during a run)
- Algorithm:
  - Pick a compute and find a "suitable" processor to place it on

### Choice of a suitable processor

- Among underloaded processors, try to:
  - Find a processor with the two patches or their proxies
  - Find a processor with one patch or a proxy
  - Pick any underloaded processor



## **Load Balancing Metrics**

- Load Balance: Bring Max-to-Avg Ratio close to 1
- Communication Volume: Minimize the number of proxies
- Communication Traffic: Minimize hop bytes

Hop-bytes =  $\sum$  Message size \* Hops traveled by message

Agarwal, T., Sharma, A., Kale, L.V. 2008 **Topology-aware task mapping for reducing communication contention on large parallel machines**, In *Proceedings of IEEE International Parallel and Distributed Processing Symposium*, Rhodes Island, Greece, April 2006.

## Results: Hop-bytes



## Results: Performance



## Results: Hop-bytes



#### Results: Performance



# Ongoing Work

- Observed that a simplified model was used for recording communication load
- Addition of new proxies disturbs the actual load
- Correction factor on addition/removal of proxies
- Leads to improvements of ~10%

## **Future Work**

- SMP-aware techniques
  - Favor intra-node communication
- A scalable distributed load balancing strategy
- Generalized Scenario:
  - multicasts: each object is the target of multiple multicasts
  - use topological information to minimize communication
- Understanding the effect of various factors on load balancing in detail

# Thanks!

#### NAMD Development Team:

Parallel Programming Lab (PPL), UIUC – Abhinav Bhatele, David Kunzman, Chee Wai Lee, Chao Mei, Gengbin Zheng, Laxmikant V. Kale Theoretical and Computational Biophysics Group (TCBG), UIUC – James C. Phillips, Klaus Schulten

IBM Research - Sameer Kumar

#### Acknowledgments:

Argonne National Laboratory, Pittsburgh Supercomputing Center (Shawn Brown, Chad Vizino, Brian Johanson), TeraGrid