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Abstract

Performance analysis tools are essential to the maintenance of efficient parallel execution of
scientific applications. As scientific applications are executed on larger and larger parallel su-
percomputers, it is clear that performance tools must employ more advanced techniques to keep
up with the increasing data volume and complexity of the performance information generated
by these applications as a result of scaling.

In this thesis, we investigate the useful techniques in four main thrusts to address various
aspects of this problem. First, we study how some traditional performance analysis idioms can
break down in the face of data from large processor counts and demonstrate techniques and tools
that restore scalability. Second, we investigate how the volume of performance data generated
can be reduced while keeping the captured information relevant for analysis and performance
problem detection. Third, we investigate the powerful new performance analysis idioms en-
abled by live access to performance information streams from a running parallel application.
Fourth, we demonstrate how repeated performance hypothesis testing can be conducted, via
simulation techniques, scalably and with significantly reduced resource consumption. In addi-
tion, we explore the benefits of performance tool integration to the propagation and synergy of

scalable performance analysis techniques in different tools.
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Chapter 1

Introduction And Motivation

Modern parallel machines are getting larger. In the June 20009 list of the top 500 most powerful
supercomputers !, the fastest possessed 129,600 processor cores running at a peak performance
of 1,456.70 GigaFLOPS. Meanwhile, the largest machine weighed in at 294,912 cores. The
processor growth trends are crystal-clear when one compares the bottom 100 machines in the
June 2009 list with the one for June 2008. In June 2008, most machines in the bottom 100 had
fewer than 2,000 processor cores. By June 2009, only a couple had fewer than 2,000 processor
cores.

Bigger and faster parallel machines bring both opportunity and challenges to the user com-
munity. Opportunity, because of the greater computational resources made available to scientific
applications. Challenges, because attaining good application performance on larger machines
can be non-trivial. Achieving good performance for complex scientific applications require
good tool support for performance analysis and tuning. However, as applications are scaled
to execute on larger and larger processor counts, many traditional idioms guiding performance
tool usage to study these applications break down in the face of the large performance datasets
gathered for the purpose.

This thesis is motivated by the challenges to the scalable conduct of performance analysis
for applications executed on large numbers of processors. The reasons behind the limitations
on performance tool effectiveness are explored. Techniques are introduced to overcome some
of these limitations and new scalable analysis idioms are investigated.

In this chapter, we begin by presenting a detailed context for the field of performance anal-

Thttp://www.top500.org



ysis and tuning for parallel applications in general. We discuss the motivations for scaling
applications to larger numbers of processors and the resulting impact it has on the effectiveness
of tools use to study the performance of those applications. Existing literature on the wide range
of performance tools and the effort to address tool scalability are then discussed. Finally, we

detail the main objectives of the thesis.

1.1 Parallel Performance Tuning Tools

Performance tools are employed to study the parallel performance of large complex applica-
tions. A large class of such applications are scientific simulation codes that include molecu-
lar dynamics simulations, rocket propellent simulations and cosmological simulations amongst
many others. Performance tools enable performance studies to be conducted on performance
data captured during an application’s execution. Performance studies generally aim to find and
correct performance bottlenecks in the parallel code. Studies for this purpose are also refered
to as “performance debugging”. In any complex scientific application, non-trivial interplay be-
tween computation, communication across processors and even computational dependencies
within a processor can make the application suffer unexpectedly poor performance.
Performance debugging can be conducted for an application which is executed on a fixed
number of processors. The purpose is to tune the application to run faster on the same number
of processors. Performance tools are also used to understand the effects on the performance
of a parallel application when it is scaled to larger numbers of processors. The purpose in this
case is to identify root causes inhibiting performance so as to eliminate or mitigate the negative
effects in order for the application to scale efficiently to higher numbers of processors. Allowing
applications to scale efficiently is important as there are a number of reasons that drive scientists

to scale their codes:

1. to run a particular simulation input faster so they may produce results faster; or



2. to run a particular simulation input faster so they may produce results for longer simula-
tion observations (e.g. a protein folding over a simulated time of 1 us instead of 100 ns)

within the same execution time constraint; or

3. to run larger or more detailed simulations that may not otherwise be possible on smaller

numbers of processors because of memory or execution time constraints.

For the purposes of our discussion on performance tool effectiveness, we define perfor-
mance space to be a 4-dimensional domain, inherent in every parallel application. The 4 di-

mensions of performance space are:

1. the continous domain of elapsed execution time of the application.

2. the discrete domain of processors or threads used in the execution.

3. the discrete domain of the types of activities (e.g. functions calls, messaging activity) that

can OCcCur.

4. the discrete domain of the types of metrics that can be recorded for the activities that occur

(e.g. time spent, number of bytes sent, number of level 1 cache misses).

We define an instrumented application to be one which captures and generates performance
data. Performance data can be captured in many different ways in the context of performance
space (see Section 1.3 for various well-known systems of each). For typical statistical profiles,
a counter is maintained on each processor for each activity that can occur in an application.
As the application executes, it is sampled at some regular time interval. At each sample, the
current activity’s counter is incremented. Thus, at the end of the application, one can compute an
approximate breakdown of the proportion of time spent by each activity on each processor over
the application’s total execution time. Direct measurement profiles perform some accumulation
operations on various performance metrics when encountering activity triggers or events. Pairs

of events can represent the start and end of activities in the application. Different profiling tools

3



can perform many different forms of metric accumulation. Finally, event trace logging typically
records all the details of pertinent performance metrics when encountering activity triggers. The
design decisions behind the different methods of capturing performance data are usually based

on the trade-off between detail and data volume.

1.2 Challenges To Performance Tool Effectiveness Due to
Application Scaling

We can loosely quantify the measurement of effectiveness for performance tools based on the
time-to-solution for specific performance debugging session. The time-to-solution covers mul-

tiple components:

1. the time taken for an instrumented application to be executed at the necessary processor

counts;

2. the time taken to produce performance data for consumption by a performance tool. This
component includes the writing of data to disk and transfer of the written logs, if neces-

sary, to a remote machine where the performance tool is executed;

3. the time taken for a performance tool to acquire the necessary performance data and
process it for analysis in response to a request by a human analyst. This component

includes the reading of log data from the disk;

4. the time taken for an analyst to locate specific performance problems given some perfor-
mance information (visual or otherwise) provided by the tool. This involves an iterative
process where the analyst explores alternative hypotheses, and develop an intuitive un-
derstanding of the performance issues by studying multiple views and analysis supported

by the tool;



5. the time taken to attempt to fix the performance problem. This can be as simple as chang-
ing application configuration parameters or as complicated as application code modifica-

tion;

6. the time taken to re-execute the application to validate that an attempted solution has

worked.

We now discuss how application scaling impacts the performance space defined above. We
will then discuss how this impact on performance space translates to impact on performance
tool effectiveness based on the list of time-to-solution components.

There are two forms of application scaling. The first is known as strong scaling where an
application runs the same simulation input on larger numbers of processors. The total com-
putation work for the simulation across all processors, excluding parallel overheads, typically
remains the same. The second is known as weak scaling where an application runs larger or
more detailed simulation inputs on larger numbers of processors. The total computation work
for the simulation across all processors is increased for weak scaling.

For both strong and weak scaling, the number of processors in the processor-dimension of
performance space is increased. This directly translates to a larger exploration space for an
analyst when attempting to make sense of the performance information. Hence human analysis
time and performance tool response time may be affected. It also means the application poten-
tially spends a longer time waiting in the queue of a supercomputing facility as larger processor
resources are required.

The number of activity instances over time also increases for both forms of application scal-
ing. In the case of strong scaling, this can be attributed mostly to more communication events
overall. In the case of weak scaling, we have additional communication events as well as activ-
ities due to additional work for the larger simulation input. Depending on the way performance
data is captured, this can impact overall performance data volume which in turn affects the

effectiveness of a performance tool. We can now identify broad categories for techniques to



enhance the effectiveness of a performance tool. These include:

1. addressing performance fool scalability with respect to performance data volume. Scala-
bility here refers to a performance tool’s ability to present usable and useful performance

data in the face of increasing data volume.
2. addressing time it takes for performance data to become available to a performance tool.

3. addressing the turn-around time for performance hypothesis experiments. This includes
the time it takes to schedule and execute an application on a supercomputer to generate

performance information for performance debugging or validation purposes.

1.3 Background

There are many different performance analysis and visualization tools that work on different
programming models, use various forms and formats of performance data, and adopt different
ways of presenting or analyzing recorded performance information.

In this section, we perform a quick sweep of the various tools to get a flavor of what is
involved in performance analysis research. Detailed discussions of related research are deferred
to the relevant related work sections in subsequent chapters.

Profile logs capture some summary of performance metrics, usually over an application’s
lifetime. Profiles can be generated by statistical sampling methods like that used by gprof [31].
Statistical profiles are perhaps the most compact, showing the contribution to total sample
counts by each activity, typically the function calls invoked in the application. Statistical pro-
files are most useful for capturing timing information about activities, they are not as useful
for events nor for dealing with metrics not associated with execution time. Other profiles can
be generated by methods based on direct measurement of performance metrics of pre-defined
events and activities, as is done in Projections [44] summaries or TAU profiles [69] using the

Paraprof tool. Wylie et. al. [84] describes a similar approach for the KOJAK/Scalasca project
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by what they call runtime measurement summarisation. Profile-based tools generally do not
capture dynamic performance changes to the application over time. It is, however, possible
to take snapshots [55] of profiles in TAU, allowing the capture of performance changes over
known user-defined phases, but at the cost of storing an additional profile for each snapshot in
the buffers. Profile summaries in Projections do the same, but uses fixed time intervals instead.
Profiles tend to be compact, depending on their specific format, but not as effective for the
purposes of studying the nature of complex inter-processor dependencies and interactions.

For the latter, detailed event trace logs are most effective. Detailed event logs store the
faithful, usually chronological, time-stamped recording of performance metrics per pre-defined
event or activity (e.g. function call, message sends) encountered in the application. These logs
tend to be extremely large and care has to be taken to control the generated data volume for
effective post-mortem analysis. Vampir [56], Jumpshot [85], Paragraph [33], Paradyn [52],
KOJAK [80], Pablo [64], Cray Apprentice? [19, 20] and Projections [44] are examples of tools
and systems that can use various forms of detailed event trace logs.

Regarding scalability for performance analysis tools, Wolf et. al. [79] offered an excel-
lent overview of the technical issues, challenges and broad approaches to handling large event
traces. Specifically, they surveyed nine approaches implemented by various research groups:
using frame-based data formats [82]; periodicity detection [24]; call-graph compression [47];
distributed analysis [11]; automatic pattern search [81]; topological analysis [6]; holistic anal-
ysis [83]; granularity reduction [54]; and statistical analysis [2]. Meanwhile, the Scalasca
project [27, 26] adopts scalable approaches to analysis based on automatic analysis methods.
They search for patterns indicative of performance problems specific to MPI using a distributed
analysis tool on full event traces. Roth and Miller [66] focus on an online approach to automated
performance analysis.

The approach in this work sometimes complements and is sometimes similar to the scalability-
oriented research mentioned above, and is contemperoneous with them. The unique aspects to

our work include a pragmatic semi-automatic flavor that keeps the analyst in control of all
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stages of analysis, exploiting the capabilities of an adaptive runtime system, and using the extra
abstractions available to performance analysis in the context of a data-driven object-oriented

model of programming.

1.4 Thesis Objectives And Scope

The objective of the thesis is to develop techniques to address scalability challenges that impact
the effectiveness of performance analysis idioms. We have implemented our techniques and ap-
proaches in this thesis using our performance tool named Projections for the Charm-++ parallel
programming model based on message-driven execution and migratable objects. Projections is
heavily-used for the performance study and tuning of many complex production codes including
the classical molecular dynamics simulation application NAMD [62], OpenAtom [8, 75] which
simulates molecular dynamics using the Car-Parrinello ab initio method and the cosmological
simulator ChaNGa [29]. Each of these production codes have been scaled to many thousands
of processors. To remain relevant, any analysis tool would have to maintain its effectiveness as
applications are further scaled to tens and hundreds of thousands of processors.

There are four main thrusts to the thesis research, each addressing different aspects of the
challenges described in section 1.2. The first covers new tool support for scalable performance
analysis idioms. To effectively find performance problems in the enlarged performance space
when applications run on more processors, scalable analysis idioms are required. We will inves-
tigate how some performance analysis idioms are not scalable and how the tools and methods
we developed will help.

The second is the exploration of techniques for the reduction of performance data volume
without significant loss of detail from performance event traces. This reduction is possible
because most of the data in an event trace tend to capture normal application behavior. The
challenge in event trace compression is to retain data that highlight performance anomalies

while preserving sufficient normal behavior to maintain the necessary context for an analyst to



visually explore performance space. While the techniques can be applied to performance event
logs that have already been written to disk, they can more importantly be applied to performance
logs still in memory at the end of an application’s execution.

The third thrust explores the benefits of live analysis and interaction with running appli-
cations. We look at how live interaction can help enhance some capabilities described in the
research thrust for data reduction. At the same time, live interaction is an enabling mechanism
for the online streaming of performance data as the application executes. It enables new and
powerful idioms for studying application performance at large scales, allowing long-running
behavior patterns to be revealed. It also improves the timeliness of performance data delivery
to a performance tool.

Finally, we target methods for the reduction of job turn-around time. This idea is based
on the observation that performance analysis is usually an iterative process where hypotheses
are tested through re-execution and re-analysis. This can take a prohibitively long time on
the job queues on typical large-scale machines, especially for the study of an application’s full-
machine scaling. We explore simulation-based methods that enable analysts to test performance
hypotheses using far fewer processors than would otherwise be necessary if an application had
to be re-executed. These methods also have the added benefit of significantly reducing the usage

of precious computational resource allocation units.



Chapter 2

Software Infrastructure

In this chapter, we describe the basic software infrastructure employed to demonstrate the per-
formance tool scalability and effectivenes techniques discussed in this thesis. The CHARM++
runtime system implements the message-driven object-oriented parallel programming paradigm
used for our studies. Adaptive MPI is an implemention of the message-passing paradigm that
makes use of many of the adaptive features provided by the CHARM++ runtime system. The
Projections performance analysis framework is part of the CHARM++ runtime system. It pro-
vides the necessary capabilities for the instrumentation, generation and visualization of perfor-

mance data.

2.1 Charm++

CHARM++ [40] is a portable C++ based parallel programming language based on the migrat-
able object programming model and resultant virtualization of processors. In this model [42],
a programmer decomposes a problem into N migratable objects that will execute on P pro-
cessors, where ideally N>>P. The application programmer’s view of the program is of the
migratable objects and their interactions; the underlying runtime system keeps track of the
mapping of the migratable objects to processors and performs any remapping that might be
necessary at run-time. The programmer, not being constrained by physical processors, is able
to focus on the interaction between the work partitions and concentrate on better expression
of the parallel algorithm. At the same time, the runtime system can perform efficient resource

management with the large number of migratable objects. The difference between the user view
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and the system’s implementation are illustrated in figure 2.1. In CHARM++, migratable objects
are known as chares. Chares are C++ objects which encapsulates special entry methods that are
invoked asynchronously from other chares through messages. In the basic CHARM++ model,
entry methods are encapsulated functions that cannot be pre-empted after they have been in-
voked. CHARM++ uses message-driven execution to determine which entry method, and hence
chare, gets control of a processor. The partial code example in figure 2.2 highlights how this

model works.

System implementation

User Iiew '

Figure 2.1: User view of the CHARM++ adaptive run time system with migratable objects on
the left versus a possible system mapping of the same migratable objects on the right.

An advantage of this approach is that no chare can hold a processor while it is idle but
waiting for a message. Since N>>P, there may be other chares on the same processor that
can overlap their computation with the communicating chare. This adaptive overlap is enabled
by a runtime scheduler on each processor. The scheduler picks up incoming messages and
queues them in a local buffer. When an entry method completes on the processor, the local
scheduler will invoke the appropriate handler routine for the next entry method associated with
the message at the head of the queue. If the queue is empty, the scheduler enters into an idle
state, waiting for new messages from other processors. The operation of the runtime scheduler

on each processor is illustrated in figure 2.3.
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mainmodule pingpong {

chare Ping {
// constructor
entry Ping(void);
// generates a PongMsg and calls recv() on a
// remote object of chare class Pong
entry void recv (PingMsg x);

}i

chare Pong {
entry Pong(void);
// generates a PingMsg and calls recv() on a
// remote object of chare class Ping
entry void recv (PongMsg =) ;

bi

Figure 2.2: Partial interface code showing how Chares encapsulate entry methods.

Processor

- O
entry method
asart()

entry method
bar() New
Chare Object \] Chare Object Incoming

e

schedules
appropriate

Scheduler: %
K////

method for next

message on
\ Message Queuy

Figure 2.3: A basic illustration of the runtime scheduler implementation on each processor.

12



CHARM++ is actively used in a number of major real-world scientific applications [60, 75,
29] that demand high scalability for some of the phenomena the scientific community wishes to

study.

2.1.1 Adaptive MPI

The Message Passing Interface (MPI) [1] is a library specification for message-passing as the
paradigm for communication and synchronization between processors in a parallel program. It
is a standard that defines an application programmer’s interface for messaging but leaves flexible
the details for specific machine implementation. The interface was also designed with language
independent semantics with convenient C and Fortran bindings. Since its introduction, it has
become a widely accepted standard for parallel programming over a wide range of hardware.

Adaptive MPI (AMPI) [35] tries to add important adaptivity capabilities available to CHARM++
to MPI’s rich feature set. These capabilities will be highlighted in sections 2.1.2 and 2.1.3. As
of this writing, AMPI is compliant with the MPI 1.1 standard. AMPI implements its MPI
processes as user-level threads bound to chares as illustrated in figure 2.4. This binding of
user-level threads to migratable chare objects is key to automatic load balancing support for
AMPI programs. Message passing between AMPI processes is implemented as communication
between chares. Send calls in AMPI map directly to equivalent CHARM++ send semantics.
Receive calls, however, have to be implemented as CHARM++ entry methods to bridge the
semantic gap between the CHARM++ and AMPI models for the support of basic MPI 2-sided
communication. MPI 1-sided communication, introduced in the MPI 2.0 standard, are currently
not supported.

Standard MPI programs divide the computation onto P processes and the typical MPI im-
plementation assigns and executes each of these processes on its own physical processor. An
AMPI programmer would divide the computation into a V' virtual processors (user-level thread)

which then gets mapped onto P physical processors. Unlike the scenario of writing an MPI for
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Figure 2.4: 7 AMPI “processes” implemented as user-level threads bound to CHARM++ chare
objects which are then bound to 2 actual processors for execution.

a typical MPI implementation, an AMPI programmer would not worry about the number of
physical processors, similar in nature to how a CHARM++ programmer would concentrate on
the decomposition rather than the number of processors the application would run on. When V'
= P, the AMPI program would execute in the same way it would for typical MPI implemen-
tations. To exploit the adaptivity capabilities of the underlying CHARM++ runtime system, V'

needs to be significantly larger than P.

2.1.2 Adaptive Overlap

One important feature of the CHARM++ runtime system is its natural ability to dynamically
schedule work based on incoming messages to a processing thread. This means that the compu-
tation work from two independent parallel software components could be overlapped dynam-
ically. When one software component becomes idle on a processor, work from another could
be scheduled. The adaptive overlap can also be refined by the ability to set different message
priorities for different software components. This will have significance in the context of the
work on continuous performance data streaming in Chapter 5.

To highlight this feature, consider the scenario illustrated in Figure 2.5 (This example is
taken from [41]). There are three parallel components A, B and C spread across all processors.

A must call B and C, but there is no dependence between B and C. In traditional MPI style
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programming model, the programmer has to choose one component between B and C to call
from A first on all processors. Only when the first chosen component returns can A call the
remaining one on all processors. This model can be inefficient because when one component
idles the CPU, for example, when waiting for communication to complete, other components
are not allowed to take over and do useful computations, even though there is absolutely no

dependence between the components.

Figure 2.5: Adaptive Overlapping

With the CHARM++ runtime support, A can invoke B on all the processors, initiating com-
putation and sending out messages, and since there is no dependence between B and C, A
can also start off C in a similar fashion, and thereby components B and C can interleave their
execution. When one component blocks due to communication or load imbalance, the other
component can automatically overlap the idle time with computation, based on the availabil-
ity of data, as illustrated in Figure 2.5. With non-blocking calls and careful programming, the
programmer could achieve the same effects with MPI, but the price is additional programming

complexity and a loss of modularity.
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2.1.3 Automatic Load Balancing

One of the most prominent benefits of an adaptive runtime system like CHARM++ with migrat-
able objects is the capability of dynamic load balancing by migrating objects across processors.
This capability benefits parallel applications because of the principle of persistence. The princi-
ple of persistence is an empirical heuristic about parallel program behavior over time. For most
parallel applications expressed in terms of virtualized processors, the computation loads and
communication patterns tend to persist over time. This heuristic applies to many programs with
dynamic behavior, including those using adaptive mesh refinement with abrupt but infrequent
changes, to those simulating molecular dynamics with slow and gradual changes over time.

Based on the principle of persistence, the CHARM++ runtime system employs a measurement-
based load balancing scheme. The load balancer automatically collects statistics on each ob-
ject’s computation loads and communication patterns, and using the collected load database,
the runtime system decides on when and where to migrate the objects by adopting a load bal-
ancing strategy. A variety of such strategies have been developed for applications with different
dynamic behaviors. Some strategies are centralized, others fully distributed. Some use only
computation load when making a decision, and others take into account communication pat-
terns and even topology of the platform. Our previous work on NAMD[43] demonstrates the
significant benefits of automatic load balancing in real-life applications.

Application performance can be significantly affected by the choice of load balancing strat-
egy and its frequency of application. In this thesis, we make use of the CHARM++ load balanc-
ing framework for two things. First, it can serve as a clear means of validating the data reduction
work described in chapter 4. If in an application’s run, we start with deliberate load imbalance
and then fix it using an appropriate load balancing framework, any reduced dataset generated
must necessarily capture the earlier load imbalance. Second, the load balancing framework in
CHARM++ will serve as the instrument for re-mapping event log entries in recorded BigSim

(see Section 6.2) simulation logs to test the effects of various load balancing strategies without
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the need to re-execute a large-scale application run. Object migration decisions by different
load balancing strategies can be made using the load and communication information of the
original large-scale run. These decisions can then be applied to transform BigSim event logs
such that, when simulated, the performance information generated would reflect behavior as if

a different load balancer had been used in the original application run.

2.2 The Projections Performance Analysis And
Visualization Framework

The Projections Analysis Framework [44] consists of an instrumentation and data generation
component within the CHARM++ runtime as well as a java-based visualization/analysis tool.
Projections was designed to be a tool framework that supports the post-mortem and expert user-
directed performance analysis of parallel applications. It’s features have been used extensively
to tune many CHARM++ applications in order to enhance their scalability and performance,
especially NAMD [62, 44, 49].

Projections instrumentation is fully automated by default. Specifically, the runtime system
knows when it is about to schedule the execution of a particular method of a particular object
(in response to a message being picked up from the scheduler’s queue), and when an object
sends a message to another object. Default instrumentation code are written into the runtime
system at these important abstraction points. When conducting performance analysis studies
of applications, the instrumentation modules are invoked at these abstraction points, recording
the necessary performance data into memory buffers at the cost of some time overhead. Timing
data is typically recorded at microsecond resolutions. To ensure minimal performance impact in
application runs, the instrumentation code overhead at these abstraction points can be reduced
significantly when performance analysis is not required for that run-instance. The performance

framework design can further allow overhead to be completely eliminated in fully optimized
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production CHARM++ application binaries.

The recorded performance data (which can take multiple forms, see section 2.2.2) is typi-
cally written out at the end of the run. If it exhausts all the memory space allocated to it in the
middle of a run, or if the user desires (e.g. at known global synchronization points), the data
can be flushed to disk. In our experience, however, asynchronous flushing of log data causes
such severe perturbation of application performance that the performance information after the

first instance of such a flush becomes effectively useless.

2.2.1 Charm++ Performance Events

Gaining insight into a Charm++ application’s parallel performance depends on what events are
observable during execution. There are several points in the Charm++ runtime system’s code
base that can capture important events and information about their execution context. These

include:

1. Start of an entry method.

2. End of an entry method.

3. Sending a message to an object.

4. Change in scheduler state: active to idle (entry method completes and no new message is

available, idle to active (new message is available)

The first two relate directly to Charm++’s logical execution model. Observing message
sends provides a runtime level perspective of object interaction. Scheduler state transitions
expose resource-oriented aspects of the execution. The point is that the observation of multiple
events at different abstraction levels is needed to get a full characterization of performance in a

parallel language system such as Charm++.
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2.2.2 Projections Event Log Formats

Projections’ summary format is the most compact data format. It records processor utilization
for each processor over k time intervals where £ is fixed. The duration, d, of these time intervals
is adjusted dynamically, doubling each time the application’s execution goes past & x d. The
size of each file is dependent only on the desired number of time-intervals k. Therefore, the
total size summed across all files grows in O(P) where P is the number of processors. We use
runlength encoding as an additional measure to reduce the size of each file. Projections also
supports an intermediate summary detail format. It employs the same dynamically adjusted
time interval scheme for recording data as described above for the summary format. However,
we record attribute information for each time interval such as the time spent or number of
messages received separatedly for each CHARM++ entry method. Such a format is reasonably
rich and useful for analysis, allowing a quick way to zoom in on a potential problem area. The
size of each file is of the order of £ x FE, where E is the number of CHARM++ entry methods
in the application. However, F is relatively small, around 220 for NAMD, and depends on the
static design of the application. As a result, // can be considered in practice to be a constant
factor for all applications. So, the total data size grows in O(P) similar to summary files. Like
the summary format, runlength encoding is used to reduce the size of the file.

Projections event trace logs are written in a text format with one event per line. Some
events contain more details than others. For example, we record events like the start and end
of each CHARM++ entry method, every time a message was sent and each time the runtime
scheduler goes idle or returns from being idle. For each event, different types of attributes may
be recorded. This includes the timestamp, size of a message, the CHARM++ object id, and
any performance counter information (e.g. PAPI [10]) associated with the event. Recording
performance counter information is optional and the default instrumentation policy has small
overhead, involving a low-cost timestamp request and accessing the in-memory instrumentation

log buffers.
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2.2.3 The Projections Performance Visualization Tool

X Projections-- Overview.
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Figure 2.6: Overview: A summary of overall parallel structure.

The visualization component of the Projections framework is implemented in Java and has
the advantage of being generally portable across many platforms. The trace logs generated
by the instrumentation modules in the CHARM++ run-time are platform neutral with respect to
visualization and analysis. Kalé et. al. [44] describes the important visualization tools provided
by Projections and how they were used to support analysis processes employed by analysts to
tune and optimize NAMD[62], a molecular dynamics simulation application. The rest of this
section describes some of the commonly-used visualization support in order to give a flavor of

what is available to our user-directed approach to post-mortem performance analysis.
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Figure 2.7: Usage Profile: Processor utilization of various activities.

The overview plot of Figure 2.6 can show the dominant activity within fixed time inter-
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vals along the horizontal-axis over each processor along the vertical-axis. It presents a good

summary of the overall parallel structure of the application.
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Figure 2.8: Timeline visualization of processor activity.

The usage profile view of Figure 2.7 displays, for each processor, the utilization percentage
of all activities over a user-selected range of the application’s execution time. This includes
the percentage of idle time, when no useful work occurs. The left-most bar presents data aver-
aged across all processors. This view is particularly useful for identifying the presence of load
imbalance in the application, as well as its overall efficiency.

Finally, the timeline view in Figure 2.8 presents to the user a detailed look at the interactions
between application activity and communication between processors. The horizontal time-axis
marks the passage of time in the application while the vertical axis represents processors. Mov-
ing the mouse pointer over an activity pops up a small window with specific information about

various performance properties of that activity (eg. number of messages sent).

2.2.4 The Performance Analysis Process Using Projections

The typical performance analysis process for a large-scale CHARM++ parallel application using

Projections follows these general steps:

1. Instrument application if necessary.
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2. Compile and build binaries.

3. Submit application to job submission queueing system.

4. Application generates performance data.

5. Use analysis idioms to find performance problems captured by the data.

(a) Study application’s overall performance profile.
(b) Locate area in performance space with possible problems.

(c) Restrict visualization to smaller and smaller areas of the performance space with

higher levels of performance detail.

(d) Identify specific problems, interpret and find solution in code, or back up if the

problem was mis-identified at lower levels of performance detail.
6. Update application code given a hypothesis about the performance problem.

7. Validate the effectiveness of the solution. Repeat steps 2 through 5. If the solution was

not effective, a new hypothesis is tested via steps 6 through 7.

In general, an iterative “drill-down” approach is adopted for performance analysis using the
trace-based data generated by CHARM++ or AMPI applications. This is very similar to the
way trace-based performance data from traditional MPI tools are analyzed, the key differences
being the activity/event semantics and the interpretation of bottlenecks. Analysts typically have

to understand the underlying code structure of the application they are trying to analyze.
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Chapter 3

Scalable Analysis

The art of seeking performance problems involves the use of many heuristics, application-
dependent or otherwise. For each performance analysis system, the heuristics translate into
a variety of tool usage idioms. These idioms depend on the tool’s features to help an analyst
find specific classes of performance problems from the different forms of performance data
compatible with the tool. To be scalable, an idiom must express an analysis process that does
not overwhelm the analyst with the information produced by those features of the tool.

Many of the common idioms used in performance analysis break down with a large number
of processors. In this chapter, we set about identifying, cataloging and supporting some scal-
able idioms, along with the development of appropriate tools and features. We describe how
powerful scalable idioms are supported by the histogram, high resolution time-profiles and a
tool designed to provide scalable ways of quickly picking only the relevant detailed timelines
for processors that exhibit extreme behavior. To place the utility of this work in context, note

that significant parts of the work were carried out and published over the past seven years.

3.1 Scalably Finding Object Decomposition With Poor
Grainsize Distributions

We define grainsize to be the amount of computation work performed per incoming message.
Events that are too fine-grained suffer from high scheduling overheads while events that are

too coarse-grained can hold up a processor’s ability to process incoming messages for other

23



possibly high-priority work. Poor object grainsize distributions could also interfere with load
balancing strategies’ ability to produce optimal load balance.

In our experience, prior to this work, object grainsize problems are almost always stumbled
upon as a side-effect of examining the detailed timelines of processors. Performance events
associated with objects with grainsizes that are too coarse show up on timelines as blocks of
large sizes. These visual cues were then picked up by the analyst, mostly by intuition, and
examined in detail by mouse-overs to determine if the same parallel object was associated with
the event blocks. Such grainsize problem discoveries often result as a side-effect from the study
of poor load balance, particularly from scenarios where no load balancing strategy appears to
help due to poor object grainsize distributions. Clearly, this approach to discovering grainsize
problems is not scalable. If an analyst presciently sought to locate such specific problems, he
or she would have to scan detailed timelines until anomalies are spotted. Even then, there is no
easy way to tell how common or severe these anomalies are.

To scalably support this idiom, we developed the Histogram tool ! in Projections to identify
potential grainsize problems [43]. The histogram tool (see figure 3.1) counts the frequency
distribution of different types of executed events across a range of bins of time spent by the
events. This differentiation of event types is extremely helpful as it helps the analyst identify
the appropriate code segments to modify if a change of event grainsize is desired. Various pat-
terns in the display can be recognized by the analyst. For example, an observed “tail” in the
distribution could mean a problem involving coarse-grained events are holding up the applica-
tion, particularly if the duration of these events are significant relative to the expected execution
time of a single iteration or phase. The end of section 6.5.2 provides a detailed example of
how we made use of this analysis idiom to explain an observed but unexpected performance
phenomenon while investigating the effects of object grainsizes on application performance.

With the histogram tool, the idiom becomes scalable. The histogram tool simply counts

all events over all processors in the execution time range specified by the analyst and bins

'Developed with the assistance of Sindhura Bandhakavi.
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Figure 3.1: Histogram of activity grainsizes in a parallel discrete event simulation.

them accordingly. The displayed distribution plot does not require the analyst to look for any

particular non-scalable details to derive any conclusions about bad object decomposition.

3.2 Scalable Idioms Based On Time Profiles

Analysis idioms employing views that show some attributes as a function of processors do not
scale, as we saw earlier. However, we can study performance information along the time dimen-
sion with finer granularity, while abstracting away the processor dimension. We next describe
a tool (or view) we developed to explore this idea, and the idioms and analysis heuristics based
on this tool that scale well.

“Time profile” is a view of a portion of execution, where the time is broken down into a large
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number of relatively small-size intervals. For example, in some applications one may use a 100
microsecond interval-size to analyze execution of several application iterations taking (say)
100 milliseconds. That leads to about 1,000 intervals, which are amenable to visual analysis.
For each interval, we compute and display a bar chart that shows the time spent in different
activities added across all the processors. The interval size should be adapted to the natural
time-scale of an application. For example, for molecular dynamics running with a fine-grain
decomposition, with a time-step of a few milliseconds, the 100 microseconds mentioned above
is a reasonable interval-size, whereas for a run of quantum chemistry simulation with a time-
step of 5 seconds, one may chose a few milliseconds as a time interval. The important point
is that capturing the fine performance structure does not require display size proportional to
the number of processors. Performance trends also flow far more naturally along the time-
dimension than along the processor-dimension (i.e. the analyst can often gain new insight into

application performance by comparing nearby columns).
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Figure 3.2: Low resolution time profile display of the structure of parallel event overlap in an
8,192 processor run of OpenAtom at 100 ms intervals.

Figure 3.2 shows a simple time-profile display, with a small number of intervals chosen
to illustrate the components of the view. This was taken from a run of OpenAtom, a quan-
tum chemistry application, running on 8,192 cores of BlueGene/L, simulating (only) 256 water

molecules. For each 100 millisecond interval (which was chosen so as to show the structure
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Figure 3.3: Higher resolution time profile display of the same 8,192 processor run of OpenAtom
at 10 ms intervals.

of each stacked bar clearly), one can clearly see the time spent in different activities, indicated
by different colors in a given bar, added across all the processors. Figure 3.3 shows a more
common use of time-profile, where the time intervals are smaller, for the same performance
data. Such finer view better shows variation of quantities over time.

Although the time profile view is scalable, the question remains as to what idioms and
heuristics exist, that can make use of this view for scalable performance analysis. We describe

a few heuristics and illustrate them with examples in the rest of this section.

3.2.1 Time Profile Heuristic: Probable Load Imbalance

When a time profile shows a trough with a relatively sharp slope to the right of this trough, but
a somewhat long tail to the trough’s left, there is likely to be load imbalance.

The justification for this heuristic is simple. As processors finish their work early, they go
“idle”, waiting for the other processors to also finish. This leads to a slope on the left side of
the trough. If only a few processors are overloaded and hence contribute to a load imbalance
problem, this will be visually expressed as a long tail to the slope.

A real-life example that illustrates this scalable use of time-profile involved a computational

astronomy application ChaNGa, executing the Barnes-Hut algorithm. A case study similar to
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Figure 3.4: Time profile of a ChaNGa time step presenting its event-overlap substructure and
exhibiting visual cues that point to possible load imbalance.

this example was published as part of broader analysis by Jetley et. al. [38] on 1,024 Blue
Gene/L processors. The time profile of one time-step is shown in figure 3.4. The different
colors show various components of the execution activity. We highlight four activities in the
timestep, two types of computations colored blue and orange, and two communication-related
functions that handle request for particles (red) and handle response to requests for particles
(green). Please note that, at this point, the details of this substructure are not necessary to
diagnose the potential load imbalance problem. The envelope of all four activities combined
shows the characteristic trough between the activities of the time-step and a yellow-colored
activity in a later phase. The envelope exhibits a gradual slope to the left of the trough that ends
with a small blue tail. Because no load balancer was initially employed, it was an indication

that some load balancing strategy should be used to handle the situation.
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3.2.2 Time Profile Heuristic: Comparative Substructure Analysis

With time profiles available from different runs or even different time phases within the same
run, it becomes possible to scalably examine detailed changes in the substructure to make com-
parative studies. In particular, we can identify any activity or activities that exhibit unexpected
or disproportionate differences between time profiles. Changes in shape hint at a different par-

allel overlap between events while changes in size show changes in the time spent by events.
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Figure 3.5: Time profile of ChaNGa time step showing poorer performance after the appli-
cation of a greedy load balancing strategy. The substructure hints at poorer communication
performance as a result of the attempt to balance the load.

This idiom for the utilization of time profile in scalable analysis is illustrated with the help
of the same example in section 3.2.1. The time profile of the same timestep was obtained
again after a greedy load balancing strategy was employed. This is illustrated in figure 3.5.
Clearly, the load balancer had made a difference as the slope is now steeper at the left end of the

trough. However, the execution time has actually increased, from 5.6 seconds to 6.1 seconds!
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Figure 3.6: Time profile of ChaNGa time step showing the result of applying a load balancing
strategy that also took communication into account.

The substructure of ChaNGa’s overlapping events shown by the time profile is now handy to
identify the problem. Comparing figures 3.4 and 3.5, one can see that the communication-
related functions colored red and green are now taking more time. Thus, we can see that the
greedy load balancer had redistributed work in such a way as to increase overall communication
overheads. This analysis led to the use, and refinement, of a load balancing strategy that tries
to also reduce communication by keeping chunks of objects that communicate more, closer to
one another. The final time profile of the same timestep obtained with the new communication-
aware balancer in shown in figure 3.6. Performance has improved to 5.0 seconds while both the

envelope and substructure of the timestep appear satisfactory.
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3.2.3 High Resolution Time Profiles

Figure 3.7: Very high resolution time profile display of 8§ NAMD time steps with high-detail
substructure at 100 microsecond intervals.

It is important that the time-profile view be used at a resolution that matches the time reso-
lution of the structure of the problem. The idioms we have described can require fine-grained
intervals, and our method of generating these from trace data allows us to match any required
resolution. To emphasize this, we show a time-profile view of NAMD running on 8,192 pro-
cessors of Blue Gene/P. In figure 3.7, the display corresponds to only 80 ms of execution time,
which includes 8 time steps of NAMD. To clearly examine the substructure, we need to use the
time profile tool at 100 microsecond intervals. The large valley after the first four time steps is
only 5 ms wide. At the bottom of this valley can be seen the poorly overlapping substructure
of several yellow-beige colored events associated with various Particle Mesh Ewald FFT com-
putation phases. The fine-grained display clearly shows the Particle Mesh Ewald FFT phases
holding up the computation. This diagnosis is not possible with any coarse-grained time-profile.

Building up on the idea that high resolution time intervals can capture interesting substruc-
tures of the application, another set of scalable idioms become feasible when we utilize the

communication-over-time profile. In this view, the x-axis is time intervals, as with time pro-
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files described above. The bar (the y-axis) for each interval now shows communication metrics

added across all processors. There are 4 possible communication metrics:

1. Communication volume sent, in bytes.

2. Communication volume received, in bytes.

3. Number of messages sent.

4. Number of messages received.

It is especially useful to use time-profile and communication-over-time plots at the same
time scales and correlate their substructure along the time dimension. As an example, we
show in figure 3.8 two communication-over-time graphs correlated with the OpenAtom run
previously shown in the time profile figure 3.3. The hypothesis that the low efficiency in the
middle time-range is caused by the communication effects can be tested at an aggregate level
via these combined views. In this particular case, we see that the column of communication
is large, but within the supposed limits of the machine. This points to possible contention in
the network or other random interference as potential performance problems. We know the
OS interference is not likely to be an issue on Blue Gene/P machines, because of its use of
a light-weight kernel. As such, communication “hiccups” are a probable cause to investigate
further. From the figure showing communication-over-time for number of messages received
(figure 3.8(c)), we zoomed-in and increased the scale along the y-axis. The zoomed-in figure
3.9 present evidence that these “hiccups” may indeed be at play.

In this example, the particular performance problem in these runs and how it was eventually
resolved is not pertinent here. The point is in the insight provided by the combined views in a

highly scalable manner.
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(b) Correlated communication-over-time graph showing the volume of communication received in bytes for the
same OpenAtom run at 10 ms intervals.
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(c) Correlated communication-over-time graph showing the number of messages received for the same OpenAtom
run at 10 ms intervals.

Figure 3.8: Correlation of OpenAtom time-profile and communication-over-time graphs.
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Figure 3.9: Zoomed-in view of communication-over-time graph showing the number of mes-
sages received for OpenAtom at 10 ms intervals.

3.3 Finding Interesting Processors

A recurring theme in the search for detailed performance problems is the identification of pro-
cessors that look “interesting” or “unusual” while scanning the performance space. The ap-
propriate visualization of the performance space for this purpose is typically provided by some
profile like usage profiles (see figure 2.7 from chapter 2) or overviews (see figure 2.6 from chap-
ter 2). We now consider some case studies of analysis idioms encountered that fit this theme

and present the tool developed to scalably execute those idioms.

3.3.1 Case Study: Detecting Bad Multicast Implementation

A poorly implemented multicast routine revealed itself in the form of extended entry method
computation events where multicasts were used [43]. Only after we had somehow picked out
the processors most affected by the use of these badly implemented multicasts, were we able to
detect the problem. We observed on the detailed timelines of these processors that the length-
ened computation events included many communication calls. This finally provided the visual
cue, illustrated in Figure 3.10, that we needed to infer the source of the problem and fix it.
Once the inefficient multicast operations were fixed, figure 3.11 showed an improvement in
performance for the events affected on the same processors. Overall application performance

was also improved as a result.
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Figure 3.10: A small sample of processor timelines out of 1,024 showing (red) events with
inefficient multicasts.

It is important to note that the effort to pick out the appropriate processors over the full set
of 1,024 processors was painstaking and involved a fair amount of luck. This process would
be even harder, and practically infeasible to depend on, for tens of thousands of processors and

more.

3.3.2 Case Study: Finding Causes For Load Imbalance

One common idiom uses the “usage profile” feature to support the discovery of possible load
balance problems. Usage profiles (as shown in figure 2.7) show the utilization per processor av-
eraged over a user-specified time-range. The idiom employed to detect potential load imbalance

problems requires us to find occurences of one or more processors with significantly higher uti-
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Figure 3.11: A small sample of processor timelines out of 1,024 showing much shorter (red)
events with improved multicasts and a corresponding improvement in overall performance.

lization (overloaded) than the typical utilization amongst all processors. Processors that exhibit
low utilization (underloaded), on the other hand, do not contribute to a load imbalance problem.
Unlike overloaded processors, underloaded processors are not execution time bottlenecks that
limit the overall application’s performance. Once overloaded processors are identified, we have
to study the detailed timelines of performance events on those processors in order to confirm if
load imbalance was indeed the cause for poor performance. It is important to answer questions
about object-placement on the overloaded processors and compare that with object-placement
on other processors which communicate with the overloaded processor. For example, the over-
loaded processor may include a mix of statically-placed objects and migratable objects. If the

most overloaded processor contains mostly migratable objects, it suggests a better load balanc-
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ing strategy may solve the problem. However, if the most overloaded processor contains mostly
statically-placed objects, it suggests that a better mapping for those statically-placed objects is
in order.

However, using traditional usage profiles to locate overloaded processors for detailed study
is also not scalable. Usage profiles become harder to use when the application is scaled to very
large numbers of processors. Figure 3.12 demonstrates the debilitating effect many such usage

profiles can have on an analyst when displayed on a screen.
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Figure 3.12: An approximately 800-processor slice of Projections processor usage profiles out
of 1,024 processors worth of data.

3.3.3 Scalable Tool Support For Finding Interesting Processors

The difficulties associated with picking appropriate processors over a very large set of proces-
sors for finding various performance problems led us to develop a more scalable approach. The

general idea is to automate the discovery of important performance properties of each proces-
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sor’s performance structure or profile and allow the analyst to pick the processors with the most

extreme performance profiles.
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Figure 3.13: An Extrema Tool visualization showing the usage profiles of only the top 20 least-
idle processors.

This scalable tool feature, which we call the Extrema Tool, takes as input performance
criteria to determine processors which best satisfy the criteria. Returning to the case study for
the detection of possible load imbalance (see Section 3.3.2), the heuristic generally used is that
overloaded processors tended to have the least idle time. Figure 3.13 shows an instance of using
the new scalable feature to pick out the usage profiles of the top 20 least idle processors as the
performance criteria. These usage profiles are sorted by significance, with the most extreme
processor profiles on the right. On the left are six extra columns that include the averaged
processor profiles for the set of displayed extremes as well as the averaged processor profiles
for the rest of the processors in the dataset. The profiles on the left allow an analyst to quickly

determine if the extreme processor elements really do deviate significantly from the rest and
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warrant further study. In figure 3.13, the minimal difference between the averaged profiles of
the non-outliers and outliers in the left of the image suggests that load imbalance is not likely
to contribute significantly to any performance problems in the application being analyzed.

In general, any criteria can be used to pick processors of interest to the analyst. The case
study involving poor multicast behavior could find processors that send messages most fre-
quently. k-Means clustering can be used to find processors whose performance behavior are the
most unusual within their behavioral equivalence classes.

As noted above, once the interesting processors are identified, the analyst often needs to ex-
amine their behavior in greater detail. To enhance the analysis process using the Extrema Tool,
a simple mouse-click on any of the usage profiles of extreme processors will prompt Projections
to load the timeline for that processor. This feature allows the analyst to incrementally load ex-
treme elements of the processor set for selective study. With the timelines loaded, the analyst
may proceed to investigate the performance and find any problems. Typical followup action
includes: scanning the timeline of the extreme processors for problems; loading the timelines
of processors that sent a message causing a late event to occur on the extreme processor; or
loading the timelines of processors that logically belong to the same physical hardware node as
the extreme processor.

We now use another case study to exemplify the use of this idiom. A similar study on 16,384
processors was published by Kumar et. al. [50] as part of a broader study of NAMD (see section
4.6.1) performance on the Blue Gene/L. In that study, a time profile (see figure 3.14) was used
to reveal possible load imbalance by the presence of deep troughs in between timestep iterations
in the simulation executed on 8,192 processors. This was unexpected, as separate performance
information from our load balancers had indicated that the balance had been good.

Adhering to our idiom for finding possible load imbalance scalably, the Extrema Tool was
used with least idle time as the criterion. This is illustrated by figure 3.15. The averaged non-
outlier processors’ performance profiles on the left were significantly different from those of the

averaged outlier processors. The surprise came in the form of the size of the lime-green bars at
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the top of each column. These bars indicated time spent in performance events associated with
the intermediate nodes of a spanning tree used in a multicast. The developers had expected the

intermediate spanning tree nodes to incur very little overhead.
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Figure 3.14: Time Profile showing deep troughs between computation iterations, indicating
possible load imbalance.

Using the click-and-load feature of the Extrema Tool, we were able to quickly bring up the
timelines for the two most interesting processors on the right of the figure, processors 2940 and
980 respectively. By further loading the timelines of processors that had spanning tree nodes
communicating with processors 2940 and 980, we were able to construct a picture, illustrated by
figure 3.16, showing not only the unexpectedly high cost of intermediate spanning tree work but

that multiple intermediate spanning tree nodes were placed on the same processor. Because the
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Figure 3.15: The Extrema Tool presenting the top list of least idle processors.

spanning tree can only be computed after load balancing decisions are made, these intermediate
nodes introduced the load imbalance after the load balancing strategy believed it had done a
good job.

This case study demonstrates just how much more productive the analysis task became with

the use of the Extrema Tool for data from so many processors.

3.3.4 Conclusion

The idea behind scalably picking interesting processors (Section 3.3.3) can naturally be applied
to the reduction of data volume in performance event traces (see Chapter 4). The supporting

tools enabled us to load only the timelines that mattered when finding extreme processor be-

41



S e —— m— | S —— .
[ O 5 —

1 N 011 11 S S 115 51 O A N
C— Illl'-l-l-ﬂl " I S T O WU |1 T O O I A Y B
NN — N o Emm
|l_|-_—pm—llll;!! il--l_‘-“__-tjlll_-_ i 1]

TS —— | — Eee——— | —
| | el | |
T T T P I T T | (  E— | S

Lomd Sekeir 265 499,278 65 495 893 2ES AST 04 1. 191 ms

Figure 3.16: Timelines of the top two least idle processors as well as processors that communi-
cate with spanning tree activity.

havior in order to continue the analysis to the root cause of the problem. The majority of the
performance data not directly involved with these extreme processors described in the analysis
process were never touched for the purposes of detailed timeline analysis. Other idioms that
do require the detailed data do well enough with summary profiles supported by Projections.
So, for all intents and purposes, the detailed performance data for processors which are neither

extreme processors nor party to interactions with extreme processors tended to be useless.

42



3.4 Related Work

Histogram views are supported by many tools such as Paradyn [52] and Jumpshot [85]. How-
ever, the literature appear to always describe histogram views “as-is”. Their value as a class of
supporting tools for scalable performance analysis idioms have not been identified.

The use of high resolution time profiles as a supporting tool for scalable performance anal-
ysis idioms has not been widely adopted in the performance tool community as far as we know.
The TAU group had developed a snapshot capability [55] for their profile format. Snapshots
are essentially performance profiles captured for each user-defined application phase. The
snapshots are written to individual files and then read by their visualization and analysis tool.
Their tool presents a view similar to our time profiles but at per-application-phase resolutions.
Jumpshot-3 2 supported a tool named “Statistical Preview” which provided a similar view of
stacked event metrics but was intended as a preview for the entire instrumented portion of the
run divided into 512 coarse time intervals along the x-axis. The tool does not appear to be sup-
ported in Jumpshot-4. Paragraph [33] supported a communication traffic view over time that
supports message volume and count, much like the communication-over-time view we describe
in section 3.2.3. Cray Apprentice? [20] supported a similar tool to show how hardware counter
values change over time. Each hardware counter metric had its graph displayed on its own hor-
izontal bar rather than stacked in a single chart to reveal overlapping structural changes like in
our time profiles.

Tools that pick unusual processors for analysts to conduct more detailed analyses in the
manner of our Extrema Tool (see section 3.3) are useful for many analysis idioms. The most
similar approaches rely on automatic analysis and tuning tools to find or fix any specific perfor-
mance problems they discover. In the case of automated analysis tools, the specific details of
the problems found are reported to the analyst, often bypassing the need for any visualization

support. These systems typically rely on a pre-determined set of common performance prob-

Zhttp://www.mcs.anl.gov/research/projects/perfvis/software/viewers/jumpshot-3/index.html
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lems. We believe this to be inadequate in practice. Like debugging, performance analysis must
be flexible enough to deal with the unexpected. Often, we stumble upon different problems
while exercising an idiom to look for, and find a solution to an expected problem.

Sinha and Kalé [71] developed an early automated analysis system for CHARM++ appli-
cations called “Projections:Expert” to identify potential performance problems. The results
were displayed as list of detailed descriptions of performance problems sorted by some severity
measure. Chung and Hollingsworth [15] use Active Harmony to automatically tune large-scale
scientific applications by probing the performance search-space in the form of different tunable
parameters in an iterative fashion. New parameter settings are selected according to the perfor-
mance observed in previous iterations. Such a technique requires knowledge, by the program-
mer, of the parameters in the application or its libraries that are more critical for performance,
and of a practical range of values that those parameters can assume. This typically demands
intensive knowledge of the entire application. Geimer et. al. [28] described a way, as part of
their KOJAK framework, to apply expert analysis on distributed event trace logs by employing
parallel replay of messages. This was designed as a scalable alternative to the sequential auto-
matic analysis tool called “EXPERT” they had previously been using. With it, they hoped to
find inefficient message-passing patterns scalably. The patterns are presented by a tool named
“CUBE” as a performance metric tree and a call-tree with severity measures. The nodes of the

trees representing the worst problems are highlighted.
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Chapter 4

Data Volume Reduction

In chapter 3, we described the development of tool features to support scalable performance
analysis idioms that seek interesting processors for more detailed study. These features have
been employed on the full event traces of all the processors generated from an application.
There will be times the volume of performance data generated by an application will be so
large, it becomes cumbersome or infeasible to transfer and load onto performance tools for
analysis.

In this chapter, we investigate a technique to allow performance tools to more effectively
handle the performance data generated by parallel applications at very large scales. We had
previously alluded to the fact that the principles behind the Extrema Tool (See section 3.3.3)
could be extended for the purposes of performance event trace data reduction. The data reduc-
tion achieved is lossy, the volume of data is reduced by keeping only the data relevant for the
purpose of finding detailed performance problems !. The goal is to enable the same scalable

tool features to be used effectively for performance anlaysis, but on the reduced dataset.

4.1 Basic Approach

The basic idea behind this approach is the retention of detailed performance event traces for only

a representative subset of processors on which the application is executed. These representatives

I'This chapter is written with portions reprinted, with permission, from “Towards Scalable Performance Analy-
sis and Visualization through Data Reduction” by Chee Wai Lee, Celso Mendes and Laxmikant V. Kalé at the /3"
International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS 2008)
held in conjunction with IPDPS 2008, (©2008 IEEE
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are retained because of their potential value in revealing performance problems when the data is
analyzed. As described in section 3.3.4, the approach is based on the idea that analysis idioms
pick out only processors that mattered for detailed analysis. Since we do not know a priori the
nature of the performance problems we expect to encounter, the most general approach we can
take is to attempt to pick out the processors exhibiting the most unusual performance behavior.
We observe that in a large class of parallel applications, sets of processors often exhibit similar
patterns of performance behavior, forming equivalence classes. For example, in NAMD (see
section 4.6.1), there is the concept of a set of “patch” processors that perform integration work
exclusive to themselves for each of the cubes of simulated 3-dimensional space. As such, our
approach depends on some ability to identify these equivalence classes. To identify equivalence
classes of processor behavior, we make use of simple implementations of the well-known k-
Means clustering algorithm [37]. Using the output from k-Means clustering, we can employ
simple heuristics to identify processors whose behavior are representative of the run. These

representative processors have two components:

1. exemplar processors whose behavior are closest to mean processor behavior of each

equivalence class; and

2. outlier processors, whose behavior deviate the most from mean processor behavior in

each equivalence class.

For the processors whose detailed event traces we choose not to keep, we will still retain
their Projections summary profiles (see section 2.2.2). The profiles are very small and do not
significantly impact the overall size of the performance dataset. These profiles are rich in infor-
mation in their own right and are highly useful for many of the performance analysis idioms.
As such, profiles can serve as a reasonable source of contextual performance information when
used in conjunction with a reduced set of event traces.

For the rest of this chapter, we will discuss related literature before proceeding to describe

our approach in detail. We will also explore various extensions to the basic idea.
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4.2 Related Work

The use of clustering and other statistical methods for the general goal of performance visual-
ization and analysis is not new. Pablo [59, 63] demonstrated an early prototype the most similar
to our basic idea for data reduction. They retain trace data segments for processor representa-
tives of clusters that are discovered. They re-cluster by some chosen frequency to account for
performance data changes over time. There are a number of main differences between our ap-
proaches. First, by choosing only representatives, which we refer to in this thesis as “exemplar”
(see Section 4.4.3), they are able to claim a high degree of data reduction simply from the fact
that the number of equivalence classes tend to be small compared to the number of processors
executed, especially at large scale. We believe their goal may be to simply discover a problem
with the application’s performance, for general inefficiency features will show up with their
approach. For our purposes, however, we seek the detailed source of the performance problem.
For that, performance data from “outlier” processors of the equivalence classes we discover are
our focus. They are likely to contain the details of performance problems, while “exemplar”
processors preserve the general performance context. This idea is, to an extent, reinforced by
the work of Benkert et. al. [4] which demonstrated the use of hierarchical clustering to identify
outliers. Second, they consider the application of clustering at some arbitrary points in the ex-
ecution by specifying a clustering frequency. This required them to consider a good choice of
clustering frequency and taking into consideration the costs of clustering. We know, however,
within our application context when different phases occur. Performance properties necessarily
change from one computation phase to the next. We also apply clustering at the end of the
application’s execution, either after the data is written to disk or while the complete data still
resides in memory.

Meanwhile, Ahn and Vetter [3] have shown the value of multivariate statistical methods
to gather performance insight about very large performance datasets. They use a variety of

clustering techniques along with factor analysis to identify performance factors or metrics (their

47



concern was with hardware performance counters) that vary the most across processors and why
they form different clusters. The results of their research was only intended to be the first step
for further performance analysis. Aguilera et. al. [2] followed up on Ahn and Vetter’s research
by using hierarchical clustering on communication data to identify clusters of communicating
processor pairs in written event trace logs. The use of clustering algorithms for performance
characteristics to be visualized using a scatterplot matrix has been explored in TAU [69]. The
developers of TAU do not make use of clustering for data reduction but have highlighted the
importance of dimensionality reduction and the removal of correlated performance metrics.

Gamblin et. al. [25] have described the use of clustering or stratification to enhance a sta-
tistical sampling approach used to reduce the volume of performance trace data. They showed
how stratification allowed fewer samples to be taken from cluster equivalence classes with lower
variance. As aresult, they were able to show improvements to the data reduction using stratifica-
tion over the basic approach. The main difference between our approaches is the use of random
statistical sampling to preserve the capture of overall application behavior as with Nikolayev et.
al., while we adopt a bias for extreme processor behavior to attempt to pick out processors most
likely to demonstrate performance problems.

Other research on data reduction tends to focus on the temporal dimension, reducing the
length of event trace logs rather than the width of the trace data. The research in this area
is highly related to the automatic pattern search technique described earlier in Wolf’s survey
paper [80]. Mohror and Karavanic [53] evaluated a number of different classes of similarity
metrics for data reduction, including the Euclidean distance measure used in this thesis. The
data reduction approach adopted involved the partitioning of the application code into segment
contexts. As the application executes, segment instances are compared using an equivalence
operation based on the chosen similarity metric and some threshold. Only segments dissimilar
to previously retained segments are retained. Full traces can then be reconstructed for analysis
purposes. Supinski et. al. [17] employs regular section descriptors as data structures to capture

and compress on-the-fly the performance characteristics for MPI events in loops on a single
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node. Performance characteristics are either captured via statistical aggregation or size-limited
histograms of the delta of MPI event timestamps. Performance studies are made by replay-
ing the compressed trace using a replay engine to re-create the communication structure of the
application. Inter-node structures are merged at the end of the application execution, further
compressing the data. Freitag et. al. [24] described the use of a periodicity detector for function
streams in OpenMP applications. They toggle performance instrumentation of the OpenMP ap-
plication to avoid tracing data if an identical periodic pattern is encountered. Chung et. al. [16]
sought repeated communication patterns in MPI codes as a source for compression, augment-
ing the visualization tool to re-generate the full details when needed. Knupfer and Nagel [48]
demonstrated potential for temporal data reduction through the construction and subsequent
compression of complete call graphs. They further introduce a distributed architecture for per-
formance analysis [46] that enhances scalability by allowing parallel analysis. Szebenyi et.
al. [73] extended the approach taken by Knupfer and Nagel by considering a time-series of call-
path profiles representing phases in an application instead of the complete call graph. They then
applied incremental clustering to compress the time-series of profiles. Casas et. al. [12] mean-
while applied signal processing techniques like non-linear filtering and spectral analysis directly
on event traces in order to identify similar regions along the time dimension and achieve data
reduction by removing multiple instances. Vetter and Reed [76] studied the reduction of perfor-
mance data by removing uninteresting performance metrics through the technique of dynamic

statistical projection pursuit.

4.3 Quantifying The Problem

In this section, as a motivating case study, we quantify the data volume of various large event
traces generated by applications instrumented by Projections. We also report the time required
to transfer the data from the supercomputing facility to local performance analysis resources.

The intention is to provide a general picture of the challenges faced by analysts of performance
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data at large scales. The data was generated over two sessions, the first on bigben, a Cray XT3
operated by Pittsburgh Supercomputing Center (PSC) and the second on kraken, a Cray XT5
operated by the National Institute of Computational Sciences (NICS) and housed at the Oak
Ridge National Laboratory.

We first describe a simplified model for the components of event trace data volume when an
application is scaled. For a non-speculative scientific code, we may consider the total perfor-
mance data volume to be of the order of O(W (P) 4+ C'(P)) where P is the number of proces-
sors, W (P) is the total number of computational events generated by an application due to the
required work as well as any variable algorithmic component influenced by P or input config-
urations, and C'(P) is the total number of communication events generated by the application
given P.

In table 4.1, we quantify the volume of trace data generated for three different NAMD
simulations (see Section 4.6.1 for details) generated at PSC’s XT3 from 512 to 4,096 pro-
cessors. ApoAl [61] is a simulation of the Apolipoprotein A-1 protein with 92,224 atoms.
F1ATPase [21] simulates the F1 part of the protein ATP synthase with 327,506 atoms. Finally,
stmv [23] simulates the Satellite Tobacco Mosaic Virus using 1,066,628 atoms. The data was
generated using the default NAMD configurations of the respective simulations which limited
event trace generation to 200 time steps of the simulation. The diagonals of the table shows
how data volume tends to grow in the case of weak scaling, where a larger simulation is used
as we increase the processor count. Data volume growth in the case of strong scaling can be
followed by reading down each column of the table.

Table 4.2 looks at different configurations of the stmv simulation. NAMD can be configured
to run with different particle mesh ewald (PME) computation settings. PME is responsible
for computing forces due to long-range electrostatics. PME computations may be invoked
once every 4 NAMD time steps, which is the default configuration. It may also be invoked
every time step, in which case some additional computation and housekeeping work is avoided.

The purpose of this table is to highlight the magnitude and variability of event volume due to
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| nCPUs | ApoAl | F1-ATPase | stmy |
512 827MB [ 1,800 MB | 2,800 MB
1024 [ 938 MB | 2,200 MB | 3,900 MB
2048 1,200 MB | 2,800 MB | 4,800 MB
4096 5,700 MB

Table 4.1: Total volume of trace data summed across all files. ApoAl is a NAMD simulation
with 92k atoms, F1-ATPase simulates 327k atoms while stmv simulates 1M atoms. This data
was generated on the XT3 at PSC. Reprinted, with permission, from “Towards Scalable Perfor-
mance Analysis and Visualization through Data Reduction” by Chee Wai Lee, Celso Mendes
and Laxmikant V. Kalé at the 13'" International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS 2008) held in conjunction with IPDPS 2008,
(©2008 IEEE.

configuration or algorithmic changes. The table is based on a later dataset acquired on the Cray
XTS5 at NICS.

From the data, we can approximately isolate the effects of work due to PME on overall data
volume. The difference between the corresponding values for no PME work and for PME work
every four steps gives us an estimate of the additional contribution to total data volume by a
single PME operation per time step for a given processor count.

We can also see that the data volume increased significantly from 4,096 to 8,192 processors.
This is because of a recent automatic heuristic in the NAMD code which attempts to decrease
the grainsize of the work by splitting the size of a patch in one dimension. This decision is made
at some threshold which is determined in part by the number of processors involved and the
number of atoms being simulated. This captures event volume growth due to an application’s
algorithmic changes. Algorithmic changes do not come about directly as a consequence of
strong scaling but are often required in order to maintain good performance in the face of strong
scaling.

Finally, we felt it useful to document the wide-area transfer bandwidth for the transfer of
our performance event trace logs. When we transfered our performance data from NICS to the

University of Illinois where our own servers were held, the typical observed bandwidth was

between 300 to 600 kilobytes per second. Our data totalled 42 gigabytes after compression
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| nCPUs | No PME Work | PME every step | PME every 4 steps |

512 2,321 MB 4,347 MB 2,789 MB
1024 2,619 MB 7,999 MB 3,926 MB
2048 3,255 MB 10,024 MB 4,886 MB
4096 4,895 MB 12,189 MB 6,511 MB
8192 13,007 MB 21,813 MB 15,898 MB

Table 4.2: Total volume of trace data summed across all processors in stmv Projections logs
with different Particle Mesh Ewald (PME) long-range electorstatics configurations. The data
was generated on an XT5 at NICS.

which resulted in transfer times in the order of hours. It is therefore clear that data volume

reduction will be helpful in reducing the time required for transfer if the reduction can be done

without affecting the effectiveness of performance analysis using local resources.

4.4 Applying k-Means Clustering To Performance Data

We now consider how to effectively apply the k-Means clustering algorithm to the domain of
parallel performance metrics. We begin by describing the general k-Means algorithm along
with the form performance metric data must take in order to serve as appropriate input to the

algorithm.

4.4.1 The k-Means Clustering Algorithm

The k-Means clustering algorithm is used in general to partition a set of objects by minimizing
some chosen measure of dissimilarity across the set of objects. A detailed formal definition of
the k-clustering problem can be found in Inaba et. al. [36]. For our purposes, the objects in
question are the behavior profiles of individual processors. A processor’s behavior profile can
be defined as an m-tuple of performance metrics that characterize the processor’s performance
behavior. These tuples will serve as input to the clustering algorithm in our context. Because
performance metrics are recorded in the form of simple numerical values, we can choose to

employ the Euclidean Distance between two points in m-dimensional space as our measure of
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similarity subject to some normalization considerations, as we will see in section 4.4.2.
The basic k-Means algorithm pseudocode is shown in figure 4.1. Using terminology de-
scribed in the preceeding paragraph, K is the input number of clusters to be found while x_1 to

x_N are the vectors of performance metrics (of length m) for each of the /NV processors.

kMeans ({x_1, ... ,x_N},K) {
(seed_1, ... ,seed_K) =
selectRandomSeeds ({x_1, ..., x_N}, K);
for k = 1 to K {
centroid_k = seed_k;

}
while stoppingCriterionIsNotMet () {
for k = 1 to K {
cluster_k = emptySet();
}
for n = 1 to N {

j = closestKByEuclideanDistance ({centroid_1, ..., centroid_k},
X_n);
cluster_j = setUnion (cluster_3j, {x_n});

}
for k =1 to K {
centroid_k = computeCentroid(cluster_k);

}

return {cluster_1, ... , cluster_k};

Figure 4.1: Basic sequential k-Means Pseudocode.

Figure 4.2 shows a step-by-step example of the final result from the hypothetical application
of k-Means clustering with 2 clusters, over 2 arbitrary and unlabelled performance metrics. X
and Y are initial cluster seeds randomly chosen from the 6 data points. At each step, the labels
on the data points indicate which cluster seed it is closest to. At the end of each step, each
cluster seed moves to a location which is the averaged distance from each data point closest
to it. As we can see from the second step in figure 4.2, this can make a seed move far away
enough from prior closest data points for another seed to become considered closer. In this case,

Y loses a data point to X. As a result of the change, another step is required and both X and Y
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move to their new positions based on the averaged distance from their new set of closest points.

The algorithm stops when there are no more membership changes.

A A

®®

N ; ®

o
Q'O

Figure 4.2: An example showing a 3-step convergence with X and Y as the initial cluster seeds
and eventually becoming the cluster centroids.

54



4.4.2 Important Choices For k-Means Clustering

Effective use of the £-Means clustering algorithm require us to consider the challenges posed
by variety of the algorithm’s parameter choices. It is important at this point to note that the
thesis does not try to explore the optimality of data clustering to our problem domain for which
the k-Means algorithm is but one of many. Instead, we seek to demonstrate the data reduction

gains provided by a rudimentary but reasonable data clustering technique.

Choice and Initialization of %

The choice of the numeric value of k can affect the quality of the equivalence classes discovered
through k-Means clustering. In general, the user-specified value of & tells the algorithm to locate
k clusters in the metric space. This may not correspond to a more natural number of equivalence
classes. Most tools making use of k-Means clustering either make use of domain knowledge or
trial and error for the choice of k. The key challenges in our context where the choice of £ is

concerned are:

1. that k£ must either be chosen by the analyst before the application is executed or be deter-

mined by some automated trial-and-error mechanism.

2. there are no guarantees that all & cluster centroids will be non-empty at the end of running

the £-Means algorithm.

The choice of initial placement of the k seeds can also affect the eventual membership in
each non-empty cluster. Traditional k-Means clustering selects & random object data points as
the initial seeding. Another option is to place the initial £ cluster seeds uniformly by spread-
ing them along the m-dimensional diagonal of the data’s bounding-box. The bounding-box is
formed by the minimum and maximum values of each of the m performance metrics over all
P sample points where P is the number of processors. Finally, we can choose £ random points

within the data’s bounding-box.
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Similarity Measures and Normalization

In general, k-Means clustering requires some normalization of values across the m performance
metrics to avoid bias. Failure to normalize values in the general case would mean that metrics
with large absolute values but relatively small variation would make a disproportionately large
contribution to the Euclidean distance measure compared to metrics with small absolute values
but relatively large variation.

Three methods for data normalization are described by Visalakshi et. al. [77] for the ap-
plication of the k-Means algorithm to different domains. The Min-Max normalization method

maps a value v,, of the metric m to a real value v,,, norn from O to 1 as follows, where min,,

Um —TiNm

is the minimum value for metric m and max,, is the maximum: v, ,orm = e —minm)
m m

Meanwhile, the Z-score method normalizes values based on the mean and standard deviation
of values instead of the min and max. Finally, the Decimal scaling method simply normalizes
values by moving decimal points.

In our domain of performance metrics, the situation is somewhat more complex. Let us
consider metrics that capture entry method execution time. The values of individual metrics
within this class should not be normalized. We want to retain the inherent bias for entry meth-
ods whose total execution time were high compared to entry methods whose total execution
time was small. This is because the former entry methods are considered to have a far greater
impact on the performance of the application as a whole. However, this does not mean we do
not normalize performance metrics at all when using k-Means clustering. For example, now
consider, alongside entry method execution time, the class of performance metrics that capture
the number of bytes sent in a message. Again, within this new class of metrics, normalization
should not be applied. However, because the two classes of metrics are not correlated to one
another, normalization needs to be applied to remove the bias against the classes of metrics with
smaller values.

In the context of this thesis, we restrict the set of performance metrics to the execution times
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of a subset of the instrumented CHARM++ entry methods. This choice avoids the need for

additional normalization effort to eliminate distance measure bias.

Useless Metrics

The efficiency of the clustering algorithm also depends on the number of metric dimensions it
has to deal with. Many metrics in performance data under our context tend to have zero values,
mostly because they were registered to the CHARM++ runtime but never used. These metrics
will need to be removed.

At the same time, a number of metrics may be highly correlated. That is, whenever a
large value is observed for metric X, a correspondingly large value is also observed for metric
Y. These values are then used to compute the measure of similarity. Because the correlation
causes a double-counting of the effect on similarity measures between two data points, it is best

to eliminate either metric X or Y for more accurate clustering results.

4.4.3 Choosing Representative Processors

The output from the k-Means algorithm is a processor-membership set and a centroid for each
of the k clusters. Some of these clusters can be empty. In addition, we know the similarity
measures for each data point from the centroid of the cluster to which they belong.

The goal now is to pick out processors whose behavior best represents this collection of
data points given this clustering output. The heuristics we will employ expects the analyst to
supply some value for a reduction factor to the performance dataset. For the purposes of our
discussion, let us refer to the value R as the number of processors’ performance data to be
chosen as representatives of the original data.

We now have the task of selecting two classes of representative processors. The first are what
we call exemplar processors, whose behavior are the closest matches to the cluster centroids to

which they belong. The second are outlier processors, whose behavior are furthest removed
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from the cluster centroids to which they belong.

Choosing Exemplar Processors

Our choice of exemplar processors given a set of equivalence classes is a simple one. For each
non-empty cluster C;, we select one representative closest to the cluster centroid according to
the Euclidean distance measure described in section 4.4 to be our exemplar.

This selection policy assumes a single processor’s data point will sufficiently represent other
processors in the same equivalence class. Depending on the nature of the clusters discovered,
this i1s not necessarily true. A more refined method could take advantage of the statistical distri-
bution of data points associated with the cluster to determine a small set of exemplar processors
whose mean similarity measure is closest to the cluster centroid. However, we leave this as
future work as exemplars are intended to provide the performance context for the performance

analysis process rather than to capture performance anomalies in the execution.

Choosing Outlier Processors

In the preceeding section, we chose C' data points as exemplar processors providing the per-
formance context on which we may analyze the reduced dataset, where C' is the number of
non-empty clusters found.

We now describe the heuristic for selecting the remaining R — C' data points as outliers
whose behavior is most different from the cluster centroids and where we expect to find perfor-
mance problems. We apply a proportional selection policy based on the size of each non-empty
cluster to choose approximately |C;| + P outliers from each non-empty cluster C;. By our
heuristic, the outliers are simply the data points with the (|C;| + P)*" largest dis-similarity mea-
sures from the cluster centroid. If a cluster has one or fewer data points, then nothing needs
to be done, as the representative selection scheme has already picked out that processor as an

exemplar.
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This heuristic is sensitive to the quality of the equivalence classes generated by the clustering
algorithm in 4.4. It does not take into account the way data points are distributed within each
cluster. For instance, if one cluster is particularly tight relative to others, then perhaps the
heuristic can be made to realize that this cluster is best captured by just selecting the exemplar.

We leave this feature to be explored in future work.

4.5 Post-mortem Versus Online Data Reduction

Data reduction can be applied at two different points in time. The first and simplest is to use
the k-Means clustering algorithm post-mortem on data already written to disk. The advantage
of post-mortem data reduction is the ability of analysts to choose different £ values or seed
initialization policies to refine the results. The disadvantage of the post-mortem approach is the
need to write out all the performance data to disk first.

We take the approach of online data reduction. Online data reduction takes place at the end
of the application’s execution but before performance data is written to disk. This approach
takes advantage of the available memory on the parallel machine to hold all recorded perfor-
mance data for use by the k-Means algorithm. After representative processors are chosen, only
the pertinent detailed event logs get written to disk, the remaining data is discarded. A basic
implementation of online data reduction requires k and other important clustering choices (see
Section 4.4.2) to be determined before the execution of the application itself. With the capabil-
ity made available through online interaction using CCS (see Section 5.2), we can allow these
decisions to be made after the application has completed but before any data reduction. The
idea is to let the analyst invoke clustering over different values of k£ and quickly observing the
results. If a value of k generates too few or too many non-empty clusters for an application, the
analyst can try a different value. The reduced dataset is then written to disk when the analyst
is satisfied. It should be noted that interaction for this purpose should be used infrequently

as this takes place in the middle of a job allocation. If this allocation was a large time-block
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reservation, the use of interaction should be reasonable, perhaps even for the analyst to conduct
a full performance analysis session on the in-memory performance data remotely. However,
when employing a normal scheduler queue allocation, an analyst would have to over-allocate
to account for this extra time. In terms of computation units consumed, the interaction could be
extremely costly, particularly at large processor scales.

A naive approach to using k-Means clustering online in the parallel machine is to have
each processor communicate to a root processor its position-vector in the M -dimensional space
used for clustering, where M is the number of metrics observed. The sequential algorithm
can then be executed on the root processor to discover the clusters. Unfortunately, this con-
sumes ©(P x M) memory on that root processor and makes this approach inherently unscal-
able where memory is concerned. A good parallel £-Means clustering implementation with
scalable memory usage requirements is the far better solution. Enabling parallel k-Means clus-
tering with scalable memory usage depends on the fact that the position-vectors represented by
each processors’ metric data point obey the commutative and associative rules for addition and

subtraction.

Root Processor (Initialization)

1. O(M): Receive results of reduction Metrics. For each metric m,
m.min <- Metrics.m.min;
m.max <—- Metrics.m.max;
m.mean <— Metrics.m.sum/numProcessors;

2. Eliminate Useless Metrics.

3. For each metric m, computeNormalizationFactors (m.min, m.max, m.mean).

4. O(K x M): Compute initial k centroid position-vectors.

5. O(K x M): Broadcast k centroid position-vectors and normalization
factors for each metric m.

Figure 4.3: Parallel k-Means Initialization Algorithm on the root processor.
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All Processors (initialization).
1. O(M): localMetricVector <- compute from Projections event buffers.

2. O(M): Contribute via special reduction (min, max and summation) to
root processor the values of each metric in the metric vector.

3. O(K x M): Receive initial k centroid position-vectors (Centroids)
and normalizationFactor for each metric m.

4. myVector <- Normalize(localMetricVector, normalizationFactor);
5. For each k,

kDist.distance <- ComputeDistance (myVector,
Centroids.k.position-vector);

6. currentCluster <- outOfBandValue;
7. newCluster <- KWithMinDist (kDist);
8. For each k,
ClusterModification.k <- NullVector;
9. ClusterModification.currentCluster <- myVector;

10. O(K x M): Contribute via summation reduction to root,
ClusterModification.

Figure 4.4: Parallel k-Means Initialization Algorithm on all processors hosting performance
data.

Let K; be the position-vector of cluster seed ¢ and p; be the number of processors closest
to cluster seed ¢. Finally, let 13J where 7 = 1..p; represent the position-vectors of the p; closest

processors.

Then,

F= (3P .1



Root Processor (Clustering Iteration)

1. O(K x M): Receive results of reduction ClusterModification. For
each cluster centroid k,

k.positionVector += ClusterModification.k.positionVector;
2. If any k.positionVector changes,
break;
else

O(K x M): Broadcast updated position-vectors for each cluster
centroid k and loop to 1.

Figure 4.5: Parallel £-Means Iterative Algorithm on the root processor.

Now, we can assign a processor to each cluster seed. This uses O (M ) memory for the seed’s
position-vector. At any particular iteration of the £-Means algorithm, if a processor decides it
is closer to a different cluster seed, it will send its position-vector to the processor assigned
to the original cluster seed as well as the processor assigned to the new cluster seed. The
position-vector is added to the position-vector of the new cluster seed and subtracted from the
position-vector of the original cluster seed.

At the end of an iteration, a reduction to the root processor accumulates the number of
updates to each of the k cluster seeds. This operation requires © (k) memory. This information

allows the root processor to perform two tasks:

1. deciding if the algorithm converges by detecting that no processor updated any cluster

seeds; and

2. sending a message to each of the processors whose data points are associated with the &
updated cluster seeds telling the processor how many updates to expect and hence syn-

chronize accordingly.
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All Processors (Cluster Iterations).
1. O(K x M): Receive k new centroid position-vectors (Centroids).
2. For each k,

kDist.distance <- ComputeDistance (myVector,
Centroids.k.position-vector);

3. currentCluster <- newCluster;
4. newCluster <-— KWithMinDist (kDist);
5. For each k,

ClusterModification.k <- NullVector;
6. if currentCluster != newCluster,

ClusterModification.currentCluster <- Negative (myVector);
ClusterModification.newCluster <- myVector;

7. O(K x M): Contribute via summation reduction to root,
ClusterModification.

Figure 4.6: Parallel k-Means Iterative Algorithm on all processors hosting performance data.

Figures 4.3 and 4.4 describe the parallel algorithmic steps, for the root processor and data-
hosting processors respectively, required to setup the initial conditions for the iterative portion
of the k-Means computation. Bounds on the memory requirements for each parallel reduction or
broadcast operation are provided at the start of each appropriate step. Where memory bounds
are concerned, K is the number of cluster centroids chosen by the analyst while M is the
number of useful performance metrics that are used to determine the position-vector data points
for clustering.

Figures 4.5 and 4.6 describe the parallel algorithmic steps, for the root processor and data-
hosting procesors respectively, required for each iteration of the £-Means computation until

convergence conditions are met. Again, bounds on the memory requirements are presented.
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Figure 4.7 shows an example of the time overhead of our implementation of the k-Means
algorithm when applied on the in-memory performance data of a series of NAMD stmv simu-
lations up to 19,200 processors on a Cray XT3 (kraken). The overhead currently includes the
time required to parse the in-memory event traces in order to compute the metric data necessary
as input to the k-Means implementation. This explains the shape of the curve as individual pro-
cessors for runs with smaller numbers of processors have to hold more event trace data given the
same simulation problem size. The parsing of the event traces can be avoided if the necessary
metric data are accumulated as the events occur. Note that the overhead here does not perturb
the application’s performance characteristics. The overheads represent the extra time the appli-
cation will consume as part of its job allocation on the supercomputing facility. The parallel
k-Means algorithm is applied to recorded performance information stored on each processor’s
log buffers at the end of the application’s execution but before any data is written to disk. Once
the retention decisions have been made, performance data that is to be retained will be written

to disk.

Time to Perform K-Means Clustering
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Figure 4.7: Overhead of applying parallel £-Means implementation on NAMD stmyv perfor-
mance data.
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4.6 Case Study: NAMD Grainsize

4.6.1 NAMD - NAnoscale Molecular Dynamics

NAMD is a molecular dynamics program designed for high performance simulation of large
biomolecular systems [62]. Each simulated timestep involves computing forces on each atom,
and “integrating” them to update their positions. The forces are due to bonds, and electrostatic
forces between atoms within a cut-off radius.

NAMD is parallelized using Charm++ via a novel combination of force and spatial decom-
position to generate enough parallelism for parallel machines with a large number of processors.
Atoms are partitioned among cubes whose dimensions are slightly larger than the cutoff radius.
For each pair of neighboring cubes, we assign a non-bonded force computation object, which
can be independently mapped to any processor. The number of such objects is therefore 14
times (26/2 pairwise interactions + 1 self interaction). One cell has 26 neighbors but only needs
to calculate half of them since cell-to-cell forces are symmetric, the additional one is the self
force calculation.

The cubes described above are represented in NAMD by objects called home patches. Each
home patch is responsible for distributing coordinate data, retrieving forces, and integrating the
equations of motion for all of the atoms in the cube of space owned by the patch. The forces
used by the patches are computed by a variety of compute objects. There are several varieties
of compute objects, responsible for computing the different types of forces (bond, electrostatic,
constraint, etc.). On a given processor, there may be multiple “compute objects” that all need the
coordinates from the same home patch. To eliminate duplication of communication, a “proxy”
of the home patch is created on every processor where its coordinates are needed. The parallel
structure of NAMD is shown in Fig. 4.9.

NAMD employs Charm++’s measurement-based load balancing. When a simulation be-

gins, patches are distributed according to a recursive coordinate bisection scheme, so that each
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Figure 4.8: NAMD 2 hybrid force/spatial decomposition. Atoms are spatially decomposed
into patches, which are represented on other nodes by proxies. Interactions between atoms are
calculated by several classes of compute objects.
processor receives a number of neighboring patches. All compute objects are then distributed
to a processor owning at least one home patch. The framework measures the execution time
of each compute object (the object loads), and records other (non-migratable) patch work as
“background load.” After the simulation runs for several time-steps (typically several seconds
to several minutes), the program suspends the simulation to trigger the initial load balancing.
The strategy retrieves the object times and background load from the framework, computes an
improved load distribution, and redistributes the migratable compute objects.

The initial load balancer is aggressive, starting from the set of required proxies and assigning
compute objects in order from larger to smaller, avoiding the need to create new proxies unless
necessary. Once a good balance is achieved, atom migration changes very slowly. Another load

balance is only needed after several thousand steps.
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Figure 4.9: Parallel structure of NAMD

4.6.2 Experimental Methodology

The goal of our experiments is to investigate the effectiveness of our processor selection heuris-
tics. We determine effectiveness to comprise of two components. The first is a quantitative
measure of how much data was reduced. The second is an evaluation of the quality of the re-
duced dataset with respect to performance problem discovery which, in our case, is performed
using Projections.

Our experiments are based on the 1 million atom NAMD simulation of the complete satel-
lite tobacco mosaic virus (stmv in table 4.1). We made the runs from 512 to 4096 processors on
the Cray XT3 installed at Pittsburgh Supercomputing Center through Teragrid [13] resources.

To enable an assessment of our technique, we injected a known poor-grainsize performance
problem as described in our case study paper [44] into the simulation. The poor grainsize was
caused by parallel objects whose electrostatic force computations require interaction with other
objects hosting cubes that share a common face. This would manifest itself as a bimodal “camel
hump” in a histogram plot that would not show up otherwise when the same plot was made of
performance data from a run without the problem injection.

In our histogram plot, we display a stacked graph of occurrence counts of each instrumented
CHARM++ entry method against the time it took. The histogram covers the occurrence of

entry methods that range from 0.1 ms to 10.0 ms over 99 bins. The occurrence count data is
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Figure 4.10: Histogram plot of stmv in Projections for 4,096 processors. The vertical bars
show the number of occurrences of CHARM++ entry methods, distinguished by their colors,
that took a certain amount of time to execute. The first bar shows the number of entry methods
that executed for 0.1 ms to 0.2 ms, the second for 0.2 ms to 0.3 ms, etc
summed over all 4,096 processors over the 200 NAMD iterations. Figure 4.10 shows what the
histogram looks like without the injected performance problem and the corresponding bimodal
histogram after problem injection is shown in figure 4.11. Figure 4.12 shows the histogram
chart with the poor-grainsize problem injected using the reduced performance data from only
409 representative processors. The counts can be seen to be approximately 10% of the full
dataset.

Projections currently does not apply any proportional modifications to performance infor-
mation of the processor representatives in order to extrapolate their contribution. As a result,
we determine the quality of the reduced data set by two criteria. Let H' be the total occurrence

counts for the i-th histogram bar in the reduced data set. Let H! be the total occurrence count

for the -th histogram bar in the original full data set. Let P, be the number of processors in the
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Figure 4.11: Histogram plot of stmv with poor-grainsize in Projections for 4,096 processors.
Note the shift of the number of CHARM++ entry method occurrences rightward where the bins
represent longer execution times.

reduced data set and let P, be the number of processors in the original full data set. Our first

criterion states that for each ¢, - should be close to % where H! # 0. Our second criterion
H}
) H};

states that across all ¢ where H! # 0 should not vary by too much. We will refer to these

two criteria as the proportionality criteria.

Varying Cluster Seed Counts

The value of £ is in fact the number of initial seeds used in the clustering algorithm. Depending
on seeding policy, they may or may not ultimately represent non-empty clusters. We made some
trial and error experiments with NAMD, varying the number of processors and k, summarized
in table 4.3. The results for £ = 15, we felt, appeared more or less consistent with the number
of processor-classes we have observed in the past while studying the performance of NAMD.

The observed classes include processor 0 which has to perform special tasks, as well as certain
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Figure 4.12: Histogram plot of stmv with poor-grainsize in Projections using only the 409 logs
from the reduced dataset.

processors in NAMD which, when assigned certain work objects are not allowed to be assigned
certain other types of objects. As a result, we chose to set k£ to 15 for the identification of
clusters in our subsequent experiments. The initial seeding of the £ starting points are, for now,

uniformly distributed in the £ dimensional space.

4.6.3 Results

We first show the reduction in trace data volume in table 4.4, through the selection of subsets
of processors that number approximately 10% of the original dataset. As we can see, the re-
ductions come as no surprise, although it is important to note that the number of traced events
can vary significantly between processors. One cannot trivially expect to see a perfectly linear
reduction in data volume.

For the quality measure, we applied the proportionality criteria to the reduced trace data
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nCPUs | Number of non-empty clusters found with
5seeds | 10 | 15 | 20 | 25

512 1 4% | 4% | 6* 6*

1024 2 4 | 6% | 6% T*

2048 2 4% | 5% | 6% T*

4096 3 6% | 7% | 9% 10%*

Table 4.3: Number of non-empty clusters found by clustering algorithm when varying the num-
ber of initial seeds uniformly distributed in the sample space The * indicates that processor
0 was alone in its own cluster. Reprinted, with permission, from “Towards Scalable Perfor-
mance Analysis and Visualization through Data Reduction” by Chee Wai Lee, Celso Mendes
and Laxmikant V. Kalé at the 13" International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS 2008) held in conjunction with IPDPS 2008,
(©2008 IEEE.

| nCPUs | original size | reduced data |
512 2,800 MB 275 MB
1024 3,900 MB 402 MB
2048 4,800 MB 551 MB
4096 5,700 MB 667 MB

Table 4.4: Reduction in total volume of trace data for stmv. The number of processors se-
lected in the subsets are 51, 102, 204 and 409 for 512, 1024, 2048 and 4096 original processors
respectively. Reprinted, with permission, from “Towards Scalable Performance Analysis and
Visualization through Data Reduction” by Chee Wai Lee, Celso Mendes and Laxmikant V. Kalé
at the 13" International Workshop on High-Level Parallel Programming Models and Support-
ive Environments (HIPS 2008) held in conjunction with IPDPS 2008, (©)2008 IEEE.

generated from full datasets ranging from 512 to 4096 processors and with processor reduction
ranging from approximately 5% to approximately 20% of the original number of processor

no HL '

logs. This is summarized in table 4.5. In this table, H = # where H] # 0. For our
experiments, n = 100 and m = n — k where £ is the number of instances where H; =0
(In other words, we ignore histogram bars where proportionality has no meaning). We use
H’s closeness to % as the measure to satisfy the first criterion of the proportionality criteria.
Likewise, the standard deviation o over % for all + where H f) = 0 is used as the measure to

satisfy the second criterion for reduced data set quality. From the table, we see that with the

exception of the data from 512 processors, the proportionality of the histogram bars generated
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from reduced data sets matches very well with what is expected of the data. In addition, the
standard deviation values appear to be good. We believe the 512 processor data sets involve
entry methods of larger grain size, making them more sensitive to variation across processors.
In any event, the values are not terribly off-the-mark although improvements may be possible.
We have visually confirmed the quality of the data using Projections on the partial processor

logs generated by our approach.

J 7 Standard

Po deviation o

0.0488 | 0.0641 | 0.00732
512 | 0.0996 | 0.1180 | 0.00768
0.1992 | 0.2237 | 0.00732
0.0498 | 0.0511 | 0.00168
1024 | 0.0996 | 0.1008 | 0.00157
0.1992 | 0.1921 | 0.00264
0.0498 | 0.0487 | 0.00122
2048 | 0.0996 | 0.0977 | 0.00216
0.1992 | 0.1883 | 0.00575
0.0498 | 0.0501 | 0.00170
4096 | 0.0998 | 0.0981 | 0.00203
0.1997 | 0.1975 | 0.00163

B,

Table 4.5: Reduced dataset quality by proportionality based on total height of histogram bars.
Reprinted, with permission, from “Towards Scalable Performance Analysis and Visualization
through Data Reduction” by Chee Wai Lee, Celso Mendes and Laxmikant V. Kalé at the 13"
International Workshop on High-Level Parallel Programming Models and Supportive Environ-
ments (HIPS 2008) held in conjunction with IPDPS 2008, (©2008 IEEE.

To gain yet another perspective on the quality of data reduction via this approach, we mea-
sured how well the reduced data set matches the set of least idle processors. We consider the
detailed performance event traces of the latter to be examples of useful traces as they tend to be
frequently picked out when using the Extrema Tool (see section 3.3.3) for timeline study. It is
important to note that the set of least idle processors do not completely define the set of useful
processors for performance analysis purposes.

We first compared the list of processors generated as a result of our data reduction technique

against the sorted list of processors with the least idle time. We then count the number of
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processors that are found in both lists and tally those counts according to several strata for least

idle processors:

1. the top 5 least idle processors;

2. the top 10 least idle processors; and

3. the top 20 least idle processors.

We did this using data sets from different total processor counts and varied the degree of
data reduction. As a control, for each experiment, we also made the same comparisions using
the sorted list of least idle processors against a list of processors randomly selected with the
same degree of data retention.

Tables 4.6 and 4.7 show the results using this method of measuring quality for data reduction
on 2,048 and 4,096 processors respectively. The rows represent the 3 different strata of top least
idle processors outlined above. The columns represent the different degrees of data reduction
as a percentage of the total processors retained. The values show the percentage of the top least
idle processors of each strata that were found in the reduced data sets. Note that the set of
processors in the smaller strata are included in the set of processors in each larger strata (i.e.

all the top 5 least idle processors are also necessarily part of the set of the top 10 least idle

processors).
Strata 5% Retention | 10% Retention | 15% Retention
Top 5 least idle 100% 100% 100%
Top 10 least idle 70% 90% 100%
Top 20 least idle 45% 70% 95%

Table 4.6: Measure of data reduction quality through number of least idle processors retained
in reduced datasets for 2,048 processors.

The results are promising. In the 2,048 processor case, we see that as we increase the
percentage of retained processors to 10% of the total number of processors, we were able to

capture through our retention heuristics most of the top 20 least idle processors. Even at 5%
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Strata 2.5% Retention | 5% Retention | 7.5% Retention
Top 5 least idle 40% 100% 100%
Top 10 least idle 20% 70% 100%
Top 20 least idle 10% 45% 100%

Table 4.7: Measure of data reduction quality through number of least idle processors retained
in reduced datasets for 4,096 processors.

retention, all of the top 5 least idle processors were captured in the reduced data set. In the
4,096 processor case, we see that we only needed 7.5% retention to include each of the top 20
least idle processors in our reduced dataset. Note that in all the cases, the number of top least
idle processors retained were well above the expected number were random selection to be used

instead.

4.7 Future Work: Extensions To The Basic Approach

In this section, we discuss possible extensions to the data reduction approach. The goal is
help increase the reduced performance dataset’s usefulness to performance analysis idioms that

involve the examination of detailed performance information.

4.7.1 Choosing Data Subsets By Phase

A weakness of the basic approach described above is the application of the k-Means algorithm
over the entire execution time of the simulation. Since the metrics used are summed over the
whole run, the clustering algorithm is blind to time-dependent variations in application behavior.

Consider the extreme instance where a program does no work on the first half of its pro-
cessors and fully utilizes the other half in one phase. Then on the next phase, it fully utilizes
the first half of its processors and does nothing on the second. Applying clustering on this data
without any time or phase sensitivity will result in the algorithm convinced there is only one

equivalence class of processors when in truth there are two (see Figure 4.13).
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Figure 4.13: Simple example of time-variation that will confuse a clustering algorithm into
believing all 4 processors behave similarly based on metrics recorded between time Ot to 2t.

To handle time-dependent variation in application performance, we add phase information
into the performance event traces. With this information, we can apply the clustering and repre-
sentative selection approach to the performance logs at each phase. If the clustering algorithm
indicates for a phase that a processor is a member of a cluster and behaves closely enough to
a cluster exemplar, all the events recorded over the time period of that phase can be replaced
by a single surrogate event. The surrogate event simply identifies the exemplar processor and
the phase identifier. This then allows visualization components to adopt different schemes for
handling the unrecorded data. For example, aggregation-based visualization tools can read or
generate the necessary profiles from the appropriate sections of the exemplar processor’s logs.
Timeline tools can do something as simple as visualizing the unrecorded region as an opaque
time-block. Timeline tools can also display the details from the exemplar processor but high-
light the fact that the visualized details are surrogated.

The volume of data reduction achieved by applying clustering to each phase differs slightly
from the approach of applying clustering to entire processor logs. The differences will de-
pend mainly on event densities on each processor over each phase. The insertion of phase and

surrogate entries into the logs should not impact overall volume significantly.
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Figure 4.14: Application of data volume reduction techniques to individual execution phases.

4.7.2 Considerations For Critical Paths

Choosing processor subsets using the algorithms described above is likely to result in the loss
of interprocessor dependency information. As this is a strong point for the use of event trace
logs in analysis in the first place, we would want to preserve as much of this information as
possible.

Dooley and Kalé [22] describes how the top critical path can be derived and stored in mem-

ory as a CHARM++ application executes. We can make use of this work to identify all proces-
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sors that lie on the main critical path. Of interest to us is the union of the set of representative
processors chosen by our approach and the set of processors that lie along the critical path. The
combined set could potentially be large. Ideally, one would like all selected representatives to
be connected along the critical path. We can do so by first finding the intersection of the set of
representative processors and the set of processors on the critical path. We can then add more
processors that lie along the critical path, selecting those that connect as many of the processors

in the intersection as possible.
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Chapter 5

Online Live Analysis

Post-mortem performance analysis and visualization tends to be the norm in parallel comput-
ing. This common approach is used primarily due to the lack of availability of continuous
performance monitoring tools. Continuous performance monitoring is an approach where per-
formance characteristics of a running parallel application are used as the program runs by a
performance analyst. This approach has several benefits when used either by itself on in con-
junction with post-mortem analysis tools. Continuous performance monitoring as an analysis
idiom, although not yet widely used, could become more popular if it were technically feasi-
ble, and if it could be deployed without significantly degrading the performance of the running
application.

In this chapter, we begin with the discussion of the current literature on large-scale online
performance observation or monitoring !. We then describe our approach using the Converse
Client Server (CCS) framework and how that, along with the CHARM++ adaptive runtime,
enables powerful new scalable analysis capabilities difficult to achieve with the use of only

post-mortem event traces.

5.1 Related Work

Distributed analysis and interaction with large running parallel applications is being studied in

a number of projects to manage scalability as well as provide new analysis capabilities. Malony

I'This chapter is written with portions reprinted, with permission, from * Continuous Performance Monitoring
for Large-Scale Parallel Applications” by Isaac Dooley, Chee Wai Lee, and Laxmikant Kalé at the /6" Annual
IEEE International Conference on High Performance Computing (HiPC 2009), ©2009 IEEE
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et. al. [51] described a position for online analysis which incrementally led to the adoption of
both online frameworks as a means to efficiently carry performance data while an application
is still executing.

Supermon [72] is a cluster monitoring framework which makes use of a network of daemons
called “mons” that communicate with a root daemon by the name of “Supermon”. It was
originally designed for monitoring system information through a kernel module. System level
information is “concentrated” through the mon daemons to the Supermon daemon and then
processed by connecting clients. However, because each mon daemon also supports the input
of data from outside sources through a socket interface they call the “monhole”, tools like
TAU have been able to adapt to it through the TAUoverSupermon project [58] by hosting a
mon daemon along with each application process and feeding performance data through the
monholes. TAUoverSupermon has so far shown low overhead up to 512 processors.

MRNet [65] was designed directly as a framework for parallel performance analysis with
the Paradyn system. It shares many of Supermon’s features, with back-end processes serving
the role of mons as used by TAU. These back-ends are connected to a root node by a tree
of intermediate node processes intended to serve as an efficient multicast and reduction net-
work. The authors suggest that while intermediate nodes may be co-located with application
processes, perturbation makes that option sub-optimal. TAU over MRNet [57] demonstrates the
framework’s use with a performance tool. The paper reports overhead of less than a percent up
to 512 processors.

The two frameworks described above differ from our approach (see Section 5.3) in that we
directly exploit the natural abilities of the CHARM++ runtime system. The runtime system
is able to adaptively schedule and interleave the collective operations for performance data
collection efficiently along with application computation and communication. There is no need
to avoid co-locating any intermediate processes like in the case of MRNet. Overhead costs were
found to be at most 1.14% up to 8,192 processors, which is competitive with the overhead costs

of the other frameworks.
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5.2 The Converse Client-Server Interface

Converse Client-Server (CCS) [18] is a communication protocol that allows parallel applica-
tions to receive requests from remote clients. This protocol is part of CHARM++’s underlying
system specifications and is therefore available to any CHARM++ application. Note that “ap-
plication” does not mean only the user written code, but also the CHARM++ runtime system
and its modules that run as part of the application itself. In this scenario, if a system module
decides to use CCS, the user code does not require any change, unless it wants to explicitly take
advantage of the feature. We shall see some examples of this in later sections.

CCS obeys normal CHARM++ semantics. Upon a request made by a CCS client, a message
is generated inside the application. Computation by the application is triggered by the delivery
of this message. As such, CCS requests are serviced asynchronously with respect to the rest
of the application, which can proceed unaffected. When an application, or CHARM++ module,
desires to use the CCS protocol, it must register one or more handler, each with an associated
tag. This ensures that requests sent by clients can be correctly matched and delivered to the
intended handler. Registration is performed by calling a function into the CCS framework.
Moreover, at startup, a flag must be passed to the application to ensure that the runtime system
opens a socket and listens for incoming connections. The connection parameters are printed
to standard output by the CHARM++ RTS. Remote clients can send requests to the parallel
application using this information. After receiving a CCS request message, the application can
perform any kind of operation, including complicated parallel broadcast and reductions. Finally,

a reply can be returned to the client via the CCS protocol.

5.3 Continuous Streaming Of Online Performance Data

We begin the discussion of our approach by observing that the power of a parallel computer

can be applied towards some forms of analysis as performance data is produced or captured.
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Portions of the analysis can be quickly executed while the performance data is still in memory.
We will demonstrate one such example where a monitoring tool can add up profile information
across all processors using reduction operations on the parallel computer itself. In contrast,
a post-mortem tool would have to spend considerable time processing potentially large per-
processor trace files on disk to generate the same information.

In the post-mortem approach, the data for a long performance trace or profile gets buffered
until the end of the run. The data is then transfered all at once via the file system to disk, which
takes significant time and parallel file system resources. This does not need to be so. After
a piece of performance data is recorded, it sits unused on the assigned memory buffers. The
longer a piece of data resides in memory, the greater the missed opportunity for a system to
efficiently deliver the data to a performance tool. A pre-processed and efficiently compressed
performance stream, coming continuously from the parallel computer during the program’s run
can possibly reduce the time spent to get performance data to a tool. The performance tool
receiving this stream can store or display the data and can do so selectively if need be. In
fact, once the performance data in question is processed and streamed to a tool, it is no longer
necessary to keep it in memory. Buffer memory can now be freed and re-used for the capture of
more performance data, enabling the capture of performance data for jobs running far longer.

For a long running job, a continuous performance monitoring tool can be used to look for
unacceptable performance degradation in the performance stream. In some applications, the
evolution of the application may cause its performance to degrade due to gradual or abrupt
factors such as adaptive refinement, change in material properties (for finite element structural
simulations), etc. Some occasional events and glitches such as long-duration OS interference,
unexpected staggered I/O cause strong performance degradation, with lingering effects (due to
shifting of computations), can be detected by monitoring a continuous performance stream. If
the user can check the performance characteristics from time to time as the program runs, they
will be able to terminate the job when such a scenario is reached. Typically, they can restart the

simulation from the last saved checkpoint (with a new modified mesh partitioning, for exam-
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ple). A continuous performance monitoring tool is also a prerequisite for online performance
steering: visual performance feedback, and specific details emerging from it, may be used by
the analyst to tell the application to adjust some parameters or to trigger a runtime load bal-
ancing phase, etc. These are all extremely powerful and scalable performance analysis idioms
previously hard to achieve using only post-mortem event traces.

An adaptive runtime system such as CHARM++ makes it easy for a performance monitor-
ing module to send messages that are independent of the messages being sent by the rest of the
parallel program. Adaptive overlap (Section 2.1.2) allows out-of-band communication which in
turn is the key to an efficient implementation of a framework for the delivery of continuous per-
formance data. We will show how the CCS framework described in section 5.2 is employed to
provide the mechanism by which an external tool may then interact with the running CHARM++

application to ship the processed performance data out while the application is still running.

5.4 Live Parallel Data Collection Of Performance Profiles

We demonstrate the power of continuous performance monitoring by implementing a perfor-
mance data collection and processing mechanism for entry method utilization profiles within
the Projections framework of CHARM++. We have also implemented a visualization client
which will contact the running CHARM++ application to access the performance data stream
remotely. CCS is used to connect this visualization client to the specific compute node where
the performance data will be collected.

The utilization profile data gathered in this new system describes the fraction of the exe-
cution time spent in each activity over some period of time. The utilization profiles produced
by the tool contain a number of bins, each representing 1ms slices of the execution of the pro-
gram. Some fine-grained information about the execution of the activities will be lost, but the
resolution of 1ms should be suitable for a variety of analysis tasks, including visualization.

Figure 5.1 shows an overview of the architecture of the utilization profile tool. It shows
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Figure 5.1: An overview of the Utilization Profile Tool. The tool is comprised of two separate
mechanisms. The first mechanism (A) periodicially gathers performance data in the parallel
runtime system. The second mechanism (B) allows a visualization client to retrieve the previ-
ously buffered performance data from the parallel program. Reprinted, with permission, from “
Continuous Performance Monitoring for Large-Scale Parallel Applications” by Isaac Dooley,
Chee Wai Lee, and Laxmikant Kalé at the 16" Annual IEEE International Conference on High
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two independent mechanisms; one that comprise the Projections trace module which generates
utilization profiles, with a performance statistics gathering portion in the parallel runtime sys-
tem which compresses and merges these profiles through the CHARM++ reduction framework;
and another that provides the mechanism for the visualization client to retrieve the statistics
produced by the first mechanism. The details for each of these components are explained in the
subsequent paragraphs.

On the parallel system, each processor creates and updates a utilization profile containing the
amount of time spent in each entry method. To observe and record the utilization for each of the
entry methods, the Projections summary trace module is enabled with a single link time option
—tracemode utilization. This module is responsible for accumulating the time spent
executing each entry method into the appropriate utilization profile bins. Each bin, representing
Ims of walltime, contains a double precision floating-point value for each of the entry method.
Hooks in the trace module are called after each entry method completes its execution, at which
point the execution time is accumulated into the one or more bins spanning the execution of the
entry method.

In memory, the bins are allocated as a fixed-size contiguous array which is treated as a
circular buffer 2. We arbitrarily chose to use a circular buffer with 2'5 = 32768 bins which
spans about 33 seconds. The circular buffer is not compressed, and hence its size can be large.
In typical Charm++ programs there are hundreds of different entry methods, many of which are
never executed, and many that are only called at startup. For example, in a run of the NAMD
application as a case study with our trace module enabled, there are 371 distinct entry method.

The size of the circular buffer allocated on each processor for this program would therefore

371 entry methods y 8 bytes
bin entry method

be about 32768 bins X ~ 93 MB. Although this buffer is
somewhat large, the sparse data it contains is compressed before being merged across all the

processors 2. Section 5.5 shows that the actual cost of this approach is low when used with the

*Developed by Isaac Dooley.
3Compression scheme developed by Isaac Dooley.
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Figure 5.2: Compressed utilization profile format. Reprinted, with permission, from “ Contin-
uous Performance Monitoring for Large-Scale Parallel Applications” by Isaac Dooley, Chee
Wai Lee, and Laxmikant Kalé at the 16" Annual IEEE International Conference on High Per-
formance Computing (HiPC 2009), (©)2009 IEEE.

NAMD application.

If memory constraints are critical for a program, then the circular buffer could be reduced
by a number of techniques. The number of bins could be reduced, the bins could cover larger
amounts of execution time, and the set of entry methods could be reduced either by reducing
the set of entry methods registered by the programs, or by reordering the entry methods and
only recording information for the most important ones. A further way to shrink the memory
requirement for this buffer would be to use single precision floating-point values instead of the
8-byte double precision values currently used.

Although each processor gathers its own utilization statistics in its trace module, the tool
described will report the overall utilization across all processors. In order to efficiently com-
bine the data from all processors, it is important to use an efficient data storage format for the
communication intensive part of the data merging and transmission.

We created a compressed utilization profile format to use when transmitting the usage pro-
files between processors and to the visualization client #. This format, which is shown in figure
5.2, represents the utilization for many timeslice bins for one or more processors. The com-

pressed format has a length that depends upon the number of bins and the number of entry

4Compression format developed by Isaac Dooley.
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methods active during the timeslice represented by each of the bins. Within each bin, the uti-
lization for each active entry method is stored using 3 bytes. One byte stores the utilization in a
range from O to 250, a resolution that is reasonable for onscreen displays. Two bytes store the
entry method index (E ID). The records within each bin are in sorted order by the entry method
index. As we expect typical programs to have more than 256 entry methods, more than one
byte is required to represent them all. The compressed format has a header which contains 4
bytes specifying the number of bins and 4 bytes specifying how many processors produced the
utilization profile.

Because there will be some entry methods that contribute only tiny amounts to a bin, we
decided to compress all such entry methods into a single other category which is stored just
as any of the other entry methods in the bin but with a reserved entry method index. The
entry method stored in this other category are any that fail to contribute more than a specified
threshold to a bin. The threshold used is arbitrarily set at 10%. This merging of entry methods
that contribute little to the result can reduce the sizes of the compressed utilization profiles
significantly.

The compressed utilization profiles from all processors are periodically merged together
and stored on processor zero, from which the visualization client can retrieve them. At startup,
processor zero will instruct the runtime system to call a collection function once per second.
This collection function in turn will broadcast a request to all processors. Each processor,
upon receiving such a request, will compress a utilization profile of 1000 bins, and contribute
the compressed profile to a reduction. The reduction is a standard Charm++ reduction with a
custom reduction operation that merges any number of compressed utilization profiles into a
single new compressed utilization profile. The reduction proceeds over a spanning tree, so it is
scalable to large numbers of processors. The result of the reduction arrives at processor zero, at
which point it is stored in a queue awaiting a request from a visualization client. The incoming
reduction message containing the compressed utilization profile is itself saved, so no copying

of the usage profile is required at the end of the reduction.
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The custom reduction operation simply marches through all of the incoming compressed
utilization profiles bin by bin, appending resulting merged bins to a new compressed utilization
profile. Merging bins is simple because the entry method indices are already in a sorted order, so
the minimal entry method index from all the incoming bins is selected and the utilization from
any of the incoming bins for that entry method index are averaged. This average is weighted
by the number of processors that have contributed to each of the respective incoming bins. The
weighted average is important if the reduction tree is not a simple k-ary balanced tree.

The time-signal broadcast, the compression of the utilization profiles, and the subsequent
reduction will interleave with the other work occurring in the program. This interleaving could
potentially produce adverse performance problems for the running parallel program. We will
show however in section 5.5 that the overhead is reasonably low.

Finally, the communication of the utilization profiles from the running parallel program to
the visualization client is performed through CCS. When the CHARM++ application in question
is first submitted for execution, a command line option is used to specify the TCP port to
be used for the CCS server-side. The visualization client will connect to this port. In our
implementation, the parallel program will simply reply to any incoming CCS request of the
appropriate type with the oldest stored utilization profile in the queue on processor 0. If no
stored utilization profile is available, then an empty message is sent back to the client. The
client will periodically send requests to the running program. Once a compressed utilization
profile is returned, the visualization windows of the client are updated. For convenience, the
visualization client also supports the ability for the profiles to be written to a file for future
analysis and the ability to play back the profiles saved in a file.

The visualization client created to work with the new Charm-++ trace module is implemented
in Java>. The client uses the CCS Java client-side library to create a CcsThread which is used
to send requests to the parallel program. When the visualization client receives a CCS reply,

it saves the message, and computes the data for a scrolling display. The client provides a both

>Visualization client developed by Isaac Dooley.
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a graphical interface to connect to a running parallel program and some resulting graphical
visualizations described below.

The first main display in the visualization client contains a scrolling stacked utilization plot
of coarse grained averaged utilizations. This display shows 10 seconds worth of data at a time,
scrolling as new data is added. The plot is composed of 100 bars in the x-dimension. Each bar
displays the average of 100 bins, or 100ms of execution time. This view provides a high level
view of the overall utilization of the program as it runs. A second more detailed view displays
data at the finer grain 1ms resolution. The final display in the visualization client shows the
sizes of the incoming compressed utilization profiles. This view is useful when determining the
overhead of our system. Section 5.5 will show the visuals generated by this system for NAMD

as a case study.

5.5 Case Study: Long-Running NAMD STMYV Simulation

The goal of this case study is to demonstrate how we were able to use our implementation for
live performance streaming to view, in real-time, a NAMD stmv 1 million atom simulation
over a range of different performance characteristics in the simulation’s lifetime. We quantify
the overhead encountered in the use of our approach and show the bandwidth required by the
streaming protocol over time.

Figures 5.3, 5.4, and 5.5 show the low-resolution utilization breakdown of the simulation
over various key stages of its performance profile over time. Figure 5.3 shows the simulation’s
behavior just after initialization. Figure 5.4 shows a snapshot of the boundary between the
initial timesteps used to collect object-load information, the application of the initial greedy
load balancing strategy (evidenced by the deep and wide trough near the middle of the plot),
and the application of a refinement load balancing strategy (the deep but sharp trough near the
right edge of the plot). Figure 5.5 shows the simulation’s steady-state behavior.

When seeking more specific performance structure in the streamed profile, such as sub-
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Figure 5.3: A screenshot of the streaming view in our tool. This view represents 10 seconds
of execution during startup for NAMD on 1,024 processors running the STMV molecular sys-
tem. Reprinted, with permission, from “ Continuous Performance Monitoring for Large-Scale
Parallel Applications” by Isaac Dooley, Chee Wai Lee, and Laxmikant Kalé at the 16" Annual
IEEE International Conference on High Performance Computing (HiPC 2009), ()2009 IEEE.

timestep structures, one can observe the simulation’s behavior at higher resolutions. Figures 5.6
and 5.7 show snapshots of two such views. Figure 5.6 shows the detailed performance structure
of simulation timesteps from before the application of the greedy load balancing strategy. Figure
5.7 shows the impact of the subsequent load balancing in detail.

To determine the actual performance impact of our performance metric gathering scheme,
we ran the parallel NAMD molecular dynamics application [60] on 512 up to 8,192 processors
of the Cray XTS5 system Kraken at the National Institute for Computational Sciences managed
by the University of Tennessee. We compared the application performance of a baseline version

of NAMD containing no tracing modules to a version using the tracing module that gathers
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Figure 5.4: This streaming view represents 10 seconds of execution during the early steps when
load balancing takes place. Two valleys, corresponding to the two load balancing steps, are
clearly seen. This screenshot comes later in the execution of the same program run as in figure
5.3. Reprinted, with permission, from “ Continuous Performance Monitoring for Large-Scale
Parallel Applications” by Isaac Dooley, Chee Wai Lee, and Laxmikant Kalé at the 16'" Annual
IEEE International Conference on High Performance Computing (HiPC 2009), (©)2009 IEEE.

only utilization profiles. We ran the baseline program once, and on the same allocation of
processors we ran the version that gathers utilization profiles twice, once with a visualization
client connected, and once without any visualization client connect. Timings were analyzed for
400 application timesteps well after the initial load balancing steps.

Our results show that for up to 8,192 processors, the overhead of recording the utilization
profiles and sending them to a visualization client is at most 1.14%. The results appear to
contain a slight amount of noise in that sometimes baseline version is slower than the version
that gathers performance stastics. These variations are likely caused by intereference from other

parallel jobs sharing the same interconnect and causing contention in the network.
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Figure 5.5: This streaming view represents 10 seconds of execution during the later simulation
steps once a more uniform load balance has been achieved. Each bar represents the average
utilization for 100ms of execution time. For this program, the timesteps are shorter than this
duration and hence the utilization doesn’t reach 100% in this plot. This screenshot comes later
in the execution of the same program run as in figures 5.3 and 5.4. Reprinted, with permission,
from “ Continuous Performance Monitoring for Large-Scale Parallel Applications” by Isaac
Dooley, Chee Wai Lee, and Laxmikant Kalé at the 16" Annual IEEE International Conference
on High Performance Computing (HiPC 2009), (©2009 IEEE.

We examined some projections trace logs for a 1,024 processor run of NAMD to determine
the cost of creating the compressed utilization profiles. The time to create the compressed
utilization profile from the uncompressed circular buffer was 9.3 ms. Because the uncompressed
buffer is created once per second, we expect the overhead of our approach to be around 9'?{% =
0.93%. The cost of the reductions was almost nonexistent in comparison to the compressing
of the utilization profiles. The estimated 0.93% overhead seems to correspond well with the

results actually obtained, modulo the noise.
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Figure 5.6: This detailed view plots the full Ims resolution utilization profile for 0.25 seconds of
execution time for a NAMD STMYV run on 1,024 processors. This snapshot captures steps with
poor load balance. Reprinted, with permission, from “ Continuous Performance Monitoring
for Large-Scale Parallel Applications” by Isaac Dooley, Chee Wai Lee, and Laxmikant Kalé at
the 16" Annual IEEE International Conference on High Performance Computing (HiPC 2009),
(©2009 IEEE.

Processors | 512 1024 2048 4096 8192
Overhead Without Visualization Client | 0.94% 0.17% -0.26% 0.16% 0.83%
Overhead With Visualization Client | 0.58% -0.17% 0.37% 1.14% 0.99%

Table 5.1: Overhead of collecting utilization profile instrumentation. Reprinted, with permis-
sion, from “ Continuous Performance Monitoring for Large-Scale Parallel Applications” by
Isaac Dooley, Chee Wai Lee, and Laxmikant Kalé at the 16" Annual IEEE International Con-
ference on High Performance Computing (HiPC 2009), (©2009 IEEE.
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Figure 5.7: This detailed view shows a later plot from the same run shown in figure 5.6, after
load balancing improves the performance by shortening the time per step. Reprinted, with
permission, from “ Continuous Performance Monitoring for Large-Scale Parallel Applications”
by Isaac Dooley, Chee Wai Lee, and Laxmikant Kalé at the 16" Annual IEEE International
Conference on High Performance Computing (HiPC 2009), (©)2009 IEEE.
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Figure 5.8: Sizes of the compressed utilization profiles received by the visualization client. The
total bandwidth required to stream the data is thus under 12KB/second for this program, namely
NAMD simulating the STMV system on 1,024 processors. Reprinted, with permission, from *
Continuous Performance Monitoring for Large-Scale Parallel Applications” by Isaac Dooley,
Chee Wai Lee, and Laxmikant Kalé at the 16" Annual IEEE International Conference on High
Performance Computing (HiPC 2009), (©)2009 IEEE.
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The messages sent along the reduction tree when combining the utilization profiles for all
processors have sizes that range from 3.5KB up to almost 12KB. Figure 5.8 shows a plot of the
resulting utilization profiles that were received by the visualization client when running NAMD
on 1,024 processors. This figure shows that the sizes of the messages vary throughout different
phases of the application. During startup, the computation involves few entry methods, and
hence the message sizes are smaller. When the fine-grained timesteps are executing toward the
end of the program, the utilization profile combined from all processors is approximately 12KB

in size.

5.6 Future Work

The next step is to explore the ability to interactively change the type and detail of the perfor-
mance information streamed to the remote visualization client.

With this ability, an analyst could ask the framework to present new information like the
number of messages sent, instead of event computation time, per time interval. The analyst
could do this over pre-defined phases of the computation, capturing many different sets of
performance metrics over equivalent phases of a steady-state computation without sacrificing
streaming bandwidth. This form of time-multiplexing is similar to the approach taken by the
PAPI performance counter framework [10] to capture counter metrics that otherwise conflict
and cannot be captured at exactly the same time by hardware design.

With the interactive functionality, the analyst can also decide if more detailed information
is useful at some point in the application’s execution. The analyst may be aware of a period of
poor performance late into the application’s steady-state he wishes to study in detail as it occurs.
Also an unexpected dip in application performance could be observed while low resolution data
is being streamed, prompting a desire to observe greater levels of detail in the performance

stream.
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Chapter 6
What-If Analysis Through Simulation

As discussed in section 1.2, the turn-around time required for studying applications at large
processor core counts in the performance analysis process can be an impediment to effective
problem solving. This can be particularly true for finding out the performance characteristics
of an application when scaled to make use of an entire parallel machine system.

Reserved access to a full machine system can sometimes be arranged with machine admin-
istrators depending on the schedule. This mode of conducting performance analysis can be
slow due to the tendency of the analysis process to be iterative. First, there are the time re-
quirements for identifying possible performance problems. Then, in order to test if a solution
to the identified problem works, the application would need to be executed again at the same
scale. This means that if the preceeding two steps cannot be accomplished before the reser-
vation time expires, the analyst would have to go through the administrative and scheduling
process of reserving the machine. This could, of course, be mitigated by always reserving a
second full machine access session at some reasonable point in time after the initial reservation.
This second session can then provide the consolidated time to allow the analyst to validate mul-
tiple solution hypotheses, assuming the identified problems have non-trival solution spaces. Of
course, if the second session fails to identify a good enough solution, the process must then be
repeated.

If full machine reservations are not readily available as an option to an analyst, the only
remaining option will be to attempt regular submissions to the machine’s job queue. These

submissions suffer from irregular wait times for full-machine or large-scale requests. Such
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requests may involve high turn-around times of up to a week. Finally, even if turn-around time
is reasonable, one needs to consider the additional computational resource costs of conducting
performance benchmarking runs to test each hypothesis. Simply running a three-minute job
on 20,000 processors will cost 1,000 CPU-hours of precious compute-time. For the study of
the impact on application performance due to parametric trends (see the latency tolerance case
study described in section 6.5), this resource consumption can add up very quickly.

In this chapter, we present a third alternative for conducting performance problem solving
for applications at large processor core counts. This alternative avoids or mitigates the need for
large-scale access to machines. The key principle of this approach is to conduct a large part of
the performance analysis process on fewer processors than are normally necessary. We begin
with a discussion of the related literature followed by a description of our simulation frame-
work called BigSim. We explore BigSim’s capabilities and the various forms of performance

hypotheses testing we have developed either by exploiting or by extending those capabilities.

6.1 Related Work

There are a number of projects that aim to predict application performance at various levels of
detail by employing trace-driven simulation like we do.

FASE [32] is a highly general prediction framework designed to support a wide variety
of tools and simulation systems. An analyst would first use various tools to generate traces,
profiles or even analytical models that could characterize an application. This characterization
may require several iterative cycles but is eventually used by FASE as a “stimulus” input to
a simulation module that also has to be modelled or constructed by the analyst for the target
machine and configurations in mind. FASE works, in a number of ways, very similarly to the
BigSim emulation and simulation framework (see Section 6.2). FASE can even be used at sim-
ulation time to generate performance event traces similar to the work described in this thesis

for use with performance tools like Jumpshot. Its goals and capabilities are, however, differ-
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ent. FASE is designed to provide predictions about an application when executed in different
modelled hardware environments. Our work focuses on permitting effective performance hy-
pothesis testing at the hardware (see Section 6.5) as well as the application level (see Section
6.6). A re-characterization of the application is required in FASE whenever a different perfor-
mance hypothesis is to be applied. In contrast, under certain assumptions, our approach requires
the application to be executed or emulated only once per base experiment.

Speedy [68, 67] was an old prototype termed as an “extrapolation tool” that share many
similar characteristics with our work. Performance event traces are generated by Speedy’s
trace-driven simulation that can be used for detailed analysis like in the case of FASE and our
work through BigSim. Their approach for generating the traces for simulation purposes are,
however, somewhat more restrictive. Speedy does this by running an n-thread application on a
single processor and abstracting the communication and computation properties for simulation
purposes. When simulated, this produces a prediction of the application’s performance on n
processors given a model for the hardware execution environment for those n processors. Like
FASE, it does not provide a more general approach to performance hypothesis testing.

Using the same ideas as Speedy, VPPB [9] executes a multithreaded program on a monitored
uni-processor to record execution behavior. With the recorded information, VPPB then uses a
simulator to predict the detailed performance of the multithreaded program on any number of
actual processors.

Two important simulators of parallel systems are Dimemas [30] and PSINS [74]. Both
simulators are driven by MPI traces obtained on a base system. The prediction involves con-
structing the application behavior on a different system of the same size, using the MPI traces
and a scaling factor between machines for the sequential parts of the application. Because
both systems depend on the availability of the traces at the same size, it becomes infeasible for
these simulators to predict behavior on large machine configurations with more processors than
currently available. Meanwhile, using our BigSim framework and its virtualization capability

inherited from CHARM++, traces can be obtained for any number of target processors through
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emulation.

Various studies have been conducted to predict performance of parallel applications using
other approaches. Some of those studies [45, 34] employ analytical modeling techniques to
characterize the behavior of an application on a certain system. By changing parameters in the
models, one can predict performance for different program/machine combinations, similarly to
our what-if functionality. However, building such an analytical model, in general, requires deep
knowledge of the application and of the underlying system. In contrast, our simulation-based
approach can capture application behavior via emulation, requiring little knowledge about the

application.

6.2 The BigSim Simulation Framework

The BigSim [88, 89, 86] framework is comprised of two components: a generic emulator of
applications on peta-FLOPS architectures, and a simulator that allows for prediction and anal-
ysis of the emulated program in a variety of situations, including in the presence of a detailed
network contention model.

The components described above work together as shown in Figure 6.1. The application
code is run on the emulator to produce the BigSim event dependency logs. These logs are then
passed to the simulator, which can simulate the application with a latency-based messaging
model, or a detailed network contention modeling. The simulator can also alter the execution
times of each event according to some predictive models. The simulator can report basic per-
formance predictions about execution time, or generate Projections event traces which can be

used for detailed analysis of the predicted performance based on the simulated environment.
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Figure 6.1: BigSim Structure and Output.

6.2.1 BigSim Emulator

The emulator first provides an environment in which users can run a parallel application as
if they are running on the real target machine with its full set of processors. It achieves this
by leveraging object-based virtualization provided by CHARM++. Suppose there are a million
target processors for a normal MPI application. The emulator could start a million AMPI user-
level threads on 10,000 available processors. Although this means 100 threads per processor,
AMPI has been shown to correctly handle a large number of threads per processor [87]. The
emulator produces event dependency traces at the granularity of individual messages and the
computation triggered by these messages. These traces are subsequently used for simulation-
based performance prediction.

The BigSim emulator also captures the dependencies between the dependent execution
blocks (DEBs) of an application. Each DEB represents a segment of sequential execution of
a thread or an entry method that executes without blocking for remote data. It is triggered by
the receipt of one or more messages and the completion of O or more other DEBs. For exam-
ple, in normal MPI use with blocking receives, each DEB depends on 1 message and 1 DEB.
With irecv/waitall, it depends on many messages and one DEB. With CHARM++’s Structured
Dagger [39], each DEB may depend on multiple DEBs and messages.

The time interval of a DEB is divided into sequential execution blocks (SEBs) by each
message-spawn event. These SEBs can be further sub-divided by function call boundaries in

cases where it is easy to trace and predict individual function call times.
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The emulator stores DEB data in its event dependency logs. Figure 6.2 illustrates the struc-
ture of a DEB and the data stored for each one. Each DEB is assigned a unique global ID. The
BigSim emulator logs which entity (such as an MPI thread, a virtual processor or a chare) cor-
responds to each DEB, the time duration of the DEB, a predecessor list (DEBs and messages)
and a successor list (DEBs). In addition, it records a set of messages spawned by the DEB along
with the time at which they were spawned, specified as an offset in time from the start of the
DEB. Symbol table information such as entry method names, message tags, etc. are also stored
for use with Projections. Each emulating processor produces a log file containing the DEBs for

all entities emulated on that processor.
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Figure 6.2: Dependent Execution Block.

It has been shown that for realistic models of computations (in either MPI/AMPI or CHARM++),

this information is sufficient for the reconstruction of execution behavior even if messages are

delivered in a different order [88].

6.2.2 BigSim Simulator

The BigSim simulator takes as its input the event dependency logs generated by the emulation
of an application as described above. The simulator re-executes the communication and depen-
dency behavior of the application according to a particular architectural specification, without
re-executing the code of each dependent execution block. The simulator can simply scale the

execution time recorded for each DEB according to speed ratios between the emulating and

101



target processors. It can also apply more sophisticated techniques based on target hardware
architectures and additional hardware counter data captured at emulation time. This results in
new absolute timings for all the DEBs and a new set of traces to be analyzed with Projections.
The BigSim simulator is implemented in POSE [78], an optimistically-synchronized PDES en-
vironment.

The BigSim simulator is designed to be modular to allow for flexible specification of target
architectures. For example, one could simply specify a latency for each message as a function
of its size, run the simulator with that latency, and acquire a new set of trace files for Projec-
tions analysis. On the other end of the spectrum, we can plug in detailed models of network
contention that are very specific to a target architecture via a module called BigNetSim [14].

BigNetSim is a highly flexible network simulator designed to take DEB data from the em-
ulation traces of a real application and simulates the re-execution of the DEBs. BigNetSim
preserves dependencies while modeling the transmission of messages for spawned DEBs at the
packet-level as they are transmitted through an interconnection network with a detailed con-
tention model. It simulates computational nodes and networks at the level of the switches,
channels and NICs of which they are comprised. A wide variety of network configurations
have been developed that can be plugged into this simulator. Various topologies and routing
strategies exist as well as several other lower-level configurations. The BigSim simulator gen-
erates the receive times of messages and start times of all the DEBs as it receives the complete
messages from BigNetSim, and generates a new set of predicted execution data that can be
analyzed with Projections. BigNetSim is also capable of generating traffic patterns to test a
network’s performance.

Event trace logs from the simulator can be used with the Projections performance visualiza-
tion and analysis tool to predict performance problems of an application running on the target

machine.
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6.3 Performance Analysis Using Fewer Processors

The BigSim simulation framework (see section 6.2) provides the necessary foundation for
adopting the above approach. In its emulation mode, BigSim exploits the object-oriented,
message-driven properties of a CHARM++ application to produce a set of event dependency
logs that capture the runtime dependency structure and execution profile of a single execution
instance of an application. These event dependency logs are then used to predict the applica-
tion’s performance and behavior with different runtime characteristics. The BigSim simulator
was designed to handle changes in communication properties like network latency, as well as
changes in computation properties like different processor clock speeds. These changes can
be simple, like the addition of a fixed latency cost to all communication, or complex, like the
determination of latency cost based on detailed networking hardware properties and topology.
Finally, Projections-compatible event trace logs can be generated by the BigSim framework at
simulation time, allowing an analyst to study the predicted performance visually using the same
visualization tool used for regular CHARM++ application analysis.

The key capability we wish to develop and exploit via BigSim is its ability to produce a
prediction about an application’s performance on P processors using far fewer processors. This
means we would not require unplanned and repeated access to the whole supercomputer to
conduct performance optimization for the application at scale.

BigSim provides this capability at two levels. First, BigSim is capable of virtualizing pro-
cessors at emulation time to emulate more than one application process on a physical processor.
It does so by storing relative timestamps and dependencies for events and activities that occur
instead of their absolute values. Second, at simulation time, the time and memory required to
simulate the application’s behavior using the captured event dependency data are disjoint from,
and much smaller than, the time and memory requirements of the application itself. The former
requirements are instead dependent on the total number of events and dependencies generated

by the application.
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6.3.1 Reducing Number Of Procesors Used At Emulation Time

The reduction of processor counts at the first level is strongly dependent on the nature of the
application being emulated. The main limiting factor is memory. If physical memory runs out
while the application is being emulated and the BigSim emulator is forced to perform page
swaps, the timing information recorded for the current event or activity being emulated will
be far from accurate. This cannot currently be corrected for. The other limiting factor is the
increase in computation time as we emulate more application processes on a physical processor.
If C is the computation time for the application on P processors without emulation, then the
computation time is approximately increased by £ x C'+ O where F is the number of processes
emulated on each physical processor and O is the extra event scheduling and communication
overhead. There are trade-offs to be considered. On the one hand, we consider the time taken
to schedule a job for (P = E) processors plus the extra computation time taken to emulate £
on each processor. On the other, we have to consider the wait time required for scheduling the
job for P processors plus its computation time C'. For most research scientists with limited
priviledged access to supercomputing resources, we argue that the wait time and effort required
for scheduling jobs at scale is the dominating factor.

The limiting factor for memory can be mitigated by the use of memory aliasing ' where
applicable. A memory aliasing API has been developed so that application programmers can
mark memory segments used by the application as shared only for emulation purposes. With
memory aliasing, multiple application processes share the same physical memory. The applica-
tion programmer must mark memory segments such that shared access to those segments will
not change the runtime dependency structure of the application, even though the computational
correctness will obviously be affected. In the extreme case, if all memory used by an applica-
tion could be aliased without affecting the runtime dependency structure, then one only needs

to consider the trade-off factors for increased computation as described above.

'Developed for use in BigSim by Phil Miller.
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As an example of the reduction factor in processor counts, we were able to effectively emu-
late the load imbalance benchmark (see section 6.6.1) at 256 processors using only 2 processors
and still produce correct performance predictions and visually validate the performance behav-
ior with Projections. The load imbalance benchmark only uses 48 kilobytes of user memory per

processor at execution or emulation time.

6.3.2 Number Of Processors Used At Simulation Time

The memory and time requirements at simulation time differ greatly from the requirements at
application execution or emulation time. This is because at simulation time, any actual com-
putation, communication and memory access have become abstract. Memory requirements at
simulation time depend on the number of outstanding events that will be scheduled for process-
ing and any book-keeping requirements for parallel discrete event simulators. Similarly, the
amount of computation required becomes dependent on the type of work a simulator have to
perform in order to process each event as they are scheduled.

More importantly, for the purposes of performance analysis of the application via our ap-
proach, the performance of the simulator itself is now divorced from the predicted performance
of the application. In the regular performance analysis process, any testing of a hypothesis so-
lution to a performance problem requires the exact performance conditions on actual machine
hardware. The simulator, on the other hand, will produce the same prediction results about the
application’s performance regardless of how the simulator itself performs. This means not only
can the simulator be executed on fewer numbers of processors, they can also be executed on
local laboratory-based clusters and be subject to local resource limitations rather than centrally
managed supercomputing allocations. Predictions can even be made for non-existent machines.
Predicted and locally-generated performance data has an additional advantage in that there is no
need to transfer large volumes of data across the wide area network that large-scale applications

inevitably generate.
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All the simulations of benchmarks we have run to demonstrate performance analysis capa-

bilities for this thesis were executed on a single processor core.

6.4 General Methodology For Hypothesis Testing

For the purposes of our subsequent discussion, we define a baseline experiment to be the exe-
cution or emulation of an application at some runtime configuration that necessitates the gen-
eration of a set of BigSim event dependency logs. Baseline experiments are conducted exactly
once. In cases where we wish to study changes in application performance properties that can-
not be modified by the simulator, specifically in cases where the object-decomposition of the
application changes, we will have to make multiple baseline experiment runs. An example of
this is the change in object grainsize described in section 6.5.

For each baseline experiment, we apply specific performance property changes through the
simulator and generate Projections-compatible performance event logs. The analyst can then
visualize and analyze these event traces as if the experiments were executed with those changes.

Sections 6.5 and 6.6 describe case studies that highlight the different performance hypoth-
esis testing capabilities enabled by our approach. The first highlights a class of questions we
can ask about the impact on an application’s performance when the underlying hardware envi-
ronment is changed. While the case study explores variation in latency, the idea can easily be
extended to other concepts like processor power. The second highlights a class of questions we
can ask about the impact on an application’s performance when the application’s software or

code structure changes.

6.5 Analyzing Changes To Network Latency

For the analysis of the sensitivity of an application to communication latencies, it is useful to

understand how latency-tolerant an application is. With adaptive overlap (See section 2.1.2),
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any available work on other parallel objects can be scheduled by the runtime if an incoming
message for one object is delayed. Latency tolerance can be observed by how an application’s
performance is affected in the face of delayed messages, either due to network contention issues
or if the application is executed in a machine environment with a slower communication fabric.

As described in section 6.2.2, BigSim’s simulation capabilities can be directly utilized to
study the impact on predicted performance by varying communication latency. This is an exam-
ple of the classic use of application simulation for detailed performance prediction on different
hardware environments. We begin by executing the application on the real machine, capturing
the application’s BigSim event dependency log. At simulation time, the BigSim framework es-
sentially modifies the time taken for a non-local message to be delivered to and scheduled on the
target processor. There are two ways of doing this in BigSim. The first way is to simulate the
application using the simple latency model where a fixed user-specified latency time is added to
message delivery time whenever the message is sent to a remote processor. The second requires
a detailed network contention model which takes the modeled network parameters into account

when determining simulated latency.

6.5.1 Case Study: Seven-point Stencil Computation

A seven-point stencil code takes as input a three dimensional data array of values. At each
iteration, each element of this array updates itself with the result of averaging the values of
its six neighbors and itself. The iterative step for a single data element is illustrated in figure
6.3. The computation is normally stopped on convergence, which is usually defined to be the
iteration when the difference between the values of the array at current iteration compared
with the previous iteration is within a small, pre-determined bound over all data elements. For
benchmarking purposes like ours, it is often more convenient to halt the computation at some
pre-determined iteration step.

The parallelization strategy employed in our CHARM++ implementation of the seven-point
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Figure 6.3: Computation interaction between data elements at each seven-point stencil iteration.
At iteration i + 1, element E0 gets the value of (F0 + E1 + F2 + E3+ F4 + E5+ E6) + 1.
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Figure 6.4: Parallel object E1 sends its data slab to object EO to be kept as a ghost array for the
iteration’s computation.
stencil computation divides the data array into equally sized three dimensional data blocks. The
dimensions for each of these blocks are determined by the user at the command line. With that,
we create an array of CHARM++ parallel objects, one for each data block. We can now loosely
define the virtualization factor to be the average number of parallel objects assigned to each
processor. The virtualization factor enables an additional dimension for performance tuning via
the principle of adaptive overlap (see Section 2.1.2) through object over-decomposition of the
problem domain.

Communication between parallel objects under this parallelization strategy is staged at each
iteration by the maintenance of two-dimensional “ghost” arrays on each parallel object. Each

parallel object O keeps up to six “ghost” data arrays. Each of these arrays represents a one-
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element deep slice of the neighboring data array which has a face in contact with the data array
hosted by O. At the start of each iteration, each parallel object sends the current data values
of the appropriate slices of its data blocks to its appropriate neighbors. These data slices are,
as described above, hosted as the appropriate “ghost” arrays in neighboring parallel objects.
Figure 6.4 illustrates a parallel object sending a data slice to a neighboring object. Computation
for the iteration on each parallel object begins when it has received the “ghost” arrays from

every one of its neighbors.

6.5.2 Validation With Seven-point Stencil Computation
Experiment Methodology

The goal in this section is to demonstrate, at a small scale, how we were able to quickly ex-
pose latency-tolerance trends for the 7-point stencil computation by changing latency values
with many simulation experiments. We also show how detailed performance data based on the
simulated application execution became available for visualization and how these were subse-
quently used to expose unanticipated performance problems at the time these experiments were
conducted.

We observe latency tolerance trends for the 7-point stencil computation by varying the fol-

lowing parameters for the application for our baseline experiments:

1. The total problem size in the form of a ;5141 BY Yiotai BY Ziotar 3-dimensional array.

2. The amount of work assigned to each CHARM++ parallel object in the form of a x4;
by yobj by zop; block of the total array. Given a fixed processor count, this affects the

virtualization factor described in section 6.5.1.

We studied two problem sizes, a small problem with a 64x64x48 data grid and a large
problem with a 256x256x192 data grid. The small problem allowed us to observe the impact

of latency changes to performance at small activity grainsizes. The large problem allowed
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us to observe the same effects at the same virtualization ratios but with much larger activity
grainsizes. Our experimental setup for the set of baseline experiments are summarized by table

6.1.

Virtualization Factor

1 2 4 8 16

Small Problem (64x64x48) 16x16x16 | 16x8x16 16x8x8 8x8x8

Large Problem (256x256x192) | 64x64x64 | 64x32x64 | 64x32x32 | 32x32x32 | 32x16x32

Table 6.1: Experimental setup for baseline latency tolerance experiments executed on 48 pro-
CesSOrs.

Our data points for baseline experiments are gathered in two phases. The first involves data
that cannot be modified at simulation time without changing the code’s runtime dependencies.
Changing the virtualization factor as described above also modifies the shape of the data array
in each object and number of communicating objects. As a result, we needed to generate a
BigSim event log for each data point. These logs were generated from jobs submitted for 48
processors of a Cray XTS5 machine (Kraken). A total of 7 jobs were submitted for this purpose.

The second phase involved using the BigSim framework to simulate the application with
varying latency values using the simple latency model. Latency was varied from 1 microsecond
to 500 microseconds for the 64x64x48 experiments and from 1 microsecond to 10 milliseconds
for the 256x256x192 experiments. These simulation experiments using BigSim were conducted
on a single processor of a MacBook Pro, representing a low-end analysis workstation. A total
of 108 Projections event trace datasets were collected to expose latency tolerance trends for the

64x64x48 case while 105 datasets were collected for the 256x256x192 case.

Observations and Results

Figures 6.5 and 6.6 show how the average iteration time is affected by increases in latency. The
average iteration time is derived from the 10" to 20" iterations of a 25-iteration execution.

There are no global barriers between each iteration.
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Figure 6.5: BigSim-predicted latency tolerance trends for a 64x64x48 7-point stencil computa-

tion code.

In figure 6.6 showing trends for large grainsize experiments, we can see latency hits early

at virtualization factors 1 and 2. As we increase the virtualization factors, the application’s

performance stays reasonably unaffected at higher latencies. At virtualization factor 4, iteration

time ramps up from latencies above 1.5 ms. At factor 8, the application tolerates up to 2 ms

latencies and at factor 16, latency tolerance goes up to 5 ms. We see a similar trend for small

grainsize experiments.

At the same time, we can see the overheads grow as we increase the virtualization factors.

These can be expected to come from various sources:

1. scheduling overhead as a result of more, but finer grained, objects.

2. communication overhead as a result of more, but smaller, messages.
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Figure 6.6: BigSim-predicted latency tolerance trends for the 256x256x192 7-point stencil com-
putation code.

3. computation overhead.

What figures 6.5 and 6.6 do not show us are the precise reasons for the trends observed. In
particular, one may ask how latency is being tolerated and why, in spite the overheads, the large
grainsize experiment at virtualization factor 16 outperforms the one at virtualization factor 8
at the latency of 5 ms. One may also ask if the magnitudes of the overheads make sense. For
example, in the small grainsize experiments, the average time per iteration take relatively huge
hits as the virtualization factors are increased from 1 to 8.

This is where BigSim’s ability to generate Projections event traces, at simulation time,
comes in. Using the trends shown in figures 6.5 and 6.6 as a guideline, we picked several

key data points to be simulated again, but this time with Projections logs produced. Note that
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no new runs on the parallel machine were needed.

(a) Timeline showing events and activities over 10 iter- (b) Number of external messages received over
ations at virtualization factor 8. 10 iterations at virtualization factor 8.
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(c) Timeline showing events and activities over 10 iter- (d) Number of external messages received over
ations at virtualization factor 16. 10 iterations at virtualization factor 16.

Figure 6.7: Visualization of timeline and communication behavior for the 256x256x192 7-point
stencil computation with a simulated latency of 1 us.

First, we look at how figure 6.7 compares the detailed visualization of two performance
properties between virtualization factors 8 and 16 of the large grainsize experiment at 1 mi-
crosecond latencies. This is done over the 10 iterations from which we had derived the average
iteration times earlier. The timelines show that the activities in both cases are compact. Red
activity represent work performed for ghost-region interaction, teal activities represent compu-
tation work performed within an array block and yellow activities represent some miscellaneous
work that are required at the start of each iteration. The timelines also show in detail how some
processors host objects that operate at the array boundaries where fewer and smaller activities
associated with ghost-region communication is performed. Meanwhile, the charts showing ex-
ternal message properties over time indicate that message receipt is tightly bound to iteration

boundaries.
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(a) Timeline showing events and activities over 10 iter- (b) Number of external messages received over
ations. 10 iterations.

Figure 6.8: Visualization of timeline and communication behavior for the 256x256x192 7-point
stencil computation at virtualization factor 8 with a simulated latency of 2 ms.

We then look at the details of what happened to the experiment for the virtualization factor
of 8 at 2 ms latencies, which is the knee of the curve for virtualization factor 8. The equivalent
Projections visualization charts are shown in figure 6.8. The timeline shows that the activities
are still compact. However, the nature of the communication structure has changed as adaptive
overlap in the CHARM++ runtime kicks in to tolerate the increased latency. Activities are
no longer clearly delineated by iteration boundaries. Figure 6.8(b) shows message arrivals
becoming spread out.

Keeping the above visualization effects in mind, we can now look at what happens at 5 ms
latencies which is at the knee of the curve for virtualization factor of 16. At the same time,
because the performance of the experiment at virtualization factor 8 is worse than at the same
latency for virtualization factor 16, it is now useful to compare the same visualization for a better
understanding of the phenomenon. Figure 6.9 illustrates this. At virtualization factor 8, gaps
have now shown up on the timeline where the latency increase had crossed the threshold where
the application was able to schedule work while waiting for the messages. At the same time,
the latencies of 5 ms is now higher than the original average iteration time of about 4.5 ms. As
a result, we can see iteration boundaries sharpening again as illustrated by the communication
chart 6.9(b). At virtualization factor of 16, however, one sees pretty much the same performance

properties as those found at virtualization factor 8 with a latency of 2 ms as illustrated in figures
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(a) Timeline showing events and activities over 10 iter- (b) Number of external messages received over
ations at virtualization factor 8. 10 iterations at virtualization factor 8.

“a00.50 P O Py
O 0 A P R A e
o T A R e vy

WAL e R B L U R AR R R R I DR VAR B T LR L
T T S Ty
O Y e e ey
T T O S s e

T e O O 0 O oy ST oy

R 0 R 0 W A mA e v

P O S 3 S P A e

T e v e

| S T 0 T PO o oy

A e P S S P T s v ey
i

(c) Timeline showing events and activities over 10 iter- (d) Number of external messages received over
ations at virtualization factor 16. 10 iterations at virtualization factor 16.

Figure 6.9: Visualization of timeline and communication behavior for the 256x256x192 7-point
stencil computation with a simulated latency of 5 ms.
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6.8(a) and 6.8(b).
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(a) Timeline showing events and activities over 10 iter- (b) Number of external messages received over
ations at virtualization factor 8. 10 iterations at virtualization factor 8.
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(c) Timeline showing events and activities over 10 iter- (d) Number of external messages received over
ations at virtualization factor 16. 10 iterations at virtualization factor 16.

Figure 6.10: Visualization of timeline and communication behavior for the 256x256x192 7-
point stencil computation at with a simulated latency of 10 ms.

To complete the picture for the large grainsize experiments, we look at the Projections per-
formance charts at 10 ms latency for both virtualization factor 8 and virtualization factor 16.
These are shown in figure 6.10. At virtualization factor 8, it is clear that latencies of 10 ms
have completely dominated the performance profile of the application. Iteration boundaries are
sharp and punctuated by long time periods where nothing happens. A similar pattern can now
be seen at virtualization factor 16, although less stark.

Finally, we conducted the same visualization analysis for the small grainsize experiments,
to try to observe the same effects of latency on performance. At the same time, we wanted to
figure out if we could see in detail what could have caused overhead to be so high for these
experiments. Figures 6.11 and 6.12 demonstrate that the latency tolerance properties of the 7-

point stencil computation for large grainsize is preserved for the small grainsize experiments.
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(a) Timeline showing events and activities over 10 iter- (b) Number of external messages received over
ations at virtualization factor 1. 10 iterations at virtualization factor 1.
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(c) Timeline showing events and activities over 10 iter- (d) Number of external messages received over
ations at virtualization factor 4. 10 iterations at virtualization factor 4.

Figure 6.11: Visualization of timeline and communication behavior for the 64x64x48 7-point
stencil computation at a latency of 1 us.
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(a) Timeline showing events and activities over 10 iter- (b) Number of external messages received over
ations at virtualization factor 1. 10 iterations at virtualization factor 1.
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(c) Timeline showing events and activities over 10 iter- (d) Number of external messages received over
ations at virtualization factor 4. 10 iterations at virtualization factor 4.

Figure 6.12: Visualization of timeline and communication behavior for the 64x64x48 7-point
stencil computation at a latency of 100 us.
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The figures also reveal the possible main source of overhead when attempting to increase the
virtualization factor at small grainsizes. We noticed that the actual work done in an array block,
as represented by teal-colored activities, seemed to become dominated by miscellaneous work

done at the start of each iteration, represented by the yellow-colored activities.

(a) Histogram of activity counts over (b) Histogram of activity counts over
10 iterations for 64x64x48 7-point 10 iterations for 64x64x48 7-point
stencil computation at virtualization stencil computation at virtualization
factor 1. factor 2.

(c) Histogram of activity counts over (d) Histogram of activity counts over
10 iterations for 64x64x48 7-point 10 iterations for 256x256x192 7-point
stencil computation at virtualization stencil computation at virtualization
factor 4. factor 4.

(e) Histogram of activity counts over (f) Histogram of activity counts over
10 iterations for 256x256x192 7-point 10 iterations for 256x256x192 7-point
stencil computation at virtualization stencil computation at virtualization
factor 8. factor 16.

Figure 6.13: Histogram visualization of activity grain sizes for the 64x64x48 and the
256x256x192 7-point stencil computation experiments.

To bring clarity to the issue, we made use of the Histogram view of Projections to see how

activity grain sizes change as we increased our virtualization factors. The trends for large grain-
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size experiments from virtualization factors 4 to 16 as well as for small grainsize experiments
from virtualization factors 1 to 4 are shown in figure 6.13. The bars colored yellow represent
activities associated with some work conducted at the start of each iteration. As we can see,
the size of the computation overhead for these yellow-colored activities limit any benefit to
grainsize reduction for the computation work associated with the array blocks. Any perfor-
mance improvements to the code as far as grainsize of work is concerned will have to take these

activities into account.

Conclusion

This case study clearly demonstrates the wealth of performance information from new event
traces that we were able to create through simulation. Using just 7 actual runs on the parallel
machine, we were able to predict the performance trends for over 213 different configurations
without the need to consume resources on the same parallel machine. Additionally, we were
able to selectively produce detailed performance event traces for specific configurations after
the trends were revealed. In classical approaches to performance analysis, an analyst would
have two choices: generate performance event traces for each of the 213 configurations; or
execute the 213 configurations to acquire timing data for the trend and then run the desired
configurations again to acquire the detailed event traces. At very large processor scales, this can

potentially cost a lot of computing resources.

6.6 Analyzing Hypothetical Load Balancing Changes

Load Balance (see section 2.1.3) in an executing CHARM++ application is achieved by migrat-
ing CHARM++ objects from a more heavily loaded processor to a more lightly loaded processor
at execution time. The measurement based load balancing framework maintains computation
and communication load information involving the application’s object graph and passes this

information to a chosen load balancing strategy. The strategy module then makes a decision
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on object migration. The framework supports a number of pre-written load balancing strategies
while also providing an application developer a means to develop their own strategy that is most
appropriate for their application.

Figuring out how load balancing strategies impact the performance of a non-trivial applica-
tion like NAMD is an important aspect of performance analysis work. Load balancing strate-
gies can impact application performance significantly. Kalé et. al. [43] demonstrated how a
two-step approach of initially applying a greedy load balancing strategy to NAMD followed
by a gradual series of refinement strategies was partially responsible for allowing the simula-
tion to scale to 3,000 processors. Bhatele [5] showed the importance of incorporating physical
processor topology information into load balancing strategies for good application performance
at large scale. To understand the impact different load balancing strategies have on applica-
tion performance, one would normally have to re-execute the application in order to observe the
changes. Application re-execution at large-scales for testing the impact of different load balanc-
ing strategies can be extremely time-consuming, both from the job scheduling perspective and
the fact that execution has to reach the appropriate load balancing point at runtime. This could
be mitigated if the application’s state can be checkpointed to disk just prior to the load balancing
decision point. If the object-load information can also be captured and written to disk, it would
then be possible to short-cut the process to start execution and record performance information
from that checkpoint.

What-if experiments involving the application of different object load balancing strategies
require the BigSim simulator to be capable of simulating the execution of an activity associated
with a CHARM++ object on a possibly different processor than the one the activity was recorded
with. This capability is currently not available on BigSim. As a result, we have developed a
tool to manipulate the event dependency logs. The idea behind this tool is to modify the event
dependency logs such that event records associated with objects that would be mapped to a
different processor by a modified load balancing strategy would be moved from the source

processor’s event dependency log to the target processor’s. This allows the modified logs to be
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simulated by BigSim to achieve an effect as if the application were emulated with the modified
load balancing strategy.

To effectively generate modified logs as described above requires some automated way
of acquiring object-to-processor maps for different load balancing strategies given some fixed
object-load information. Manually determining such object-to-processor maps are simply in-
feasible for applications with very large numbers of migratable objects. Fortunately, per-object
load is available from the load balancing framework at any time in the application’s execution.
When invoking the centralized load balancer, this information can be written to disk. The load
balancing framework has the capability of reading per-object load information from the disk and
using that, along with the desired number of processors, as input to any load balancing strategy
module to produce object-to-processor mapping decisions. This capability is independent of

the application that produced the object load information in the first place.

6.6.1 Case Study: Simple Load Imbalance Benchmark

We will refer to this program as Simplelmbalance. The purpose of Simplelmbalance is to pro-
vide a baseline model for validating and quantifying the correctness and accuracy of the tech-
niques described in the thesis. As we will describe later, it has a clearly defined model of
execution which facilitates a clear understanding of performance expectations and performance
problem-injection.

Simplelmbalance is a CHARM++ application. In its most basic form, at the start of the
application, it will place 2 migratable computation objects on each processor. The number
of migratable computation objects used can be changed at runtime. The idea is to generate a
deliberate load imbalance by initially assigning a single unit of work to each object on half
the processors and 2 units of work to each object on the other half of the set of processors.
The assumption is Simplelmbalance will always be executed on an even number of processors.

The computation then proceeds for a user-specified £ number of iterations, each ending with
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a synchronization barrier. At the k/2th iteration, the code an opportunity for the runtime to
invoke load balancing based on the load balancing strategy selected at the start of the execution.
Figure 6.14 illustrates the basic execution structure of the benchmark as a time line with four

migratable objects per processor.

Iteration 0 Iteration 1

PEO

Barrier Barrier

Passage of Time

Figure 6.14: Illustration of object placement and execution of the basic Simplelmbalance appli-
cation.

When the application is executed with a “perfect” load balancing strategy like the GreedyLB
module distributed with the CHARM++ runtime system, the application is expected to demon-
strate a performance profile where the last half of the iterations would execute in three quarters
the time of the first half of the iterations. The performance profile would also be expected to
show much lower idle time as no processor would complete an iteration in half the time and be
forced to wait at a barrier for other processors. This profile is illustrated in figure 6.15.

Similarly, when the application is executed with a useless load balancing strategy, one ex-
pects a performance profile that is no different from when no load balancing strategy was em-
ployed. An example of such a load balancing strategy is simply moving objects from processor
P to processor P+ 1 modulo the number of processors. Such a strategy exists in the form of the
RotateLB module also distrubted with the runtime for test purposes. This serves as validation
in the sense that objects can observed as moved by the load balancing strategy but the overall

performance effect can be perfectly predicted.
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Iteration O Iteration 1
took 8 units of time now takes 6 units of time

PEO

PE1

Load Balancing Barrier
(eg. Greedy strategy)

Passage of Time

Figure 6.15: Illustration of object placement and execution of the Simplelmbalance application
with the GreedyLB load balancing strategy applied.

6.6.2 Validation With Simple Load Imbalance Benchmark
Methodology

We validated our technique on a small benchmark which shows simple imbalance properties
over a number of iterations k£ with every iteration separated by global barriers (see section
6.6.1). This imbalance property is simply that all processors hosts 2 objects each but the objects
on half the processors will be made to perform twice the work at each iteration. This initial
assignment of load to objects will not change throughout the benchmark’s execution. Load
balancing is invoked halfway at iteration k = 2. This baseline experiment helps us validate if
the object-to-processor maps produced by the load balancer strategy really does what it was
suppose to do. For example, the Greedy load balancing strategy is certain to balance the objects
such that the load across all processors become even. Meanwhile, a Rotate load balancing
strategy will simply migrate objects to the next processor. Either result can be observed easily

from the Projections-compatible event logs generated at simulation time.
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Results

Figures 6.16, 6.17 and 6.18 show the results with the baseline experiment emulated for 12
application processors with an emulation factor of one application processor to one physical
processor. Figure 6.16 shows the Projections timeline of the baseline experiment, displaying
all the performance characteristics described above. Figure 6.17 shows the Projections timeline
after applying the object-to-processor map generated by a Greedy load balancing strategy. One
clearly sees the intended result of applying the load balancing strategy. What is less clear is
that the results are based on real load information at the application’s emulation time. While
one can, given one’s understanding of this benchmark’s behavior, simply swap objects between
pairs of processors, the final result shown takes into account all minor variations in object load
at runtime. Figure 6.18 shows the Projections timeline after applying the object-to-processor

map generated by the toy Rotate load balancing strategy.
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Figure 6.16: Projections timeline showing the baseline performance profile of the benchmark
with deliberate load imbalance.

In addition to a visual inspection of the effects of the application of hypothetical load bal-
ancing strategies to the benchmark, we have also validated the effects on the measured time
of iterations. We conducted this validation using 100 Cray XTS5 processors of Kraken. The

experiments are all run over 10 iterations with the load balancing strategy invoked just before
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Figure 6.17: Projections timeline showing what happens if the Greedy load balancing strategy
is applied.

the 6'" iteration.

BigSim event dependency logs are recorded from emulated runs of two baseline benchmark
experiments using a dummy load balancing strategy: one with 2 objects per processor and
the second with 20 objects per processor. For each of these baseline experiments, we ran the

following experiment configurations:

1. Plain CHARM++ execution using the dummy load balancing strategy;

2. BigSim emulation using the greedy load balancing strategy without recording BigSim

event dependency logs;

3. Plain CHARM++ execution using the greedy load balancing strategy;

4. BigSim simulation with the dummy load balancing strategy using event dependency logs

recorded from the baseline experiment; and

5. BigSim simulation with the greedy load balancing strategy using the re-mapped event
dependency logs derived from the event dependency logs recorded from the baseline ex-

periment.
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Figure 6.18: Projections timeline showing what happens if the Rotate load balancing strategy is
applied.

% Difference from

2 objects per processor

20 objects per processor

BigSim Emulated Dummy Strategy

0.01%
0.63%

0.00%
0.88%

CHARM-++ Dummy Strategy

Table 6.2: Comparison of the Simplelmbalance benchmark average iteration times with a
dummy load balancing strategy on 100 processors.

We then compared the average iteration times after load balancing invocation between the
simulated and non-simulated runs. We also compared the average iteration times between the
BigSim emulated runs against the plain CHARM++ executions. Tables 6.2 and 6.3 summarize
the results for the use of a dummy load balancing strategy (no load balancing) and the use of
a greedy load balancing strategy respectively. The simulated runs predicted iteration times in-
distinguishable from the corresponding emulated runs. Meanwhile, the iteration times recorded

by the emulated runs are within 1% of the times recorded for plain CHARM++ executions. We

% Difference from

2 objects per processor

20 objects per processor

BigSim Emulated Greedy Strategy

CHARM++ Greedy Strategy

0.06%
0.57%

-0.37%
0.63%

Table 6.3: Comparison of the SimpleImbalance benchmark average iteration times with a

greedy load balancing strategy on 100 processors.

127




found some small perturbations in the timing of the iteration immediately after load balancing.
This may be because of the way the BigSim emulation generates dependency information and

will require further investigation.

Conclusions

This example employed a simple and easily verifiable benchmark that demonstrates the correct-
ness of our approach to testing different load balancing strategies for CHARM++ applications
through simulation. We were able to visually and numerically confirm the expected effects of
the changes through the event traces generated by the BigSim simulator. No analytical modeling
of the application itself was required. All dependency and object abstractions were encapsulated

by the CHARM++ language and runtime.

6.7 Future Work: Variations In Object-to-Processor
Mapping

The technique described in the preceeding section on load balancing strategy changes (see sec-
tion 6.6) can be extended to apply to events associated with objects that do not necessarily
move throughout the application’s execution but whose permanent object-to-processor place-
ment plays an important role in overall application performance. Kumar et. al. [49] described
just such a scenario in NAMD where significant performance improvement was gained if ob-
jects associated with the spatial decomposition component (“patches”) in NAMD were placed
in a manner that matches the Bluegene/L torus topology as much as possible.

We can also extend the technique to study what happens to an application’s performance

when it is executed on a different number of processors. There are three possibilities:

1. performance when running on fewer processors. This is useful when an analyst wants

to see if code or simulation parameter changes meant to enable better performance for
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higher processor counts would negatively impact performance at lower processor counts.
For the purposes of these what-if experiments, we assume the object decomposition does
not change when the application is run on fewer processors. Based on this assumption,
the number of objects in the recorded event dependency logs do not change. As a result,
some method of re-mapping them to a lower number of processors is needed. This could
be done by extracting a generalization of the algorithm used to initially place objects for
the application for a certain number of processors or the objects could be re-mapped by
the object-to-processor mapping produced by some load balancing strategy (see section

6.6) using the lower processor count.

. performance when running on more processors. These experiments would assume the
object decomposition will not change for the application when run on more processors.
Similar to the case where we study the application’s performance on fewer processors,
some method for re-mapping the objects in the event dependency logs will have to be

used.

. performance when running on an “infinite” number of processors. This a simple but use-
ful way to study the effects of the main computational critical path given a fixed object
decomposition of an application simulation. We then gain the ability to alter both com-
putation and communication parameters in the context of how the CHARM++ runtime
schedules events and observe the effects on the critical path. To achieve this effect, each

object is mapped on its own dedicated processor by the object-to-processor map.
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Chapter 7

Extending Scalability Techniques To Third
Party Tools

The scalability techniques presented in previous chapters allow effective performance analysis
to be employed for large system configurations, on scenarios that are typical in modern parallel
machines. Although they are based on the CHARM++ infrastructure, these techniques can also
benefit other tools that are able to import performance data made available by our instrumen-
tation capabilities. In this chapter, we show how the integration with external tools is made
possible in our environment, via an open interface in our data collection mechanism !. We
illustrate that capability with a concrete example, describing the relevant features of an inte-
gration between CHARM++ instrumentation and the TAU performance system. This example
clearly demonstrates the extensibility of our infrastructure and its applicability to other scalable

performance tools.

7.1 Performance Call-back (Event) Interface

How a parallel language system operationalizes events is critical to building an effective perfor-
mance framework. We use the term performance event to represent the execution of instrumen-
tation code associated with any of the above points for the purpose of making a performance
measurement. The CHARM++ performance framework implements performance events using

a call-back mechanism 2, whereby instrumentation in the runtime system’s code invokes any

IThis chapter is written with portions reprinted, with permission, from “Integrated Performance Views in
Charm ++: Projections Meets TAU” by Scott Biersdorff, Chee Wai Lee, Allen D. Malony, and Laxmikant V.
Kalé at The 38" International Conference on Parallel Processing (ICPP-2009), ©)2009 IEEE

’Implemented by Gengbin Zheng
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performance module (performance client) registered in the framework interested in the event.
The framework forwards basic default event information, such as the event ID and time of
occurrence, as well as other event-specific information, to clients.

A client, as a performance module, will also have access to internal runtime routines and
meta-data not normally available to user code. These runtime routines and meta-data might
then be used to derive more pertinent event-related information. Multiple clients can be used
on a given execution, according to the selections made in the command line.

The framework exposes the set of key runtime events as a base C++ class (Figure 7.1). A
new performance module like TAU (Figure 7.3) could inherit from this base class and imple-
ment methods for the interpretation and storage of information derived from individual runtime
events (we show a concrete example in the next section). The client module need not handle
every runtime event, merely the ones that are of interest to the module. The initialization of
the performance framework invokes client module initialization through statically determined
methods.

The call-back approach utilized by CHARM++ has several advantages. Foremost, it sepa-
rates concerns for performance event visibility from performance measurement. The call-back
mechanism defines a performance event interface, but does not mandate how measurements are
made. The ability to register different modules allows measurements to be configured for the
desired performance experiment. It also allows the available measurement capabilities to be
extended. Registering multiple modules allows measurement techniques to be simultaneously
applied.

It is interesting to note that a new measurement module can introduce additional require-
ments for event information. A call-back-based performance interface also allows CHARM++
developers to update the call-back implementation and/or runtime “performance support” li-

brary, when needed, without affecting the other measurement modules.
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// Base class of all tracing strategies.
class Trace {
// creation of message (s)
virtual void creation(envelope *, int epldx,

int num=1)

{}

virtual void creationMulticast (envelope x, int epldx,
int num=1,
int *pelist=NULL) {}

virtual void creationDone

int num=1) {}

(
virtual void beginExecute (envelope *) {}
virtual void beginExecute (CmiObjId *tid) {}
virtual void beginExecute (

int event,
int msgType, // message type
int ep,
int srcPe,
int ml,
CmiObjId* idx) // index

{1

virtual
virtual
virtual
virtual
virtual

}i

void
void
void
void
void

// event type defined in trace-common.h

// Charm++ entry point
// Which PE originated the call
// message size

endExecute (void) {}

beginIdle (double curWallTime) {}
endIdle (double curWallTime) {}
beginComputation (void) {}
endComputation (void) {}

Figure 7.1: Simplified fragment of framework base class. Reprinted, with permission, from
“Integrated Performance Views in Charm ++: Projections Meets TAU” by Scott Biersdorff,
Chee Wai Lee, Allen D. Malony, and Laxmikant V. Kalé at The 38!" International Conference
on Parallel Processing (ICPP-2009), (©)2009 IEEE.
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7.2 Integrating An External Performance Module

To demonstrate our capability of integration to external tools, we present a new instrumentation
module created in CHARM++ for the TAU performance system [70]. TAU is an integrated
parallel performance system providing support for instrumentation, measurement, analysis, and
visualization for scalable parallel applications. The measurement system is cross-platform and
provides both profiling and tracing support. In this particular experiment, the interest was in
exploring TAU’s parallel profiling feature.

The TAU’s profiling model is based on the notion that every “thread of execution” in the
parallel computation has an event stack that records the dynamic nesting of performance events
marking the begin/end of interesting execution regions for measurement. Performance data is
measured for events to reflect the exclusive performance (e.g., time) when the event was active
(e.g., time spent in a method). The event stack allows inclusive performance data to also be kept
(e.g., time spent in a method including time spent in nested method calls). For each event, TAU

can collect performance data for execution time, hardware counters, and other metrics.

7.2.1 TAU Profiling Integration

The problem of integrating TAU profiling can be seen as how to map the TAU profiling model
onto the existing CHARM++ runtime performance framework. TAU associates for each “thread
of execution” an event stack (logically an event tree), with a top-level event (root) which en-
closes all other events. In normal TAU use, the top-level event can be thought of as the main
routine of the program. In CHARM++, each parallel process executes the scheduler as the top-
level routine and the methods are called within this process. Given the performance events in the
CHARM++ performance framework, we might then see Figure 7.2 as a logical event transition
diagram which could be profiled in TAU.

Following this approach, the TAU performance module was patterned on the Projections

module to capture all method events. However, TAU requires a slightly different initialization

133



nested
methods

message available

Figure 7.2: CHARM++ runtime event transition. Reprinted, with permission, from “Integrated
Performance Views in Charm ++: Projections Meets TAU” by Scott Biersdorff, Chee Wai Lee,
Allen D. Malony, and Laxmikant V. Kalé at The 38" International Conference on Parallel Pro-
cessing (ICPP-2009), (©2009 IEEE.
to establish the scheduler creation as the top-level event. The state when the scheduler is active
and processing messages (“Scheduler RUN” in Figure 7.2) can be associated to the Main event
in the TAU profile. When no methods are executing and there are no messages to process
(“Scheduler IDLE”), performance data is associated with the Idle event. Method events appear
naturally nested under Main in a TAU profile.

The integration to the CHARM++ instrumentation model can be done by using the call-back
interface described in the previous section. The new performance module created for TAU

follows the scheme depicted in Figure 7.3. As expected, it inherits from the base Trace class

and provides the additional functionality needed for profiling.

7.2.2 Instrumentation Overhead Assessment

An important concern when using multiple instrumentation modules is the potential impact on
application performance. Ideally, the perturbation inserted by each module should be negligible.
This effect can be assessed with a simple benchmark program that measures module overhead
under different instrumentation conditions. Both CHARM++ and TAU have mechanisms to

control the degree of enabled instrumentation and it is important to evaluate how the overhead
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// TAU implements a performance module class
// inheriting from the base framework class.
class TraceTau : public Trace {
// Statically-determined method which is invoked by the
// framework at runtime initialization.
volid _createTraceTau (char x*argv)
{
// TAU initializes the events buffer to hold
//5000 different events
bzero (events, sizeof (void =) *5000);

//

// TAU creates a new performance module instance and
// attaches itself to the Charm++ tracing framework
CkpvInitialize (TraceTaux, _trace);

CkpvAccess (_trace) = new TraceTau(argv);

CkpvAccess (_traces)—>addTrace (CkpvAccess (_trace));

// Performance module constructor.

TraceTau: :TraceTau (char **xargv)

{
if (CkpvAccess (traceOnPe) == 0) return;
// TAU does more initialization, processes
// commandline arguments

//
TAU_PROFILER_CREATE (main, "Main", "", TAU_DEFAULT) ;
TAU_PROFILER_CREATE (idle, "Idle", "", TAU DEFAULT);

//

// TAU interprets Charm++ runtime events
// which are of interest to TAU.
void TraceTau: :beginExecute (envelope =xe)

{

/] ...
startEntryEvent (e->getEpIdx());
//

Figure 7.3: TAU integration with CHARM++ framework. Reprinted, with permission, from
“Integrated Performance Views in Charm ++: Projections Meets TAU” by Scott Biersdorff,
Chee Wai Lee, Allen D. Malony, and Laxmikant V. Kalé at The 38!" International Conference
on Parallel Processing (ICPP-2009), (©)2009 IEEE.
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No measurement module
CHARM++ fully optimized | 0.09
Null trace module loaded 0.44
TAU module
with [notrace] option 0.55
with selective instrumentation | 0.74
with fastest available timers | 1.03
with get_time_of _day() timers | 1.21

Projections module
with [notrace] option 0.49
with fastest available timers | 1.99

TAU and Projections modules
with fastest available timers | 2.52

Table 7.1: Overhead of performance modules (microseconds per event). Reprinted, with per-
mission, from “Integrated Performance Views in Charm ++: Projections Meets TAU” by Scott
Biersdorff, Chee Wai Lee, Allen D. Malony, and Laxmikant V. Kalé at The 38" International
Conference on Parallel Processing (ICPP-2009), (©)2009 IEEE.

changes with greater measurement accuracy.

Table 7.1 shows the results from the overhead tests on a Linux x86 cluster, using different
time bases and varied instrumentation level. CHARM++ allows the exclusion of entry events
from the tracing system by use of the [notrace] entry method attribute. TAU’s selective
instrumentation works by runtime selection. In either case, the performance framework call-
back routines are executed and they incur a small amount of overhead, as shown by the Null
trace module for the overhead when tracing framework is active but no events are actually being
measured. The table also shows the overhead when both the Projections and TAU modules are
enabled, which is accomplished by having each performance module called individually, and
thus results a greater amount of overhead. Projections and TAU have comparable overheads and
these are relatively small. The availability of event selection options can also have beneficial

effects in reducing overhead.
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7.2.3 Experimental Results On Current Machines

The newly integrated TAU module was used in a performance analysis of NAMD, as described
in [7]. In that study, conducted on two large existing machines and employing two distinct
molecular datasets, detailed performance data got collected by both Projections and TAU mod-
ules. It was possible to gain insight into application’s behavior via the overview, timeline and
time-profile views in Projections, as well as to produce profiles in TAU with breakdowns of the
execution time across the various code sections.

The study with NAMD also included a quantification of the overhead due to instrumentation.
For executions on TACC’s Ranger from 64 to 4096 processors, Figure 7.4 shows the impact of
the overhead for NAMD using both the TAU module and the Projections + summary module
(in each case the Projections trace buffer is set so that no overflow would occur while NAMD
was running). At large scale (4096 processors), where the granularity of work becomes small
enough, the modules incur a nontrivial amount of overhead. While 10% overhead is within the
range of most performance experimentation, further research could target overhead reduction

in the context of this framework.

7.3 Scalability Benefits Of Integration

Performance tool integration conducted in the manner described in this Chapter enables various
interesting possibilities. The first is the natural extension of any techniques employed by the
third-party tool to handle performance data from CHARM++ applications scalably. An example
would be the option to use Supermon daemons or an MRNet setup at job scheduling time for
scalable delivery of online data through the integrated TAU performance component instead of
routing the data through our own adaptive runtime as described in Chapter 5.

The second possibility is the application of any of the scalability techniques described in this

thesis to integrated third-party tools. Since the tools have access to the same parallel runtime
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Figure 7.4: Instrumentation overhead for TAU and Projections with NAMD running on Ranger.
Reprinted, with permission, from “Integrated Performance Views in Charm ++: Projections
Meets TAU” by Scott Biersdorff, Chee Wai Lee, Allen D. Malony, and Laxmikant V. Kalé at The
38" International Conference on Parallel Processing (ICPP-2009), (©)2009 IEEE.
infrastructure, information and data structures, they can choose to implement or use any of the
techniques described in previous chapters.

An additional possibility is the creation of a richer performance analysis scenario, compris-
ing the union of the capabilities from the individual modules. In a scenario such as the one in
our example with TAU integration, there are many complementary features from Projections
and TAU that one can choose to assess application performance. Some of these features may
be impossible to explore with a simple transfer of trace files between the different tools after
the execution is done (e.g. it would be unfeasible to apply TAU’s dynamic event throttling

mechanisms without having access to performance data in real time).
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Chapter 8

Conclusions

In this thesis, we have studied the various factors that affect the effectiveness of performance
tools when used to study applications scaled to large numbers of processors. We proceeded to
develop novel techniques to address and overcome some of these factors.

We developed a variety of tools and features to support new idioms for scalable perfor-
mance analysis. These tools include histograms to support grainsize distribution analysis, time
profiles and the Extrema Tool, which supports scalability in many recurring analysis idioms that
required analysts to pick extreme or interesting processors for detailed examination.

The principles behind the ideas developed in the Extrema Tool for scalable analysis idioms
were then applied to performance data volume reduction. When exercising those scalable anal-
ysis idioms that require detailed performance data, the need for high detail involved only a small
subset of processors. This subset included the interesting or extreme processors along with the
necessary context for each analysis idiom. As such, we developed an approach for the reduc-
tion of detailed performance event traces through the use of the k-Means clustering algorithm
to find equivalence classes of processor behavior. This required the identification and pruning
of dimensions of performance data that have low utility in characterizing processors, so that
the clustering algorithm can be effective. Without a priori information regarding the types of
performance problems we may encounter, the selection of the outlier and exemplar processors
appeared to be the best general option. We placed a strong emphasis on the use of detailed data
from outlier processors. We investigated the relative advantages of applying this approach on-

line, just after the application has completed its work but before the performance data is written
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to disk. We found that an environment that allowed interaction with the running application al-
lowed a more flexible approach to determining optimal parameters for the k-Means algorithm.
A low-overhead parallel implementation of the k-Means algorithm was developed to exploit the
available parallel machine scalably, in both memory and time.

We showed that online live analysis presented a different class of powerful idioms for scal-
able performance analysis. We developed a novel and scalable mechanism to support such
idioms. The adaptive runtime system of CHARM++ itself was deployed as a substrate for the
processing and delivery of live performance profile data from a running parallel application to
a remote client. We demonstrated that the use of this approached enabled online live analysis
capabilities at very low overhead costs up to 8,192 processors. We expect the approach to scale
to hundreds of thousands of processors with relative ease as the per-processor overhead of this
method is constant.

For performance analysis idioms requiring repeated large scale access to parallel machines,
we introduced simulation techniques to address the issues of time and resource consumption.
We developed a technique for repeated performance hypotheses testing via simulation to pro-
duce predicted but detailed performance information using far fewer processors. Thanks to the
general parallel messaging and computation dependency model implemented by the CHARM++
runtime system, we showed our ability to conduct hypotheses testing on both hardware and
software properties under the same framework. Other systems require separate hardware and
application-specific analytical models to achieve the same effect. We demonstrated these capa-
bilities through examples that varied messaging latency as well as object-based load balancing
strategies.

Finally, we showed the importance of a performance framework that allowed easy integra-
tion with third-party tools through a callback system. Through collaborative effort with the
developers of TAU, we demonstrated how scalable analysis idioms in TAU could be applied
directly to CHARM++ applications like NAMD. At the same time, we showed the potential for

TAU to exploit scalability features adopted in the Projections framework.
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The techniques developed in this work are already in use in tuning several production codes
on machines with tens of thousands of processors. They are directly applicable to MPI programs
via the adaptive MPI implementation that uses the same runtime infrastructure used in this work.
Further, most of the ideas can be applied to other MPI implementations as well, except those
that require the message-driven substrate, as in the case of live analysis. Undoubtedly, the
techniques need to be further extended as one gains experience with an ever-increasing number
of processors, running more complex, sophisticated and adaptive applications of the future. We

believe that a foundation for such scalable analysis has been provided in this work.
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