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MPI
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Global Arrays

Unified Parallel C
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BSP

High Performance Fortran

Chapel

There is no shortage of parallel programing models

Parallel Matlab

X10

NESL

HTA

DPJ
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Why so many?

• Each is good at something different

• Some aim for maximum performance, 

others emphasize productivity and effective abstractions

• Some models are especially well-suited for particular problem domains

• Cilk: state-space search

• Co-Array Fortran: linear algebra

• MapReduce: data mining



• Many models, coexisting happily
• Easy interoperation and reuse (especially with MPI)
• Choose right level of abstraction, based on 
performance requirements
• Shared resource management
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Related Work

• Symponents

• MPI+OpenMP, Extended OpenMP

• TPVM

• Fortran M

• Lots of serial multi-language systems, e.g. .NET



ParFUM: a Multiparadigm Library



ParFUM
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• Parallel Framework for Unstructured Meshing

• Goal: simplify common tasks for parallel unstructured meshing apps

• partitioning

• data distribution

• ghost generation and communication

• adaptivity

• collision detection

• etc.

• Implemented in Charm++ (message driven), AMPI (message passing), and 
MSA (shared memory)



ParFUM Architecture

Converse Messaging Interface

Ethernet Infiniband Blue Gene etc.

Charm++ Runtime

MSA AMPI

PartitioningAdaptivity Ghosts
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Charm RTS

• On each processor, there is a collection of parallel objects, each associated 
with a lightweight thread

• Incoming messages are placed in a queue

• A scheduler looks at the queue and chooses which object will run next
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Charm RTS

• Virtualization: overdecomposition (many objects per processor) 

• overlap of communication and computation

• control over working set size by varying level of decomposition

• Common resource management and instrumentation

• Load balancing based on object migration
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Example Application: 
Spacetime Discontinuous Galerkin Mesh



Typical 1D Finite Element Code
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Spacetime Discontinuous Galerkin Code
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SDG Code Structure
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Partition and Distribute Mesh

Combine Results
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Incremental Adaptivity
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Example: edge bisection 
on a processor boundary



Incremental Adaptivity

18

Goal State



Incremental Adaptivity
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Lock local neighbors, request 
bisect from neighbor



Incremental Adaptivity
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Receive request, lock local
elements



Incremental Adaptivity
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Example: edge bisection 
on a processor boundary



Performance



Benchmarking

• Unfortunately, existing benchmark suites do not lend themselves well to testing 
multiparadigm systems

• too simple

• often designed with one particular paradigm in mind

• What are good examples of very small, realistic benchmarks for which a 
multiparadigm approach makes sense?

• Since I don’t have benchmarks, I will present some results from the SDG 
application
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Summary

• Multiparadigm programs potentially offer advantages in terms of level of 
abstraction, compatibility, and reuse

• Modules written using different parallel models can be effectively combined

• Application performance in ParFUM has been good, but still need better 
multiparadigm benchmarking to identify and quantify overheads

• Number of models available when using Charm is still limited
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Virtualization and Cache Effects
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A data distribution problem

After initial partitioning, we 
need to determine which 
boundary elements must be 
exchanged.
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A data distribution problem

After initial partitioning, we 
need to determine which 
boundary elements must be 
exchanged.

What we would like: 
an easily accessible 
global table to look 
up shared edges
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What is MSA?

Idea: shared arrays, where only one type of access
         is allowed at a time

Access type is controlled by the array’s phase

Phases include:
read-only
write-by-one
accumulate
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Read-only
mode



Write-by-one
mode

one thread could 
write to many 
elements

note:
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Accumulate
mode

accumulation
operator must be
associative and
commutative

note:
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Distributed MSA 
Hash Table

Partitioned Mesh
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Each shared 
edge is hashed
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Entries are added to the
table in accumulate mode
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Now elements which 
collide in the table 
probably share an edge
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