
c© 2008 Sayantan Chakravorty

A FAULT TOLERANCE PROTOCOL FOR FAST RECOVERY

BY

SAYANTAN CHAKRAVORTY

B. Tech., Indian Institute of Technology, Kharagpur, 2002
M. S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Professor Josep Torrellas
Professor Yuanyuan Zhou
Professor Indranil Gupta
Professor Keshav K. Pingali, University of Texas at Austin

Abstract

Large machines with tens or even hundreds of thousands of processors are cur-

rently in use. As the number of components increases, the mean time between

failure will decrease further. Fault tolerance is an important issue for these and

the even larger machines of the future. This is borne out by the significant

amount of work in the field of fault tolerance for parallel computing. However,

recovery-time after a crash in all current fault tolerance protocols is no smaller

than the time between the last checkpoint and the crash. This wastes valuable

computation time as all the remaining processors wait for the crashed processors

to recover.

This thesis presents research aimed at developing a fault tolerant protocol

that is relevant in the context of parallel computing and provides fast restarts.

We propose to combine the ideas of message logging and object based virtu-

alization. We leverage the facts that message logging based protocols do not

require all processors to rollback when one processor crashes and that object

based virtualization allows work to be moved from one processor to another.

We develop a message logging protocol that operates in conjunction with ob-

ject based virtualization. We evaluate and study the implementation of our

protocol in the Charm++/AMPI run-time. We use benchmarks and real world

applications to investigate and improve the performance of different aspects of

our protocol. We also modify the load balancing framework of the Charm++

run-time to work with the message logging protocol. We show that in the pres-

ii

ence of faults, an application using our fault tolerance protocol takes less time

to complete than a traditional checkpoint based protocol.

iii

To Ma and Baba

iv

Acknowledgments

I would like to thank my advisor Prof. L. V. Kalé for his encouragement,

guidance and patience without which this thesis would have not been possible.

His willingness to have long discussions, even in the middle of the busiest day,

has helped me and boosted my morale no end. I would also like to thank

my dissertation committee Prof. Indranil Gupta, Prof. Keshav Pingali, Prof.

Josep Torrellas and Prof. Yuanyuan Zhou for their very helpful suggestions and

advice.

This thesis builds on a large body of work by current and former members

of the Parallel Programming Laboratory. I am very grateful to Gengbin Zheng

and Orion S. Lawlor for their insights and suggestions that helped me out

of many a difficult corner. Gengbin has been my tutor in the dark art of

debugging parallel programs. Several other members have been of great help

by being sounding boards for my fanciful ideas, proof reading papers and acting

as another pair of eyes in search of bugs. I would like to thank, in no certain

order, Chee Wai Lee, Greg Koenig, Terry Wilmarth, Eric Bohm, Sameer Kumar,

Vikas Mehta, Filippo Gioachin, Celso Mendes, Chao Huang, Tarun Agarwal,

Yogesh Mehta, Nilesh Choudhury, Amit Sharma, David Kunzman, Isaac Dooley,

Abhinav Bhatele, Aaron Becker, Pritish Jetley and Lukasz Wesolowski. They

have been excellent company in the lab as well as on many an eating and

drinking expedition. Eric and Terry are owed a particular debt for introducing

me to a wider variety of beers than I dreamt existed. Chee Wai has also been

v

a fellow adventurer in search of ever newer cuisines and comedies.

Graduate school was enlivened by a number of fellow travellers. My old

room-mates, Rishi Sinha and Smruti Ranjan Sarangi, were always game for

a spirited discussion about anything under the sun. I would like to thank

Rabin Patra, Devapriya Mallick, Saurabh Prasad, Varij, Nikhil Singh, Swagata

Nimaiyar and Divya Chandrasekhar for all the good times.

My parents have been a constant source of support and strength during my

work on this thesis. They have seen me through the bad days and laughed with

me during the good days. Dad’s wakeup calls from half way across the world

and Mom’s emailed recipes have all greatly helped me along the way. Their

responsibility for this thesis extends further back with them never discouraging

my incessant whys and always encouraging me to think for myself. This would

never even have started without them.

vi

Table of Contents

List of Tables . x

List of Figures . xii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Thesis Objectives . 4
1.3 Thesis Organization . 6

Chapter 2 Related Work . 8
2.1 Checkpoint Based Protocols . 8
2.2 Message Logging . 12

2.2.1 Pessimistic Message Logging 14
2.2.2 Optimistic Message Logging 15
2.2.3 Causal Message Logging 16

2.3 Fault Tolerance Support for MPI 16

Chapter 3 Object Based Virtualization 18
3.1 Charm++ . 19
3.2 Adaptive MPI . 20

Chapter 4 Combining Message Logging and Object Virtualiza-
tion . 22
4.1 Message Logging Protocol . 24

4.1.1 Remote Mode . 27
4.1.2 Local Mode . 30

4.2 Checkpoint Protocol . 32
4.3 Restart Protocol . 35
4.4 Proof of Correctness . 39

Chapter 5 Multiple Simultaneous Failures 47
5.1 Challenges and Solutions . 47

5.1.1 Missing Message Logs 48
5.1.2 Missing Message Meta-data 51

5.2 Reliability Improvement Analysis 56
5.3 Proof of Correctness . 60

vii

Chapter 6 Fast Restart . 65
6.1 Analysis . 69

Chapter 7 Experimental Results 74
7.1 Restart Performance . 75
7.2 Application Studies . 80
7.3 Protocol Overhead for Different Application Granularity 89
7.4 Optimizations and their Effects on Application Performance . . 94

7.4.1 Fine Grained Application 95
7.4.2 Coarse Grained Application 109

Chapter 8 Load Balancing With Message Logging 115
8.1 Need for Load Balancing Along With Fast Restart 115
8.2 Existing Load Balancing . 118
8.3 Challenges in Merging Load Balancing and Message Logging . . 123

8.3.1 Reliability . 123
8.3.2 Crashes During the Load Balancing Step 126
8.3.3 Load Balancing and Fast Recovery 129

8.4 Fault Tolerant Load Balancing 132
8.4.1 Modified Load Balancing Step 133
8.4.2 Message Logging . 137

Chapter 9 Experimental Evaluation of Protocol With Load
Balancing . 141
9.1 Load Balancing Without Faults 141
9.2 Load Balancing After Faults . 145

9.2.1 Uniform Load . 145
9.2.2 Non-uniform Load . 148

9.3 Comparing Performance With a Checkpoint Based Protocol . . 153

Chapter 10 Memory Overhead 160

Chapter 11 Proactive Fault Tolerance 167
11.1 Fault Tolerance Strategy . 169

11.1.1 Evacuation of Charm++ Objects 169
11.1.2 Support for Collective Operations in the Presence of Fault

Warnings . 177
11.1.3 Processor Evacuation in AMPI 179

11.2 Experimental Results . 181
11.2.1 Response Time Assessment 181
11.2.2 Overall Application Performance 184

Chapter 12 Conclusions and Future Work 190
12.1 Limitations . 191
12.2 Future Work . 193

viii

References . 196

Curriculum Vitae . 202

ix

List of Tables

7.1 Comparison of restart performances on 16 processors 75
7.2 The exact time spent in different phases of the restart protocol

for Figure 7.1. The basic restart protocol was run with 1 virtual
processor per processor. The fast restart protocol shows times
for 2,4,8 and 16 virtual processors per processor. 76

7.3 Compares the total time and per message time spent in the local
mode of the message logging protocol for different local message
buffer sizes and time out durations. These times pertain to a
30 iteration run. The idle time for the different values are also
shown. 98

9.1 The measured average iteration time for the AMPI 7-point 3D
stencil application on 32 processors with uniform load, non-uniform
load without load balancing and non-uniform load with dynamic
runtime load balancing. The calculated ideal average iteration
time for the non-uniform load is also shown. 143

9.2 Compares the performance of the 3D stencil application during
three different phases of the run for four different cases: before
crash, after the recovery from the crash but before the next check-
point/load balancing step and after the checkpoint / load balanc-
ing step following recovery . 147

9.3 Compares the performance of the 3D stencil application for four
different cases during three different phases of the run: before
crash (iteration 100 to crash), after the recovery from the crash
but before the next checkpoint/load balancing step (crash to it-
eration 200) and after the checkpoint / load balancing step fol-
lowing recovery (iteration 200 to 300). 151

10.1 Compares the current memory consumption at different points
in the checkpoint protocol for two different checkpoint steps on
the same processor. The peak memory usage during the first
step is also the maximum memory consumption during the run.
The second run shows memory consumption for a checkpoint step
whose maximum usage is less than the peak. 162

x

11.1 Evacuation time for a 1503 Sweep3d problem on different num-
bers of processors . 184

xi

List of Figures

2.1 Orphan message in an uncoordinated checkpoint 9
2.2 A simple example of a generic message log based fault tolerance

protocol . 13

3.1 The user and system views of an application in Charm++ . . . 18

4.1 Protocol data added to a Charm++ message 25
4.2 Protocol data added to a Charm++ object 26
4.3 Remote mode of the message logging protocol 28
4.4 Messages in the local mode of the message logging protocol . . . 30
4.5 Messages in the checkpoint protocol 33
4.6 Messages before a crash . 36
4.7 Messages during a restart . 37
4.8 A special case for the restart protocol. 38

5.1 Object γ on processor H sends a message to δ on processor I.
After that processor H takes a checkpoint and then crashes. This
is Stage 1 of the problem of lost message logs which occurs when
two processors crash within a short time of each other. Figure
5.2 contains the remaining two stages. 49

5.2 Illustrates the problem of lost message logs faced by the simple
message logging protocol when two processors crash within a
short time of each other . 50

5.3 Stage 1 of the problem of lost message data which occurs when
two processors crash within a short time of each other. Figure
5.4 contains the remaining two stages 52

5.4 Illustrates the problem of lost meta-data for regenerated mes-
sages faced by the simple message logging protocol when two
processors crash close to each other 53

5.5 The modified version of the remote protocol designed to deal with
multiple failures . 55

xii

5.6 The probability of failure for runs without and with our fault
tolerance protocol for different values of Mean time between fail-
ures(MTBF): 5,20,50 years. The probability of failure is plotted
against the numbers of processors. R (runtime without fault
tolerance)=400. R′(runtime with fault tolerance)=1200.t(time
between checkpoints)=.5hours. 58

5.7 Probability of failure of runs with our fault tolerance protocol, on
different numbers of processors, for different values of t(the max-
imum time between two checkpoints). The execution time R′ is
1200 hours and the MTBF for individual processors is 20 years. 59

6.1 Examples of problems faced while trying to parallelize restart by
moving objects from one processor to another. 66

6.2 Messaging when processor C sends object ε to restart on proces-
sor E . 68

6.3 Compares the worst case performance of the checkpointing pro-
tocol and our message logging protocol for different ratios of over-
head (r) of the message logging protocol. The y-axis plots the

total execution time normalized by to(1 +
d

c
). The x-axis plots

the mean time between failures (m). The execution time for
the message logging protocol with values of overhead 0%, 10%,
20%,50%,100% is shown. 71

7.1 Different phases of the Basic and Fast restart protocols. The
basic protocol was run with 1 virtual processor per processor.
The fast restart protocol shows the times for 2,4,8 and 16 virtual
processors per processor. 75

7.2 The Recovery time for the Basic and Fast restart protocols for dif-
ferent time durations between the crash and the previous check-
point. 79

7.3 Performance of the MG class B benchmark. The AMPI FT values
are shown for different numbers of vp per processor. 82

7.4 Performance of the SP class B benchmark. 83
7.5 Performance of the CG class B benchmark. The AMPI FT values

are shown for different numbers of vp per processor. 84
7.6 Performance of the LU class B benchmark. The AMPI FT values

are shown for different numbers of vp per processor. 85
7.7 Break up of the execution time in the case of AMPI and AMPI-

FT relative to the total AMPI runtime for MG on 32 processors.
We use the number of virtual processors that was the best for
both runs. The number of virtual processors per processor for
AMPI was 1, whereas it was 4 for AMPI-FT. 87

xiii

7.8 Break up of the execution time in the case of AMPI and AMPI-
FT relative to the total AMPI runtime for LU on 32 proces-
sors.We use the number of virtual processors that was the best
for both runs. The number of virtual processors per processor
for AMPI was 1, whereas it was 2 for AMPI-FT. 88

7.9 Iteration time against granularity for AMPI and AMPI-FT with
8 virtual processors on 8 physical processors 90

7.10 Iteration time against granularity for AMPI and AMPI-FT with
32 virtual processors on 8 physical processors 92

7.11 Iteration time against granularity for AMPI, AMPI-FT and AMPI-
FT-combining with 32 virtual processors on 8 physical processors 93

7.12 The average iteration time for the BUTANE molecular system
in leanMD on 16 processors. We vary the number of message
meta-data buffered as well as the time-out for the buffer. 97

7.13 The total time spent in different parts of the message logging
protocol for different values of local buffer size and time out du-
ration. LB refers to buffer size for local messages, T refers to the
time out duration. 100

7.14 The average iteration time for the BUTANE molecular system
on 16 processors with at most 4 remote protocol messages being
combined into one protocol message. We vary the number of
local messages being buffered as well as the time-out. 101

7.15 The average iteration time for the BUTANE molecular system
on 16 processors with at most 8 remote protocol messages being
combined into one protocol message. We vary the number of
local messages being buffered as well as the time-out. 103

7.16 The average iteration time for the BUTANE molecular system
on 16 processors with at most 16 remote protocol messages being
combined into one protocol message. We vary the number of local
messages being buffered as well as the time-out. 105

7.17 The average iteration time for the BUTANE molecular system on
16 processors with varying values of RB and time-out(T). There
is no local buffering (LB = 1). 106

7.18 The total idle time as well as the total time spent in different
parts of the message logging protocol for different values of re-
mote buffer size, local buffer size and time out duration. 107

7.19 The average iteration time for the HCA GRP SHAKE molecular
system on 256 processors. We vary the number of local messages
being buffered, the number of remote messages being buffered as
well as the time-out. 110

7.20 The total idle time as well as the time spent in different parts of
the message logging protocol for different values of LB, RB and
T during 10 timesteps of HCA GRP SHAKE 112

xiv

8.1 Iteration times for the 7-point stencil before and after a restart
for both the basic and fast restart protocols 116

8.2 Progress of the 7 point 3D stencil application with both the basic
and fast restart protocols. It shows that though the fast restart
protocol shows faster recovery, it makes slower progress after the
recovery. 117

8.3 The interactions between Charm++ objects, LBManager and
Central LB within a processor. 120

8.4 Messages exchanged during load balancing among processors . . 121
8.5 Illustrates the reliability created by migrating objects. Object α

migrates from processor A to processor C 124
8.6 Object α is migrated from processor A to C during load balanc-

ing. Processor A crashes immediately after that. 127
8.7 Processor C crashes during a load balancing step. However, pro-

cessor E has already received a migrate message telling it to ex-
pect object β. 130

8.8 During the fast recovery of processor C, objects β and γ are
distributed to processors A and B. As a result processor E is left
waiting for object β . 132

8.9 The messages involved in migrating an object during the load
balancing step . 135

8.10 Processor C is sending objects α and β away, but crashes in the
middle . 138

8.11 Recovery of processor C, after it crashed during the migration of
objects α and β. 139

9.1 Progress of the AMPI 7-point 3D stencil application on 32 proces-
sors with uniform load, non-uniform load without load balancing
and non-uniform load with load balancing. There are 512 virtual
processors in all three cases. 142

9.2 Progress of the AMPI 7-point 3D stencil application when faced
with a fault under three different conditions: basic restart with-
out load balancing, fast restart without load balancing, fast restart
with load balancing. The experiments were run with 256 uni-
formly loaded virtual processors on 32 processors. 146

9.3 Progress of the 7 point 3D AMPI stencil application with 512
non-uniformly loaded virtual processors on 32 processors of ura-
nium under three different conditions: fast restart with and with-
out load balancing and basic restart without load balancing. . . 149

9.4 Progress of the 7 point 3D AMPI stencil application with 512
non-uniformly loaded virtual processors on 32 processors of ura-
nium under three different conditions: fast restart with and with-
out load balancing and basic restart without load balancing. . . 151

xv

9.5 Compare the progress of a 128 processor 2D 5 point Charm++
stencil program when run using the fast restart message logging
protocol along with load balancing against while using an in-
memory checkpoint based protocol. 155

9.6 Compare the progress of a 512 processor 2D 5 point Charm++
stencil program when run using the fast restart message logging
protocol along with load balancing against while using an in-
memory checkpoint based protocol. 157

11.1 Message being sent from object β to object α. Object α exists
on processor C, whereas its home is on processor B. Processor A
on which object β exists does not know where α exists. 170

11.2 Message from object Y to X while X migrates from processor C
to D. 171

11.3 Message from object β to object α can become missing once
processor B, the home of α is evacuated and then crashes. . . . 172

11.4 Messages exchanged when processor E is being evacuated. . . . 174
11.5 The function to calculate the index-to-home mapping 175
11.6 Rearranging of the reduction tree, when processor 1 receives a

fault warning. 178
11.7 Processor evacuation time for MPI 5-point stencil calculation . . 183
11.8 5-point stencil with 288MB of data on 8 processors 185
11.9 1503 Sweep3d problem on 32 processors 186
11.10Utilization per processor for the 1503 Sweep3d on 32 processors. 187

xvi

Chapter 1

Introduction

Massively parallel systems with tens or hundreds of thousands of processors,

such as ASCI-Purple, Red Storm and Bluegene/L, are being used for scientific

computation. More powerful machines with even larger numbers of processors

are being planned and designed. Fault tolerance is important for such large

machines. In this thesis, we present a fault tolerance protocol that provides fast

recovery from a processor crash. We optimize the basic protocol in various ways

to reduce the associated overhead. We evaluate the effects of the optimizations

on applications with different characteristics. We also extend our protocol such

that it can work along with a dynamic runtime load balancing framework. This

lets an application return to optimal performance after a processor failure and

recovery.

1.1 Motivation

Scientific computing shows a definite trend towards systems with hundreds of

thousands of processors. Many of these systems, built with off-the-shelf compo-

nents, are likely to suffer from frequent partial failures. Since existing machines

already experience failure every few hours [26], future larger machines might

have an even smaller mean time between failure (MTBF). Therefore, any ap-

plication running for a significant amount of time on these machines will have

to tolerate faults. In fact, applications running on the full Bluegene/L machine

1

have already faced this problem and have had to incorporate fault tolerance in

the application itself to run for long durations on the whole machine [31].

As we shall discuss in Chapter 2, there is a rich set of existing fault tolerance

solutions for parallel systems. Some solutions rely on redundancy to provide

fault tolerance, such as triple modular redundancy. However, these solutions

waste a large fraction of computation power,
2

3
in the case of triple modular re-

dundancy, even when there are no faults. This extremely high overhead makes

redundancy based solutions unsuitable for high performance computing appli-

cations where performance is a very important criterion. In almost all other

schemes, each processor in an application periodically saves its state (referred

to as the processor’s checkpoint) to stable storage. Stable storage could be a

parallel file system or even the local disk of another processor. After a proces-

sor crashes its state is recovered from a previous checkpoint and all the work on

the crashed processor since the previous checkpoint is redone on one processor.

So for all these protocols, the time taken for recovery is no less than the time

between the previous checkpoint and the crash. We aim to develop a protocol

that reduces the recovery time to less than the time between the crash and the

previous checkpoint. Such a fast recovery protocol would yield a number of

benefits:

• Faster restarts allow us to reduce the overall execution time for an appli-

cation, when faced with faults. Of course, this depends on the protocol’s

overhead not cancelling out the benefits of fast restart.

• For most existing protocols, the execution time for an application increases

sharply as the fault frequency approaches the checkpoint frequency. This

happens because most of the time is spent recovering from faults and

very little actual progress is made. On the other hand a fast restart

2

protocol reduces the amount of time spent in the recovery stage and frees

up more time for actually driving the application forward. This allows

the application to make progress even when the frequency of faults meets

or even exceeds the checkpoint frequency.

• This also means that for a given fault frequency, a fast restart protocol

can make progress at the same rate as existing protocols with a higher

interval between checkpoints. This helps reduce the total execution time

by lowering the amount of time spent checkpointing.

Is it possible to recover faster than the time between the last checkpoint

and the crash ? If a processor took a certain amount of time to do a par-

ticular amount of work before the crash, it will take about the same amount

of time to redo it again after the crash. There is no certain way of lowering

the recovery time without reducing the amount of work done by the recovering

processor. Therefore, the only effective way of speeding up the recovery of a

crashed processor is to parallelize the recovery by distributing its work among

other processors. However, if the other processors are also rolled back to their

previous checkpoints and are busy re-executing, distributing work to them is not

going to speed up the restart overall. In such a situation distributing work to

them would in fact slow down the restart since the other processors would have

more work to complete during recovery. This means that an effective fast restart

protocol should never roll back all processors to their earlier checkpoints. Only

the crashed processors should be rolled back to their previous checkpoints. This

is a vital requirement to enable other processors to help speed up the recovery

of a crashed processor.

Moreover, we observed that many scientific parallel applications are tightly

coupled. When a processor crashes, some of the other processors, if not all, will

3

soon stop making progress as they wait for the crashed processor to recover.

These stalled processors could be used to speed up the recovery of the crashed

processor by distributing its work among them. However, the advantage of

parallelizing the recovery is not restricted only to tightly coupled applications.

Even for loosely coupled applications, the recovery time can be reduced by

parallelizing the work of the recovering processor.

Avoiding rollback on all processors has other advantages as well. When a

processor crashes in a weakly coupled application, some processors can con-

tinue to execute and make progress while the crashed processor recovers. If

we roll back all the processors, not only is a large amount of work on all pro-

cessors needlessly redone, but also any chance for the application to progress

during the recovery is completely wiped out. Unlike weakly coupled applica-

tions, strongly coupled applications cannot make significant progress while the

crashed processor is recovering. However, it is still useful to avoid rollback

on all the processors. Processors save power by not re-executing parts of the

application needlessly. This is especially important when one out of a large

number (say 10000) nodes has failed. Moreover, with most processors idling,

the recovering processor has the interconnect network as well as the file system

to itself, thus aiding its faster recovery. It also assures that any data that the

recovering processor requests from others is supplied to it quickly. Therefore,

we developed a fast restart protocol that does not roll back all processors when

one processor crashes.

1.2 Thesis Objectives

The thesis focuses on the development, implementation and evaluation of a

protocol that allows a crashed processor to recover much faster than the time

4

between the crash and the processor’s previous checkpoint and without adding

significant overhead to the normal no-fault execution of an application. We

combine the ideas of object-based virtualization and message logging to create

such a protocol. Apart from a fast restart, the protocol has the additional

property that it never rolls back a processor that has not crashed. We do not

assume the existence of an idealized ‘stable’ storage that never goes down. Our

protocol works within this restriction to handle common failure modes very

efficiently, and does not aim for absolute tolerance of all failure scenarios. In

particular, the protocol tolerates all single processor failures and most multiple

simultaneous processor failures. We increase the overall reliability of a system

made out of unreliable components.

As we will show in Chapter 7, a fast restart after a crash can cause a load

imbalance among the processors. This load imbalance needs to be rectified to

retain the performance advantage of fast recovery. Object based virtualization

is helpful for this problem as well since it enables runtime measurement-based

dynamic load balancing among processors. Load balancing improves the par-

allel performance of a number of different applications, particularly on large

parallel machines. It is particularly useful for the fast recovery protocol since

it can redistribute work after a fast restart. However, as we show later, load

balancing negatively affects the reliability of our basic message logging protocol.

We augment our message logging protocol so that load balancing does not com-

promise its reliability while still balancing the work load among the processors

in an application.

We implement our protocol by modifying the Charm++/AMPI runtime

system. Object based virtualization is the central idea behind the Charm++

runtime system. Since AMPI is a MPI implementation on top of the Charm++

runtime system, our protocol is available to most MPI applications. We evaluate

5

the benefits afforded by our fast restart protocol. For both Charm++ and

AMPI applications, we compare the recovery time for the fast restart protocol

to the recovery time for those of other fault tolerance protocols such as log-based

protocols without fast restart and checkpoint-based methods. The effect of load

balancing on the performance of our protocol is also studied. We also measure

the overheads introduced by our protocol and quantify the performance penalty

of our protocol for various classes of applications. We characterize the type of

applications that are most suitable to our protocol.

1.3 Thesis Organization

Chapter 2 discusses the existing literature for fault tolerance protocols. We

evaluate the extent to which existing protocols match the objectives set forth in

the previous section. Chapter 3 describes the idea of object-based virtualization

and the Charm++ run-time system that implements it. We also describe

Adaptive MPI which is an implementation of MPI on top of the Charm++

run-time.

Chapter 4 describes the basic version of our fault tolerance protocol that

combines message logging and object-based virtualization. We show that sim-

ple message logging protocols do not work in the presence of virtualization,

and develop a new protocol that correctly handles the scenarios arising from

virtualization. We also provide a proof of correctness for the basic protocol.

Chapter 5 talks about the modifications to the basic protocol that are nec-

essary to support recovery from multiple simultaneous faults. It includes an

analysis of the improved reliability provided by our protocol along with a proof.

Chapter 6 presents the fast restart protocol that can speed up recovery from a

crash. It also contains a simple mathematical model to help an user predict if

6

the fast recovery protocol will be useful for a particular application on a certain

machine.

Chapter 7 empirically evaluates the protocol as described till Chapter 6. It

shows that the fast restart protocol indeed speeds up the recovery of an applica-

tion from a processor crash. We also investigate the performance penalty paid

by different applications while using our protocol. We also apply optimizations

to our message logging protocol that help us reduce the performance penalty

paid by different applications while using our protocol.

Chapter 8 demonstrates the need for using load balancing along with our

fast restart protocol. We describe the existing load balancing framework in

the Charm++ run-time system and how it was modified to work along with

message logging. Chapter 9 evaluates the effectiveness of load balancing in

different situations. We also compare the performance of our protocol with

that of a traditional checkpoint based protocol. Chapter 9 also includes an

evaluation of the memory overhead and optimizations to reduce the memory

overhead significantly.

Chapter 11 examines an approach to evacuate a processor where a crash

might be imminent. It describes the strategy and the changes to the Charm++

run-time system required to implement it. Experimental results to evaluate the

effectiveness of our protocol are also included.

Chapter 12 summarizes the thesis and highlights the primary contributions.

It also points out limitations in our work. Future work that might reduce these

limitations is also discussed.

7

Chapter 2

Related Work

The existing fault tolerance techniques for parallel systems can be divided into

two broad categories: checkpoint-based and log-based recovery protocols [22].

There are a number of variations within both categories. All the variations have

different pros and cons for our target of providing fast restarts by not rolling

back all processors in case of a processor crash.

2.1 Checkpoint Based Protocols

All checkpoint based protocols periodically save the state of a computation to

stable storage. After a crash, the computation is restarted from one of the

previously saved states. This simple description of checkpoint based protocols

belies the fact that the processors in a parallel application need to coordinate to

determine the state of the computation at a point in time. The major variants

of checkpoint based protocols differ on the degree of coordination between all

the processors while taking a checkpoint. There are three major categories of

checkpoint based protocols:

• There is no coordination among processors before saving the state of the

application in the case of uncoordinated checkpointing methods. Each

processor saves its state independently of the other processors. The lack

of coordination means that checkpoints are fast. Each processor can take

its checkpoint when it is most convenient for it (for example, when the

8

state of the process is small [51]).

Processor A

Processor B

M
essage m

Checkpoint

Crash

(a) Before crash

Processor A

Processor B

M
essage m

Checkpoint

m becomes an
Orphan

(b) After crash during recovery

Figure 2.1: Orphan message in an uncoordinated checkpoint

However, uncoordinated checkpointing is usually susceptible to rollback

propagation during recovery. Rollback propagation is caused by orphan

messages generated while recovering from a crash. A message is called an

orphan when the global state of the computation is such that the mes-

sage’s receiver has received the message but its sender has not sent it.

Figure 2.1 shows an example of an orphan message. In Figure 2.1(a) pro-

cessor A sends message m to processor B. Processor A checkpoints before

sending m whereas processor B checkpoints after receiving m. Shortly

thereafter, processor A crashes. The two processors are rolled back to

their previous checkpoints. At this state of the computation, processor A

9

has not sent m but B has received m. Thus message m ends up as an

orphan. Such a global state is said to be inconsistent and can not be used

as the starting point of a recovery. If we were to start recovery from this

global state, processor A would resend message m and processor B would

end up processing it again. Thus, processor B would end up processing

message m twice, possibly leading to erroneous results. For a correct re-

covery, processor B needs to be rolled back to an earlier checkpoint where

it has not yet received message m. Of course, rolling back the receiver

might make it necessary to rollback other processors, thereby propagating

the rollback. Thus uncoordinated checkpoint-based methods not only roll

back all processors to previous checkpoints, but the rollback is potentially

unbounded as well. This type of recovery makes uncoordinated check-

pointing unsuitable to our goal of speeding up the restart time of failed

processors.

• All the processors in a computation coordinate to avoid orphan messages

and save a globally consistent state in coordinated checkpointing schemes.

In one of the simplest coordination schemes all processors stop sending

messages and wait for all previously sent messages to be received. Once

all such messages have been received, all the processors save their state to

form a consistent checkpoint [50]. Since there are no messages in transit

during a checkpoint, it is guaranteed not to produce any orphan mes-

sages. A more efficient non-blocking scheme is Chandy-Lamport’s famous

distributed snapshot algorithm [18]. The central idea behind this algo-

rithm is the observation that orphan messages can be avoided by storing

the messages in transit as a part of the global state of the computation.

The coordination mechanism is used to identify exactly which messages

10

are in transit during a particular checkpoint. Thus, unlike uncoordinated

schemes coordinated checkpoints do not suffer from cascading rollbacks

caused by orphan messages.

However, coordinated checkpointing forces all processors to rollback to

their previous checkpoint when a single processor crashes. Since all pro-

cessors redo their work since the last checkpoint, recovery time has a lower

bound equal to the time difference between the crash and the previous

checkpoint. Coordinated checkpoint protocols are the most common fault

tolerant technique. A number of implementations provide fault tolerant

versions of MPI such as CoCheck [48], Starfish [3], Clip [19] and AMPI

[30, 54]. A non-blocking coordinated checkpointing algorithm that uses

application level checkpointing is presented by Bronevetsky et. al. [16].

• Communication-induced checkpointing tries to combine the advantages of

coordinated and uncoordinated checkpointing. It tries to reduce the cost

of checkpointing by allowing processors to take most checkpoints indepen-

dent of each other. It keeps a cap on cascading rollbacks by forcing proces-

sors to take additional checkpoints at certain points in the computation.

These checkpoints are taken to periodically create a set of checkpoints

(one from each processor) that forms a consistent global state.

However it was found that communication induced checkpoint methods

did not scale well to large numbers of processors [5] as the large quantity

of forced checkpoints nullify the benefit accrued from the autonomous

uncoordinated checkpoints. Moreover, like all checkpoint-based methods,

during recovery all processors are rolled back to some previous checkpoint.

This means that the recovery time is at least equal to the time between

the crash and the previous checkpoint. Thus, communication-induced

11

checkpointing does not meet our criterion of fast restarts.

2.2 Message Logging

The second category of fault tolerance protocols are those that depend on stored

message logs for recovery. All messages sent during an application are saved

in message logs. After a processor crashes, all the messages are resent to the

crashed processor and reprocessed in the same order as before the crash. This

brings the restarted processor to its exact state before the crash. The piecewise

deterministic(PWD) assumption [49] is the key idea underlying all log based

recovery protocols. PWD assumes that all the non-deterministic events that

affect the state of a process can be recorded in a log along with the data re-

quired to recreate those events. All the events are recreated after a crash and

reprocessed in the same order as before the crash. This brings the restarted

processor to its exact state before the crash. Message logging is based on the

observation that messages are the sole source of non-deterministic events in a

parallel program. Therefore logged messages can be used to restore the state of

a crashed processor after a crash. A message’s entry in a message log not only

includes the message itself but also the sequence in which it will be processed

by the receiver.

Message logging is rarely used in its pure form. Instead it is commonly used

in conjunction with periodic checkpoints. Figure 2.2 is an example of such a

generic message logging protocol running on 2 processors. Figure 2.2(a) shows

the processors periodically take checkpoints in addition to saving messages in

message logs. This means that after a processor crashes, an application does

not need to rollback to the very start and replay all the messages. As shown

in Figure 2.2(b) it rolls back just the crashed processor (A) to its previous

12

Processor A

Processor B

m
1

Checkpoint

Crash m
2

m
3

 m
5m

4

Message Log
m1
B

m2
A

m3
A

m4
B

m5
A

(a) Before crash

Processor A

Processor B

m
4

Ignore m4

Checkpoint

Message Log
m1
B

m2
A

m3
A

m4
B
m5
A

m3 m5Replay m3 m5

(b) After crash during recovery

Figure 2.2: A simple example of a generic message log based fault tolerance
protocol

checkpoint and replays the messages A received between the checkpoint and

the crash(m3 and m5). Thus, unlike checkpoint based methods, message log

based methods do not have to rollback all processors to previous checkpoints.

13

However, this means that during recovery a processor might re-send messages

that have already been received by other processors (like m4). Message logging

protocols are designed to discard such repeated messages .

The different message logging protocols vary in the way message logs are

saved. We now discuss the advantages and disadvantages of the different vari-

ants for our goal of a fast recovery protocol. As an aside, we will see that the

pros and cons of different message logging protocols have strong parallels with

those of the checkpoint protocols.

2.2.1 Pessimistic Message Logging

Pessimistic log based protocols ensure that each received message, including the

sequence in which it will be processed, is saved to stable storage before being

processed by the receiving processor. If a processor crashes, all the messages

processed by it before the crash (messages that might have affected its state)

are available on stable storage. So, during recovery it can re-process these

messages in the same sequence as earlier to restore its pre-crash state. Any

messages that the crashed processor might have sent before the crash are resent

during recovery. This means that there can be no orphan messages in the case

of pessimistic log based protocols. Therefore pessimistic log based protocols

do not suffer from rollback propagation. As a result, each processor needs to

store only one checkpoint. Moreover, once the checkpoint of a processor has

been saved in stable storage, all the logs of messages processed by it before the

checkpoint can be thrown away. This garbage collection of old logs helps keep

a cap on the memory overhead of pessimistic message logging protocols.

Pessimistic protocols avoid the problem of rollback propagation by paying

the performance penalty imposed by having to save each message’s log to stable

storage before it can be processed by the receiver. This increases the message

14

latency and hurts the application’s performance.

In spite of this overhead, pessimistic protocols are promising since they do

not roll back any processors apart from the crashed ones and meet one of our

targets described in Chapter 1.1. Moreover, there are techniques to ameliorate

the cost of saving message logs to stable storage. The overhead of logging can be

decreased by using specialized hardware [12]. Sender-based message logging [32]

is a more interesting and widely applicable method of reducing the performance

penalty associated with pessimistic log-based protocols. It is based on the idea

that the volatile memory of one processor can act as stable storage for another

processor. Therefore, when a processor (say B in Figure 2.2) sends a message to

another processor (A), processor B retains a copy of the message in its volatile

memory. When A crashes, B can simply re-send its copy of the message. This

reduces the overhead of message logging since we do not need to store the

message in a central stable storage system. This also reduces the complexity of

the system by removing the requirement for any stable storage. MPICH-V1 and

V2 [13, 14] are systems contemporary to our work that provide fault tolerant

versions of MPI by using pessimistic log based methods. MPICH-V1 is a stable

storage based protocol whereas MPICH-V2 is sender based. However, none of

the existing systems provide restarts faster than the time between the crash

and the previous checkpoint.

2.2.2 Optimistic Message Logging

Optimistic protocols save the message logs temporarily in volatile storage on

the receiver before sending them all to stable storage [49]. So, the message

latency overhead is significantly lower for optimistic protocols than pessimistic

ones. On the other hand, when a processor crashes, the message logs in volatile

storage are lost. During recovery, the crashed processor needs these messages

15

to restore itself to the state before the crash. With the message logs missing,

the only way to get those messages again is to rollback the senders and have

them re execute so that the messages are generated again. This rolling back of

processors other than the crashed one makes optimistic protocols inappropriate

for protocols with fast restart. Moreover, garbage collection of message logs in

optimistic protocols is also complicated.

2.2.3 Causal Message Logging

Causal logging stores message logs temporarily in volatile storage of the receiver

but prevents cascading rollbacks by tracking the causality relationships between

messages [21]. Tracking causality and recovery from faults are complicated

operations in causal message logging protocols. Manetho[21], MPICH-Vcausal

[15] and the protocol by Lee et. al. [40] are examples of causal logging systems.

2.3 Fault Tolerance Support for MPI

Since Message Passing Interface (MPI) is the parallel programming paradigm

most commonly used by application programmers, most parallel fault tolerant

schemes are also implemented for MPI. As the examples cited in the previous

two sections show, there is more than one MPI implementation for most of

the different fault tolerant techniques. These range from Cocheck, Starfish and

AMPI for coordinated checkpoints to MPICH-Vcausal for causal logging. An

interesting feature of AMPI is its ability to pack up user data for checkpoints

automatically without requiring any user code on some architectures. A pro-

tocol that is a hybrid of uncoordinated checkpointing and message logging has

also been proposed for MPI [47, 16]. It avoids orphan messages by storing the

message logs for messages that are potential orphans. However, like all check-

16

point based methods it rolls back all processors during recovery after a crash.

FT-MPI [23, 24] is a fault tolerant MPI which lets the application handle the

rollback and recovery. A detailed discussion about MPI and its relation to fault

tolerance can be found in Gropp et. al. [28]. CiFTS (Coordinated Infrastruc-

ture for Fault Tolerance Systems) is a recent project that aims to develop a

fault awareness and notification mechanism that can be used by different fault

tolerance libraries through a common interface [1].

17

Chapter 3

Object Based Virtualization

Object based virtualization [34] encourages the user to view his parallel com-

putation as a large number of interacting objects. These objects, also known as

virtual processors (VPs) interact only by sending messages to each other. The

user decomposes his application into objects without taking into consideration

the number of physical processors. Figure 3.1 shows the user view of such an

application in which circles represent objects with the arrows representing mes-

sages between them. These objects are mapped to physical processors by the

run-time system. The system view shows one such possible where the square

boxes represent physical processors containing messages. The run-time system

is also responsible for assuring message delivery between objects irrespective of

their location.

User View System View

Processor 1 Processor 2

Processor 3

Figure 3.1: The user and system views of an application in Charm++

Object based virtualization enables automatic adaptive overlap between

18

computation and communication. While an object on a processor is waiting for

a message, another object can continue with it computation. Thus, the commu-

nication and computation of different objects on a processor can be overlapped

without any extra programming effort on behalf of the user. This makes the

application more latency tolerant.

Virtualization also lets the runtime system perform measurement based dy-

namic load balancing. Since the run-time system is solely responsible for map-

ping objects to physical processors, it can also change the mapping during

execution by migrating objects from one processor to another. Moreover, since

the runtime system is responsible for all message delivery it can accurately track

the communication and computation load of different objects. As most scien-

tific applications are iterative and show good persistence of communication and

computation loads over time, the measured load data acts as a good predictor

for loads in the immediate future. So, the run-time system can use the load data

to calculate a new mapping of objects to processors that provides a good com-

putation and communication load balance across processors. Such periodic load

balancing is very useful for obtaining good performance in applications whose

load characteristics change with time. Run-time load balancing is also useful

because it frees the user from having to load balance his code himself. Instead

all he needs to do for a good load balance is to decompose his computation into

a large number of objects.

3.1 Charm++

Charm++ [33] is a C++ based object oriented message driven parallel pro-

gramming language based on the idea of object based virtualization. The vir-

tual processors are C++ objects that send messages to each other through

19

asynchronous method invocations. Charm++ arranges the virtual processors

into collections that can have user defined indices. The underlying Charm++

run-time system supports efficient message delivery between the virtual pro-

cessors even when some of them are migrating from one physical processor to

another [39]. Charm++ also supports collective operations such as broadcasts,

reductions and multicasts over these collections of virtual processors.

Charm++ also has an elaborate load balancing framework. It includes in-

strumentation code to accurately capture the communication and computation

load of different virtual processors. This instrumentation code can be turned

on and off at the discretion of the user. The framework can be used to collect

this instrumentation data from all objects on all processors to come up with a

mapping of objects to processors. A large number of strategies have been im-

plemented to calculate this mapping. Different strategies have been found to be

suitable for different applications. The load balancing framework is discussed

in greater detail in Chapter 8.

Charm++ has been used to develop a number of highly scalable application

codes like NAMD for molecular dynamics [44, 35], Changa for computational

cosmology [27], leanCP for quantum chemistry [11] as well as frameworks such

as ParFUM for unstructured mesh applications [38, 42].

3.2 Adaptive MPI

Adaptive MPI (AMPI) is an implementation of MPI on top of Charm++. Each

MPI process is implemented as a user level thread, with many such threads on

one physical processor. Every user level thread is associated with a Charm++

object and such a pair is referred to as an AMPI virtual processor. In an AMPI

VP the user MPI code runs in the context of the user level thread. Blocking

20

MPI calls are implemented by simply suspending the user level thread. This

blocks the user code running within the VP that made the blocking call, while

leaving the physical processor free to run user code from other VPs. This allows

a user to adaptively overlap communication and computation even while using

blocking calls. In a traditional MPI, such overlapping would require the use of

non-blocking calls, frequent probing and a more complicated algorithm. Most

MPI codes can be run using AMPI with very minor changes.

All the communication of an AMPI VP is handled by its Charm++ object.

The Charm++ object not only is responsible for simple point to point messaging

but also collective operations like broadcasts, multicasts, scatter-gather etc.

Since a Charm++ object performs all the communication, AMPI can make use

of communication libraries within Charm++ that optimize different patterns

of communication among Charm++ objects on multiple physical processors.

The user level threads used in AMPI are migratable and can be moved

among different physical processors. This allows an AMPI VP to migrate

to another processor by moving both the user level thread and the associ-

ated Charm++ object to that processor. Thus AMPI can take advantage

of the Charm++ load balancing framework to perform dynamic measurement

based run-time load balancing. We augment the MPI specifications with a

MPI Migrate function. MPI Migrate is a collective blocking call that can

be used to perform load balancing among all the AMPI VPs in an application.

The user calls MPI Migrate to show exactly when in an application he wants

load balancing to occur.

21

Chapter 4

Combining Message Logging and
Object Virtualization

Our fault tolerance protocol is entirely software based and doesn’t depend on

any specialized hardware. However, it makes the following assumptions about

the hardware:

• The processors in the system are fail-stop [46]. It means that when a

processor crashes it remains halted and other processors may detect its

crash. This is a reasonable assumption for common failure modes on

parallel machines.

• All communication between processes is through messages.

• The PWD assumption should hold. It is assumed that the only non-

deterministic events affecting a processor are message receives.

• No event other than a fault interrupts the processing of a message.

• The machine is assumed to have a system for detecting faults.

We bring together the ideas of sender based pessimistic message logging and

object based virtualization to develop a fault tolerance protocol that provides

fast recovery from faults on a machine that meets the above assumptions. As

mentioned in Chapter 2.2 a sender side message logging protocol stores a mes-

sage and the sequence in which it will be processed by the receiver on the sender.

This reduces the overhead of pessimistic message logging and also removes the

need for an idealized stable storage. Virtualization also affords us a number

22

of potential benefits with respect to our message logging protocol. It is the

primary idea behind faster restarts since it allows us to distribute the work of

the restarting processor among other processors. The facility of runtime load

balancing can be utilized to restore any load imbalances produced during fast

recover. Virtualization also makes applications more latency tolerant by over-

lapping communication of one object with the computation of another. This

can help us hide the increased latency caused by the sender side message logging

protocol.

Although a synthesis of virtualization and message logging can lead to sig-

nificant advantages, there are considerable challenges in combining the two.

One major problem occurs when dealing with virtual processors on the same

processor sending messages to each other. We discuss this in greater detail in

Chapter 4.1.2. Similarly moving objects from one processor to another during

load balancing also introduces additional complications. That issue is discussed

in Chapter 8.

We combine the ideas of virtualization and message logging by treating

the virtual processors, and not the physical processors, as the communicating

entities that send and receive messages. Since an object’s state is modified

only by the messages it receives, we can apply the PWD assumption to virtual

processors instead of physical processors. After a crash, if a virtual processor

re-executes messages in the same sequence as before, it can recover its exact

pre-crash state. So, we run the sender based message logging protocol with the

objects as participating entities instead of physical processors.

Our design of a pessimistic sender based message logging system that works

alongside processor virtualization has three major components: message log-

ging, checkpointing, and restart. Although all three components are very closely

related, we describe them as separate protocols for the sake of clarity. As we

23

shall see, processor virtualization has a significant impact on all components.

We discuss the protocol for single faults in this chapter. We extend it to deal

with multiple faults and perform fast restart in Chapter 6.

4.1 Message Logging Protocol

We designed the message logging protocol such that during recovery after a

crash:

• A Charm++ object (or AMPI thread) on the crashed processor processes

the same messages in the same order as before the crash.

• A Charm++ object on other processors does not process a message that

it has already processed.

In order to meet these objectives, an object establishes a strict ordering

among the messages it receives and processes them in that order. We store

both the messages and the order in which they are processed on the sender

side. A receiver also keeps track of the number of messages it has processed

and the ordering established among those messages. We do some additional

book keeping for messages between objects on the same processor.

The protocol augments each Charm++ message sent between objects with

four data fields as depicted in Figure 4.1 :

1. The unique id of the object that sent this message, that is sender id. In

the example in Figure 4.1 the sender is object α.

2. The unique id of the object that is to receive this message, that is receiver

id. The receiver in the example is β.

24

Sender
ID

Receiver
ID

Sequence
Number

Ticket
Number

Message
Data

Charm++ Message

Protocol Data

α β 3 12

Figure 4.1: Protocol data added to a Charm++ message

3. The sequence number(SN) of this message. The SN is a count of the

number of messages sent from the message’s sender to its receiver at the

time this message was generated. In the example this is the 3rd message

sent by object α to object β.

4. The ticket number(TN) of this message. The receiver of a message assigns

it a TN. An object processes all the messages it receives in increasing

order of their TNs. TNs for all the messages received by an object form a

single contiguous sequence. The message in the example will be the 12th

processed by object β.

As seen in Figure 4.2 each Charm++ object maintains a number of data

fields and tables:

1. Each Charm++ object is given a unique id, for example α in case of the

object shown in Figure 4.2.

2. An object stores the highest TN processed by it as TNProcessed. In the

example object α has already processed 17 messages.

3. An object stores the highest TN assigned by it asTNCount. Object α has

assigned ticket numbers to 19 distinct messages.

25

Object ID α

Charm++ Object

α β 3 12 Data ...
Message Log

TNProcessed 17
TNCount 19

α δ 6 11 Data

Receiver # Msgs
β 3
δ 6

... ...

SNTable

Sender, SN TN
β, 12 17
γ, 4 18
β, 13 19

TNTable

Figure 4.2: Protocol data added to a Charm++ object

4. Each message sent by an object is stored in the object’s message log. The

example shows two messages in the message log of α sent to objects β and

δ. The protocol data for each message, namely sender ID, receiver ID, SN

and TN, are stored along with the message.

5. Every object maintains a table called the SNTable for the number of mes-

sages sent to different objects. It is indexed by the receivers’ id. In the

example α has sent 3 messages to β and 6 to δ.

26

6. An object stores the sender’s id, SN and TN for each message received

since the last checkpoint in a table called the TNTable. The TNTable

is indexed by the sender’s id and SN of the message. In the example α

assigned TNs 17 and 19 to two message with SN 12 and 13 respectively

from β. A message with SN 4 from γ was alloted a ticket number 18. As

described in Section 4.1.1, this table is used by an object to assign TNs

to all messages destined for it.

4.1.1 Remote Mode

When the sender(α) and receiver(β) objects are on different processors, the

message logging protocol is said to operate in the remote mode. Figure 4.3

illustrates an example in which object α sends message m to β on another

processor. Before sending a message, α looks up β in its SNTable and finds the

number of messages sent to β previously. Object α increments that count and

assigns it as the SN of the message. In the example in Figure 4.3 the message

m gets a SN of 4. Object α then stores the message in its message log. As seen

in Figure 4.3, the sender α then sends a request for a ticket, consisting of α’s

id and the message’s SN, to β.

On receiving the request, β looks up the tuple {α, SN} in β’s TNTable. If

there is no matching entry in the TNTable, there are two possibilities: i) the

common case that α is sending a new message to β, ii) the rare case where

the sender α is recovering from a fault and is re-sending a message that was

processed by β before its last checkpoint. We can distinguish between the two

cases by comparing the SN in the ticket request to the lowest SN from α in β’s

TNTable (say l). If the SN in the ticket request is higher than l, then we are

dealing with the common case that α is sending β a new message. Object β

increments TNCount and decides on this value as the TN. β also adds an entry

27

Object ID α

Message Log

TNProcessed 17
TNCount 19

β 3SNTable

TNTable

Object ID β

Message Log

TNProcessed 18
TNCount 22

δ 6SNTable

TNTable

 SNTable[β]: 3
Increment count: 4

m.SN = 4
SNTable[β] = 4

Add m to
Message Log

Ticket Request<α, β,4>

Is
{α ,4} in
TNTable

Is m
new ?

TNCount++: 23
ticket.TN=23

ticket.state = new
 TNTable[{α,4}]=23

TNCount++: 23
ticket.state = stale

ticket.TN =
TNTable[{α ,4}]

ticket.TN<
TNProcessed

ticket.state
=old

ticket.state
=new

Yes

 No

No

Yes

N
o

Yes

Ticket

SN=4, TN=23

m.TN=ticket.TN
: 23

ticket.state
!= stale

ticket.state
=new

Yes

Yes
MessageSN=4,TN=23 TN =

 TNProcessed+1 Yes
Process m

Figure 4.3: Remote mode of the message logging protocol

28

for the tuple {α, SN, TN} to its TNTable. The TN is returned to the sender

α along with α’s id and the SN. The example in Figure4.3 is this common case

and β allots it a TN of 23.

If the SN in the ticket request is lower than l then the sender α has sent a

ticket request for a message that was processed by β before its last checkpoint.

Since pessimistic message logging does not suffer from cascading rollbacks, β

can safely tell α to discard this message by labeling the ticket as stale.

If β finds an entry corresponding to the ticket request in its TNTable, it

means that in the past β has assigned a TN to this message from α and that α

is recovering from a fault. Object β will reply back with this TN. If the value

of this TN is lower than the TNProcessed for β, β marks the TN as old. An old

TN corresponds to a message β has already processed since the last checkpoint.

When α receives a ticket in reply, it checks if the ticket is stale. If it is not

it assigns the TN to the message stored in its log. As Figure 4.3 shows, if the

received ticket is marked as new, α sends the message to β.

When β receives the message, it checks if the message’s TN is less than

or equal to its TNProcessed. If it is, β discards the message as it has already

processed this message and should not do so again. If the message’s TN is higher

than TNProcessed+ 1, β defers processing this message. If the message’s TN

is exactly equal to TNProcessed + 1, then β processes the message and then

increments β’s TNProcessed by 1.

The time between the sender starting to send a message and the receiver

sending a message of its own as a result of processing the sender’s message is

increased by the the round trip time of a short message. This is the same as

in the sender side message logging protocols of [32, 14]. However, as we shall

in Chapter 7, virtualization allows us to mitigate the penalty imposed by this

increased latency.

29

4.1.2 Local Mode

If we were to use the above protocol for messages between two objects on the

same processor, the log of a message would exist on the same processor as its

receiver. If this processor crashes, all record of the TN allotted to the message

would be lost. It would become impossible to re-execute the messages in the

correct sequence. Therefore we define a local mode of the message logging

protocol to deal with this case.

α

β

Processor C

Processor D
Buddy (C)

T
ick

e
t R

e
q
u
e
st

α
,β, S

N
=4

Calculate
TN

T
ic

k
e
t

S
N

=
4
,T

N
=

2
3

M
e
ta

-d
a
ta

<
α

,β
,S

N
=

4
,T

N
=

2
3
>

Store Meta-data
in MDTable

A
ck

M
e
s
sa

g
e

S
N

=
4
,T

N
=

2
3

Process
Message

Remove
from log

Figure 4.4: Messages in the local mode of the message logging protocol

Each processor is assigned a buddy processor. A processor has only one

buddy and is the buddy of only one processor. Let us say that object α on

processor C wants to send a message to object β on the same processor. As the

first step, α assigns the message a SN in the same way as in the remote mode

described in Chapter 4.1.1. As Figure 4.4 shows object α then asks β for a ticket

30

by invoking the ticket generation routine with α’s id and the message’s SN as

arguments. The ticket generation routine uses the same algorithm described in

Chapter 4.1.1. We are able to use a method invocation instead of a message

because in this case, α and β are on the same processor. The example message

in Figure 4.4 is allotted a SN of 4 by α and a TN of 23 by β.

After β has returned a ticket number, α sends the message meta data to

the buddy of processor C, namely processor D. The message meta data consists

of the tuple sender’s id, receiver’s id, SN and TN of the message. For the

example, the message meta data is the tuple < α, β, 4, 23 >. Processor D,

buddy of processor C, stores the meta data for the message in the message meta

data table(MDTable). A processor stores the meta data for messages between

objects existing on it, in the MDTable maintained on its buddy processor. After

processor D has saved the meta data for the message in its MDTable, it sends

an acknowledgment to object α on processor C.

Object α sends the message to β only after receiving this acknowledgment

from D that the meta-data for the message has been stored in D’s MDTable. As

a result, the latency for a message to a local object becomes the same as that

of a message to a remote object. After β has processed the message, it tells α

to remove the message from its message log. Thus a local message need not be

maintained in the sender’s log once it has been processed by the receiver. So,

the memory overhead of local messages is less than that of remote messages. We

can throw away the message log after β has processed it because, if processor

C crashes later on the log of the message on α will disappear with the crash.

α will not be able to simply re-send the message to β from its log. It will have

to re-execute from the previous checkpoint and re-generate the message. So,

keeping the message in α’s log once β has processed it is useless and just wastes

memory. The reason why the log must be maintained till β has processed it is

31

explained in Chapter 4.3.

4.2 Checkpoint Protocol

The checkpoint protocol not only stores an object’s checkpoint but also provides

a mechanism to perform garbage collection of the message logs. The state of a

Charm++ object consists of user data, a small amount of runtime system data

as well as TNCount, TNProcessed, SNTable and the messages in the message log

that were sent to objects on the same processor (the reason for this is explained

in Section 4.3). Since messages to local objects are deleted from the sender’s

log once they have been processed by the receiver, only those local messages

that have been sent but not processed by their receivers are part of an object’s

checkpoint. All objects on a processor are checkpointed at the same time.

Figure 4.5 shows an example in which processor C, containing two objects

α and β checkpoints. Before the checkpoint, object δ sends message m1 to β,

while γ sends message m2 to α. Objects γ and δ both exist on processor E.

Object β also sends a message, m3 to α on the same processor. The meta-data

tuple, consisting of sender, receiver, SN and TN, for each message is shown

in Figure 4.5. All the messages are processed before processor C checkpoints.

Processor C packs up the state of all the objects on it and sends it to its

buddy, processor D. Each object on C also stores its TNProcessed at the time

of checkpoint as TNCheckpointed. In the example α gets a TNCheckpointed

of 17 and β gets 18. D stores the new copy of C’s checkpoint, deletes the old

copy and sends an acknowledgment to C. On receiving the acknowledgment,

the TNTable of each object on C can garbage collect entries with TN less

than TNCheckpointed. Although not shown in the figure to avoid cluttering,

α removes m2 and m3 from its TNTable, while β removes m1. Each object

32

Processor C

Processor D
Buddy(C)

TNCheckpointed=
TNProcessed: 17

TNCheckpointed=
TNProcessed: 18

C
h
e
ckp

o
in

t o
f

 A
ck

n
o
w

le
d
g
m

e
n
t

M
e
ssa

g
e
 m

2

<

5
,1

5
>

G
a
rb

a
g
e
 C

o
lle

ct
io

n
<

G
a
rb

a
g
e
 C

o
lle

ctio
n

<

M
e
ssa

g
e
 m

1

<
4

,1
7

>

Message m3
<6,16>

Checkpoint

Store checkpoint
Delete old checkpoint

 : Remove m2 from log
: Remove m1 from log

Remove m3
from MDTable

Processor E

Figure 4.5: Messages in the checkpoint protocol

on C sends out garbage collection messages containing TNCheckpointed to all

objects that had sent it messages since its previous checkpoint. If we send

out a separate garbage collection message from each object on processor C to

all its senders, we will end up sending a large number of tiny messages. We

avoid this by consolidating all the garbage collection messages from all objects

33

on processor C to all objects on another processor into one garbage collection

message. As a result, processor C sends only one garbage collection message to

each processor that has at least one object that sent a message to an object on

processor C. In the example processor E receives a combined garbage collection

message: α with TNCheckpointed 17 for γ, β with TNCheckpointed 18 for δ.

When a processor receives a garbage collection message, it gives each of its

object the relevant portion of the garbage collection message. When γ receives

the garbage collection message from object α it removes all messages to α in its

message log that have a TN lower than the TNCheckpointed. In the example

γ removes m2 from its message log, while δ removes m1. A similar garbage

collection message is sent to processor D, so D can remove old entries from

the MDTable. Figure 4.5 shows processor D removing the entry for message

m3 from its MDTable. Garbage collection is done lazily so that it interferes as

little as possible with the application. An important point about the checkpoint

protocol is that it is never blocking. Objects are free to process messages while

the checkpoint protocol is ongoing.

We have to deal with an interesting trade off between memory and speed

while deciding when to checkpoint. If the checkpoint period is too low, the

message logs on senders are garbage collected frequently. This saves memory

but increases the time cost because of frequent checkpoints. If the period is too

high, the message logs on senders become large though the checkpointing cost

is lower. The rate of expected failure is also an important factor in deciding

the checkpoint period. Checkpoints might also be performed when the message

logs become larger than a particular size.

Storing the checkpoint in memory is not a problem for applications with a

small checkpoint state such as molecular dynamics. However, if the application

is memory intensive the checkpoint can be stored on the local disk of the buddy

34

processor. If there are no local disks in the system, the checkpoint can be stored

on the cluster’s file system. Even message logs can be lazily moved to local

disk or the file system to keep the memory overhead low. Of course, moving

checkpoints and message logs to disks from memory will slow down restart.

4.3 Restart Protocol

In this section, we describe the basic restart protocol. We illustrate how it

works with the help of an example. Figure 4.6 shows the messages received by

two objects α and β on processor C after a checkpoint. α receives messages

m4, m6 and m7 from γ, β and δ respectively. β receives message m5 from δ.

The meta-data for each message is shown. After all the messages have been

processed processor C crashes.

We assume that a pool of spare processors is available to the parallel job.

When the crash detector finds out that processor C has crashed, it restarts a

Charm++ process on a spare processor. Figure 4.7 shows the messages ex-

changed after the new processor C has started up. Processor C asks D for its

checkpoint and MDTable. C recreates all the objects that used to exist on it

(α and β in the example) from the checkpoint fetched from D. The entries in

the MDTable are separated by receiver and added to each receiver’s TNTable.

C then broadcasts a request to resend logged messages. The request to resend

logged messages contains the id and TNProcessed at time of the checkpoint for

each object on C.

When a processor, like E, receives a request to resend logged messages, each

object resident on it looks in its message log for messages sent to the objects

recreated on C. If such a message has a TN more than the TNProcessed for the

recreated object it is resent. In Figure 4.7 γ resends m4 to α while δ resends

35

Processor E

Processor C

Checkpoint
TNProcessed=17
TNProcessed=18

M
essage m

4

6,18>

M
essage m

5

 ,19>

Message m6
 ,19>

M
essage m

7

,20>

Figure 4.6: Messages before a crash

m5 and m7 to β and α respectively. Message m6 sent by β to α is regenerated

during β’s re-execution. α looks in its TNTable and finds the entry for m6 that

was added from the MDTable fetched from D during the re-creation of α. Thus

m6 gets its old TN 19.

While resending if an object finds a message in its log, that is destined for

an object on the restarted processor but does not have a ticket, a new ticket

request is issued for that message. However, a restarted object like α must not

only give messages the same TNs after a crash as before it but also make sure

that no TN is skipped. α should not skip handing out any TN since α will not

be able to process any message with a TN higher than the skipped one. Object

α on processor C collects a list of the TNs of all the messages resent to it. α

then adds to this list the TNs of messages in the MDTable obtained from C’s

36

Processor E

Processor C

Processor D
Buddy(C)

R
equest

C
heckpoint C

he
ck

po
in

t
D

at
a+

M
D

Ta
bl

e

R
es

en
d

re
qu

es
t

<
1

7>
<

1
8>

R
esend request

<
17><18>

Resend request

R
esent m

4

6,18>

R
esent m

5

 ,19>

R
esent m

7

,20>

Regenerate m6
 ,19>

List of TN
s

<18,20>, < :19>

Figure 4.7: Messages during a restart

buddy D. This list of TNs is then sorted in increasing order. After sorting this

list α might find that some TNs in the middle are missing. These missing TNs

correspond to messages that were given TNs but were not processed by α before

the crash. We are sure they were not processed since α would have processed

a message only after its TN had been saved in either the sender’s log or the

MDTable. So when α gives out new TNs it hands out these missing TNs before

continuing with TNs higher than TNCount. Each processor combines the list of

TNs sent to different objects on the restarted processor into one message. Thus

in Figure 4.7 processor E sends a message containing the TNs of messages sent

to α as well as β by objects on processor E.

Figure 4.8 shows a special case that the earlier example does not. Figure

4.8 shows the situation during the forward path. Object α sends message m8

to object β also on processor C. As the first step α saves m8 in its message

log. According to the local mode of the message logging protocol the meta-data

37

for m8 needs to be saved in the MDTable of C’s buddy processor D before m8

can be processed. However, before the acknowledgment for m8 can come back

from D, processor C checkpoints. Since the checkpoint of an object includes

messages in its log sent to other objects on the same processor, α includes m8

in its log as part of its state.

Processor C

Processor D
Buddy(C)

m
8
 M

eta-D
ata

<

6
,1

8
>

Store m8 in
message log

Store in
 MDTable

A
ck

n
o
w

le
d
g
m

e
n
t

Checkpoint

Process m8
Remove m8
from log

Figure 4.8: A special case for the restart protocol.

When processor C crashes later, it is rolled back to this checkpoint. In this

state, α will not regenerate m8 since it was sent before the checkpoint and we

never rollback beyond one checkpoint. So, α needs to resend message m8 for

β to recover correctly. Since m8 is present in α’s message log as part of its

checkpoint, α can easily resend the message to β. Therefore during restart,

not only objects on other processors but also objects on the restarted processor

need to resend messages in their logs.

38

4.4 Proof of Correctness

Our fault tolerance protocol, like all other such protocols, seeks to guarantee

that after recovery from a crash the state of the computation is globally con-

sistent. Alvizi et al. provide a precise specification of the global consistency

property [6] in the context of message logging protocols. It states that at the

end of recovery, there should be no orphan processors. This means that after

recovery is complete there should be no processor which has processed a mes-

sage that has not been sent by any processor. This amounts to saying that

there should not be any orphan messages, as defined in Chapter 2.1, in the sys-

tem once recovery is complete. We extend this definition to objects by saying

that there should not be any orphan objects in the system once our protocol

has finished recovery. The state of the sender of any message, processed by its

receiver, should reflect the fact that the message has been already sent.

Alvizi et al. also prove that a receiver side pessimistic protocol that writes

to stable storage never produces orphans. However, this proof deals only with

the availability of the meta-data of messages within the system and not with

the availability of the messages themselves. This is not sufficient for a practical

framework that involves checkpoints and garbage collection. We extend the

basic idea to prove the correctness of our object based sender side pessimistic

message logging protocol that uses periodic checkpoints. The proof deals only

with the part of the protocol described till now, that is the basic restart protocol

in the face of single failures only. Each object is modeled as a state machine in

which processed messages are the only inputs and sent messages are the only

outputs. An object transitions from one state to another only as the result

of processing a received message. Messages sent to other objects are the only

output produced during these transitions.

39

We define a system N , consisting of n objects running on p processors. The

set of objects is O with the jth object being represented by oj. The set of

processors is P with the ith processor denoted as pi. The objects on a pro-

cessor pi are represented by the set O(pi) and the processor of an object oj

is returned by the function P (oj). As mentioned earlier, objects interact only

through messages and messages are the only non-deterministic events affect-

ing the state of objects. Processing message m is represented by the event

process(m). These events are ordered by the irreflexive partial order happens

before → that represents potential causality [37]. process(m1) → process(m2)

means that processing m1 might cause the processing of m2 and therefore m1

must always be processed before m2. The meta-data for a message m, defined

as the tuple < sender, receiver, SN, TN > is represented as |m|.

Theorem 1 There is enough information, including meta-data of messages and

checkpoints, to avoid orphans at the end of recovery from a single processor

failure.

We define a subset of O, for each message m processed during an execution.

This subset Depend(m) is the set of all objects whose state was affected by the

processing of m. m happens before some message processed by the members of

Depend(m). We define a helper boolean function processed(m) that returns

true if the event process(m) has occurred. Depend(m) can be formally repre-

sented as:

o ∈ O
∣∣∣∣∣∣∣∣∣∣

((o = m.reciver) ∧ processed(m))

∨

∃m′ :
((process(m)→ process(m′))

∧(o = m′.receiver) ∧ processed(m′))

We define another set Log(m), which is a subset of P , as the set of proces-

40

sors that contain information that can prevent m from becoming an orphan.

This includes any processor that has a copy of the meta-data of message m or

the state of m.receiver once it has processed m. If m.receiver and m.sender

objects are on different processors, then according to the remote mode of the

protocol P (m.sender) contains a copy of |m| before m is processed. Once

processed(m) is true, Log(m) also includes P (receiver(m)) . If m.receiver

checkpoints after processing m, Log(m) includes the buddy of P (m.receiver)

(written as B(P (m.receiver)) since the checkpoint of m.receiver is stored there.

However, after the checkpoint Log(m) no longer contains P (m.sender) since

m’s entry in m.sender’s message log would have been garbage collected after

m.receiver’s checkpoint. If m.sender and m.receiver are on the same processor

then, |m| is saved in the MDTable of B(P (m.receiver)) before m is processed.

So, Log(m) includes B(P (m.receiver)) along with P (m.receiver). Even if

m.receiver checkpoints and the entry for m in B(P (m.receiver))’s MDTable is

deleted, Log(m) still include B(P (m.receiver)) as the checkpoint of m.receiver

is stored there before garbage collection starts. So, Log(m) once processed(m)

is true, has the following values:

{P (m.receiver), B(P (m.receiver))} P (m.sender) = P (m.receiver)

{P (m.sender), P (m.receiver)}

P (m.sender) 6= P (m.receiver)

∧
P (m.sender) has no

checkpoints since process(m)

{P (m.receiver), B(P (m.receiver))}

P (m.sender) 6= P (m.receiver)

∧
P (m.sender) has a

checkpoint after process(m)

Now, let us see what happens when pc fails. An object o on some other

processor will become an orphan if P (o) does not fail but the state of o depends

41

on a message m whose meta-data has been lost. The meta-data of message m

can be lost if Log(m) contains only pc. So the condition for o to be an orphan

can be expressed formally as:

orphan(o) =

 P (o) ∈ P − pc

∧∃m : ((o ∈ Depend(m)) ∧ (Log(m)− pc = ∅))

A processor is never it’s own buddy in our protocol:

∀p ∈ P : B(p) 6= p.

Therefore Log(m) is never a set with a single processor, that is:

∀m : |Log(m)| > 1

So, Log(m)− pc is never an empty set:

∀m : Log(m)− pc 6= ∅

This means that orphan(o) is never true for our system as long as a single pro-

cessor has crashed:

orphan(o) =

 P (o) ∈ P − pc

∧∃m : ((o ∈ Depend(m)) ∧ false)

 = false

Thus, our system has enough information in message meta-datas and check-

points to avoid orphans at the end of recovery from a single processor failure.

This concludes the proof of Theorem 1.

Theorem 2 All messages, necessary to avoid orphans after recovery from a

single processor failure, are available during recovery.

Now, we aim to prove that all the messages necessary to avoid orphans and

not just their meta-data are available during recovery from a single processor

failure. The state of an object oj is represented by S(oj). The state of a

processor pi at any point is given by the state of all the objects in O(pi) at

42

that point. So, S(pi) = {S(o) : o ∈ O(pi)}. The state of the whole system at

some point is specified by the state of all the objects at that time : S(N) =

{S(o) : o ∈ (O)}. Each execution of the system is represented by a run. A run

is a sequence of global states. Each state transition is caused by a single object

processing a single message.

A run is punctuated by processors taking checkpoints. The kth checkpoint

of object oj is represented by Sk(oj). The kth checkpoint of processor pi is given

by Sk(pi) = {Sk(o) : o ∈ O(pi)}. Sk(pi) is a state that actually occurs as part of

a global state during a run since all the objects on a processor checkpoint at the

same time and the checkpoint of a processor can not interrupt the processing

of a message. The same can not be said for Sk((N)) = {Sk(o) : o ∈ O}, since

the checkpoints of different processors are asynchronous.

S(oj) ; S ′(oj) represents a sequence of process events that changes the

state of object oj from S to S ′. The set of messages processed by oj during this

sequence is represented by M(S(oj), S
′(oj)).

Now we look at what happens after a crash. Let the crashed processor be

pc. Let its state just before the crash be given by Sc(pc) and its checkpoint just

before the crash be Sk(pc). At the beginning of recovery all objects oj ∈ O(pc)

would have been rolled back to Sk(oj). At this point, the global state is incon-

sistent. Our recovery protocol aims to remove this inconsistency by eliminating

all potential orphans. An object o is a potential orphan if it exists on another

processor and it’s state depends on a message that has not been processed in

the system’s current state. It must be noted that this definition of potential

orphans is subtly different from the previous definition of orphans because it

deals with messages themselves and not just their meta-data. So, formally the

definition of a potential orphan is if at the beginning of recovery:

43

potential orphan(o) =

 P (o) ∈ P − pc

∧∃m : ((o ∈ Depend(m)) ∧ ¬processed(m))

The only messages which have not been processed in the current global

state but have affected the state of objects on other processors, are those whose

processing events were lost due to pc’s crash and subsequent rollback to the

previous checkpoint. The set of such messages (let’s call it MReq) is given by:

MReq =
⋃
∀o∈O(pc)

M(Sk(o), Sc(o))

In order to avoid orphans, we need to prove that all these messages in MReq

will be available during recovery. Theorem 1 has already proven that the meta-

data for all messages in MReq are present in the system.

Lemma 1 Every message m ∈ MReq, such that P (m.sender) 6= pc will be

available during recovery.

A message m whose sender is not on the crashed processor, must have used

the remote mode of our message logging protocol. So, m.sender would have

stored m in its message log along with |m| before m was processed. Moreover, all

messages in MReq were processed by their receivers on pc after the checkpoint

Sk(pc) had been taken. This means that m’s entry in m.sender’s message log

would not have been garbage collected. So, m.sender can resend m during

recovery. Therefore, every message m ∈MReq, such that P (m.sender) 6= pc is

available during recovery.

Lemma 2 Every message m ∈ MReq, such that P (m.sender) = pc will be

available during recovery.

A message m ∈Mreq between two objects on pc would have used the local

mode of our message logging protocol (called local messages for brevity). The

44

sender m.sender does not keep a copy of m anywhere once m has been processed

by m.receiver. This means that most locals messages in Mreq would have to

be regenerated. So, we will try to prove that all the local messages with missing

logs will be regenerated during the recovery of pc.

Let us consider the sequence of process events that would have happened

on processor pc between the checkpoint Sk and the crash Sc. We can write this

sequence of events that happened before the crash as Sk(pc) ; Sc(pc).

Let us consider the first local message in the sequence Sk(pc) ; Sc(pc) (call

this message m1). m1.sender could have sent this message either before or

after the checkpoint Sk. First, we look at the case when m1.sender sent m1

before the checkpoint. During recovery, m1.sender’s checkpoint would contain

m1 in its message log. This is because the checkpoint of an object includes

any messages in it message log that were sent to other objects on the same

processor and such a message is removed from the message log only after it

has been processed. Since m1 had not been processed by m1.receiver by the

time the checkpoint Sk happened, m1 would appear in m1.sender’s message

log as part of m1.sender’s checkpoint. Therefore, m1.sender can simply resend

m1 during recovery. Now for the second case, when m1 was sent after the

checkpoint. All the messages processed in the sequence Sk(pc) ; Sc(pc) before

process(m1) have their senders on some processor other than pc (by definition of

m1). During recovery, by Lemma 1 all these messages processed before m1 will

be resent and by Theorem 1 their meta-data will also be available. This means

that all these messages before m1 can be processed in the correct sequence by

their receivers. This is sufficient to assure that during recovery m1.sender will

pass through the same state that caused it to send m1 the first time. This

means that m1 would be sent again in this case as well.

Now, let us assume that at least the first i locals messages (m1 to mi) in the

45

sequence Sk(pc) ; Sc(pc) have been re-generated during recovery. Moreover, by

Lemma 1 all messages with senders on processors other than pc can be resent

during recovery. Combining these facts with Theorem 1’s assertion that the

meta-data for all messages needed for recovery are present, we can conclude

that all the messages in the sequence Sk(pc) ; Sc(pc) before the i + 1th local

message (mi+1) can be processed. This means that during recovery mi+1.sender

will process all those messages that it had processed before sending mi+1 prior

to the crash. Moreover, it will process all those messages in the same sequence

during recovery as it did before the crash. This means that mi+1.sender would

pass through the same state that caused it to send mi+1 the first time.

Thus, if at least the first i local messages have been regenerated the i+ 1th

local message will also be regenerated. Therefore, by mathematical induction

all local messages will be regenerated. This proves Lemma 2.

Lemma 1 and Lemma 2 taken together prove Theorem 2. Theorem 1 and

Theorem 2 taken together prove that after a single processor failure, our message

logging protocol can assure that there are no orphans at the end of recovery.

46

Chapter 5

Multiple Simultaneous Failures

The protocol discussed in Chapter 4 works for all single processor failure cases.

As long as all processors have checkpointed at least once between two processors

crashing, the application can recover from the crashes and continue execution.

However, in systems with multi-processor nodes all the processors in a node

would probably go down at the same time. Therefore, we study the reasons for

this restriction and extend the protocol to allow it to deal with most multiple

failures. However, the assumption that a processor and its buddy do not go

down at the same time is still maintained.

5.1 Challenges and Solutions

This section describes the exact challenges faced by the current message logging

protocol when trying to recover from multiple processor failures within a short

time. It also discusses how the current protocol can be modified to meet these

challenges. There are two major sources of problems:

• Missing message logs

• Missing message meta-data

We discuss the exact sources of these two challenges and their solutions in the

following subsections.

47

5.1.1 Missing Message Logs

Figures 5.1 and 5.2 illustrate a problem faced by the simple message logging

protocol when two processors crash close to each other. Figure 5.1 shows the

initial state of our example. Object γ on processor H sends a message m to

object δ on processor I. According to the remote mode of the message logging

protocol, γ saves a log of m, including m’s meta-data in its message log. For

the sake of clarity, we skip the protocol messages in this figure. To simplify our

example we also assume that processor H is not a buddy of I and vice-versa.

Processor H takes a checkpoint after m has been sent. At the checkpoint object

γ’s state reflects the fact that it has already sent message m. However, processor

I checkpoints before m has been processed. This is shown in Figure 5.1 by the

fact that when processor I checkpoints object δ has TNProcessed = 184, while

the TN of message m is 187. Some time after the checkpoint, processor H

crashes.

In stage 2, shown in Figure 5.2(a) processor H starts recovery by fetching its

checkpoint from its buddy. Processor H recreates object γ from this checkpoint.

However, in our message logging protocol the logs of messages sent to objects on

other processors are not part of the checkpoint state of the sender. Therefore,

when object γ is recreated, its message logs do not contain a log of message

m. Moreover, according to its current state γ has already sent message m and

will not regenerate it. A little later, before processor I has had the chance to

checkpoint again, processor I crashes.

In stage 3 in Figure 5.2(b) processor I is now restarted using its previous

checkpoint. Object δ is recreated and starts its recovery. At this point, it

has a TNProcessed = 184. At some point during recovery, object δ will need

to process message m with a TN equal to 187. However, as explained earlier,

48

Processor H

Processor I

Message m

<

Store m in 's
message log

Checkpoint
H crashes

.TNCheckpointed=184

Figure 5.1: Object γ on processor H sends a message to δ on processor I. After
that processor H takes a checkpoint and then crashes. This is Stage 1 of the
problem of lost message logs which occurs when two processors crash within a
short time of each other. Figure 5.2 contains the remaining two stages.

object γ will not resend message m. Therefore, during recovery object δ is never

going to get message m from object γ. So the recovery of object δ on processor

I gets stuck.

The solution involves forcing object γ to resend message m. One way to do

this would be to roll processor H back to an even earlier checkpoint. This would

force object γ to re-execute and re-generate message m. However, this would fail

to meet one of the primary aims of our fault tolerance protocol that the crash

of one processor should not cause another to be rolled back. Moreover, it would

require each processor to store multiple checkpoints increasing the overhead of

our protocol. Therefore, rolling back processor H even further can not be a

solution to our problem.

We solve the problem by making the entire message log of object γ and its

TNTable a part of its checkpoint state. Earlier, we only saved those entries in

49

Processor H

Processor I

 's log of m
is lost

Checkpoint

I crashes

Fetch checkpoint

from buddy

Recreate does not
resend m

(a) Stage 2: Processor H is recovering. Processor I crashes

Processor H

Processor I

 's log of m
is lost

Checkpoint

Fetch
 ch

eckpoint

fro
m buddy

Recreate
Message m: missing

 needs m
for recovery

 does not
resend m

.TNProcessed=184

(b) Stage 3: Processor I’s recovery gets stuck.

Figure 5.2: Illustrates the problem of lost message logs faced by the simple
message logging protocol when two processors crash within a short time of each
other

the message log that contained messages to other objects on the same processor

as γ during its checkpoint. Now, we save all entries in its message logs to

all objects whether on processor H or not. When object δ begins recovery,

50

object γ resends all messages in its message log with TN higher than 184 (δ’s

TNProcessed at the checkpoint). Since message m has a TN of 187 it gets

resent and reprocessed by object δ. It should noted that we are not suggesting

that all message logs from the very beginning of the program are a part of γ’s

checkpoint state. Garbage collection still continues, with messages in message

logs being deleted whenever their receivers checkpoint.

5.1.2 Missing Message Meta-data

If two processors crash very close to each other, the meta-data of some messages

can be lost during recovery in our current message logging protocol. This means

that during recovery a message can get a TN different from what it got before

the crashes. We illustrate how this can happen with an example shown in

Figures 5.3 and 5.4. In Stage 1 of the example, shown in Figure 5.3, the first

thing to occur is the checkpoint of processors H and I. Objects γ and ε save their

states as a part of processor H’s checkpoint. Object δ is a part of the checkpoint

of processor I. At the time of the checkpoint, the highest ticket handed out by

object δ is 187. After the checkpoint, objects ε and γ send messages m and

n respectively to object δ. Object ε sends message m as a result of receiving

message a from an object on some processor other than H or I. Similarly object

γ sends message n as a result of receiving message b from yet another processor.

It should be noted that there is no predefined ordering between when messages

a and b are processed. In this case as message a happens to arrive first, object ε

processes it before object γ processes message b. As a result, object ε sends its

ticket request for message m before object γ sends one for message n. Object

δ assigns message m a TN of 188 by incrementing TNCount. It gives message

n a TN of 189. When the tickets are received by objects ε and γ, the tickets

are stored in the message logs and the messages are sent to object δ. Object δ

51

processes the messages in the increasing order of TN: first m and then n. At

the end of this, processor H crashes.

Processor H

Processor I

Checkpoint

H crashes

TNCount=187
Ticket Request: n

<

M
essage n

<

TNCount++: 189
TNTable[25]=189

Ti
ck

et
 R

ep
ly

<

n.TN=189

Ticket R
eq

u
est: m

<

TNCount++: 188
TNTable[23]=188

Ti
ck

et
 R

ep
ly

<

m.TN=188
M
essage m

<

Pro
ce

ss m
Pro

ce
ss m

Pro
ce

ss n

M
e
ssa

g
e
 a

for

M
e
ssa

g
e
 b

for
Figure 5.3: Stage 1 of the problem of lost message data which occurs when
two processors crash within a short time of each other. Figure 5.4 contains the
remaining two stages

Stage 2 in Figure 5.4(a) has processor H starting its recovery. It fetches

its checkpoint from it buddy. It recreates objects ε and γ and restarts their

execution. At this point objects ε and γ do not contain the log of messages

m and n respectively. The logs are not part of their checkpoint state since

the messages were sent after the checkpoint as shown in Figure 5.3. Objects

on other processors resend messages to objects ε and γ. Messages a and b are

also resent by their senders. Unlike the situation in Figure 5.3, during recovery

message b arrives before message a. However, before messages b or a can be

processed, processor I crashes.

Stage 3 in Figure 5.4(b) shows processor I recovering from the crash. It

gets its checkpoint from its buddy and recreates object δ. At this point, its

TNTable does not contain any entries for TNs assigned to messages after its

52

Processor H

Processor I

logs of n and m
 are lost

I crashes

Fetch checkpoint

from buddy

Recreate

M
e
ssa

g
e
 a

for

M
e
ssa

g
e
 b

fo
r

(a) Stage 2: Processor H is recovering. Processor I crashes

Processor H

Processor I

Fetch checkpoint

from
 buddy

Recreate

Ticket R
eq

u
est

<

TNCount = 187

Ti
ck

et
 R

ep
ly

<

M
essage n

<

processes n and m

out of order

Ticket Request

<

TNCount++: 188
TNTable[25]=188

TNCount++: 189
TNTable[23]=189

n.TN=188

Ti
ck

et
 R

ep
ly

<

 M
e
ssa

g
e
 m

<

m.TN=189

M
essag

e a

for

M
essag

e b

for

(b) Stage 3: Processor H and I both continue their recovery

Figure 5.4: Illustrates the problem of lost meta-data for regenerated messages
faced by the simple message logging protocol when two processors crash close
to each other

checkpoint (namely messages m and n). Moreover, the TNCount for object δ

is 187 at the start of recovery. Object δ sends out a request to resend messages

to it. However, messages m and n will not be resent because of this request

53

since their logs were lost when processor H crashed and forced objects ε and γ

to restart from their previous checkpoint. Instead, messages m and n will be

resent because objects ε and γ re-process messages a and b respectively during

their own recovery. However, this time message b for γ arrives before message a

for ε. This happens because messages a and b are sent from different processors

to different objects on processor H. When message b is processed, object γ sends

out a ticket request for message n to δ, while object ε processing a leads to a

ticket request for message m. When object δ receives the ticket request for

message n, it has no idea that it had ever allotted a TN to this message. So

object δ treats message n as a new message. It increments TNCount and gives

n a TN of 188. Similarly, object δ assigns message m a TN of 189. Object δ

then proceeds to process these messages in the increasing orders of their TNs.

As a result, object δ ends up processing message n before m. However, in Figure

5.3 δ had processed message m first and then n. This invalidates the primary

aim of the recovery protocol that an object should process the same messages

in the same sequence after a crash as before it.

This problem can be solved by borrowing an idea from the local mode of

operation of the message logging protocol. Figure 5.5 shows how the modified

version of the remote mode works. In this example object γ on processor H sends

message n to to object δ on processor I. The first step is the same as earlier,

object γ assigns a SN (24) to the message n and saves a log of n. However,

the sender object γ no longer sends out a ticket request to the receiver object

δ but sends the message itself along with the sender id, receiver id and SN

tuple. The receiver δ, on processor I, calculates a new TN (189 in this case)

and stores an entry for it in the TNTable. It then sends the meta-data of this

message n, consisting of the sender id, receiver id, SN and TN tuple to the

buddy of processor I, namely processor J. Processor J stores this meta-data

54

in its MDTable and sends an acknowledgment for message n back to object

δ on processor I. Once object δ receivers this acknowledgment, it can process

message n in increasing order of TN.

Processor H

Processor I

Processor J
Buddy(I)

cr

e
a
te

s
n

lo

g
s

n

M
e
ssag

e
 n

<
2

4
>

 TNCount++:189
 TNTable[24]=189

M
eta-D

ata
 n

<
2

4
,1

8
9

>

A
ck

:
n

 processes n in
increasing order
of TN

Store n in
MDTable

Figure 5.5: The modified version of the remote protocol designed to deal with
multiple failures

If processor I were to crash, object δ would be restarted from a previous

checkpoint stored on processor J. Processor J would also send the message

meta-data stored in MDTable along with the checkpoint. The meta-data for

different messages fetched from the MDTable would be stored as entries in

object δ’s TNTable. Object δ would then ask all objects to resend messages to

it. Object γ would re-send message n from its log. However, this message would

not contain a TN. Instead, object δ would look up the message n’s TN in its

TNTable. It is bound to find an entry in the TNTable as long as the message

55

is an old one that was processed before the crash. Thus, we solve the problem

of missing meta-data in the face of multiple failures by making sure that the

meta-data of all messages processed by an object are stored on the buddy of

its processor. This reduces the restarted object’s dependency for meta-data of

processed messages on multiple objects on multiple processors. It must be noted

that we are saving just the meta-data of messages on the buddy and not the

messages. The messages would still be logged and resent from (in the case of

single failure) or regenerated by (in the case of simultaneous failure) the sender

objects.

We implement the improvements for tolerating multiple faults, but let the

user turn it off to avoid the overhead of checkpointing message logs, if he thinks

that the chances of simultaneous failures are low.

The only case in which our solution might fail occurs when processor I

crashes just after its buddy processor J has crashed and restarted. As processor

J no longer has processor I’s MDTable, the objects on I cannot successfully

recover. The probability of such a pair of unrecoverable crashes happening can

be reduced by having processor I checkpoint as soon as processor J restarts.

Once processor I has checkpointed, the objects on I do not need the meta-data

stored in the MDTable on processor J that were lost when J crashed. This

shortens the length of the time window during which a crash might cause an

unrecoverable error. This situation arises because unlike [13, 14] we do not use

an idealized stable storage.

5.2 Reliability Improvement Analysis

We present a calculation based on a simple model to prove that our protocol

increases the reliability of a system, in spite of not being foolproof. Let the

56

number of processors be p. Let the failure rate of a single processor be λ. Let

λ be the same for all p processors. Let the run time of the application without

a fault tolerance protocol be R units. The probability of a particular processor

crashing during the runtime of the application can be approximated by λR.

The probability of a particular processor not failing through out the runtime

of an application is then 1 − λR. The probability of none of the processors

failing during the application’s execution is given by (1− λR)p. Therefore, the

probability that the application will fail = 1− (1− λR)p (1).

Now, we consider the case when the application uses our fault tolerance

protocol. Let the run time of the application in this case be R′ units, where

R′ > R, to account for the unavoidable performance cost of fault tolerance.

The probability of any particular processor crashing during the runtime of the

application is λR′. The application would now face an unrecoverable error only

if the buddy of the crashed processor crashes before taking a checkpoint. In

our protocol, processors are free to take their checkpoints at any point of time.

However, practical considerations such as growing message log size normally

place an upper bound on the time difference between two consecutive check-

points taken by a processor. This upper bound also determines the amount of

computation that has to be redone due to a crash. We shall see that it is also

a factor in the reliability of the system. In order to simplify the analysis, we

assume that the upper bound is t units of time for all processors.

It is also assumed that the probability of failure of a processor doesn’t change

after its buddy crashes. Choosing a buddy, such that the co-relation of failure

between a processor and its buddy is low, validates this assumption to a large

extent. Since each processor is assumed to take a checkpoint at least once ev-

ery t units, the probability of an unrecoverable error, given that a processor has

crashed, is λt. So the probability of a particular processor causing an unrecover-

57

able fault is (λt)(λR′) = λ2tR′. A processor runs successfully with a probability

of 1 − λ2tR′. The probability of a successful run, with no processor suffering

an unrecoverable crash is given by (1−λ2tR′)p. Therefore the probability of an

unrecoverable fault during the application run is 1− (1− λ2tR′)p (2).

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000

P
ro

ba
bi

lit
y

of
 fa

ilu
re

Number of Processors

PNoFT(MTBF=5yrs)
PNoFT(MTBF=20yrs)
PNoFT(MTBF=50yrs)

PFT(MTBF=5yrs)
PFT(MTBF=20yrs)
PFT(MTBF=50yrs)

Figure 5.6: The probability of failure for runs without and with our fault tol-
erance protocol for different values of Mean time between failures(MTBF):
5,20,50 years. The probability of failure is plotted against the numbers of
processors. R (runtime without fault tolerance)=400. R′(runtime with fault
tolerance)=1200.t(time between checkpoints)=.5hours.

In order to bring out the huge difference between the expressions in (1) and

(2), we evaluate them for a range of plausible system parameters. Figure 5.6

shows the probability of failure for a particular runtime duration without(PNoFt)

and with (PFT) our fault tolerance protocol. The probability of failure is cal-

culated for an execution time of 400 hours without fault tolerance and 1200

hours with fault tolerance. The same execution time is used for all numbers of

processors. We choose a 3 time increase in run-time as a worst case scenario

since our protocol increases short message latency to 3 times. We plot the prob-

58

ability of failure for 3 different values of mean time between failure(MTBF) for

each processor: 5 years, 20 years and 50 years. For our fault tolerance protocol,

we assume a processor checkpoints at least once every half an hour, therefore

t = .5 hours. Figure 5.6 clearly demonstrates that our protocol drastically

reduces the probability of failure, even on large machines made up of unreli-

able components. Without any fault tolerance support, the chance of failure

rises sharply with increasing numbers of processors. It becomes impossible to

get successful runs with probability of failure reaching 1 when running on 1000

or more processors. Our protocol, on the other hand even with very unreliable

components (MTBF=5years) still manages to run 99% of the time even on mas-

sive machines with tens of thousands of processors. With moderately reliable

components our protocol has a very low property of failure on large machines.

 1e-07

 1e-06

 1e-05

 0.0001

 100 1000 10000

P
ro

ba
bi

lit
y

of
 fa

ilu
re

Number of Processors

PFT(t=4 hours)
PFT(t=1hours)

PFT(t=.5 hours)
PFT(t=.1 hours)

Figure 5.7: Probability of failure of runs with our fault tolerance protocol, on
different numbers of processors, for different values of t(the maximum time
between two checkpoints). The execution time R′ is 1200 hours and the MTBF
for individual processors is 20 years.

Figure 5.7 shows the variation in the probability of failure of our fault tol-

59

erance protocol with different periods of checkpointing. The higher the time

between checkpoints, the higher is the probability of an unrecoverable occur-

ring during a run. This makes sense intuitively since a higher time between

checkpoints, means that a crashed processor’s buddy has a longer time during

which if it fails, the application will suffer an unrecoverable error. So when a

processor crashes it is important for its buddy to checkpoint and try to reduce

the window of time during which a crash can lead to an unrecoverable error.

If one does not do that while using our protocol, then the checkpoint period

becomes a factor in the reliability of the protocol itself. This complicates the

traditional tradeoff in message logging protocols between checkpoint frequency

and the size of message logs.

5.3 Proof of Correctness

Theorem 3 There is enough information, including meta-data of messages and

checkpoints, to avoid orphans at the end of recovery from multiple simultaneous

processor failures as long as a processor and its buddy do not crash at the same

time.

We use the definition of Depend(m) from Chapter 4.4 as the set of all ob-

jects whose state was affected by the processing of message m. Just for the sake

of clarity we present the formal definition of Depend(m) again as:

o ∈ O
∣∣∣∣∣∣∣∣∣∣

((o = m.reciver) ∧ processed(m))

∨

∃m′ :
((process(m)→ process(m′))

∧(o = m′.receiver) ∧ processed(m′))

The definition of Log(m), as the set of processors that contain informa-

tion that can prevent message m from becoming an orphan, is also reused.

60

However, with the changes to the remote mode of the message logging pro-

tocol the value of Log(m) changes from that in Section 4.4. If m.receiver

and m.sender are on different processors, the meta-data of m is stored in the

MDTable of the buddy of P (m.receiver) instead of P (m.sender). Even af-

ter a checkpoint of P (m.receiver), when |m| gets garbage collected from the

MDTable on B(P (m.receiver)) the checkpoint of m.receiver itself is stored

on B(P (m.receiver)). So, Log(m) always includes B(P (m.receiver)) for the

remote mode of the protocol, the same as the local mode. As a result Log(m)

now has the same value for all messages m as long as processed(m) is true.

Therefore, the value of Log(m) can be formally written down as:

Log(m) = {P (m.receiver), B(P (m.receiver))}

Now, a set of processors C ⊂ P crash. It should be noted that our protocol

assumes that this does not include a processor and its buddy. Therefore, C is a

set of the following form:

C = {pc : pc ∈ P ∧B(pc) /∈ C}

An object o on some other processor will become an orphan if P (o) does not

crash but the state of o depends on a message m whose meta-data has been

lost. The meta-data of a message can be lost if Log(m) is a subset of C. We

express the condition for o to be an orphan formally as:

orphan(o) =

 P (o) ∈ P − C

∧∃m : ((o ∈ Depend(m)) ∧ (Log(m) ⊆ C))

Since, for every pc in C its buddy is not in C: Log(m) * C

Therefore, orphan(o) is never true for our system as long as a processor and its

buddy have not crashed together:

61

orphan(o) =

 P (o) ∈ P − C

∧∃m : ((o ∈ Depend(m)) ∧ false)

 = false

Therefore, our protocol has enough information in message meta-datas and

checkpoints to avoid orphans at the end of recovery from multiple simultaneous

processor failures as long as a processor and its buddy have not failed at the

same time. This completes the proof of Theorem 3.

Theorem 4 All messages, necessary to avoid orphans after recovery from a

multiple simultaneous processor failure, are available during recovery as long as

a processor and its buddy do not crash.

The case for the multiple failure case is different from that in Theorem 2

only for the messages sent between objects on the crashed processors. If objects

on the crashed processors had not sent any messages to each other, there would

be no difference between the two cases. The recovery on the different crashed

processors would simply proceed independent of each other. So, we concentrate

on messages exchanged between objects on the crashed processors. We will try

to prove that all such messages along with local messages between objects on

the same processor will be regenerated. The proof will turn out to be quite

similar to that of Lemma 2.

For every processor pc ∈ C, the state of pc at the checkpoint just before the

crash is given by Sk(pc) and its state just before the crash is given by Sc(pc).

For all pc ∈ C, consider the process events in the sequence Sk(pc) ; Sc(pc). Let

us interleave all these process events on the different crashed processors into one

sequence such that causality is never violated (if process(ma) → process(mb),

event process(ma) occurs before event process(mb) in the interleaved sequence).

We are sure that such a sequence exists because, it is possible to have an exe-

cution in which we place all objects on the crashed processors (the set given by

62

⋃
pc∈C O(pc)) on one single processor such that all messages have the same meta-

data as before. This is possible because in a virtualized system, placement of

objects on processors does not impact the state of the object. Let us represent

one such interleaved sequence by Sk(C) ; Sc(C). Of course, any process event

m in this sequence such that P (m.sender) ∈ P −C, will be resent according to

our recovery protocol.

Consider the first process event in the sequence Sk(C) ; Sc(C), such that

the sender of the corresponding message exists on a crashed processor (call

this message m1). There are two possibilities: message m1 was sent before

or after m.sender checkpointed. If it is the former, m1 would be a part

of the checkpoint state of m1.sender. This is true, irrespective of whether

P (m1.sender) = P (m1.receier), since the modified version of the protocol saves

all entries in m1.sender’s message log as a part of its checkpoint state. Now

for the second case, in which m1 was sent after m1.sender checkpointed. All

the messages processed in the sequence Sk(C) ; Sc(C) before process(m1) have

their senders on some processor p ∈ P −C. This is true by the definition of m1.

Moreover, one such process event in the sequence Sk(C) ; Sc(C) earlier than

the event process(m1) is responsible for sending message m1. This is bound to

be true since the interleaved sequence does not violate causality. Since all mes-

sages with senders on processor other those in C will be resent and by Theorem

3 their meta-data will be available, all the messages in the sequence before m1

will be processed. This means that during recovery m1.sender is bound to pass

through the same state that caused it to send m1. Therefore m1 is bound to be

available during recovery.

Now, let us assume that at least the first i messages in the sequence Sk(C) ;

Sc(C) that have their senders on crashed processors have been re-generated

during recovery. Moreover, all the messages in the sequence with senders on

63

processors other than the crashed ones will be resent. Theorem 3 also states that

the meta-data of all these messages will be available during recovery. Therefore,

at least all messages in the sequence Sk(C) ; Sc(C) before the (i+1)th message

(mi+1) with a sender on a crashed processor will have been processed. This

means that the object mi+1.sender will pass through the same state that led it

to sending mi+1 in the first place. Therefore, if at least the first i messages with

a sender on a crashed processor have been regenerated, the i + 1th will also be

regenerated. By mathematical induction, all messages with senders on crashed

processors will be regenerated. This along with the fact that all messages with

senders on uncrashed processors will be resent means that all messages necessary

for an orphan less recovery in the face of multiple simultaneous failures (but

not involving any processor and its buddy) will be regenerated.

64

Chapter 6

Fast Restart

We discuss the fast restart protocol in this chapter. The fast restart protocol

makes use of object based virtualization to distribute the work on the recovering

processor among other processors. This parallelizes the recovery of the crashed

processor, leading to faster recovery. This is expected to be particularly useful

for scientific applications which are tightly coupled. While a processor is recov-

ering in a tightly coupled application, other processors start waiting for data

from the recovering processor. Our fast restart protocol utilizes these waiting

processors to shorten the time wasted in waiting for the recovery to finish.

However, moving objects from one processor to another is a fraught process.

Figure 6.1(a) shows one of the problems faced while moving objects from one

processor to another. Object ε is to be moved from the recovering processor

C to processor E. Processor C packs up the state of object ε and sends it

in a message to processor E. Processor C deletes its copy of object ε after

sending the message containing ε. Now if processor E were to crash before the

message got to processor E, neither processor C nor E would have a copy of

ε. Moreover, during processor E’s recovery ε would not be created since its

buddy would not have object ε’s checkpoint. One could think of solving this

problem, by having processor C not delete its copy of object ε until processor E

acknowledges that it has received and created object ε on itself. However, this

solution merely postpones the problem. Figure 6.1(b) shows the situation when

processor E crashes after it has sent an acknowledgement to processor C. As a

65

result, processor C does not contain a copy of object ε and moreover processor

E’s buddy does not contain a checkpoint of object ε. Thus object ε will not be

re-created during processor E’s recovery.

Processor C

Processor E

Object

E crashes

delete

(a) Object ε lost during migration from processor C to E

Processor C

Processor E

O
bject

E crashes
 A
ck

re
ce

ip
t

delete

(b) Object ε lost after migration from processor C to E

Figure 6.1: Examples of problems faced while trying to parallelize restart by
moving objects from one processor to another.

We developed a fast restart protocol that migrates objects from the recov-

ering processor to another, while making sure that if another processor were

66

to crash, all lost objects would be recreated and only one copy of each object

would be created. Figure 6.2 shows the messages involved in the fast restart

protocol. Object ε is to be moved from processor C to processor E. Processors

D and F are the buddys of processors C and E respectively. Processor C marks

object ε as migrating to processor E. It also sends a message to this effect to

its buddy processor D. On receiving that message processor D marks object ε

as migrating to processor R in ε’s checkpoint stored on processor D. Processor

D then sends an acknowledgment message back to processor C. At this point,

processor C packs the state of object ε into a message. The message containing

object ε is sent to the destination processor E and its buddy processor F. Pro-

cessor C does not yet delete its copy of object ε. However, it does stop object

ε from processing any further messages and buffers any messages for ε.

When processor E gets the message containing object ε, it stores the message

and sends acknowledgments to processors C and D. After processor F gets the

copy of object ε, it adds ε to its copy of processor E’s checkpoint. After that

processor F sends acknowledgments to processor C, D and E. Once processor

C receives the acknowledgments from both processors E and F, it can delete

its copy of object ε. Processor D waits to get an acknowledgment each from

processor E and F and then marks object ε as migrated in its checkpoint

of processor C. Processor E waits for the acknowledgment from processor F

before creating object ε from the stored message. It then allows object ε to

start processing messages. At this point object ε has successfully migrated

from processor C to E. If processor E were to crash now, object ε would be

re-created on processor E from its checkpoint on processor F.

We now briefly discuss how the fast restart protocol behaves if one of the

four involved processors crashes, before the fast restart protocol has finished.

During a fast restart if processor C crashes again before its buddy processor D

67

Processor C

Processor D
Buddy (C)

Processor E

Processor F
Buddy(E)

M
ig

ra
tin

g

to
 E

Mark as
migrating

A
ck

A
ck

A
ck

: r
ec

ei
pt

A
ck

: r
ec

ei
pt

 c

he
ck

po
in

t
A

ck
Ac

k

Mark as
migrated

delete

Mark as
migrating

: process
messages

Add to the
checkpoint of E

Figure 6.2: Messaging when processor C sends object ε to restart on processor
E

has received the acknowledgments from processors E and F, D asks if object ε

and its checkpoint exist on E and F respectively. Processor E stops processing

messages for object ε after being asked this question. If both processors E

and F answer in the positive, processor D does not recreate object ε on C and

asks E to continue with the execution of messages for ε. If not, it recreates

object ε on processor C and asks processors E and F to throw away object ε

and its checkpoint respectively. The case in which processor E but not F has

received object ε and processor E crashes can be resolved by continuing with

ε’s execution on processor C after confirming that processor F does not indeed

68

have ε’s copy. If processor E crashes after processor F has got the copy of object

ε, the object can simply be recreated on processor E from the copy on processor

F. In that case processor D does not recreate object ε on processor C since it

finds that processor F has a copy.

Though the fast restart protocol is more complicated than the basic one,

the speed up in recovery gained by dividing the work among multiple proces-

sors more than makes up for the additional overhead. The small number of

short messages sent during fast restart is overshadowed by the large number

of messages being resent as a part of the restart. Fast restart can potentially

significantly shorten the recovery time for an application.

6.1 Analysis

We do a rough analysis of our fast restart protocol. We compare the completion

time of an application running the fast restart protocol with the same applica-

tion running a traditional checkpoint/restart protocol.

Let the mean time between failure for the system be m time units.

Let the system checkpoint every c time units (not including the checkpoint pe-

riod itself).

Let duration of a checkpoint be d.

Let the runtime of the application without any fault tolerance support be t0.

So time to complete the application with checkpoints: tc = t0 +
t0
c
d.

If there are n faults, the worst case runtime under the checkpoint scheme will

be

t′c = tc + n(c + kc) where kc is the constant overhead for restarting in the

checkpoint scheme.

On an average, we expect n =
t′c
m

faults during a run, so the execution run time

69

is given by t′c =
t0(1 +

d

c
)

1− c+ kc

m

.

t′c goes rapidly to infinity as m approaches c + kc. In other words as the

mean time between failure approaches the worst case recovery time per failure,

the application can make very little progress and spends most of the time just

recovering from faults. As a result the total execution time blows up.

For the message logging protocol, runtime without faults is

tml = r(t0 +
t0
c
d) where r is the ratio of increase in runtime due to the message

logging protocol.

If the number of objects per processor is v and kml the overhead of fast restart,

then the runtime with faults can be calculated to be

t′ml =
rt0(1 +

d

c
)

1−

c

v
+ kml

m

.

The runtime for the message logging protocol goes to infinity rapidly as m

approaches
c

v
+ kml. In the case of the message logging protocol too, execution

time increases sharply once the mean time between failure becomes close to the

recovery time. The difference between the two protocols lies in the fact that

the recovery time for the message logging protocol is lower than that of the

checkpoint protocol in most cases. As long as kml is not much larger than kc,

c

v
+ kml is smaller than c + kc and the message logging protocol can tolerate a

higher rate of failure than a checkpoint based protocol.

This shows that our fast recovery protocol can deal with higher rates of

failure than the checkpointing protocol. Moreover the performance of the fast

70

protocol is better than the checkpoint protocol as long as

r <
m− (

c

v
+ kml)

m− (c+ kc)
.

This gives us a condition that can be used to decide whether for a given

application and machine our protocol will perform better than a traditional

checkpoint based protocol.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
t’/

t 0
(1

+
d/

c)

Mean time between faults (in hours)

Normalized t’c
Normalized t’ml r=2.0
Normalized t’ml r=1.5
Normalized t’ml r=1.2
Normalized t’ml r=1.1
Normalized t’ml r=1.0

Figure 6.3: Compares the worst case performance of the checkpointing proto-
col and our message logging protocol for different ratios of overhead (r) of the
message logging protocol. The y-axis plots the total execution time normalized

by to(1 +
d

c
). The x-axis plots the mean time between failures (m). The exe-

cution time for the message logging protocol with values of overhead 0%, 10%,
20%,50%,100% is shown.

Figure 6.3 is used to illustrate with an example exactly how the overhead

of our protocol and the mean time between failure on a machine can affect

the decision to choose between our fault tolerance protocol and a checkpointing

71

based protocol. Figure 6.3 plots the total execution time normalized by t0(1+
d

c
)

against the mean time between failure. It does so for an application that is

assumed to checkpoint once every hour (c = 1 hour) for both protocols and has

16 objects per processor in the case of our fault tolerance protocol (v = 16).

Moreover, the constant overhead for restarting is assumed to be the same for

the checkpoint and message logging protocols and is assumed to be 3 minutes

(kc = kml = .05hours). This is actually a conservative assumption since the

checkpoint protocol has to restart all the processors and needs to fetch all

their checkpoints, whereas the message logging protocol needs to get only one

checkpoint. We plot the total execution time for the message logging protocol

for multiple values of overhead(r), namely 0%, 10%, 20%,50%,100%.

The first thing to note in Figure 6.3 is that the time for the checkpoint

increases sharply once the mean time between failures starts approaching the

time between checkpoints (1 hour). This does not happen for the calculated

time for the message logging protocols. The execution time remains reasonable

even when failures are more frequent than checkpoints. Their execution time

increases sharply only when the time between failure starts approaching their

recovery time (close to 7 minutes).

Next, we see that if our message logging protocol does not impose any over-

head (or a negligible one) on an application, then our message logging protocol

performs better than a checkpoint based one even when failures are rare. This

is borne out by the line for r = 1.0 which is always lower than that for t′c. For

higher overheads, our protocol continues to perform better than a checkpoint

based protocol for certain ranges of fault frequency. Exactly at which frequency

of faults, the checkpoint based method becomes better for an application de-

pends on the overhead of our protocol for that application. The higher the

overhead for an application, the lower the time between failures at which our

72

protocol starts out performing the checkpoint based one. This point is the one

at which the line for t′ml for a given overhead (value of r) crosses the one for t′c.

From this analysis, we see that our fault tolerance protocol will out perform a

checkpoint based one in high fault frequency regimes. It can allow an applica-

tion to make progress when it becomes impossible for a checkpoint based one.

However, even if the fault frequency is low our fault tolerance protocol is better

for applications on which it imposes lower overheads.

73

Chapter 7

Experimental Results

We evaluate the performance of the recovery protocol in both the basic and fast

recovery modes. We also characterize the applications that are most suitable

for our message logging protocol. We investigate the different performance

penalties paid by various applications while using our protocol. Optimizations

to reduce these overheads are also presented and evaluated.

We tested different parts of our protocol on 4 different machines:

• The Architecture cluster is a cluster of 16 dual Opteron (Processor 244)

machines with 1 GB of memory, connected by Gigabit switched ether-

net. We used gcc 4.0.1 and gfortran as the C++ and fortran compilers

respectively.

• Uranium is a cluster of 20 dual processor 1 GHz Pentium III processors

with 1.5 GB of memory and swap each. The nodes are connected with

Gigabit switched ethernet and myrinet. We used gcc 3.3.5 as the C++

compiler.

• Abe is a cluster of 1200 nodes connected by Infiniband and Gigabit eth-

ernet. Each node consists of 2 quad-core 64 bit 2.33 Ghz Intel Clovertown

processors. We used the icc 10 suite of compilers for C and C++.

• Tungsten is a cluster of 1280 compute nodes connected by Gigabit eth-

ernet and myrinet. Each node is a dual processor 3.2 Ghz 32-bit Intel

Xeon processor.

74

7.1 Restart Performance

Virtual processors Basic Fast
per processor Restart Time(s) Restart Time(s)

2 28.45 18.31
4 28.21 13.45
8 28.17 9.57
16 29.37 7.58

Table 7.1: Comparison of restart performances on 16 processors

Basic Fast−2 Fast−4 Fast−8 Fast−16

T
im

e
(s

)

0

5

10

15

20

25

30

35
Re−execute
Redistribute the objects
Recreate the objects
Retrieve the checkpoint
Launching the new process

Figure 7.1: Different phases of the Basic and Fast restart protocols. The ba-
sic protocol was run with 1 virtual processor per processor. The fast restart
protocol shows the times for 2,4,8 and 16 virtual processors per processor.

We use a 7-point stencil with 3D domain decomposition written in MPI to

evaluate the performance of the restart protocols. In each iteration a Charm++

object gets data from its neighbors on all 6 sides and performs some computa-

tion. We ran the stencil code with two versions of AMPI, one with (AMPI-FT)

and the other without (AMPI) the fault tolerance protocol. In the case of

75

AMPI-FT we checkpointed every 30 seconds. Our aim with this application is

to evaluate the performance of the restart protocols. We simulate a fault on a

processor by sending SIGKILL to a process running on it. After a processor

crashes and restarts, the objects on the surviving processors wait for the ob-

jects on the restarted processor to catch up. The amount of time each object

waits shows up as an increase in the run time of the ongoing iteration. We use

the maximum increase in iteration runtime over all the surviving objects as a

measure of the restart time for both the basic and fast restart protocols.

Table 7.1 shows the time taken for basic and fast restart for different numbers

of virtual processors per processor. We ran the stencil code on 16 processors

and checkpointed every 30 seconds. For each run a fault was triggered about 27

seconds after a checkpoint. Higher numbers of virtual processors per processor

allowed the fast restart to distribute work among more processors and led to

significantly shorter restart times. Even having just two objects per processor

reduces the restart time significantly. Fast restart thus lets us restart much

faster than the time between the crash and the previous checkpoint.

Recovery Phase Basic Fast-2 Fast-4 Fast-8 Fast-16
Launch New Process 1.29 s 1.24 s 1.34 s 1.27 s 1.28 s
Retrieve Checkpoint 0.44 s 0.76 s 1.05 s 1.31 s 1.55 s
Recreate Objects 0.05 s 0.09 s 0.12 s 0.17 s 0.21 s
Distribute Objects NA 0.65 s 0.71 s 0.81 s 0.91 s
Re-execute 25.18 s 15.57 s 10.23 s 6.01 s 3.64 s

Table 7.2: The exact time spent in different phases of the restart protocol
for Figure 7.1. The basic restart protocol was run with 1 virtual processor
per processor. The fast restart protocol shows times for 2,4,8 and 16 virtual
processors per processor.

Figure 7.1 compares the time spent in different phases of the basic and

fast restart protocols. We measure the time taken to launch a new process,

retrieve its checkpoint, recreate the objects and distribute them among other

76

processors. We subtract the total time taken during these four stages from the

overall restart time to obtain the time taken to re-execute the work lost due to

the crash. For the fast restart protocol, the re-execution time includes the time

taken to receive the recovering objects on other processors. Table 7.2 shows the

exact time spent in different parts of the restart protocols. The basic restart

case was run with 16 objects on 16 processors and the fast restart protocol was

run with numbers of objects per processor varying from 2 to 16.

The time to launch a new process is constant across the different runs.

The overhead for retrieving the checkpoint increases with increasing number of

objects because the checkpoint size grows with the number of objects. Some of

the increase in checkpoint size is caused by data structures that are constant

for every object such as the AMPI thread’s stack and protocol data structures.

Moreover, in a stencil application the amount of communication (in bytes not

just number of messages) increases as we decompose the same domain into more

pieces. Since the number of physical processors remains constant, this means

that the sum of the size of the message logs of all objects on a processor increases

with the number of objects. As message logs are a part of an object’s state in the

modified protocol, the checkpoint size increases with the number of objects on a

processor. Therefore, the time to retrieve the checkpoint rises as the number of

objects per processor increases. In fact, with 16 virtual processors per processor

it becomes a significant part of the total restart time, taking about 20.4% of

the total restart time.

The cost of recreating the objects is low and although the cost increases with

the number of objects, it remains a small part of the overall restart time even

when there are 16 virtual processors per processor. The overhead of redistribut-

ing the objects across different processors increases slowly with the number of

objects per processor. Larger numbers of objects per processor means that ob-

77

jects are distributed among more processors and the fast restart protocol sends

out more messages. When there are 16 virtual processors per processor, the

cost to redistribute the objects forms about 12% of the total restart time.

However, the re-execution time decreases sharply with increasing number

of objects per processor as the work of the restarted processor gets distributed

among more processors. For the fast restart protocol with 16 virtual processors

per processor the time to re-execute is a fraction of the basic restart protocol.

In fact in this case, the overheads (first four rows in Table 7.2) associated with

the fast restart protocol add up to more than the re-execution time itself. Thus

the overall restart time starts to get limited by the increasing restart overheads.

However, the decrease in re-execution is still far more than the rise in restart

overheads due to higher numbers of objects. As a result, with larger numbers

of objects per processor the fast restart protocol can recover much faster than

the basic restart.

We also found that the forward path overhead (ie. overhead in absence of

faults) for the stencil application was around 10% for the 16 processor run (a

more detailed analysis of the forward path cost is presented in Section 7.2).

Thus, our protocol provides the stencil application with fast recovery without

imposing an unacceptably high performance cost.

We compared the recovery times of the basic and fast restart protocols for

varying time durations between a crash and its previous checkpoint. We ran the

3D stencil MPI application with 512 virtual processors on 32 processors of the

uranium cluster and triggered faults at varying times after a checkpoint. Figure

7.2 shows the recovery time while using the basic and fast restart protocols. As

the time between the crash and the previous checkpoint increases, the amount

of work that needs to be redone also increases. For the basic restart protocol,

all the work is re-executed on the recovering processor. Therefore, the recovery

78

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 40 60 80 100 120 140 160 180 200 220

R
ec

ov
er

y
T

im
e

(s
)

Time between crash and previous checkpoint (s)

Basic Restart
Fast Restart

Figure 7.2: The Recovery time for the Basic and Fast restart protocols for
different time durations between the crash and the previous checkpoint.

time is more or less equal to the time between the crash and the previous

checkpoint. So, the line for the basic restart protocol has a slope more or less

equal to 1.

The fast restart protocol speeds up recovery by distributing the work of the

recovering processor among other processors. Its recovery time is a fraction of

the time between the crash and its previous checkpoint. So even when there is

more work to be done during recovery, its recovery time rises far less sharply

than that of the basic restart protocol. Therefore, the line for the fast restart

protocol is flatter in Figure 7.1. Moreover, as the time between a crash and

its previous checkpoint increases, the recovery time for the fast restart protocol

becomes a smaller fraction of that of the basic restart protocol. This happens

because the overheads of the fast restart protocol (identified earlier in this sub-

79

section) form a smaller fraction of the total recovery time as the time duration

between a crash and its previous checkpoint increases.

Thus, we see that the fast restart protocol speeds up recovery compared to

the basic restart protocol in different situations. The recovery process of the fast

restart protocol does have some extra overheads compared with the basic restart

protocol. However, the advantage derived by parallelizing the re-execution of

work during recovery far outweighs the extra costs of fast restart.

7.2 Application Studies

We want to characterize the applications that are most suitable to our message

logging protocol. We want to evaluate the overhead of our protocol for different

types of applications. We expect the increase in message latency to be the main

source of overhead. We found that, on our Opteron cluster, short message la-

tency for AMPI is 45 µs and that for AMPI-FT is 125 µs. This is exactly what

we expect with the short message round trip (twice message latency for AMPI),

needed to log the meta-data of a message, accounting for this difference. We

use the NAS parallel benchmarks to categorize the types of applications that

would suffer large or small performance penalties in the face of this increased

message latency. We run NPB3.1 with versions of AMPI with and without the

fault tolerance protocol. We show data for the class B of four representative

benchmarks : CG, MG, SP and LU. For a particular number of physical pro-

cessors, we run each benchmark with varying numbers of virtual processors and

report the best performance for AMPI. In the case of AMPI-FT we report the

performance for different numbers of virtual processors on a certain number of

physical processors. As we are trying to measure the overhead of the message

logging protocol, we do not take any checkpoints during the execution of the

80

benchmarks.

Figure 7.3 shows the performance of the MG benchmark on a varying num-

ber of physical processors. Since performance is measured in terms of Mflops, a

higher bar represents better performance. For each physical processor we show

the performance of AMPI-FT with 1,2,4 and 8 virtual processors per proces-

sor. For a small number of processors the performance penalty of our protocol

is low when using 1 virtual processor per processor. On a small number of

processors, the application is mostly computation dominated and the increase

in communication time due to the increased message latency does not affect

overall performance that much.

However, on higher numbers of processors the increased message latency

starts to make its effects felt. AMPI-FT with just 1 VP per processor suffers

a severe performance penalty. Figure 7.3 show that this penalty can be mit-

igated by adding more virtual processors per processor. The performance of

MG on AMPI-FT improves sharply with higher degrees of virtualization. This

happens because having more virtual processors per processor enables adap-

tive overlap of communication and computation. While one virtual processor

is waiting for a message, another virtual processor on the same processor can

continue with its execution. This allows MG to effectively hide the increased

latency due to the message logging protocol. The number of virtual processors

needed per processor to achieve the best performance varies between 4 and 8

for MG class B on this range of processors. This represents a compromise point

between the divergent performance impacts of virtualization. Too few virtual

processors means that there is not enough adaptive overlap of communication

and computation. On the other hand, having too many virtual processors in-

creases the number and volume of communication for a particular application.

The best performance occurs where there is a good degree of adaptive overlap

81

Number of Processors

2 4 8 16 32

M
flo

ps

0

500

1000

1500

2000

2500

3000

3500

4000

AMPI
AMPI−FT 1VP
AMPI−FT 2VP
AMPI−FT 4VP
AMPI−FT 8VP

Figure 7.3: Performance of the MG class B benchmark. The AMPI FT values
are shown for different numbers of vp per processor.

but the benefits of adaptive overlap have not been wiped out by the increased

communication costs.

Figure 7.4 shows the performance of the SP benchmark on AMPI and AMPI-

FT. The SP benchmark is designed so that it can only run on a square number of

virtual processors. This meant that for a certain number of physical processors,

there were only a few possible values for total number of virtual processors

that were a square and yielded an integral number of virtual processors per

processor. So, we simply ran the SP benchmark with 1 virtual processor per

82

Number of Processors

4 9 16 25

M
flo

ps

0

500

1000

1500

2000

2500

3000

AMPI
AMPI−FT

Figure 7.4: Performance of the SP class B benchmark.

processor. In this case, we found that AMPI-FT had a low performance penalty

even without the benefit of virtualization.

The performance of the CG benchmark is shown in Figure 7.5. Increasing

the number of virtual processors per processor, improves the performance of

CG even on small numbers of processors. CG, as we shall see a little later,

is more communication intensive than MG. Therefore, even on small numbers

of processors, adaptive overlap of computation and communication helps per-

formance. The performance penalty of CG is low until 16 processors. On 32

processors, having 2 virtual processors per processor improves performance over

the 1 virtual processor per processor case only a little. With higher number of

virtual processors, the performance in fact deteriorates. This happens because

on 32 processors the amount of work per processor is low for CG and there

is not sufficient computation to overlap with the increased communication la-

83

Number of Processors

2 4 8 16 32

M
flo

ps

0

100

200

300

400

500

600

700

800

900

AMPI
AMPI−FT 1VP
AMPI−FT 2VP
AMPI−FT 4VP
AMPI−FT 8VP

Figure 7.5: Performance of the CG class B benchmark. The AMPI FT values
are shown for different numbers of vp per processor.

tency. Moreover, increasing virtualization adds communication load of its own.

As a result, CG’s performance on AMPI-FT deteriorates with higher numbers

of processors. One thing to note about CG is that even on AMPI, without the

fault tolerance protocol, the performance of CG does not scale well beyond 16

processors.

Figure 7.6 shows that the LU benchmark performance. The performance

penalty is low for small numbers of processors with virtualization moderating

84

Number of Processors

2 4 8 16 32

M
flo

ps

0

2000

4000

6000

8000

10000

AMPI
AMPI−FT 1VP
AMPI−FT 2VP
AMPI−FT 4VP
AMPI−FT 8VP

Figure 7.6: Performance of the LU class B benchmark. The AMPI FT values
are shown for different numbers of vp per processor.

the overhead of the increases message latency. However, LU pays a significant

performance penalty while using AMPI-FT on larger numbers of processors.

Having more virtual processors per processor, decreases the penalty significantly

even on large numbers of processors. However, even after the improvement the

penalty for LU is high (33% on 32 processors).

Figures 7.3 and 7.4 show that the performance penalty is low for the MG

and SP benchmarks respectively. The performance penalty for CG in Figure

85

7.5 is moderate, whereas that for LU in Figure 7.6 is significant. MG’s good

performance is expected since it sends the least number of messages[25, 52]. For

the same class of problem and number of processors, MG sends about a quarter

the number of messages as any of the other benchmarks. Similarly LU’s bad

performance is expected as LU sends almost 5 times as many messages as any

of the other 4 benchmarks. The situation gets a bit confused when we consider

CG and SP’s performance. We know that for the same class and number of

processors SP actually sends a larger number of messages than CG [25]. The

different performance penalties imposed by AMPI-FT on each benchmark can

be explained if we consider the number of instructions executed per message sent

by each benchmark. We find that the MG and SP benchmarks execute about

the same number of instructions per message sent [20]. Both the benchmarks

execute about a couple of million instructions per message send on 16 or more

processors. On the other hand LU and CG execute a few (less than 6) hundreds

of thousands of instructions per message sent. This means that the increase in

message latency forms a smaller fraction of the computation time per message

for MG and SP than for LU and CG. So the overall performance penalty is

lower for MG and SP. SP has a higher performance penalty compared to MG

since SP sends more and larger messages than MG [20].

In Figures 7.7 and 7.8 we look at the CPU overheads associated with dif-

ferent parts of the message logging protocol for the MG and LU benchmarks

respectively.. Both benchmarks were run on 32 processors, MG with 128 vir-

tual processors and LU with 64. These were the best configuration for each

benchmark on 32 processors. The time spent by the CPU in different phases

of the protocol is expressed as a percentage of the runtime while using AMPI.

In addition to the protocol components, the time spent in computation as well

as the time that processors were idle are also shown. The percentages for the

86

AMPI AMPI−FT

%
 o

f A
M

P
I R

un
tim

e

0

10

20

30

40

50

60

70

80

90

100

110

120

Local Message Protocol
Send Ticket
Send Ticket Request
Message Send
Idle Time
Computation

Figure 7.7: Break up of the execution time in the case of AMPI and AMPI-FT
relative to the total AMPI runtime for MG on 32 processors. We use the number
of virtual processors that was the best for both runs. The number of virtual
processors per processor for AMPI was 1, whereas it was 4 for AMPI-FT.

different components are averaged over all the processors.

Figure 7.7 shows that for MG the computation time, as expected, remains

unchanged while using our message logging protocol. The idle time actually

shows a decrease while using the message logging protocol. This happens be-

cause some of the computation related to the protocol gets overlapped with the

time spent waiting for communication. So, a processor which would have been

idle in AMPI utilizes a part of that time in AMPI-FT. The message send time

is marginally higher in the case of AMPI-FT since the protocol requires some

book keeping when a message is being sent as a result of receiving a ticket.

Sending ticket requests takes up about the same time (4% of AMPI runtime) as

sending messages in the case of MG. Sending ticket requests and the local mes-

87

AMPI AMPI−FT

%
 o

f A
M

P
I R

un
tim

e

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Local Message Protocol
Send Ticket
Send Ticket Request
Message Send
Idle Time
Computation

Figure 7.8: Break up of the execution time in the case of AMPI and AMPI-FT
relative to the total AMPI runtime for LU on 32 processors.We use the number
of virtual processors that was the best for both runs. The number of virtual
processors per processor for AMPI was 1, whereas it was 2 for AMPI-FT.

saging protocols consume only a small amount of CPU time. These small CPU

overheads of the different parts of the message logging protocol are the primary

source of overall increased execution time in the case of MG. The MG bench-

mark can hide the increase in message latency by overlapping the computation

of one virtual processor with the communication of another. However, the in-

creased CPU usage due to the message logging protocol can not be overlapped

completely with the idle time and ends up increasing the overall execution time.

The LU benchmark in Figure 7.8 presents a situation very different from

that of the MG benchmark. Although, the computation time remains the same

for AMPI and AMPI-FT, the idle time sees a substantial increase when the fault

tolerance protocol is being used. The increased message latency due to message

88

logging means that objects have to wait longer for messages. LU manages to

overlap some amount of computation with this waiting time and thus partially

mitigate the penalty of increased latency. This is borne out by the fact that

in Figure 7.6 the performance of LU with AMPI-FT on 32 processors is much

better when there are two virtual processors per physical processor rather than

one. However, LU has such a fine granularity with low instructions per message

that there is just not enough work to overlap with the increased message latency.

Attempts to increase the amount of possible overlap between communication

and computation by increasing the number of virtual processors also fail beyond

a certain point because dividing the work into more pieces just increases the

number of messages and reduces the granularity further. The cost of these over-

heads outweigh any benefits of overlapping communication and computation.

Thus, in the case of the fine grained LU benchmark the performance penalty of

the fault tolerance protocol is mostly caused by the increase in idle time due to

higher message latency.

7.3 Protocol Overhead for Different

Application Granularity

We found in Section 7.2 that the performance penalty imposed by the message

logging protocol on an application depended on the number of instructions

executed per message. We use a synthetic benchmark to take a closer look at

the relationship between performance and the number of instructions executed

per message.

The synthetic benchmark is a very simple iterative MPI program. The

MPI processors are logically arranged in a ring. In every iteration, each MPI

process sends a short message each to its neighbors on the left and right. Each

89

MPI process also receives a message from each of its neighbors on the left and

right. After that, every MPI process performs some calculations for a specified

amount of time. The amount of time spent in the calculation in each iteration

is a measure of the granularity of the application. Although, this measurement

of granularity is not the same as the number of instructions, the two are closely

related, particularly since the computation loop repeatedly performs the same

calculations.

 1e-04

 0.001

 0.01

 0.1

 1

 1e-04 0.001 0.01 0.1 1

Ite
ra

tio
n

T
im

e
(s

)

Granularity (s)

AMPI
AMPI-FT

Figure 7.9: Iteration time against granularity for AMPI and AMPI-FT with 8
virtual processors on 8 physical processors

We tested the synthetic benchmark on the Tungsten cluster using the myrinet

interconnect. In the first experiment, we evaluated the synthetic benchmark

with 8 virtual processors on 8 physical processors for both AMPI and AMPI-

FT. We varied the granularity from 100 µs to 400 ms. Figure 7.9 shows the

iteration time for different values of granularity for both AMPI and AMPI-FT.

90

We see that the performance penalty is insignificant when the granularity is

more than equal to 10 ms. For the lower values of granularity, the increased

message latency FT and the CPU overhead of the protocol impose a high per-

formance penalty. Since there is one virtual processor per physical processor

in this experiment there is no adaptive overlap between communication and

computation to hide the increased message latency.

Next, we tested our hypothesis that increasing the number of virtual proces-

sors per processor helps us reduce the performance penalty of our protocol. We

ran the synthetic benchmark with 32 virtual processors on 8 physical proces-

sors. We break up the same amount of work into more pieces. So, each virtual

processor now does a quarter of the work done in the previous experiment. The

amount of work per physical processor remains the same. Figure 7.10 shows the

iteration time for different granularities when there are four virtual processors

per processor. The performance penalty for high values of granularity is negligi-

ble as in the previous experiment. More importantly, the performance penalty

for the low granularity cases is lower when there are more virtual processors per

processor. The 1 ms granularity case sees the performance penalty decrease by

40% when we have 4 virtual processors per processor instead of 1. Increasing

the number of virtual processors improves the performance for the 100 µs case

as well. However, the improvement is small and even with 4 virtual processors

per processor the iteration time for AMPI-FT is nearly 2.5 times that of AMPI.

It seems to suggest that for very low granularities, increasing the number of vir-

tual processors introduces an additional source of overhead that nearly cancels

out the benefit of adaptive overlap of computation and communication. This

additional source of overhead is associated with the message logging protocol

since the performance of AMPI actually improves when the number of virtual

processors is increased (158 µs with 1 vp and 142 µs with 4 vps).

91

 1e-04

 0.001

 0.01

 0.1

 1

 1e-04 0.001 0.01 0.1 1

Ite
ra

tio
n

T
im

e
(s

)

Granularity (s)

AMPI
AMPI-FT

Figure 7.10: Iteration time against granularity for AMPI and AMPI-FT with
32 virtual processors on 8 physical processors

One major difference between AMPI and AMPI-FT is that messages be-

tween virtual processors on the same physical processor result in messages to

an external processor in the case of AMPI-FT but not in the case of AMPI.

In AMPI-FT, the meta-data for a message between virtual processors on the

same processor needs to be saved on the buddy processor before the message

can be processed. This difference can lead to a much higher number of messages

being sent on the network for AMPI-FT than AMPI. We measured the num-

ber of messages being sent on the network in every iteration of the synthetic

benchmark for AMPI and AMPI-FT. The measurements were performed with

32 virtual processors on 8 processors in both cases. In the case of AMPI, each

physical processor sent 2 messages on the network per iteration. For AMPI-FT,

that number went up to 18 messages per iteration. Of the 18 messages sent per

92

 1e-04

 0.001

 0.01

 0.1

 1

 1e-04 0.001 0.01 0.1 1

Ite
ra

tio
n

T
im

e
(s

)

Granularity (s)

AMPI
AMPI-FT

AMPI-FT combining

Figure 7.11: Iteration time against granularity for AMPI, AMPI-FT and AMPI-
FT-combining with 32 virtual processors on 8 physical processors

iteration, 6 were meta-data being sent to the buddy to be saved and another 6

were acknowledgements of the receipt of these TNs. This meant that in the 100

µs granularity case, each processor was trying to send 180000 messages per sec-

ond for AMPI-FT instead of 20000 messages per second for AMPI. Moreover,

120000 of these messages per second were exchanged between a processor and

its buddy. We suspect that this deluge of messages stressed the network and

its performance degraded sharply.

We ran a pingpong program to test myrinet’s performance at high message

rates. We measured the round trip time between two processors at different mes-

sage rates. We found that the round trip time for a message increased sharply

when more than 60000 short messages were exchanged per second between two

processors. So, we concluded that the very large number of messages being

93

exchanged by a processor and its buddy in the 100 µs case degrades AMPI-FTs

performance.

This leads us to try and reduce the number of messages being exchanged

by a processor and its buddy. We merged multiple meta-data being sent to a

buddy into one message. We also merged multiple acknowledgements being sent

by the buddy into one message. The number of meta-data being merged into

one message is configurable by the user. The user can also choose a timeout

period such that when the timeout expires, the processor stops waiting for more

meta-data and sends to the buddy the meta-data it has accumulated till then.

This does not affect the ability of the protocol to handle faults since the protocol

does not depend on how meta-data are delivered to the buddy or how long it

takes them to reach the buddy. As long as the buddy gets the meta-data, stores

it and sends an acknowledgment, the protocol’s ability to tolerate faults is not

affected.

Figure 7.11 shows the performance of AMPI-FT when message combining is

used. AMPI-FT with combining shows a significant performance improvement

over AMPI-FT for the 100 µs case. When there are 4 virtual processors per

processor, the performance penalty for AMPI-FT with combining is 53 % lower

than that for AMPI-FT. Message combining also decreases the performance

penalty for all the other values of granularity as well.

7.4 Optimizations and their Effects on

Application Performance

The previous section showed that the performance of fine grained programs with

our message logging protocol can be improved by temporarily buffering mes-

sage meta-data being sent to a buddy and combining the buffered meta-data

94

into one message. We also used only one message to send the acknowledge-

ments for all the meta-data that arrived in one message. Moreover, when the

buddy relationship is symmetric, meta-data can be piggybacked on returning

acknowledgements and vice-versa.

7.4.1 Fine Grained Application

We now evaluate the effectiveness of this idea when dealing with a real fine

grained application. We run the very small BUTANE molecular system on

leanMD to evaluate the idea of combining multiple meta-data messages required

for the local protocol into one message. For this evaluation, we run the protocol

in the single simultaneous failure mode to clearly isolate the effect of the local

and remote modes of the protocol. There are two configurable parameters in

our scheme to buffer meta-data being sent to a buddy:

• The maximum number of local mode messages whose meta-data are com-

bined into one message to the buddy processor. We refer to this as the

number of buffered local messages (LB).

• The time-out duration after which buffered meta-data are sent to the

buddy even if the number of buffered messages is less than the allowed

maximum. We simply call this the time-out (T)

Buffering meta-data for local mode messages has multiple effects, some ben-

eficial and some harmful. The number of messages on the network can be

reduced by buffering meta-data. This improves network performance and re-

duces message latency. This in turn can reduce the amount of idle time during

which processors wait for messages. Moreover, buffering multiple meta-data

into one message reduces the per meta-data CPU cost on both the sending

and receiving processors. Combining multiple meta-data and acknowledgment

95

messages helps amortize the fixed portion of the CPU overhead of sending a

message. Thus buffering multiple local message meta-data leads to a reduction

in the CPU overhead of the local mode of the protocol.

On the other hand, buffering meta-data for local messages delays the pro-

cessing of those messages, since a local message can not be processed until the

buddy processor acknowledges that it has saved the meta-data for that mes-

sage. This delayed processing can potentially boost the idle time by further

increasing message latency. This is particularly true when we use long time-out

durations with large buffer sizes. We end up waiting for long periods of time just

waiting for the buffer to fill up with meta-data being sent to the buddy. This

hurts performance and can cancel out potential benefits of combining meta-data

messages for the local mode of the protocol.

We try to evaluate what parameters for LB and T are most suitable for

leanMD simulating the the fine grained BUTANE molecular system on 16 pro-

cessors of Abe. On 16 processors, each processor sends about 6600 messages

per second when leanMD simulates BUTANE without using the fault tolerance

protocol. We use only 16 processors for this example since BUTANE is too fine

grained a problem to scale beyond that. We show the results on a bigger molec-

ular system on a larger number of processors later. The average iteration time

for BUTANE without fault tolerance is .055 s on 16 processors. The average it-

eration time with fault tolerance but no buffering on 16 processors is .164 s. So,

the performance penalty of the fault tolerance protocol without any buffering

is extremely high (about 200%). It increases execution time to 3 times, close to

the worst case scenario discussed in Section 5.2. We now evaluate the efficacy

of buffering meta-data for the local mode of the message protocol. Figure 7.12

shows the average iteration time for different values of LB and T.

96

 0.15

 0.155

 0.16

 0.165

 0.17

 0.175

 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=1ms
T=2ms
T=4ms
T=8ms

(a) Iteration time for time-outs equal to 1ms,2ms,4ms,8ms

 0.15

 0.155

 0.16

 0.165

 0.17

 0.175

 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=16ms
T=32ms
T=64ms

(b) Iteration time for time-outs equal to 16ms,32ms,64ms

Figure 7.12: The average iteration time for the BUTANE molecular system in
leanMD on 16 processors. We vary the number of message meta-data buffered
as well as the time-out for the buffer.

Figure 7.12(a) shows the performance for lower values of time out durations.

We are limited to using a time-out duration of 1ms as the smallest time-out

by the resolution of the timer in the Charm++ run-time system. We find

in Figure 7.12(a) that T=1 ms does not improve performance much for any

value of LB. A time-out of 1 ms is not sufficiently long enough to buffer a large

number of messages. The cases for T = 2 ms and T = 4 ms show better

performance. However, the best iteration time is obtained when T = 8 ms

and LB = 8. At this point, the gap between the benefits of buffering meta-

97

data and their drawbacks is the largest. Higher values of LB do not improve

performance since they force the time-out to occur thereby wasting time and

increasing idle time. Figure 7.12(b) shows the performance for higher values of

time out durations. They show some performance improvement for low sizes of

local buffer. However, with large sizes of buffer their performance deteriorates

as time-outs become frequent leading to an increase in idle time.

Buffer Time out Total Protocol time Total
size Duration Local mode / local message Idle

(ms) time(ms) (µs) Time(s)
Unbuffered NA 36.330 28.84 3.041

8 8 11.607 9.21 2.914
16 2 16.857 13.38 2.936
128 64 5.637 4.48 3.176

Table 7.3: Compares the total time and per message time spent in the local
mode of the message logging protocol for different local message buffer sizes and
time out durations. These times pertain to a 30 iteration run. The idle time
for the different values are also shown.

Table 7.3 can be used to understand how buffering meta-data for local mes-

sages affects performance of leanMD simulating BUTANE on 16 processors. We

look at the total time spent in the local mode of the protocol, the per local mes-

sage time spent in the local mode of the protocol as well as the total idle time for

a run lasting 30 iterations. We instrumented our message logging protocol code

to obtain this detailed breakup. We used only 30 iterations to limit the amount

of performance data generated while still getting a representative picture of the

application’s performance. We looked at the breakup for 4 runs: unbuffered, the

best with LB = 8 T = 8 ms, another well performing one LB = 16 T = 2 ms

and the worst of the buffered runs LB = 128 T = 64 ms. All the buffered runs

spend, in the local mode of the protocol, only a fraction of the time spent by the

unbuffered run. The per local message time is also much lower for these runs.

The run with the lowest values is the worst performing one with the largest

98

buffer and longest time. This apparent anomaly can be explained by looking at

the total idle time for each run. The 4th entry, ie the worst buffered run, has a

significantly higher idle time than the other buffered runs. This increase in idle

time for the worst buffered run is much higher than its savings in the local mode

of the protocol. This is in line with what we discussed earlier in this section.

The best times are obtained by runs which reduced not only the local time but

also the idle time. These runs managed to do so by distributing the fixed cost

of sending a message among multiple meta-data and acknowledgments without

wasting too much time waiting for new local message meta-data.

Although, buffering meta-data of local messages improves performance, the

improvement is marginal. It decreases average iteration time from .164 s to

.0.154 s, compared to a time of .055 s without fault tolerance. Therefore, we

need to look into where the extra time is being spent. Figure 7.13 shows the

amount of time spent in different phases of the protocol for different values of

LB and T . We use the same runs and in the same sequence as Table 7.3.

The most obvious thing about Figure 7.13 is that the time spent in the local

mode of the message protocol is a very small portion of the total time spent in

the message protocol. The time spent in the local mode of the protocol does

indeed decrease for the buffered cases. However, any improvements are dwarfed

by the time spent in the remote mode of the protocol. This explains why even

the best runs with local meta-data buffering show only a slight improvement in

performance.

It is imperative to reduce the time consumed by the remote mode of the pro-

tocol if we want to improve the overall performance of the application with the

fault tolerance protocol. The remote mode of the protocol sends short messages

to request tickets and send tickets back to the requesters. The BUTANE bench-

mark on 16 processors has every processor sending about 4100 ticket requests

99

Unbuffered LB=8 T=8ms LB=16 T=2ms LB=128 T=64ms

T
im

e
(s

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

Local Message Protocol
Send Ticket Request
Send Ticket
Send Message

Figure 7.13: The total time spent in different parts of the message logging
protocol for different values of local buffer size and time out duration. LB
refers to buffer size for local messages, T refers to the time out duration.

per second. on average. Each processor needs to reply to a similar number of

ticket requests and send tickets in reply. Thus, BUTANE on leanMD creates a

flood of small messages in the remote mode of the protocol as well. We extend

the same idea of combining multiple small messages going to the same processor

into one message to reduce the overhead of the remote mode of the protocol. A

major difference between message combining for the local and remote modes is

that in the case of remote mode a processor sends small protocol messages to

multiple processors and not just the single buddy processor.

We buffer the protocol messages for the remote mode being sent to different

processors. Messages to each processor are buffered separately. Moreover, these

buffers are created for a processor only when there are protocol messages being

actually sent to that processor. The maximum number of protocol messages

100

being combined into one message is configurable and the parameter is called the

remote buffer size (RB). We re-use the time-out duration parameter from the

local meta-data buffering scheme. There is a separate timer for every destination

processor. When a timer for a particular destination processor runs out, all

the buffered protocol messages destined for that processor are sent. Buffered

messages for other processors are not affected .

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=1ms
T=2ms
T=4ms
T=8ms

(a) Iteration time for time-outs equal to 1ms,2ms,4ms,8ms

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=16ms
T=32ms
T=64ms

(b) Iteration time for time-outs equal to 16ms,32ms,64ms

Figure 7.14: The average iteration time for the BUTANE molecular system on
16 processors with at most 4 remote protocol messages being combined into one
protocol message. We vary the number of local messages being buffered as well
as the time-out.

We evaluate the performance benefit of buffering remote mode protocol mes-

sages. Figure 7.14 shows the performance of leanMD simulating the BUTANE

101

molecular system on 16 processors when RB = 4. With at most 4 protocol

messages between two processors being combined into one message, we vary

the number of local meta-data being combined into one message as well as the

time-out duration. We see that buffering remote protocol messages provides a

substantial improvement in performance. It reduces the average iteration time

from .154 s with local meta-data buffering to .0.0894 s with RB = 4 LB = 4

and T = 32 ms. This sharp decrease in average iteration time holds for most

values of LB and T tested in Figure 7.14. If we look at the case where LB = 1,

ie no local meta-data are being buffered, we still see a substantial performance

improvement. For high values of T we get average iteration times slightly less

than .1 s. This confirms that the performance improvement in Figure 7.14 is

mostly due to remote mode protocol message buffering. Moreover, it should

be noted that, without local buffering, increasing the value of T reduces the

average iteration time till T = 32 ms. This means that for the BUTANE sys-

tem, the improvement in performance obtained by reducing the remote mode

protocol time through higher time-out outweighs the increase in idle time.

Varying the LB and T produces improvements of the same order as in

Figure 7.12. Moreover, for most values of T , average iteration time decreases

with increasing LB, till the range of 4 to 16 before starting to increase slowly for

larger values of LB. The performance of the T = 64 case deteriorates sharply

when the number of buffered local message is increased to 16 and beyond. We

investigate this in greater detail later. However, we can safely guess that the

very high time-out duration and high local buffer size combine to increase the

idle time as processors wait for meta-data messages to be acknowledged. For

lower values of time-out, the cost of waiting for more buffered messages is low.

When the buffer size is lower, the processor does not have to wait as long for

the buffer of local message meta-data to fill up.

102

 0.07
 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=1ms
T=2ms
T=4ms
T=8ms

(a) Iteration time for time-outs equal to 1ms,2ms,4ms,8ms

 0.07
 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=16ms
T=32ms
T=64ms

(b) Iteration time for time-outs equal to 16ms,32ms,64ms

Figure 7.15: The average iteration time for the BUTANE molecular system on
16 processors with at most 8 remote protocol messages being combined into one
protocol message. We vary the number of local messages being buffered as well
as the time-out.

Figure 7.15 shows the performance of leanMD simulating BUTANE when

RB = 8. We found the greatest performance improvement with remote protocol

message buffering in this case. The average iteration time is lowest, 0.0784 s,

when LB = 8 and T = 8 ms. The performance curve is similar for all values of

T less than 16 ms. In all these cases, even without any local message buffering

(LB = 1) there is a significant improvement in performance over the case with-

out any remote protocol message buffering. The performance improves as LB

is increased till a value between 4 and 16. In this range, more buffering reduces

103

total time spent in the remote mode protocol without increasing the idle time

too much. After that, the time wasted by waiting for more and more messages

increases the idle time and wipes out the benefits of buffering.

It is interesting to note that the difference in average iteration time between

different values of T for the same value of LB is more or less constant across all

values of LB. It is particularly true for T between 1 ms and 16 ms. This differ-

ence can be attributed to the difference in performance improvement achieved

by buffering remote protocol messages for varying time-out durations. Increas-

ing T increases the efficacy of the remote buffering until T = 8 ms. After that

the increase in idle time caused by longer waits starts to cancel out benefits

of buffering. The T = 64 ms case is a stark example, where a lot of time is

wasted while waiting for time-outs so that remote protocol messages and local

meta-data can be sent.

Figure 7.16 shows the performance achieved when RB = 16. For, small

values of T it shows performance similar but a little worse than the RB = 8 case.

Its performance for these moderate values of T is better than the RB = 4 case.

It shows a pattern similar to the previous cases, with increasing LB improving

performance initially before it starts to negatively affect performance. However,

the situation is very different for higher values of T . Higher values of T mean

that when there are not enough messages to fill up the buffer, we end up waiting

for longer before sending those messages. Since with RB = 16, we wait for more

messages than the RB = 4 or RB = 8 cases, we also end up waiting longer. For

low values of T the benefit of combining more messages is close to the possible

cost of increased idle time. However, when T is high the increase in idle time

is far higher than any reduction in protocol time.

Figure 7.17 helps us evaluate the effectiveness of buffering just the protocol

messages for the remote mode. Figure 7.17 plots the average iteration time

104

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=1ms
T=2ms
T=4ms
T=8ms

(a) Iteration time for time-outs equal to 1ms,2ms,4ms,8ms

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages (LB)

T=16ms
T=32ms
T=64ms

(b) Iteration time for time-outs equal to 16ms,32ms,64ms

Figure 7.16: The average iteration time for the BUTANE molecular system on
16 processors with at most 16 remote protocol messages being combined into
one protocol message. We vary the number of local messages being buffered as
well as the time-out.

against RB for different values of time-out (T). Buffering of meta-data of local

mode messages is turned off at this point. We see that buffering remote protocol

messages improves performance significantly for all time-out durations. For

short time-out durations, performance keeps improving till RB = 8 and then

starts to level off. The reduced idle time and CPU protocol overhead produced

by buffering overshadows any increased latency to reduce the average iteration

time. In fact the best time with local buffering turned off, 0.088 s, is obtained

when RB = 8 and T = 8 ms. Increasing the buffer size further does not

105

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17

 1 2 4 8 16

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered remote mode protocol messages (RB)

T=1ms
T=2ms
T=4ms
T=8ms

(a) Iteration time for time-outs equal to 1ms,2ms,4ms,8ms

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17

 1 2 4 8 16

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered remote mode protocol messages (RB)

T=16ms
T=32ms
T=64ms

(b) Iteration time for time-outs equal to 16ms,32ms,64ms

Figure 7.17: The average iteration time for the BUTANE molecular system on
16 processors with varying values of RB and time-out(T). There is no local
buffering (LB = 1).

help since there are not enough remote protocol messages and the time-out

gets triggered repeatedly. As a result, the number of remote protocol messages

combined into one network message does not increase. So, no further benefit

accrues from increasing the buffer size. In fact for large time-out durations, the

increased latency due to messages being buffered for longer starts to overpower

the advantages of buffering. For T = 64 ms, the average iteration time starts

rising beyond RB = 4. Thus, we see that buffering protocol messages for the

remote mode just by itself helps performance greatly, particularly for certain

106

ranges of RB and T .

Figure 7.18 looks at the amount of time spent in different parts of the mes-

sage logging protocol as well as the idle time for various values of RB, LB

and T . The times shown are for 30 iterations of BUTANE on 16 processors.

We show data for 5 cases: the unbuffered case, the best performing one with

RB = 8 LB = 8 T = 8 ms, another well performing one with RB = 8 LB = 4

T = 8ms, a worse performing one with RB = 4 LB = 16 T = 64ms and one

of the worst with RB = 16 LB = 128 T = 64ms.

Unbuffered RB=8 LB=8 T=8ms RB=8 LB=4 T=8ms RB=4 LB=16 T=64ms RB=16 LB=128 T=64ms

T
im

e
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Local Message Protocol
Send Ticket Request
Send Ticket
Send Message
Message Send

Figure 7.18: The total idle time as well as the total time spent in different parts
of the message logging protocol for different values of remote buffer size, local
buffer size and time out duration.

All the runs with buffering show a substantial decrease in the time spent in

portions of the message logging protocol when compared to the unbuffered run.

The decrease in the time taken for sending ticket requests to remote objects and

the local mode of the protocol are particularly sharp (almost a factor of 10). The

time taken to send tickets decreases less sharply but still by a factor of about

3. This is so because the CPU time needed to send a short message is a bigger

107

fraction of sending a ticket request than of sending a ticket. Generating a ticket

consumes more CPU-time than generating a SN. So, amortizing the cost of a

short message send by combining multiple protocol messages into one message

is even more effective when sending a ticket request than while sending a ticket.

The cost of sending messages decreases too but only by about 25%. We do not

combine the actual data messages being sent by the user code since that would

lead to an unfair comparison with the non fault tolerant version. Still there

is an improvement because now multiple messages are sent out as the result

of processing a single message containing multiple tickets from objects on a

particular processor. This divides the fixed cost of processing a message among

multiple messages sends. This is responsible for the observed improvement.

These improvements are seen for all the buffered runs, even those with high

average iteration times.

The biggest difference between the best performing runs and the bad ones

is the idle time. For the 2nd and 3rd runs in Figure 7.18, the idle time is

less than half that of the unbuffered run. Buffering remote protocol messages

and local meta-data not only reduces the protocol overhead but also decreases

the time wasted waiting for messages. This shows up in the halved idle time.

However, for the last two runs, their high time-out durations mean that if there

are not sufficient messages to fill up a particular buffer, those messages get

delayed substantially before they are sent. This means that any object waiting

to process those messages is also held up. This increased latency ends up

keeping processors idle for longer durations. As a result, the idle time increases

wiping out most of the benefits accrued by reducing the CPU time consumed

by different parts of the protocol. The increase in idle time is sharp enough for

the last run that it actually takes longer to run than the unbuffered run.

108

We used buffering for both remote protocol messages and local meta-data

to improve performance of leanMD simulating BUTANE on 16 processors. The

best performance of .0784 s was obtained with RB = 8,LB = 8 and T = 8 ms.

This is a marked improvement over the unbuffered time of .164 s. Although the

improved performance still represents a 42% overhead over the average iteration

time of .055 s, obtained when not using the fault tolerance protocol, it must

be remembered that the BUTANE molecular system represents a worst case

scenario for our message logging protocol.

7.4.2 Coarse Grained Application

We next evaluated the performance penalty of our fault tolerance protocol

on a more coarse grained application running on a much larger number of

processors. We used leanMD to simulate a different molecular system called

HCA GRP SHAKE . This molecular system is considerably more coarse grained

than BUTANE. Therefore we were able to run it on 256 processors on Abe. Each

processor sends only about 700 messages per second when leanMD simulates

HCA GRP SHAKE on 256 processors. leanMD takes on average .112 s to per-

form one iteration of its simulation of HCA GRP SHAKE on 256 processors

without the fault tolerance protocol.

When run with the fault tolerance protocol without any buffering, the aver-

age iteration time increases to .131 s. This represents a performance penalty of

only about 17%. Thus the performance penalty for HCA GRP SHAKE with-

out any optimizations is much lower than the close to 200% penalty faced by

BUTANE without optimizations. So, as discussed in Section 7.2, applications

with coarser granularities suffer far lower penalties. However, as shown in Fig-

ure 7.19, buffering remote protocol messages and local message meta-data sent

to buddies can still improve performance.

109

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages

RB=1,T=1ms
RB=4,T=1ms
RB=4,T=2ms
RB=4,T=8ms

(a)

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 1 2 4 8 16 32 64 128

A
ve

ra
ge

 It
er

at
io

n
tim

e(
s)

Number of buffered local messages

RB=8,T=1ms
RB=8,T=2ms

RB=16,T=1ms
RB=16,T=2ms

(b)

Figure 7.19: The average iteration time for the HCA GRP SHAKE molecular
system on 256 processors. We vary the number of local messages being buffered,
the number of remote messages being buffered as well as the time-out.

Figure 7.19 shows the average iteration time for different values of LB, for

certain values of RB and T . It plots the performance for the subset of collected

110

data point that showed the best performance. The point at which LB = 1 on

the line for RB = 1 T = 1 ms represents the unbuffered case. When LB = 1,

we find that increasing RB helps improve performance a lot. We get the best

performance without local buffering when RB = 8 and T = 2 ms. The average

iteration time at LB = 1 RB = 8 T = 2 ms is .124 s, which represents a 10%

penalty over a run without fault tolerance. Thus, remote buffering just by itself

helps reduce the performance penalty significantly.

Increasing LB improves performance a bit for some values of RB and T ,

particularly for RB = 4 T = 1 ms, RB = 4 T = 2 ms cases. leanMD simulating

the HCA GRP SHAKE molecular system running on 256 processors has fewer

local messages. Therefore buffering local messages does not yield as much ben-

efit as for the BUTANE example. Still, it helps reduce the performance penalty

in some cases. Overall, the best performance is observed when LB = 64 RB = 8

T = 1 ms, with an average iteration time of 0.122 s. This represents a 9% per-

formance penalty for simulating the HCA GRP SHAKE molecular system on

256 processors. We think that this is an acceptable level of performance penalty

for our fault tolerance protocol.

Figure 7.20 shows the total idle time and the total time spent in different

parts of the protocol when leanMD simulated the HCA GRP SHAKE molecular

system for 10 timesteps on 256 processors. We show data for 5 cases: 1) no

remote protocol message or local meta-data buffering 2) the best performing

example with local buffering but no remote buffering LB = 32 RB = 1 T = 1ms

3) the best performing example with remote buffering but no local buffering

LB = 1 RB = 8 T = 2ms 4) the overall best performing example with LB = 64

RB = 8 T = 1ms 5) the worst data-set that we measured LB = 128 RB = 64

T = 2ms.

When we compare the second bar in Figure 7.20 with the first one, we find

111

Unbuffered LB=32 RB=1 T=1ms LB=1 RB=8 T=2ms LB=64 RB=8 T=1ms LB=128 RB=64 T=2ms

T
im

e
(m

s)

0

100

200

300

400

500

600

700

800

900

Local Message Protocol
Send Ticket Request
Send Ticket
Send Message
Idle Time

Figure 7.20: The total idle time as well as the time spent in different parts of
the message logging protocol for different values of LB, RB and T during 10
timesteps of HCA GRP SHAKE

that for the HCA GRP SHAKE example local buffering makes a very small

impact. This is in line with our observations in Figure 7.19. Although the time

spent in the local mode of the protocol decreases, it is so small to begin with that

the difference in the overall execution time is very small. Local buffering does

not change the idle time much. The contrasting effects of increased idle time

due to higher latency and lower idle time due to lower CPU protocol overhead

cancel out.

Comparing the third bar in Figure 7.20 with the first one shows that buffer-

ing remote protocol messages reduces the time spent in the remote mode of the

protocol significantly. The CPU overhead of sending and receiving messages on

the network is amortized over multiple protocol messages by combining proto-

col messages into one message on the network. Particularly, the total time to

send ticket requests goes down sharply. The time to send tickets and messages

112

also decreases. The total idle time decreases marginally due to the reduced

CPU protocol overhead. However, most of the reduction in execution time is

due to the reduced remote protocol overhead. The fourth bar, which represents

the run with the overall best performance shows a performance similar to but

slightly better than the third bar.

The last bar represents the worst performing run among the large set of

runs we made. It also shows a reduction in protocol time for the remote mode.

However, this benefit is completely wiped out by the increase in idle time.

The high value of RB which leads to frequent time-outs increases the message

latency. This causes the observed increase in idle time.

Thus we see that for a high granularity application with few local messages,

buffering protocol messages in the remote mode of the protocol improves per-

formance. This improvement in performance is caused by a decrease in CPU

protocol overhead and not the decrease in idle time as in the case of a fine

granularity application. There are multiple possible reasons for this. Firstly,

as seen in Section 7.2 the idle time of a coarse grained application is relatively

unaffected by our message logging protocol. As long as there are enough objects

per processor, adaptive overlap of computation and communication helps hide

the increased latency due to the message logging protocol. In a coarse grained

application, unlike a fine grained application, there is enough computation to

hide almost the entire increase in latency. Therefore, the scope for reducing

idle time by buffering protocol messages is small. Secondly, in a coarse grained

application the network is not as stressed by extra protocol messages as in a

fine grained application. Therefore combining multiple protocol messages into

a single message on the network does not provide as big a boost to network

performance by relieving congestion. So in a coarse grained application com-

bining messages does not reduce idle time as much. However, buffering does

113

help reduce the protocol overheads even for coarse grained applications and thus

improve the overall execution time.

Therefore, we found that buffering protocol messages is an effective optimiza-

tion technique to improve the performance of our message logging protocol. It

improves performance for both fine and coarse grained applications. However,

the improvement is more dramatic for fine grained application since there is

more scope for improvement in such applications. These performance optimiza-

tions help reduce the cost of our fault tolerance protocol without affecting its

ability to tolerate faults.

114

Chapter 8

Load Balancing With Message
Logging

This chapter first shows why we need to be able to perform load balancing

to take full advantage of the fast restart protocol. The Charm++ run time

system already has elaborate support for load balancing. In later sections of

this chapter we shall see how the current load balancing system works and the

challenges in combining it with a message logging based fault tolerance protocol.

We shall then describe our solutions to those challenges.

8.1 Need for Load Balancing Along With Fast

Restart

We shall now see how our fast restart protocol might lead to a load imbalance

after the recovery of a crashed processor is complete. Let us consider as an

example, the stencil application used in Chapter 7.1. We look at the case when

there are 64 objects running on 16 processors. The amount of work on each

object is about the same. The application is tightly coupled such that if an

object stops making progress, then other objects stop within a short time as

well.

The application is initially load balanced, that is there are 4 objects on each

processor. When a processor, say P, crashes, the 4 objects on P are recreated

from their previous checkpoint. The fast restart protocol keeps one object on

115

 0

 0.5

 1

 1.5

 2

 80 90 100 110 120 130 140

T
im

e
(s

)

Iteration number

Basic Restart
Fast Restart

Figure 8.1: Iteration times for the 7-point stencil before and after a restart for
both the basic and fast restart protocols

P and sends one object each to three other processors (let Q be one of these).

The 4 objects originally on Q are waiting for the recreated objects to catch up

with them. Until the recreated objects catch up with the rest of the application,

the recreated object on Q has the entire processor to itself. However, once the

recreated objects catch up and the application starts making progress, a new

problem shows up. Now there are some processors with 5 objects, some with 4

and one (processor P) with just one object. This load imbalance increases the

computation time for each iteration. Figure 8.1 shows the iteration time for the

7 point stencil program used in Section 7.1 before and after a restart for both

the basic and fast restart protocols. The spike around iteration 100 denotes a

processor crashing and recovering. It can be seen that in the case of the basic

restart protocol, iteration times before and after the crash are more or less the

same. However, for the fast restart protocol the iteration time after the crash

116

and recovery is distinctly higher than the iteration time before the crash.

Time (s)

0 50 100 150 200 250 300

Ite
ra

tio
n

0

50

100

150

200

250

Fast Restart
Basic Restart

Figure 8.2: Progress of the 7 point 3D stencil application with both the basic
and fast restart protocols. It shows that though the fast restart protocol shows
faster recovery, it makes slower progress after the recovery.

Although fast restart improves recovery performance, it has a deleterious ef-

fect on the performance of an application after the recovery is complete. Figure

8.2 shows the effect of the performance penalty imposed by the fast restart pro-

tocol. For the same run as above, Figure 8.2 plots the iteration number against

the cumulative time taken by the application to get to the end of that iteration.

So, this graph shows the progress an application makes, with a steeper slope

representing faster progress. We can see that until about the 100th iteration

both the fast and basic restart algorithms progress at the same rate. There is a

crash around the 100th iteration. At that time, the application stops computing

further iterations and is busy recovering from the fault. This shows up as a flat

horizontal section in the progress curve. This flat section is much longer for the

basic protocol than the fast one. So, immediately after the recovery phase the

fast restart progress curve is above the basic restart one. This shows that the

117

application started making progress sooner while using the fast recovery pro-

tocol. However, the basic restart progress line has a steeper slope, essentially

the same slope as before the crash, and around the 220 iteration mark crosses

the fast restart line. Thus the load imbalance caused by the fast restart proto-

col migrating objects during recovery can destroy the benefits of swift recovery

from a crash.

8.2 Existing Load Balancing

The Charm++ load balancing framework is a very flexible framework that is

used to implement a wide variety of measurement based dynamic load balanc-

ing strategies [9, 17, 53, 36]. The framework measures the computation and

communication load of the different Charm++ objects and then utilizes this

data to redistribute objects among processors to obtain a better load balance.

The different strategies can broadly be divided into two categories: centralized

and distributed. Centralized strategies are ones in which the load data of all

objects in an application are collected on one processor and a new mapping

of objects to processors is calculated. In distributed load balancers, processors

communicate the load data of their objects with only a subset of processors and

objects are exchanged among these subset of processors. Hybrid load balancers

mix the characteristics of centralized and distributed load balancers by trying to

take a global decision without having all processors send their load data to one

processors. However, till date most applications in the Charm++ system have

used centralized load balancers to scale to large numbers of processors. We con-

centrate primarily on centralized load balancers in this thesis since they are the

common case. But the methods we develop are also applicable to hierarchical

load balancers such as those development in Zheng’s thesis [53].

118

Figure 8.3 shows exactly how the different elements involved in load bal-

ancing interact within a processor. The load balancing framework is closely

integrated with the Charm++ runtime system and instruments all the mes-

sages processed and sent by all the objects on a processor. This load data

for each object is stored in the LBManager(Load Balancer Manager) object on

each processor. Whenever object α on processor A processes a message, the

time taken to process that message is logged in the LBManager on processor A.

Moreover, any messages sent out by object α as a result of processing a message

are also logged, with the LBManager storing the size and destination of each

message sent. As a result, the LBManager not only has an exact idea of the

computation time utilized by each object but also the number of messages as

well as the total size of messages sent to other objects. The user can however

choose to not log communication data for a certain application.

The Charm++ load balancing framework lets the application decide when

exactly it wants to perform a load balancing step. All the objects in the appli-

cation agree to do a load balancing step and as shown in Figure 8.3 signal their

readiness by calling the AtSync method. On processor A these AtSync method

calls get communicated to the CentralLB object (Centralized Load Balancer)

on processor A. Once all the objects on processor A have called their AtSync

methods, CentralLB asks the LBManager for the load data for all the objects

on processor A. In the example shown in Figure 8.3, it is assumed that the user

has chosen not to collect communication data. As a result, LBManager sends

just the computation load for the different objects to CentralLB. The unit of

computation load is normally cycles or seconds depending on the user choice. In

the example objects α, β, χ have loads of 4, 2 and 3 seconds respectively. The

CentralLB object collects this load data into a Statistics Message and sends it

out to the designated central processor.

119

LBManager

Central LB

1
: A

tS
yn

c
1

: A
tS

yn
c

1
: A

tS
yn

c

2
:
Fe

tc
h

lo
ad

 d
at

a
3
:
Lo

ad
 d

at
a

:
4,

:
2,

:
3

4: Stats Message
:4, : 2, : 3

Processor A

Figure 8.3: The interactions between Charm++ objects, LBManager and Cen-
tral LB within a processor.

120

Processor A

Processor B

Processor C

St
at

s
M

es
sa

g
e

<
:

 3
,

:
 2

>
S
ta

ts
 M

e
ss

a
g
e

<
 :

 2
,

:
2
>

Stats Message
<: 4, :2, : 3>

Load balancing
Strategy

M
ig

ra
te

 M
e
ssa

g
e

e
x
p
e
ct: <

B
>

M
igrate M

essage

send:<
C

>
 expect:<

,A>

Migrate Message
send:<,B>

Resume Clients

Resume Clients

Resume Clients

Figure 8.4: Messages exchanged during load balancing among processors

121

A processor is designated as the central processor for each load balancing

step of centralized load balancers. The central processor can be changed from

step to step. For the step shown in Figure 8.4, processor A is the central

processor. Each processor sends its statistics message to the central processor.

In the example, processors B and C send the statistics messages containing the

computational load of their objects to processor A. Processor A collects all the

data from the received statistics messages into one global load data structure.

Once processor A has received statistics messages from all processors, in-

cluding itself, it invokes a centralized load balancing strategy on the global load

data. The strategy calculates a new mapping of objects to processors based

on this global load data. The user can choose exactly which load balancing

strategy is invoked. The strategies range from those based on simple greedy

algorithms on the computational load, to elaborate algorithms that map ob-

jects to machine topologies. After the load balancing strategy has calculated

the new mapping, each processor is informed about the new mapping. Each

processor is given a list of objects that it needs to send to other processors and

another list of objects to expect from other processors. These lists are sent in

a Migrate Message to each processor from the central processor. In Figure 8.4,

processor B receives a Migrate message telling it to send object ε to processor

C and expect object χ from processor A. Complementary Migrate messages are

sent to processor A informing it that it should send object χ to processor B and

to processor C telling it to expect object ε from processor B. After receiving a

Migrate message, a processor packs any object it needs to send into a message

and sends it. Once each processor has received all the objects it needs it calls

the Resume Clients method to restart computation on every object existing on

it.

122

8.3 Challenges in Merging Load Balancing

and Message Logging

There are multiple challenges involved in trying to get the Charm++ load

balancing framework to work with message logging. We not only want to make

sure that load balancing itself works correctly, but also that it does not break

the fault tolerance provided by the message logging protocol. Moreover, the

load balancing step itself needs to be fault tolerant. Any processor crashing in

the middle of a load balancing step should not cause the application to hang or

leave the global state of the computation in an inconsistent state. We divide

the multifarious challenges into three broad categories:

• Effect of object migration on reliability

• Crashes during the load balancing step

• Interaction of load balancing and the fast restart protocols

We discuss these categories of challenges in the following subsections.

8.3.1 Reliability

The proof of our fault tolerance protocol for multiple faults in Chapter 5.3 hinges

on the fact that for any message m, Log(m) contains both P (m.receiver) and

B(P (m.receiver)). Since a processor and its buddy are assumed to never crash

simultaneously Log(m) does not ever become an empty set. If a processor goes

down while its buddy is recovering from a crash of its own, we have an unrecov-

erable error. However, we showed in Chapter 5.2 that despite this potentially

unrecoverable error, our protocol increases the reliability of a system by a few

orders of magnitude. It gives an application a high probability of running suc-

cessfully even in a high fault environment although it does not use any idealized

123

stable storage. The increase in reliability is provided by the fact that the objects

on a processor are dependent solely on its buddy processor for their successful

recovery.

Processor A

Processor B
Buddy(A)

M
es

sa
ge

 m
1

<
 ,

 ,
23

>
|m

1
|

<
 ,

,2

3
,1

2
8
>

Save |m1|
in MDTable

A
ck: m

1

Process m1

Processor C

M
o
ve

 to

 C

Processor D
Buddy(C) Save |m2|

in MDTable
M

es
sa

ge
 m

2
<

 ,
 ,

24
>

|m
2

|

<

,
,2

4
,1

2
9
>

A
ck

:
m

2

Process m2

Load balancing

Figure 8.5: Illustrates the reliability created by migrating objects. Object α
migrates from processor A to processor C

However, migrating objects during the execution of an application can po-

tentially break this condition. Figure 8.5 shows this with the help of an example

in which object α is migrating from processor A to processor C. It receives a

message m1 from object β with a SN of 23. Object α assigns message m1 a

TN of 128 and sends the meta-data of m1 to be logged on processor B, the

buddy of processor A. Processor B stores the meta-data of message m1 in its

MDTable and sends an acknowledgment back to processor A. After receiving

the acknowledgment, object α processes message m1. After that, there is a load

balancing step. For simplicity’s sake, the load balancing step is represented as

124

a single event. As a result of that step, object α is moved from processor A to

C. After that, object α processes another message (m2) from object β. Message

m2 with a SN of 24 is given a TN of 129. The meta-data for message m2 is sent

to the buddy of processor C, namely processor D, to record in its MDTable.

Once the meta-data for message m2 has been added to the MDTable of proces-

sor D, an acknowledgment is sent back to processor C which then proceeds to

process m2.

At this point, if processor C were to crash there are multiple problems with

the recovery of object α. There is the basic problem of which processor has the

checkpoint of object α and where should it be created. Processor D, the buddy

of the crashed processor C, does not have its checkpoint. Therefore according to

our current fault tolerance protocol, object α would not get created on processor

C during its recovery. Moreover, object α has already been deleted on processor

A. So, when processor C restarts, object alpha is neither on processor C or A

and thus disappears from the system, preventing a full recovery. Of course, the

checkpoint of α exists on some processor, the buddy of whatever processor it was

on when it last checkpointed. Assuming that object α was on processor A when

processor A last checkpointed, processor B might actually have a checkpoint of

α. One could fetch object α’s checkpoint along with its MDTable from processor

B during the recovery of processor C. Although this would solve the problem

of missing checkpoints it hurts the reliability of the system. Processor C is now

dependent not only on processor D but also processor B for its recovery. If

processor B were to crash, not only would the checkpoint of object α disappear

but also the meta-data for some messages it processed. If processor C were to

crash after processor B had crashed, we would end up with an unrecoverable

error even though processor B is not a buddy of processor C or vice-versa.

The problem with the meta-data is potentially worse than that of the miss-

125

ing checkpoint. Let us assume that there have been a large number of load

balancing steps since object α last checkpointed. So object α could have been

temporarily located on a large number of processors. The last checkpoint of

object α would exist on one processor and as long as that processor did not

crash the checkpoint of α would be available during recovery. However, the

meta-data for the messages processed by object α would be spread on the bud-

dies of all the processors on which α was located since its last checkpoint. In the

example in Figure 8.5, the meta-data for messages processed by α are found

on both processors B and D, the buddies of processor A and C respectively.

Thus, the recovery of object α is dependent on all the processors containing

the meta-data of its messages being available. This increases the probability

of failure since the crash of any of these processors would stop the recovery of

object α. Moreover, it also invalidates the proof in Chapter 5.3 since Log(m) is

not necessarily m.receiver’s current processor and its buddy. Instead, Log(m)

is now the m.receiver’s current processor and the buddy of some processor ob-

ject m.receiver existed on earlier. For message m1 in Figure 8.5, Log(m1) is

{C,B}. Since, we do not make any assumption about the relation between the

failures of processors C and B (they are not buddies) we invalidate our proof in

Chapter 5.3.

8.3.2 Crashes During the Load Balancing Step

The load balancing step involves a large amount of data collection within a

processor as shown in Figure 8.3 as well as messages between processors as

in Figure 8.4. If a processor crashes, the current implementation of the load

balancing framework will stall. This is because some of the communication

between objects within one processor during load balancing uses function calls.

Function calls are used because the load balancing framework is considered to be

126

a part of runtime system and uses these function calls instead of local messages

as an optimization. However, this breaks a very basic assumption inherent in

our protocol that objects interact with each other only through messages whose

meta-data can be stored. As a result, during recovery we are not able to model

all the state changes of objects on the recovery processor in the same sequence

as before the crash. This brings the whole application to a grinding halt on the

recovering processor.

Checkpoint

Processor A
Message m1

< , ,26,134>

Process m1

Load
balancing

St
at

s
m

es
sa

ge

M
ig

ra
te

 m
sg

se
n
d
: <

,C

>

Processor C

Crash

Figure 8.6: Object α is migrated from processor A to C during load balancing.
Processor A crashes immediately after that.

Figure 8.6 illustrates another problem faced when there is a crash during a

load balancing step. Initially objects α and β are both on processor A. Then

processor A checkpoints, as a result of which the state of both objects α and

β are saved. At some point after the checkpoint, object α sends message m1

to object β. Although Figure 8.6 does not show it for the sake of clarity, the

meta-data of message m1 is logged on the buddy of processor A. After that the

message m1 is processed. Since message m1 is exchanged between two objects

on the same processor, it uses the local mode of the message logging protocol.

127

Therefore, once message m1 has been processed object α deletes its log of

m1. This is followed by a load balancing step. Processor A receives a migrate

message from the central processor asking it to send object α to processor C.

Processor A packs up the state of object α and sends it to processor C. Processor

C recreates object α from this message. Some time after this processor A

crashes.

During the recovery of processor A, according to the current protocol, object

α and β will both get recreated from their previous checkpoint. However object

α already exists on processor C. If we were to recreate object α on processor A

as well, we would end up with two copies of object α in the system. There are

two possibilities at this point:

1. Leave the copy of object α on processor C and do not recreate α on

processor A.

2. Pull down the copy of object α on processor C and recreate α on processor

A from the checkpoint.

The first possibility seems more logical since, object α already exists on

processor C and has probably made some progress since the last checkpoint.

If we were to delete object α on processor C and recreate it on processor A

from the checkpoint, we would seem to be not only undoing work unnecessarily

but also increasing the work done during recovery. However, there is a problem

with this solution. Object β needs message m1 from object α to complete its

recovery. Object β has the meta-data for message m1, but it needs object α

to either resend or regenerate the message itself. As mentioned earlier, since

message m1 is a local message object α did not store its log once message m1

had been processed by object β. Therefore, object α can not resend message

m1. So, object α has to regenerate message m1 and for that it needs to be

128

rolled back to the checkpoint. Of course, one could have solved this problem by

storing the log of local messages as well. That would have let object α simply

resend message m1. However, this would impose a massive memory overhead,

since local messages are very common. This overhead would be imposed on

the common case, just to improve the performance of a comparatively rarer

event, that is recovery from a crash during a load balancing step. Therefore,

we instead chose to go with the second possibility mentioned above. We delete

object α on processor C and recreate it on object α on processor A from the

previous checkpoint. This means that object α and β both go through their

recovery together and all local messages between the two are regenerated. We

describe the exact implementation in Chapter 8.4.

8.3.3 Load Balancing and Fast Recovery

The current load balancing protocol is designed with the assumption that it is

the only source of object migrations in the system. If any object migrates into

a processor, the load balancer always counts it as one of the objects expected

during a load balancing. The fast recovery protocol of course breaks this as-

sumption. After a processor crashes, the fast recovery protocol distributes its

objects among other processors to speed up recovery. If on these recipient pro-

cessors, the load balancer assumes that these migrations are due to itself, it can

get confused with some processors ending up with more objects than expected

and others less. Of course, this is a relatively easy problem to fix. Every object

migration is marked as whether it is caused by load balancing or not. The load

balancing framework only counts messages that have been marked as caused by

load balancing.

However, the load balancing framework and the fast recovery protocol can

still interfere with each other’s functioning. Figures 8.7 and 8.8 show an example

129

Processor C

Checkpoint

Load
Balancing

St
at

s
M

es
sa

ge

St
at

s
M

es
sa

ge

M
ig

ra
te

 M
e
ssa

g
e

exp
e
ct:<

,C

>

Migrate

send:<,E>

Processor E

Crash

Expecting
 from C

Figure 8.7: Processor C crashes during a load balancing step. However, proces-
sor E has already received a migrate message telling it to expect object β.

in which a crash occurs during load balancing. When we use the fast restart

protocol to recover from the crash, it leads to processors expecting objects that

they may never receive. Figure 8.7 lays out the situation just before the crash.

Processor C has three objects, α, β and γ. Processor C checkpoints the states

of these objects. Some time after that, load balancing begins. Processor A

sends the statistics message for the objects on its processors. Once the central

processor has calculated a mapping, it sends migrate messages to the different

processors. The central processor sends a migrate message to processor E telling

it to expect object β from processor C. Once processor C receives this message,

it starts waiting for object β to arrive on it. However, before the migrate

130

message for processor C, telling it to send object β to processor E, can be

received processor C crashes.

Processor C’s crash triggers the fast recovery protocol. Figure 8.8 shows

that the checkpoint of all the objects on processor C are fetched from its buddy.

These objects are then distributed among other processors. Object α is retained

on processor C. However, objects β and γ are sent to processors A and B

respectively for their recovery. Sending the objects of course involves running

the fast restart protocol described in Chapter 6, although we do not show it

to avoid cluttering the diagram. Thus each object α, β and γ is recovered on

a different processor. The recovery continues fine until the recovering objects

reach the state they were in right before the load balancing step.

Once the recovering objects want to enter the load balancing step, there

could be a few problems. Objects β and γ are no longer on processor C and

their AtSync calls would get forwarded to the CentralLB object on their current

processor and not on processor C as happened before the crash. However, this is

basically the same problem discussed in Chapter 8.3.2. If the AtSync calls were

to become local messages instead of being function calls, this problem would

disappear. Therefore, this particular challenge is not a new one. However,

once the objects enter the load balancing step other challenges crop up. When

processor C receives the old migrate message, asking it to send object β to

processor E, it can not do so since object β no longer exists on it. Similarly

processor E has been waiting for object β to come from processor C, whereas

processor C is in no state to send β. Therefore processor E’s load balancing

step would never end as it would keep waiting from object β which would never

arrive.

131

C
heckpoint

from
 buddy

Processor C

D
is

tr
ib

u
te

 o
b
je

ct

D
is
tr
ib

ut
e

ob
je

ct

Processor A

Processor B

Processor E Expecting
 from C

Migrate

send:<,E>

 does not
exist on C

Figure 8.8: During the fast recovery of processor C, objects β and γ are dis-
tributed to processors A and B. As a result processor E is left waiting for object
β

8.4 Fault Tolerant Load Balancing

We modified the existing load balancing framework as well as parts of the

message logging protocol to get them to work with each other correctly and

avoid the pitfalls described in the previous section. Most of the changes to the

message logging protocol are limited to the recovery protocol. The changes in

both parts of the run time system are of course closely intertwined. However,

we describe them in separate subsections below to simplify the description.

132

8.4.1 Modified Load Balancing Step

The instrumentation and data collection parts of the load balancing framework

are left untouched. However, the protocol of the load balancing step itself

undergoes a major overhaul. The very first part, in which each object calls

the AtSync method to notify its readiness for load balancing, is modified. The

AtSync calls no longer result in function calls to the CentralLB object on the

local processor. Instead, local messages are sent from the participating user

objects to the CentralLB object. In case of a crash, these AtSync messages can

be resent during recovery. This restores a basic assumption of our protocol that

the state of any object is only affected by the messages it processes. Moreover,

during fast recovery objects distributed among other processors can signal their

readiness for load balancing to the CentralLB object on their original processor.

Thus this also removes an obstacle in the path of getting load balancing and

message logging to co-operate.

There is no change in the parts of the load balancing protocols that involve

sending the statistics from a processor to a central processor, calculating a new

mapping and sending migrate messages to the other processor. We can get

by without modifying these messaging portions of the load balancing protocol,

since the load balancing protocol is itself implemented using Charm++ objects

(the CentralLB objects). These objects belonging to the runtime system also

communicate via the message logging protocol. As a result, during recovery

from a crash the CentralLB objects also resend necessary messages from their

message logs. This greatly simplified the process of making the load balancing

framework fault tolerant.

Although the statistics and migrate messages are Charm++ messages, the

messages used to actually send objects from one processor to another can not

133

be Charm++ messages. We can not use Charm++ messages for sending

objects since the objects themselves are the communicating entities. So, a

Charm++ message containing an object would break our idea of applying

the PWD assumption to objects instead of processors. Thus, we deal with

messages containing objects as a special case outside Charm++, in which

communication occurs purely between processors. These messages are assumed

to not change the state of the object being communicated, just its location.

Figure 8.9 shows the different messages sent during a load balancing step.

It leaves out the statistics collection part and starts from the migrate messages

sent to different processors. Before load balancing, objects α and β are located

on processors A and C respectively. The migrate message tells processor A to

send object α to processor C and expect object β from processor C. Similarly

processor C receives a migrate message that tells it to send object β to processor

A and expect object α from A. At this point, we assume that the processors

A and C both agree to send objects α and β to their destinations. Later, we

discuss the case when a processor does not send an object on receiving a migrate

message.

Processor A starts the migration of object α to C by sending a message to its

buddy processor B. The message informs processor B of object α’s intention to

migrate to processor C. Processor B marks object α’s checkpoint as migrating to

processor C. Processor B then sends an acknowledgment message to processor

A. After receiving the acknowledgment message, processor A sends object α

to processor C. However, at this point processor A does not delete its copy of

object α. It just marks it as being under migration. Similarly, processor C,

informs its buddy processor D that it is migrating object β to processor A.

Once processor D acknowledges this information, processor C sends object β to

processor A.

134

Processor A

Processor B
Buddy(A)
Migrate send: <,C>

 expect: <,C>

M
ig

ra
ti

n
g

 t

o
 C

mark as
migrating to C

A
ck:

m
arked

Processor C

mark as
sent to C

Processor D
Buddy(C)

Mig
ra

te
 se

nd: <
,A

>

ex
pec

t:
<,A

>

M
ig

ra
tin

g

 to

 A
mark as

migrating to A

A
ck

:
m

a
rk

e
d

mark as
sent to A

C
h
e
ckp

o
in

t

A
ck

C
h
e
ck

p
o
in

t

A
ck

Checkpoint

Checkpoint

Store 's
checkpoint

Store 's
checkpoint

delete 's
checkpoint

Resume

Resume
Cleanup
Messages

delete 's
checkpoint

delete

delete

Barrier

Figure 8.9: The messages involved in migrating an object during the load bal-
ancing step

Once a processor has received all the objects that it expects and has sent

all the objects that it needs to, it takes its checkpoint. During the checkpoint,

a processor does not include the state of the objects that are under migration.

That means that when processor A checkpoints it includes the newly arrived

object β, but not object α, which is under migration, in its checkpoint. As

usual processor A’s checkpoint is sent to its buddy processor B. At this point,

processor B stores the checkpoint of object β. However, it does not yet delete

the old checkpoint of object α. Processor B then sends an acknowledgment to

processor A. Unlike the earlier case, processor A does not send out garbage col-

lection messages when it receives the acknowledgment. Once all the processors

have had their new checkpoints acknowledged they participate in a barrier.

135

The barrier marks the point in the system at which all the processors have

had their checkpoints acked. This means that there is no chance that an object

will have to be created from an older checkpoint. Therefore, at this point the

old checkpoints and objects marked as migrating can be deleted. This means

that processor A deletes the old copy of object α and processor B deletes the

old copy of α’s checkpoint marked as migrating. Moreover, objects can restart

processing messages now. Garbage collection messages are also sent out at this

point instead of being sent out when the checkpoint was acknowledged.

The modified load balancing protocol solves a number of problems mentioned

in Chapter 8.3. The copy of object α is not deleted at its old location, processor

A, as well as at A’s buddy processor B, until its new location processor C has

checkpointed. This means that through out the load balancing step, copies of

object α are present on at least two processors such that one processor is a

buddy of the other. Object α has copies on processors A and its buddy B until,

it is confirmed that processor D, the buddy of processor C, has stored object

α’s checkpoint. This solves the reliability problem associated with checkpoints

mentioned in Section 8.3.1. Of course, it also means that at some points there

are more than two processors with a copy of object α. We describe in the next

section how we modify the recovery protocol to deal with the situation. Since

we always checkpoint during a load balancing step, object α does not require

meta-data for any messages from before the load balancing step. Moreover,

object α does not process any messages until the load balancing step is over.

This means that object α’s recovery is not dependent on meta-data stored

on multiple different processors. Thus, we also solve the reliability problem

associated with having meta-data spread over multiple processors as described

in Section 8.3.1.

We now discuss the case where a processor might not send an object to

136

another processor after receiving a migrate message. Let us say processor E

which contains objects γ, δ and ε crashes during the load balancing step. The

crash happens right after processor E has received the migrate message. The

migrate message asks processor C to send object δ to processor H but processor

E crashes before any objects have actually been sent. During fast recovery of

processor E, objects δ and ε are sent to processors F and G respectively. After

recovery is nearly complete, processor E will receive the old migrate message

again. However, processor E can not send object δ to processor H, since it does

not have object δ. So, processor C sends processor H a message informing it that

it will not get object δ and that it should stop waiting for it. The converse case

that a processor is trying to send an object to the crashed processor is dealt

similarly. The sending processor does not send the object to the recovering

processor since it does not want to add to the load of the recovering processor.

The sending processor simply lets the recovering processor know that it will not

get that particular object and that it should not wait for the object.

8.4.2 Message Logging

The biggest modification to the message logging protocol happened in the re-

covery component. The recovery protocol had to be augmented to be able to

deal with the various transient but confusing situations created by object mi-

gration during load balancing. Figure 8.10 shows an example that we use to

illustrate the modifications. Processor C contains objects α and β. Processor

C had saved the checkpoints of these object on its buddy, processor D, during

the previous load balancing step. During the current load balancing step, it

receives a migrate message telling it to send objects α and β to processors E

and F respectively.

Processor C sends a message to its buddy processor D informing D that

137

Processor C

Processor D
Buddy(C)

St
at

is
ti
cs

M
es

sa
ge

M
igrate

send<

,E>
<

,F>

Has , 's
checkpoint

M
ar

k:
 m

ig
ra

ti
n
g

 t

o
 E

,

to
 F

make note of
migrations

A
ckn

o
w

le
d
g
m

e
n
t

Processor E

Processor F

Crash

Figure 8.10: Processor C is sending objects α and β away, but crashes in the
middle

object α is being sent to processor E and β to processor F. Processor D makes

a note of these migrations in the object’s checkpoint. After this, processor C

starts sending the objects to their destination. It sends object α to processor E

safely, but crashes before it can send out object β to processor F.

Figure 8.11 shows the steps in the recovery protocol in this case. As usual, a

new processor C is started up that sends a request for its checkpoint to processor

D. However, at this point the modified recovery protocol diverges from the old

version. Processor D looks at the checkpoints of objects α and β and finds that

they were being sent to processors E and F respectively. Processor D sends

verify messages to processors E and F, asking each if the corresponding object

138

Processor D
Buddy(C)

Processor C

Has , 's
checkpoint

Processor E

Processor F

G
et

 c
he

ck
po

in
t

Migrating:
 to E
 to F

V
e
rify:

Is
 o

n
 E

 ?

Verify:

Is
 on F ?

 present but
no checkpoint

delete

 d

e
le

te
d

n
o
t

fo
u
n
d

C
h
e
ckp

o
in

t

No

Recovery

starts

Figure 8.11: Recovery of processor C, after it crashed during the migration of
objects α and β.

exists on it. In this case, processor E had successfully received object α from

processor C before it crashed. So, processor E has the object that processor

D is looking for. Moreover, it is found that processor E has not checkpointed

yet during this load balancing step. Object α is simply deleted on processor E

and processor D is told of the action. On the other hand, processor F does not

have a copy of object β and it tells processor D the same. After hearing back

from both processors E and F, processor D can be sure that it now has the only

copies of objects α and β in the system. It sends their checkpoints to processor

C and after that recovery can continue in the normal fashion.

Processor E might have already saved its checkpoint by the time the verify

139

message from processor D arrived. In that case, processor E does not delete its

copy of object α. It simply tells processor E that it has object α and that it

has also checkpointed. Now, if processor D receives a similar reply for object

β, it realizes that there are newer versions of all the objects in the checkpoint

of processor C. Moreover, these new versions themselves have checkpoints and

are fault tolerant. So, processor D does not restore object α and β from their

old checkpoints and sends processor C an empty checkpoint. Processor C then

simply calls the checkpoint barrier for this interrupted load balancing step. On

the other hand, if processor F had replied that it had no copy of object β or that

it had deleted β, processor D would have to go through with the recovery of both

objects α and β. Processor D has to rollback both processors to their previous

checkpoint because of the reason explained in Chapter 8.3.2. So, processor D

asks processor E to delete its and its buddy’s copies of object α. After processor

E and its buddy confirm deleting their copies of object α processor D can send

the checkpoints of objects α and β to processor C.

Thus we extend both the load balancing framework and the message logging

protocol to make them work together without compromising the reliability of

the system. We provide an application with the performance benefits of load

balancing while making sure that it can recover from a crash at any point during

an execution.

140

Chapter 9

Experimental Evaluation of
Protocol With Load Balancing

We now evaluate the performance of the combined message logging and load

balancing protocol. This evaluation has two major parts: 1) showing that

load balancing continues to improve performance even when combined with

the message logging protocol 2) load balancing gets rid of the load imbalance

created by the fast recovery protocol.

9.1 Load Balancing Without Faults

We want to make sure that load balancing continues to function correctly when

used along with the message logging protocol. This means that load balancing

should continue to correctly collect load information about different objects.

Moreover, during a load balancing step it should use this collected load data to

map objects to processors such that the load is distributed more or less equally

among processors. We aim to assure that the extra messages and computa-

tion caused by the message logging protocol do not confuse the load balancing

protocol.

We modified the AMPI 7-point 3D stencil application we used earlier. The

modified version can increase the computational load of some virtual processors.

The user can specify which virtual processors do more computation and also

how much more. If the user does not specify higher computational load for any

virtual processor, we get uniform load across all virtual processors just as in the

141

unmodified version.

We ran this modified stencil application with 512 virtual processors on 32

processors of the uranium system for this experiment. The base case was an

execution without any overloaded virtual processors. For the runs with non-

uniform loads we overloaded 10 of the 512 virtual processors. Each overloaded

virtual processor does 8 times as much work as an unloaded one.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

Ite
ra

tio
n

Time(s)

Uniform Load
Non-uniform Load, No LB

Non-uniform Load, With LB

Figure 9.1: Progress of the AMPI 7-point 3D stencil application on 32 processors
with uniform load, non-uniform load without load balancing and non-uniform
load with load balancing. There are 512 virtual processors in all three cases.

Figure 9.1 shows the progress of the stencil application for all three cases:

uniform load, non-uniform load without load balancing and non-uniform load

with load balancing. We plot the iteration against the cumulative time since

the start of the first iteration. A steeper line denotes faster progress. We check-

point every 100 iterations for the runs without load balancing, and perform

load balancing at the same frequency for the run with load balancing. These

142

checkpoint and load balancing steps show up as small flat lines in the progress

curves. As expected the base case with uniform load makes the fastest progress.

For the first 100 iterations, both the runs with non-uniform loads perform sim-

ilarly. They make much slower progress compared to the uniform run, shown

by their flatter progress lines. However, after the first load balancing step the

performance of the non-uniform run improves markedly. It starts making much

faster progress after load balancing. The slope of the progress curve becomes

much steeper, though it is still flatter than the base case. This is to be ex-

pected, since we now are doing more total work per iteration (some objects are

doing eight times more work). Figure 9.1 very clearly illustrates the massive

difference in total execution time that load balancing makes. The non-uniform

case with load balancing takes nearly 40% less time to run for 600 timesteps

than the case without load balancing.

Type of Run
Average time Increase over

per Iteration (s) Uniform Load
Uniform Load 0.755 NA
Non-Uniform Load, Calculated Ideal 0.896 18.75%
Non-Uniform Load without LB 1.740 130.46%
Non-Uniform Load with LB 0.909 20.40%

Table 9.1: The measured average iteration time for the AMPI 7-point 3D stencil
application on 32 processors with uniform load, non-uniform load without load
balancing and non-uniform load with dynamic runtime load balancing. The
calculated ideal average iteration time for the non-uniform load is also shown.

Table 9.1 compares the average time per iteration for the different runs. The

average was calculated over the 99 iterations between 101 and 200. We choose

this range because the first load balancing step happens between the 100th and

101st iterations. Apart from the three runs, we also show a calculated value for

the best possible iteration time with non-uniform load.

We show how we derive the calculated iteration time. We say that each

143

virtual processor does 1 unit of work in the uniform load case. Since there are

512 virtual processors in all, the total amount of work for that case comes to

512 units. For the non-uniform case, 10 of the 512 virtual processors do 8 units

of work each. Therefore the total amount of work in the non-uniform case is

502 + 10 ∗ 8 = 582 units. This means there is
582

32
= 18.1875 units of work

per processor. Since the work within a virtual processor is not divisible, some

processors will have 18 units of work and some 19 units of work. Therefore, the

average iteration time will be close to
19

16
∗0.755 s = 0.896 s. As shown in Table

9.1 this average iteration time reflects a 18.75% increase over the base uniform

load case. Moreover, a mapping that can possibly attain this performance

is easy to calculate. Assign each overloaded virtual processor to a processor

and then assign 8 normally loaded virtual processors each to the remaining

processors. Distribute the remaining normally loaded virtual processors among

the processors in a round robin fashion.

The initial mapping of the virtual processors to processors happens to be

such that some processors contain more than one overloaded virtual processor.

As a result, the average iteration time for the run with non-uniform load and no

load balancing is very high, more than double that of the uniformly load base

case. However, when the load balancer is used in the non-uniformly loaded

case, the average iteration time goes down sharply. The average iteration time

with the load balancer is very slightly (less than 3%) more than the ideal calcu-

lated runtime. This shows that the measurement based runtime load balancer

continues to function effectively even when combined with the message logging

protocol.

144

9.2 Load Balancing After Faults

We saw in Chapter 8 that by distributing objects from the recovering processor

among other processors, the fast recovery protocol can set up a load balance

problem for the future. Once the recovering objects have caught up with the

rest of the computation, different processors end up with different loads. This

load imbalance means that the performance of an application is worse after fast

recovery than after basic recovery. We also saw how this performance loss can

entirely wipe out the time saved during fast recovery. We decided to remove

load imbalance by combining the Charm++ runtime system’s measurement

based dynamic load balancing system with message logging. We now evaluate

how effective load balancing is in getting rid of the load imbalance created by

fast recovery. We evaluate two scenarios: 1) the load across all the virtual

processors in a computation is uniform 2) the load distribution across virtual

processors in non-uniform.

9.2.1 Uniform Load

We used the 3D 7point stencil application running on AMPI to evaluate the

effect of load balancing after fast recovery from a crash. We ran the stencil

application with 512 uniformly loaded virtual processors on 32 processors. We

checkpoint every 100 iterations in the case of runs without load balancing. We

perform load balancing every 100 iterations for the runs with load balancing.

We introduce a fault close to the 185th iteration for all the runs.

Figure 9.2 shows the progress of the stencil application with uniform load

for three situations: basic restart without load balancing, fast restart without

load balancing and fast restart with load balancing. The application shows

near identical performance in all three cases for the first 100 iterations. This

145

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

Ite
ra

tio
n

#

Cumulative Time (s)

Basic Restart, No LB
Fast Restart, no LB
Fast Restart, with LB

Figure 9.2: Progress of the AMPI 7-point 3D stencil application when faced
with a fault under three different conditions: basic restart without load bal-
ancing, fast restart without load balancing, fast restart with load balancing.
The experiments were run with 256 uniformly loaded virtual processors on 32
processors.

is to be expected because the initial mappings in all three runs are the same

and load balancing has not occurred yet. Even after the first load balancing

step at iteration 100, the performance remains similar. Table 9.2 shows the

average iteration times in different phases of the application for these three

cases as well as another one involving basic restart along with load balancing.

The first column in Table 9.2 shows that there is very little difference in the

average iteration time before the crash among the different runs. Since, the

load on all virtual processors is uniform and the initial mapping distributed the

virtual processors uniformly, performance does not change even after the first

load balancing step.

146

All three runs suffer a processor crash and start recovery close to the 185th

iteration. This shows up as a flat stretch in the progress curves of all three

runs. The length of the stretch represents the time taken in recovering from

the crash. Once recovery is complete, the application can start making progress

again. The basic restart run takes the longest to recover from the crash, about

three times the fast restart runs. As a result, by the time the basic restart

protocol finishes recovery, the fast restart runs have already made a significant

amount of progress.

Type of Run
Average Iteration Time(s)

Before Between recovery After the
crash and next LB next LB or

or checkpoint checkpoint
Basic Restart, No LB .734 .732 .738
Basic Restart, With LB .732 .733 .740
Fast Restart, No LB .725 .817 .820
Fast Restart, With LB .723 .818 .748

Table 9.2: Compares the performance of the 3D stencil application during three
different phases of the run for four different cases: before crash, after the re-
covery from the crash but before the next checkpoint/load balancing step and
after the checkpoint / load balancing step following recovery

However, as seen earlier as well, the performance after recovery of the fast

restart protocol without load balancing is significantly worse than that of the

basic protocol. The second column in Table 9.2 shows that after recovery both

the runs using fast restart protocol have a significantly higher average iteration

time than the runs using basic recovery. The run that uses fast recovery without

load balancing continues to have a higher average iteration time through out

the rest of the application. We can see this in Figure 9.2, where the green line

representing fast restart without load balancing has a lower slope after recovery

than the basic restart. At some point, beyond the range shown, the green line

would be crossed by the red line. That would represent the point when the load

147

imbalance created by fast restart wipes out the benefits of fast restart.

On the other hand, following a subsequent load balancing step the average

iteration time for the run using fast recovery goes down sharply. This is borne

out by the third column in Table 9.2. Similarly in Figure 9.2, the blue line

representing fast recovery with load balancing has a much higher slope than the

green line. The blue line remains more or less parallel with the red line showing

that, when used with load balancing, fast recovery can maintain its advantage

over basic restart. A small loss in performance for the blue line is caused by

the fact that it takes a little longer to do every load balancing step than the red

line takes for checkpointing. An user can avoid this repeated overhead by not

doing load balancing steps unless there has been a crash during the previous

phase.

We can fully exploit the advantages of the fast restart protocol only by

combining it with load balancing. The recovery process is shorter than the

basic restart protocol, while still preserving performance after recovery. Thus,

load balancing combined with fast restart protocol provides better performance

in the presence of faults, even for a uniformly loaded application.

9.2.2 Non-uniform Load

We now examine the effectiveness of combining load balancing and our fast

recovery protocol for an application with non-uniform load. We use the same

modified 7 point 3D stencil application as in Section 9.1 with the exact same

initial configuration. There are 10 overloaded virtual processors among the 512

virtual processors and their initial mapping to physical processors is also the

same as above. The test was run on 32 physical processors on uranium with

either load balancing or checkpoints being performed every 100 iterations. We

introduce a fault close to the 170th iteration.

148

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

Ite
ra

tio
n

Cumulative Time(s)

Fast restart with LB
Basic restart no LB
Fast restart no LB

Figure 9.3: Progress of the 7 point 3D AMPI stencil application with 512 non-
uniformly loaded virtual processors on 32 processors of uranium under three
different conditions: fast restart with and without load balancing and basic
restart without load balancing.

Figure 9.3 compares the progress of the non-uniformly loaded application

under three conditions: fast recovery with load balancing, basic restart without

load balancing and fast recovery without load balancing. As expected the per-

formance of all three runs till the first load balancing/ checkpoint step is very

similar. After the load balancing step the red line starts making much faster

progress than the other two runs. The second data column in Table 9.3 shows

that load balancing improves the average iteration time significantly for this

non-uniformly loaded application. The runs in Figure 9.3 correspond to the top

three rows in Table 9.3.

When a fault occurs, the fast restart protocols recover much faster than the

basic restart protocol. The basic restart protocol without load balancing takes

149

more than double the time of either of the runs using the fast restart protocol.

The first data column in Table 9.3 shows the recovery time for the different

runs. It is interesting to note that the recovery time for the fast recovery

protocol is shorter for the run with load balancing than the one without. This

happens because load balancing at step 100 redistributes the overloaded virtual

processors among all the processors. In the run with load balancing, the crashed

processor does not happen to have any of the overloaded virtual processors. As

a result, the recovery is not dominated by the time taken to re-execute the

computation on a overloaded processor, unlike in the case of the run without

load balancing.

After the recovery, the green line (basic restart, no load balancing) continues

to make progress at the same rate as before. The runs employing the fast

restart protocol suffer from the post-recovery load imbalance problem discussed

earlier. The third data column in Table 9.3 illustrates this load imbalance and

the performance impact it has. In fact, the run using the fast restart protocol

without load balancing worsens the already bad load imbalance in this non-

uniformly loaded application. The fast restart protocol with load balancing

also takes a hit to its performance, but the average iteration time is still much

lower than the other two runs in Figure 9.3, since its load was well balanced

before the recovery. This performance hit shows up on the red progress curve

in Figure 9.3 as a flatter stretch between iterations 180 and 200. However,

after load balancing at step 200 the performance of the red line improves back

to its pre-crash level. The run with fast recovery as well as load balancing

makes much faster progress than the other two runs in Figure 9.3. It takes

35% less time to finish 600 iterations as the other two runs. This shows that

using the fast restart protocol along with load balancing for a non-uniformly

loaded application has many advantages compared to using either the basic or

150

fast restart protocol without load balancing.

Type of Run
Recovery Average Iteration Time(s)

Time 100 Crash to 200
(s) to Crash 200 to 300

Basic Restart No LB 89.727 1.668 1.654 1.702
Fast Restart No LB 33.206 1.660 1.721 1.768
Fast Restart With LB 25.116 .906 1.16 .901
Basic Restart With LB 48.114 .920 .915 .917
No crash With LB NA .902 .899 .916

Table 9.3: Compares the performance of the 3D stencil application for four dif-
ferent cases during three different phases of the run: before crash (iteration 100
to crash), after the recovery from the crash but before the next checkpoint/load
balancing step (crash to iteration 200) and after the checkpoint / load balancing
step following recovery (iteration 200 to 300).

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

Ite
ra

tio
n

Cumulative Time(s)

Fast restart with LB
Basic restart LB

No crash simply LB

Figure 9.4: Progress of the 7 point 3D AMPI stencil application with 512 non-
uniformly loaded virtual processors on 32 processors of uranium under three
different conditions: fast restart with and without load balancing and basic
restart without load balancing.

151

Figure 9.4 compares the progress of the run using fast restart protocol along

with load balancing to two other runs: a run employing the basic restart protocol

in tandem with load balancing and a run that suffers no crash but uses load

balancing. The last run is used as a base case to compare the performance of

the other runs with. These runs correspond to the last three rows in Table

9.3. Figure 9.4 and Table 9.3 show that the performance of the three runs is

very similar in all phases of the application except in the vicinity of the restart

protocol. The fast restart protocol with load balancing recovers in about half

the time as the basic restart protocol with load balancing. It is interesting to

note that the basic restart protocol takes much less time to complete recovery

when it is using load balancing than compared to when it is not. This happens

because the load balancing step at iteration 100 had reduced the load on the

processor that crashes. Therefore, less work needs to be done during recovery

of the crashed processor in the case of the run with load balancing. However,

even with load balancing basic restart takes longer to recover from a crash than

fast restart with or without load balancing.

As we saw earlier, the fast restart protocol suffers a performance penalty in

the iterations immediately following a recovery. The basic restart protocol when

used with load balancing performs better during this part of the computation

since it does not disturb the load distribution among the processors. As a

result, in between the iterations 180 and 200 the red line has a flatter slope

than the green line in Figure 9.4. However, in this application the overhead is

small enough that the fast restart protocol retains most of its advantage over

the basic restart protocol before hitting the next load balancing step. After the

load balancing step, the performance of all three runs is very similar. Therefore,

the fast restart protocol used along with load balancing has a lower overall

execution time than the basic restart protocol in this example. However, there

152

is a possibility that if the load balancing step after a crash were to happen a

long time after the recovery, the slower performance of a run using fast restart

protocol during that phase might again wipe out the advantage gained by doing

fast recovery. We can avoid this problem by getting the runtime system to

trigger a load balancing step immediately after recovery is complete. This can

be investigated in greater detail in the future.

9.3 Comparing Performance With a

Checkpoint Based Protocol

We want to compare the performance of our fault tolerance protocol with that

of an existing checkpoint based protocol. The Charm++ run time system

provides us with two options: a disk based checkpointing protocol [30] and

a double in-memory checkpoint protocol [54]. During a run, the disk based

checkpoint protocol periodically stores the checkpoints of Charm++ objects

on the parallel file system of a machine. If a processor crashes during the run,

the whole job is terminated. Later, the user can resubmit the job and have the

execution restart from the last checkpoints saved on the parallel file system.

The user can restart the execution on a different number of processors than the

original run. The in-memory double checkpoint protocol also uses the idea of

a buddy processor. A processor stores the checkpoint of objects on it in the

memory of a buddy processor as well as its own memory. If a processor crashes,

the whole execution is not terminated. Instead a new process is started on

an extra processor. The objects on the restarted processor are recreated from

their checkpoints on the buddy of the crashed processors. All other objects on

all other processors are recreated from their previous checkpoints on the same

processor. The recovery proceeds once all objects in the execution have been

153

recreated from their previous checkpoint. The in-memory protocol also has a

mode which does not require an extra processor when a processor crashes.

The disk based scheme did not seem appropriate for a comparison with our

message logging based protocol because it stores its checkpoints on the parallel

file system and also needs a job to be resubmitted for an execution to recover

from a fault. Storing a checkpoint on the parallel file system is bound to be much

slower than storing it in the memory of another processor. This would make

the comparison between the disk based protocol and our fast recovery protocol

unfair. Therefore, we decided to compare our protocol with the in-memory

double checkpoint based protocol. Both the schemes store their checkpoints in

the memory of a buddy processor and can use a pool of extra processors to

continue execution if a processor were to crash.

We used a 2 dimensional 5-point stencil application written in Charm++

as a benchmark to compare the performance of the two protocols. Figure 9.5

shows the progress of the application using the two different protocols, when

run with 1024 virtual processors on 128 processors of Abe. The fast recovery

protocol is used along with load balancing. Load balancing is performed every

200 iterations. The checkpoint based protocol also takes checkpoints every 200

iterations, but does not perform any load balancing. Since all the objects are

uniformly loaded and the initial mapping is well balanced load balancing is not

really needed for this application. The fast restart protocol uses load balancing

to get rid of the load imbalance problem created by the fast recovery. We insert

two faults into each run, one after about 370 iterations, the other around the

900th iteration.

Figure 9.5 shows that in the first 370 or so iterations before the first crash,

the application makes faster progress when using the in-memory checkpoint

based protocol rather than the fast restart protocol. This is expected since mes-

154

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500

Ite
ra

tio
n

Cumulative Time(s)

Fast Restart with LB
In memory checkpoint

Figure 9.5: Compare the progress of a 128 processor 2D 5 point Charm++
stencil program when run using the fast restart message logging protocol along
with load balancing against while using an in-memory checkpoint based proto-
col.

sage logging has a performance penalty. Moreover, the combined load balancing

and checkpointing step performed by the fast restart protocol takes longer than

the simple checkpoint step of the in-memory checkpoint protocol.

After the first fault, the fast recovery protocol recreates objects from the

crashed processor and distributes them among other processors. The in-memory

checkpoint protocol on the other hand rolls all Charm++ objects back to

their previous checkpoints. This difference means that a crash and subsequent

recovery show up differently in the progress curve for the two protocols. For

the fast recovery protocol, recovery is marked by a horizontal stretch at which

the rest of the application waits for the recovering objects to catch up. In the

case of the in-memory checkpoint, there is a nearly vertical fall to the previous

155

checkpoint since all objects are rolled back to their previous checkpoints. Then,

re-execution starts on all the processors and can be considered complete when

the progress curve passes the iteration at which it originally crashed. The

fast recovery protocol takes about 65 seconds to recover from the crash. This

includes not just re-executing the work of the recovering objects but also re-

spawning a new processor, fetching its checkpoint and distributing the objects

among other processors. The in-memory checkpoint protocol takes 238 seconds

to complete its recovery (including re-execution of the lost steps). Thus as

expected, the checkpoint based method takes much longer to recover from a

crash than the fast recovery protocol. The effect of the faster recovery shows

up in the gap between the progress curves of the two protocols.

The second fault happens a little after the 900th iteration. As for the first

crash, the fast restart protocol recovers much faster from a crash than the check-

point based protocol. The fast protocol takes 71 seconds to complete recovery

and start making progress again. While using the in-memory checkpoint pro-

tocol, it takes the application 186 seconds to regain the state it had before the

crash. Thus, again the fast restart protocol saves time compared to the check-

point protocol while recovering from a crash. The fast restart protocol finishes

1600 iterations 164 seconds before the checkpoint protocol. Thus, we see an

example in which the fast restart protocol has a lower overall execution time

when compared to the in-memory checkpoint protocol.

Figure 9.6 shows a similar comparison between the fast restart protocol and

the in-memory checkpoint protocol for the 2 D stencil application running on

512 processors on Abe. This example uses a larger data-set than the previous

one and has 4096 Charm++ objects in all. The fast restart protocol load

balances every 200 timesteps. The checkpoint protocol takes checkpoints at

the same frequency. In the initial stages of the application, the application

156

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500

Ite
ra

tio
n

Cumulative Time(s)

Fast Restart with LB
In memory checkpoint

Figure 9.6: Compare the progress of a 512 processor 2D 5 point Charm++
stencil program when run using the fast restart message logging protocol along
with load balancing against while using an in-memory checkpoint based proto-
col.

makes faster progress while using the checkpoint protocol than the fast restart

protocol. The first crash takes place around the 340th iteration. While using the

fast restart protocol the application takes 68.6 seconds to recover from the crash

and to start making progress again. However, when used with the checkpoint

protocol the application takes 280 seconds to reach the state it was in before

the crash.

The second crash happens at slightly different times for the two runs. This

happened because of the difficulty of triggering a crash at an exact point in

the execution, particularly after an initial crash. In fact, for the fast restart

protocol the crash happens in the middle of the load balancing step after it-

eration 800. The objects on the crashed processors are rolled back to their

157

previous checkpoints, that is the ones taken at the end of the load balancing

step after the 600th iteration. The fast restart protocol manages to recover from

the crash during the load balancing step and takes 65 seconds for the recov-

ery. The in-memory checkpoint protocol crashes around the 920th iteration. All

objects are rolled back to the checkpoints taken after the 800th iteration. The

checkpoint protocol in fact has to redo fewer iterations than the fast recovery

protocol. Still, the checkpoint protocol takes 204 seconds, much longer than

the fast restart protocol, to complete recovery.

The crash during load balancing in the fast restart case illustrates a side

effect of our fault tolerant load balancing protocol. After the crash, the objects

on the recovering processor are distributed among other processors. This in-

cludes any objects that might have been destined to move to other processors

from the recovering processor according to the ongoing load balancing step. At

the same time, objects on other processors destined for the recovering processor

are no longer sent to it. Therefore, at the end of the recovery and the ongoing

load balancing step there might be a load imbalance among the different pro-

cessors. This is in fact the case since the average iteration time in the timesteps

between 800 and 1000 is 1.54 seconds instead of 1.36 seconds during other

fault free phases of the application. This 13.24% increase corresponds closely

to the increase in iteration time that would be caused if some processors had

9 Charm++ objects instead of 8. Therefore, during this time period, the gap

between the run using fast recovery and the run with in-memory checkpoint

closes somewhat. However, there still remains a large gap between the progress

of the two runs with the fast restart protocol retaining a significant advantage

over the checkpoint protocol. Moreover, after the next load balancing step at

iteration 1000, the run using fast restart and load balancing redistributes the

objects among the processors. This restores the load balance among the pro-

158

cessors in the run and removes the performance penalty imposed by the load

imbalance created during fast recovery. So, at the end of 1400 iterations the

execution time using the fast restart protocol along with load balancing is still

300 seconds ahead of the in-memory checkpoint protocol.

159

Chapter 10

Memory Overhead

Our protocol stores a significant amount of additional data in order to provide

fast recovery from faults. Objects sending messages store these messages in their

message log. Checkpoints of objects on a processor are stored in the memory

of the buddy of that processor. Moreover, in order to deal with multiple faults

message logs should be part of an object’s state. In addition, there are protocol

related data structures such as the TNTable, MDTable and SNTable. So, the

fast recovery protocol increases the memory consumption of an application. In

this section we measure the memory overhead imposed by our protocol on a

simple application. We also look at methods of reducing the overhead.

We chose to investigate the memory costs of our protocol using a simple

2D stencil application. The configuration we used for the experiment involved

a domain containing 268 million elements arranged in a 2D square gird with

sides of length 16384. This domain is divided among 256 virtual processors

with 16 virtual processors along each side of the domain. The application was

run on 32 processors. It was run for 1000 iterations with checkpoints or load

balancing happening every 200 iterations. The Charm++ run time system

traps memory allocation and deallocation calls. This lets us keep track of the

amount of memory being used on a processor by an application at any point of

time. At the end of a run, we can also find out the maximum amount of memory

used during the run on any processor. We decide to use this high water mark as

a measure of the memory consumption of an application with and without the

160

fast restart protocol. This is a valid but somewhat conservative metric since

the average memory consumption can be much lower than the maximum. On

the other hand, the maximum memory consumption determines whether an

application will actually run on a machine without swapping or even crashing

due to a lack of physical memory.

We first ran the 2D stencil application in the described configuration with an

unmodified version of Charm++. We ran the application without performing

load balancing every 200 timesteps. The maximum memory consumed on any

processor during the run comes to 69.9 MBytes. This seems appropriate since

each Charm++ object has close to 8.5 MBytes of data and there are 8 objects

per processor.

Next, we ran the 2D stencil application with the fast recovery protocol but

without load balancing. We performed a checkpoint every 200 iterations. The

maximum memory used over all processors was 487.7 MBytes. This seemed

surprisingly large. We started investigating this massive increase in memory

consumption by looking at the checkpoint size. We found that checkpoint sizes

for each processor went up to 121 MBytes. Of this, the application data ac-

counted for 68 MBytes. The message logs at 52 MBytes accounted for the

bulk of the rest of the checkpoint. Thus, just the size of the checkpoint was not

sufficient to explain the much higher memory consumption.

We decided to look into the memory consumption at different points of the

checkpoint protocol. We found that the maximum memory consumed during

a checkpoint protocol varied between different checkpoint steps. Table 10.1

compares the current memory consumption at different stages of the check-

point protocol for two checkpoint steps on the same processor (processor 28):

1) during which memory consumption reaches the peak 2) during which mem-

ory consumption is significantly lower than the peak. At the beginning of the

161

Phase of the checkpoint protocol
Memory usage(MB)

Peak-usage Non-peak
After sizing up the checkpoint 247.3 247.1
After allocating checkpoint buffer 367.5 367.2
After sending the checkpoint 487.7 367.2
Before storing received checkpoint 487.7 367.3
After storing received checkpoint 367.5 247.2
After receiving the checkpoint ack 247.3 247.2

Table 10.1: Compares the current memory consumption at different points in
the checkpoint protocol for two different checkpoint steps on the same processor.
The peak memory usage during the first step is also the maximum memory
consumption during the run. The second run shows memory consumption for
a checkpoint step whose maximum usage is less than the peak.

checkpoint, both steps have similar memory consumption, a little more than

247 MBytes. This memory consumption is expected since processor 28 con-

tains its objects along with the checkpoint of the processor whose buddy it is

(processor 3). As expected the memory consumption in both steps increases

when the message to contain the next checkpoint is allocated. After that, the

checkpoint message is filled up and sent to the buddy of processor 28. However,

the message is not freed until the underlying interconnect decides that all of it

has been received safely on the buddy. So, even after the message has been sent

the memory consumption does not fall in the case of the non-peak checkpoint

step.

The peak checkpoint step, on the other hand, shows an increase in memory

consumption at this point. This happens because processor 28 receives the

checkpoint message from processor 3. Thus, it ends up receiving that checkpoint

message from processor 3 before it has sent out and freed up its own checkpoint

message. Since it already contains its own objects along with a pre-existing copy

of processor 3’s checkpoint, it ends up with a total memory consumption about

4 times the checkpoint size. The checkpoint size of 120 MBytes and current

162

memory consumption of 487.7 MBytes adheres very closely to this scenario.

The next step of the checkpoint protocol has processor 28 processing the

checkpoint message that it receives from processor 3. In the case of the non-

peak step, by the time processor 28 receives that message from processor 3, it

has sent off its own checkpoint message safely to its buddy. Therefore, memory

consumption does not change significantly between sending its checkpoint and

beginning to process processor 3’s checkpoint message. After processor 3’s new

checkpoint message has been stored, the old one is deleted. This brings down

the memory consumption for both the peak and non-peak step. In the peak

memory usage checkpoint step, processor 28 deletes its own checkpoint message

at some point after this, when the interconnect layer decides that the checkpoint

message has been received safely on the buddy. Therefore, by the time the

checkpoint protocol finishes with the acknowledgement from the buddy, memory

consumption in both steps is back to the pre-checkpoint level of 247 MBytes.

Therefore, the high memory overhead is caused by processor 28 having 3

checkpoint messages along with its objects in its memory at the same time.

An evident solution we tried was to store the received checkpoint on local disk.

This would reduce the maximum amount of data contained in memory at one

point. It does reduce the maximum memory consumed on any processor during

the whole run to 368.3 MBytes. However, this is still pretty high and moreover

the time taken to write the checkpoint to disk is close to 10 seconds. Another

problem is that many machines do not provide compute nodes with a local disk.

So, although saving the checkpoint to disk does reduce memory consumption,

it is not the ideal solution.

We approached the problem from another direction by noticing that half

the memory consumption is caused by the checkpoint messages received from

another processor. If we rule out using local disks, then we will always have two

163

such messages in memory: one for the previous checkpoint step and another for

the current checkpoint step. Since we can not delete the old checkpoint without

first storing the new one, we are bound to have two such checkpoint messages

in memory at some point of the execution. Therefore, the only way to reduce

the memory overhead caused by the received checkpoint messages is to reduce

the size of the messages themselves. We tested this idea by compressing the

checkpoint message sent by a processor to its buddy. We used the compress2

function provided by the zlib library to compress the checkpoint message. We

send this compressed checkpoint message to the buddy. The buddy stores the

compressed message. If a processor crashes, it receives this compressed check-

point message and uncompresses it before starting recovery. It must be noted

that the large buffer for the checkpoint message is still allocated to create the

checkpoint message.

The compression was very effective and was able to reduce the checkpoint

message size from 120 MBytes to less than 10 MBytes. The compression took

about 2.1 seconds on the slow processors of uranium. However, it also re-

duced the time taken to transmit the checkpoint from a processor to its buddy.

It brought down the maximum memory consumption to 254 MBytes. Thus,

compressing the checkpoint message drastically reduced the memory overhead

caused by storing these messages without a big increase in the time taken to

checkpoint. We leave compression as an option for the user to choose if mem-

ory consumption becomes too large for the amount of memory available on a

machine.

We carried out a similar experiment with load balancing enabled. We per-

formed load balancing every 200 timesteps. We found that the peak memory

consumption on any processor while using load balancing but not the fault

tolerance protocol was 147 MBytes. Load balancing increases peak memory

164

consumption since on some processors objects migrate in before their objects

have migrated out. This can double the memory consumption on a processor

and accounts for the higher peak usage during load balancing even when not

using the fault tolerance protocol. The fault tolerance protocol suffers from a

similar effect. In fact, the fault tolerance protocol has a higher chance of hav-

ing this problem since a processor does not delete an object that is migrating

away until its receiving processor checkpoints. So, the fault tolerance proto-

col, when used with load balancing but without checkpoint compression, has a

maximum memory consumption of 603 MBytes. Compressing the checkpoint

messages reduces the peak memory usage to 396.6 MBytes. Thus, compress-

ing the checkpoint messages helps reduce the memory consumption of the fault

tolerance protocol even when used with load balancing.

The compression technique in fact opens up a further avenue for reducing

the memory consumption during the fast recovery protocol. The current imple-

mentation calculates the size of the uncompressed checkpoint and then allocates

a message of that size before packing the object states into that message. The

compression happens only after this. This means that the maximum memory

consumption is bound to be larger than the sum of the size of the objects them-

selves and the size of their uncompressed checkpoint state. So, we can reduce

the maximum memory consumption by not allocating the checkpoint message

for the uncompressed size. We could use the stream compression functionality

of the zlib library to compress the object state while packing it. This would

reduce the maximum memory consumed during checkpointing by removing the

need for the large uncompressed buffer. Moreover, the same idea can be used

while moving objects during load balancing. The objects themselves as well

as the copies retained can be compressed to reduce the peak memory con-

sumption. However, this involves changing the packing unpacking framework

165

in Charm++ significantly. So, it is left as future work if the peak memory

consumption becomes an even bigger constraint.

166

Chapter 11

Proactive Fault Tolerance

We have presented and evaluated a fault tolerance protocol for recovering quickly

from processor crashes. In this chapter we attack the problem of fault tolerance

from a different angle. Instead of waiting for faults to occur and then recovering

from them, we proactively migrate the execution from processors where failure

is imminent. We exploit the capability of runtime migration provided by object

based virtualizaiton to evacuate such processors. We evacuate the execution

of an application from these processors to the other processors involved in the

same application. We do not require extra spare processors while evacuating

processors that might crash shortly in the future. We modify the run-time

system such that if the warned processors were to crash, the rest of the compu-

tation can continue unhindered. We would like to point out that this work, in

its current state, is independent of the fault tolerance protocols discussed until

now.

This approach requires that failures be predictable. We leverage the fact

that current hardware devices contain various features supporting early fault

prediction. As an example, most modern disk drives follow the SMART proto-

col [4], and provide indications of suspicious behavior like transient access errors,

retries, etc. Similarly, motherboards contain temperature sensors, which can be

accessed via interfaces like lm sensor [2] and ACPI [29]. Meanwhile, many

network drivers, like those for Myrinet interface cards [10], maintain statistics

including packet loss and retransmission counts. In fact, the PAPI-4 toolkit pro-

167

vides information from ACPI temperature sensors and Myrinet counters [41],

in addition to the traditional hardware performance counters.

Processor manufacturers, are building infrastructure to detect transient er-

rors inside processor chips and notify the O.S. [8]. Furthermore, recent stud-

ies have demonstrated the feasibility of predicting the occurrence of faults in

large-scale systems [45] and of using these predictions in system management

strategies [43]. Hence, it is possible, under current technology, to act appropri-

ately before a system fault becomes catastrophic to an application. We focus on

handling warnings for imminent faults and not on the prediction of faults. For

faults that are not predictable we can revert back to traditional fault recovery

schemes, like checkpointing and message logging.

Our strategy is entirely software based and does not require any special

hardware. However, it makes some reasonable assumptions about the system.

The application is warned of an impending fault through a signal to the appli-

cation process on the processor that is about to crash. The processor, memory

and interconnect subsystems on a warned node continue to work correctly for

some period of time after the warning. This gives us an opportunity to react to

a warning and adapt the runtime system to survive a crash of that node. The

application continues to run on the remaining processors, even if one processor

crashes.

We decided on a set of requirements before setting out to design a solution.

The time taken by the runtime system to change (response time), so that it can

survive the processor’s crash, should be minimized. Our strategy should not

require the start up of a spare process on either a new processor or any of the

existing ones. This eliminates the need to maintain a pool of extra processors in

case of a crash, as well as the overhead associated with running two application

processes on one processor, albeit one of the application processes has no user

168

data. When an application loses a processor due to a warning, we expect the

application to slow down in proportion to the fraction of computing power lost.

Our strategy should not require any change to the user code. We verify in

Section 11.2 how well our protocol meets these specifications.

11.1 Fault Tolerance Strategy

We now describe our technique to migrate tasks from processors where failures

are imminent. Our solution has three major parts. The first part migrates

the Charm++ objects off the warned processor and ensures that point-to-point

message delivery continues to function even after a crash. The second part

deals with allowing collective operations to cope with the possibility of the loss

of a processor. It also helps to ensure that the runtime system can balance the

application load among the remaining processors after a crash. The third part

migrates AMPI processes away from the warned processor. The three parts are

interdependent, but for the sake of clarity we describe them separately.

11.1.1 Evacuation of Charm++ Objects

Each migratable object in Charm++ is identified by a globally unique index

which is used by other objects to communicate with it. We use a scalable al-

gorithm for point-to-point message delivery in the face of asynchronous object

migration, as described in [39]. The system maps each object to a home proces-

sor, which always knows where that object can be reached. An object need not

reside on its home processor. As an example (shown in Figure 11.1) , object β

on processor A wants to send a message to a object α. Object α has its home

on processor B but currently resides on processor C. If processor A has no idea

where object α resides, it sends the message to the home processor of object α,

169

ie processor B.

Processor A

Processor B
home of

β
1.Message

Processor C

2.Message Forwarded

3.Routing Update β

α

α

α

to

from processor B to C

exists on processor Cα

Figure 11.1: Message being sent from object β to object α. Object α exists on
processor C, whereas its home is on processor B. Processor A on which object
β exists does not know where α exists.

Processor B, being the home, knows that object α can be reached on pro-

cessor C. This means that either processor C contains object α or knows where

object α resides. Processor B forwards the message to processor C. Processor C

contains object α and can hand over the message. Since forwarding is inefficient,

we do not want subsequent messages for object α from objects on processor A

to be forwarded through processor B. Therefore, processor C sends a routing

update to A, advising it to send future messages for object α directly to C.

The situation is complicated slightly by migration. If a processor receives a

message for an object that has migrated away from it, the message is forwarded

to the object’s last known location. Figure 11.2 illustrates the case when an

object β on processor A tries to send a message to object α on processor C. At

the same time object α migrates from processor C to another processor D. A

migration update is sent from processor C to processor B, the home processor of

170

object α, telling B that α is migrating to processor D. However, in the situation

shown in Figure 11.2 processor B receives the message from object β before it

receives the migration update from processor C. Therefore, processor B forwards

the message from object β to processor C.

Forwarded
5. Message

1. Message Send

3. Message
Forwarded

Processor C

Processor B

Processor D

 Update6. Routing
is on D

Processor B
home of

α

β

α

Migrates to
processor D

2.

α

4. Migration
Update

α

to Dα α

Figure 11.2: Message from object Y to X while X migrates from processor C to
D.

Although, processor C does not contain object α, it knows that object α has

been sent to processor D. So, it forwards the message from object β to processor

C. By the time the forwarded message gets to processor D, object α has been

recreated on it. Therefore object α can now processor the message from object

β. Processor D notes that this message that started out from processor A,

was forwarded. Therefore, processor D sends a routing upgrade to processor

A, telling it that object α exists on processor D. Any subsequent message for

object α from an object on processor A, will be sent to processor D directly.

Processor B also receives the migration update from processor C and forwards

any future messages for object α to processor D. The protocol is discussed in

much greater detail in [39] describes the protocol in much greater detail.

When a processor detects that failure is imminent, it can evacuate the

171

Charm++ objects located on it, to other processors. This makes sure that

even if the warned processor were to crash, there are no Charm++ objects

that disappear along with it. However, this is not sufficient to ensure that an

application can continue with its execution if the warned processor crashes.

Processor C Processor B
home()
warned

Processor A

 's location is unknown
send message to home()

Crash

Figure 11.3: Message from object β to object α can become missing once pro-
cessor B, the home of α is evacuated and then crashes.

Figure 11.3 illustrates a situation in which the crash of a warned processor

can potentially cause the application to hang, even if there are no objects on the

crashed processor. Processor B receives a warning and evacuates any objects

that were located on it. Processor B is also the home processor of object α,

which currently exists on processor C. Object β on processor A sends a message

to object α. However, processor A does not know the location of object α. This

is possible if no object on processor A has ever communicated with object α.

In this situation according to the message delivery protocol discussed earlier,

processor A should send the message to the home of object α namely processor

172

B. However, if processor B has already crashed processor A has no other way of

sending the message to its destination, object α on processor C. In this situation,

the message sent by object β to object α never gets delivered. This can cause

errors in an application or cause it to hang.

One evident solution is for processor A to ask all the remaining processors

for the location of object α. Processor C would tell processor A that it contains

object α and processor A could send it the message. However, the next time

object α migrates, this process would have to be repeated again. Moreover,

this would have to happen for every object that had its home on processor B.

So, this solution will not scale with the number of processors and would also

cause a flood of messages every time an object that had its home on processor

B migrates.

We solve the problem by assigning new homes to objects that had their

homes on a warned processor. We assign new homes by changing the index-

to-home mapping such that all objects with homes on a warned processor E

now map to some other processor F. All processors in the application need

to be informed of this changed mapping, so that they stop considering the

warned processor E as the home of some objects. Thus, once the mapping has

been changed on all processors and all the objects on processor E migrated out,

message delivery can continue safely even if processor E crashes. Moreover, once

objects have been mapped to their new homes, the message delivery protocol

can continue as before. The new home of an object always knows how that

object can be reached.

Figure 11.4 shows the messages sent after a processor E receives a warning.

Once processor E receives a warning that a failure is imminent, it changes the

index-to-home mapping so that all objects that previously had their home on

E, now map to F. Then it sends a high priority evacuation message to all other

173

E

F
Routing updates

Migrate Objects
to their homes

Evacuation
Message

Update Mapping

Change Mapping

Update Mapping
had homes on E
for objects which

Processors
Other

Figure 11.4: Messages exchanged when processor E is being evacuated.

valid processors (processors that have not sent evacuation messages to this one

in the past). It also sends all objects on E to their home processors, including

objects that previously had their homes on E.

When a processor other than E receives an evacuation message from pro-

cessor E, it marks E as invalid. It changes the mapping so that all objects

previously mapped to E now map to F. The mapping should be changed in

such a way that all processors independently agree on the same replacement for

E. For any object whose routing record points to E, change the routing records

to point to that object’s home processor. If this processor contains any object

that previously had its home on E, inform its new home processor F about the

object’s current position.

The index-to-home mapping is a function that maps an object index and

the set of valid processors to a valid processor. If the set of valid processors

is given by the bitmap isValidProcessor, the initial number of processors is

numberProcessors and sizeOfNode is the number of processors in a node, then

an index-to-home mapping is given in Figure 11.5.

For efficiency, we derive the mapping once and store it in a hashtable for

174

start← possible← (index mod numberProcessors)
while !isV alidProcessor[possible] do
possible← (possible+ sizeOfNode) mod numberProcessors
if inSameNode(start, possible) then

abort(“No valid node left′′)
end

end
return possible;

Figure 11.5: The function to calculate the index-to-home mapping

subsequent accesses. When an evacuation message is received, we repopulate

the hashtable.

We now discuss the protocol’s behavior in different cases and whether E

needs to process a message after being warned. Of course, any messages to

E sent before a processor receives the evacuation message from E will have to

be processed or forwarded by E. There is no way around it, although the high

priority of the evacuation message tries to reduce the number of such messages.

We first analyze the effect of this algorithm on objects that had their homes

on E. This protocol assigns a new home F for all such objects (let α be one

of them). If object α were on processor E, it is migrated to processor F; if it

existed on other processors, F is informed of its current position. If processor

F receives a message for object α after having received the evacuation message

from processor E, but before α has migrated into it or it has been informed of

object α’s new position, the message is buffered. When either object α or its

position update is received, the buffered messages are either processed locally

or forwarded to the location of α. Any messages for object α received after this

follow the basic protocol. Thus, no messages are sent to processor E in this

case.

If a processor sends to processor F a message for object α before F has

received the evacuation message from processor E, F has no option but to send

175

it to either E or some other processor which has previously told F that α exists

on it. In this case, it is possible that E would have to process a message after

receiving a fault warning.

Any object (say γ) existing on E but having its home on some other processor

(say G) is sent to its home processor G. The evacuate message changes the

routing tables of all processors such that they will send all messages for object

γ to processor G, instead of sending to processor E. If any message for object γ

gets to processor G before γ itself, but after the evacuate message, it is buffered.

Again the only case in which processor E might receive a message is if processor

G has not received the evacuate message when it receives a message for object

γ. All objects on processor E are sent to their home processors and not other

processors because, in this case, E does not need to send a migration update to

the home processors of the objects. The objects themselves fullfil that purpose.

Any old routing entries pointing to processor E for an object that actually does

not exist on E are updated to point to that object’s home processor. Thus,

according to this protocol, processor E might have to forward some messages

sent or forwarded by other processors before they had received the evacuation

message. Once all processors have received the evacuation message, no messages

destined for Charm++ objects will be sent to processor E.

This protocol is robust enough to deal with multiple simultaneous fault

warnings. The distributed nature of the algorithm, without any centralized

arbitrator or even a collective operation, makes it robust. The only way two

warned processors can interfere with each other’s evacuation is if one of them

(say H) is the home for an object existing on the other (say J). This might

cause J to evacuate some objects to H. Even in this case once J receives the

evacuation message from H, it changes its index-to-home mapping and does

not evacuate objects to H. Only objects that J evacuates before receiving an

176

evacuation message from H are received by H. Though H can of course deal with

these by forwarding them to their new home, this increases the evacuation time.

This case might occur if H receives J’s evacuation message before it receives its

own warning and so does not send an evacuation message to J. We reduce the

chances of this by forcing a processor to send an evacuation message to not only

all valid processors but also processors that started their evacuation recently.

11.1.2 Support for Collective Operations in the

Presence of Fault Warnings

Collective operations are important primitives for parallel programs. It is es-

sential that they continue to operate correctly even after a crash. Asynchronous

reductions are implemented in Charm++ by reducing the values from all objects

residing on a processor and then reducing these partial results across all proces-

sors [39]. The processors are arranged in a k-ary reduction tree. Each processor

reduces the values from its local objects and the values from the processors that

are its children, and passes the result along to its parent. Reductions occur in

the same sequence on all objects and are identified by a sequence number. If a

processor were to crash, the tree could become disconnected. Therefore, we try

to rearrange the tree around the tree node corresponding to the warned proces-

sor. If such a node is a leaf, then rearranging the tree involves just deleting it

from its parent’s list of children. In the case of an internal tree node, the trans-

formation is shown in Figure 11.6. Though this rearrangement increases the

number of children for some nodes in the tree, the number of nodes whose par-

ent or children change is limited to the node associated to the warned processor,

its parent and its children.

Since rearranging a reduction tree while reductions are in progress is very

177

Figure 11.6: Rearranging of the reduction tree, when processor 1 receives a fault
warning.

complicated, we adopt a simpler solution. The node representing the warned

processor polls its parent, children and itself for the highest reduction that any

of them has started. Because the rearranging affects only these nodes, each of

them shifts to using the new tree when it has finished the highest reduction

started on the old tree by one of these nodes. If there are warnings on a node

and on one of its children at the same time, we let the parent modify the tree

first and then let the child change the modified tree. Other changes to the tree

can go on simultaneously and do not need to be ordered amongst each other.

The exact sequence of messages is the following:

1. Warned processor sends the tree modifications to parent and children.

2. Parent and children store the changes but do not apply them to the current

tree. They reply with the highest reduction number that they have seen.

They also buffer any further reduction messages.

3. The warned processor finds the maximum reduction number and informs

the parent and children.

4. The parent and children unblock and continue until they reach the maxi-

mum reduction number; at that point, they change to the new tree.

178

The Charm++ runtime provides support for asynchronous broadcasts to

its objects [39]. It simplifies the semantics of using broadcasts by guarantee-

ing that all objects receive broadcasts in the same sequence. All broadcasts

are forwarded to an appointed serializer. This processor allots a number to a

broadcast and sends it down the broadcast tree to all other processors. Each

processor delivers the broadcast messages to the resident objects in order of the

broadcast number. Contrary to intuition, this does not create a hotspot since

the number of messages received and sent by each processor during a broadcast

is unchanged.

We can change the broadcast tree in a way similar to the reduction tree.

However, if the serializer receives a warning we piggyback the current broad-

cast number along with the evacuation message. Each processor changes the

serializer according to a predetermined function depending on the set of valid

processors. The processor that becomes the new serializer stores the piggy-

backed broadcast count. Any broadcast messages received by the old serializer

are forwarded to the new one.

It is evident from the protocol that evacuating a processor might lead to

severe load imbalance. Therefore, it is necessary that the runtime system be

able to balance the load after a migration caused by fault warning. Minor

changes to the already existing Charm++ load balancing framework allow us

to map the objects to the remaining subset of valid processors. As we show in

Section 11.2, this capability has a major effect on performance of an application.

11.1.3 Processor Evacuation in AMPI

We modified the implementation of AMPI to allow the runtime system to mi-

grate AMPI threads even when messages are in flight, i.e. when there are

outstanding MPI requests or receives. This is done by treating outstanding

179

requests and receives as part of the state of an AMPI thread. When a thread

migrates from processor A to B, the queue of requests is also packed on A

and sent to processor B. At the destination processor B, the queue is unpacked

and the AMPI thread restarts waiting on the queued requests. However, just

packing the requests along with the thread is not sufficient. Almost all out-

standing requests and receives are associated with a user-allocated buffer where

the received data should be placed. Packing and moving the buffer from A to

B might cause the buffer to have a different address on B’s memory. Hence the

outstanding request that was copied over to the destination would point to a

wrong memory address on B. One could try to update the buffer address in the

request. This would require checking the request’s buffer address against the

old address of every user allocated buffer on the migrated thread. This check

could be very costly. Another possible solution would require the user to inform

the runtime system about the association between his buffers and requests dur-

ing unpacking. Since this would require extra user code, we rule out the second

solution as well.

We solve this problem by using the concept of isomalloc proposed in PM2

[7]. AMPI already uses this to implement thread migration. We divide the

virtual address space equally among all the processors. Each processor allocates

memory for the user only in the portion of the virtual address space alloted to

it. This means that no two buffers allocated by the user code on different

processors will overlap. This allows all user buffers in a thread to be recreated

at the same address on B as on A. Thus, the buffer addresses in the requests of

the migrated thread point to a valid address on B as well. This method has the

disadvantage of restricting the amount of virtual address space available to the

user on each processor. However, this is a drawback only for 32-bit machines.

In the case of 64-bit machines, even dividing up the virtual address space leaves

180

more than sufficient virtual address space for each processor.

11.2 Experimental Results

We conducted a series of experiments to assess the effectiveness of our task

migration technique under imminent faults. We measured both the response

time after a fault is predicted and the overall impact of the migrations on

application performance. In our tests, we used a 5-point stencil code, written

in C and MPI, and the Sweep3d code, which is written in Fortran and MPI. The

5-point stencil code allows a better control of memory usage and computation

granularity than a more complex application. Sweep3d is the kernel of a real

ASCI application; it solves a 3D Cartesian geometry neutron transport problem

using a two-dimensional processor configuration.

We executed our tests on NCSA’s Tungsten system, a cluster of 3.2 GHz

dual-Xeon nodes, with 3 GBytes of RAM per node, and two kinds of inter-

connects, Myrinet and Gigabit-Ethernet. Each node runs Linux kernel 2.4.20-

31.9. We compiled the stencil program with GNU GCC version 3.2.2, and

the Sweep3d program with Intel’s Fortran compiler version 8.0.066. For both

programs, we used AMPI and Charm++ over the Myrinet and Gigabit inter-

connects. We simulated a fault warning by sending the USR1 signal to an

application process on a computation node.

11.2.1 Response Time Assessment

We wanted to evaluate how fast our protocol is able to morph the runtime

system such that if the warned processor crashes, the runtime system remains

unaffected. We call this the processor evacuation time. However, it is not ev-

ident how this should be exactly measured. One way to measure this value is

181

to measure the time taken to handle all messages that need to be processed

by the warned processor before the runtime system can survive a fault. This

includes messages for reconstructing the reduction and broadcast trees and mes-

sages sent to the warned processors before the senders received the evacuation

message. However, this does not include the time taken for the objects on the

warned processor to be actually received on the destination processors. Since

clocks on different processors might not be exactly synchronized, we do not

know when the objects are actually received on the destination processors. We

decided to measure this time by having all the other processors send an ac-

knowledgment back to the warned one after receiving all their objects. Thus,

for a certain execution, we estimate the processor evacuation time as the max-

imum of the time taken to receive acknowledgments that all evacuated objects

have been received at the destination processor and the last message processed

by the warned processor. It should be noted that these acknowledgment mes-

sages are not necessary for the protocol; they are needed solely for evaluation.

The measured value is, of course, a pessimistic estimate of the actual processor

evacuation time, because it includes the overhead of those extra messages.

The processor evacuation time for the 5-point stencil program on 8 and 64

processors, for different problem sizes and for both interconnects, is shown in

Figure 11.7(a). The evacuation time increases linearly with the total problem

size until at least 512 MB. This shows that the evacuation time is dominated by

the time to transmit the data out from the warned processor. For the same rea-

son, the processor evacuation time for Myrinet is significantly smaller than that

for Gigabit Ethernet. However, our method of measurement is biased against

faster interconnects, since the measurement overheads form a more significant

part of the evacuation time than in the case of slower interconnects. Hence the

actual performance gain of Myrinet, in comparison to Gigabit-Ethernet, is even

182

better.

3.9e-03

7.8e-03

1.6e-02

3.1e-02

6.2e-02

1.3e-01

2.5e-01

5.0e-01

1.0e+00

 32 64 128 256 512

Total User Data (MB)

8 procs on gigabit
8 procs on myrinet
64 procs on gigabit
64 procs on myrinet

(a) Scaling Evacuation time with data size

3.9e-03

7.8e-03

1.6e-02

3.1e-02

6.2e-02

1.3e-01

2.5e-01

5.0e-01

1.0e+00

2.0e+00

 0 10 20 30 40 50 60 70

Number of processors

512 MB with gigabit
512 MB with myrinet
32 MB with gigabit
32 MB with myrinet

(b) Scaling Evacuation time with processors

Figure 11.7: Processor evacuation time for MPI 5-point stencil calculation

Figure 11.7(b) presents the processor evacuation time for two problem sizes,

32 MB and 512 MB, of the 5-point stencil calculation on different numbers of

processors. For both interconnects, the evacuation time decreases more or less

183

linearly with the data volume per processor. Myrinet has a significantly faster

response time than Gigabit. Table 11.1 shows similar data corresponding to

the evacuation time for Sweep3d, for a problem size of 150×150×150. These

experiments reveal that the response to a fault warning is constrained only by

the amount of data on the warned processor and the speed of the interconnect.

In all cases, the evacuation time is under 2 seconds, which is much less than the

time interval demanded by fault prediction as reported by other studies [45].

The observed results show that our protocol scales to at least 256 processors. In

fact, the only part in our protocol that is dependent on the number of processors

is the initial evacuate message sent out to all processors. The other parts of the

protocol scale linearly with either the size of objects or the number of objects

on each processor.

Number of Processors Evacuation Time (s)
4 1.125
8 0.471
16 0.253
32 0.141
64 0.098
128 0.035
256 0.025

Table 11.1: Evacuation time for a 1503 Sweep3d problem on different numbers
of processors

11.2.2 Overall Application Performance

We evaluated the overall performance of the 5-point stencil and Sweep3d under

our task migration scheme in our second set of experiments. We were particu-

larly interested in observing how the presence of warnings and subsequent task

migrations affect application behavior.

We ran the 5-point stencil application twice on 8 processors with a dateset

184

0.0e+00

2.0e-01

4.0e-01

6.0e-01

8.0e-01

1.0e+00

 20 40 60 80 100 120 140 160 180 200

T
im

e
pe

r
Ite

ra
tio

n
(s

)

Iteration Number

Warning Load balancing

Evacuation without load balance
Evacuation with load balance

Figure 11.8: 5-point stencil with 288MB of data on 8 processors

size of 288 MB: without and with load balancing. We generated one warning

during both runs. Figure 11.8 plots the time taken during each iteration. In the

first execution, the evacuation prompted by the warning at iteration 85 forces

the tasks in the warned processor to be sent to other processors. The destination

processors become more loaded than the others. This load imbalance increases

the iteration time significantly as can be seen from the red line in Figure 11.8.

We introduce a warning at iteration 70 in the second run. The green line

in Figure 11.8 shows that for this run the performance immediately after the

warning is the same as the first run. However, the load balancing step at itera-

tion 100 improves the performance of the application significantly. It balances

the load among the remaining processors by re-distributing the Charm++ ob-

jects among them. After load balancing, the performance loss due to the failure

warning is proportional to the computational capability that was lost (one out

185

of the original 8 processors was lost).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

T
im

e
pe

r
Ite

ra
tio

n
(s

)

Iteration Number

Warning Load balancing

Evacuation without load balance
Evacuation with load balance
No warning

Figure 11.9: 1503 Sweep3d problem on 32 processors

We did a similar test on the Sweep3d application. We ran Sweep3d with the

1503 size problem thrice on 32 processors: 1) without either warning or load

balancing 2) with warning but without load balancing and 3) with warning

followed by a load balancing. Figure 11.9 shows the time per iteration for all

three runs.

The performance of the three runs are very similar before any warnings

are received. After a warning, the performance detoriates for both the runs

with warnings. The iteration time for the red and green lines increase by more

than 13%. This performance penalty is far more than the loss in computation

power of about 3%. As before computation and communication load imbalance

among the remaining processors causes this performance degradation. Once

186

a load balancing step is performed the performance improves markedly. The

iteration time for the green line goes down sharply after load balancing. The

iteration time after load balancing is only about 4% more than the iteration

time before the warning. Thus the loss in performance is very similar to the

loss in computation power once AMPI has performed load balancing.

0 5 10 15 20 25 30
0

20

40

60

80

100

(a) Before warnings

0 5 10 15 20 25 30
0

20

40

60

80

100

(b) After warnings

0 5 10 15 20 25 30
0

20

40

60

80

100

(c) Post load balancing

Figure 11.10: Utilization per processor for the 1503 Sweep3d on 32 processors.

The Projections analysis tool processes and displays trace data collected

during application execution. We use it to assess how parallel processor utiliza-

tion changes across a Sweep3d execution of a 1503 problem on 32 processors.

We trigger warnings on Node 3 which contains two processors: 4 and 5 (num-

187

bering starts from 0). This tests the case of multiple simultaneous warnings by

evacuating processors 4 and 5 at the same time.

Figure 11.10 depicts processor utilization in all 32 processors during three

distinct phases. Before the warnings occur, processors have nearly uniform load

and similar utilizations (Figure 11.10(a)). Processors 4 and 5 evacuate all the

objects on them after receiving a warning. Figure 11.10(b) shows the utiliza-

tion percentage of the different processors after the evacuation. Processors 4

and 5 have zero utilization during this period. As expected, the evacuation cre-

ates a load imbalance among the remaining processors, with some taking longer

than others to finish iterations. The redistribution of objects can also increase

communication load by placing objects that communicate frequently on differ-

ent processors. These effects show up as low utilization for the remaining 30

processors in Figure 11.10(b).

Finally, after load balancing, the remaining processors divide the load more

fairly among themselves and objects that communicate frequently are placed

on the same processor, resulting in a much higher utilization (Figure 11.10(c)).

The utilization for Processors 4 and 5 is still zero, showing that no objects get

mapped to these processors during the load balancing. These experiments verify

that our protocol matches the goals laid out at the beginning of this chapter.

We have presented a new technique for proactive fault tolerance in MPI

applications, based on the task migration and load balancing capabilities of

Charm++ and AMPI. When a fault is imminent, our runtime system proac-

tively attempts to migrate execution off that processor before a crash actually

happens. This processor evacuation is implemented transparently to the appli-

cation programmer. Our experimental results with existing MPI applications

show that the processor evacuation time is close to the limits allowed by the

amount of data in a processor and the kind of interconnect. The migration

188

performance scales well with the dataset size. Hence, the fault response time is

minimized, as required in our specifications desribed earlier in this chapter. Our

experiments also demonstrated that MPI applications can continue execution

despite the presence of successive failures in the underlying system. Load bal-

ancing is an important step to improve parallel efficiency after an evacuation.

By using processor virtualization combined with load balancing, our runtime

system was able to divide the load among the remaining fault-free processors,

and application execution proceeded with optimized system utilization.

We are currently working to enhance and further extend our technique.

We plan to bolster our protocol so that in the case of false positives it can

expand the execution back to wrongly evacuated processors. We will also extend

our protocol to allow recreating the reduction tree from scratch. We plan to

investigate the associated costs and benefits and the correct moment to recreate

the reduction tree.

189

Chapter 12

Conclusions and Future Work

We combined the ideas of message logging and object based virtualization to

develop a fault tolerance protocol that provides fast recovery. Message logging

let us recover from a crash without rolling back all processors to their previous

checkpoints. Object based virtualization enabled us to distribute the objects

on the recovering processor among the other processors in the system, thus

parallelizing the recovery process and speeding it up. We modified the standard

sender based message logging protocol to allow it to work it with object based

virtualization. We implemented our protocol in the Charm++ environment

to exploit its virtualization based run time system. We performed experiments

to prove that our fast restart protocol speeds up recovery compared to basic

message logging or checkpointing based schemes.

We investigated the performance penalty imposed by our fault tolerance

protocol on different classes of applications. Object based virtualization turned

out to be very useful again. The adaptive overlap of communication and com-

putation provided by virtualization helped in hiding the overheads imposed by

our protocol and reducing the performance penalty. We found that our protocol

had comparatively higher overhead for fine grained applications. We developed

optimizations that combined protocol messages to amortize the overhead and

significantly reduce the cost of our protocol. We looked at the memory over-

head imposed by our protocol and found ways of reducing the overhead without

paying too high a cost.

190

Charm++ supports dynamic load balancing via object migration. How-

ever, we showed that load balancing interferes with the fault tolerance protocol.

We extended the load balancing framework of the Charm++ runtime system

to integrate it with our fault tolerance protocol. This lets an application uti-

lize the load balancing framework when running a load imbalanced application

with our message logging protocol. Moreover, the load balance framework is

very useful in re-balancing the load after a fast recovery since, the fast restart

protocol changes the object to processor mapping during recovery. Our exper-

iments showed that using the fast restart protocol along with load balancing

allows an application to complete faster than while using a simple message

logging or checkpoint based protocol.

We presented proofs for the correctness of the different parts of our protocol.

Our analysis showed that the protocol decreases the chances of catastrophic

failure without assuming the existence of an idealized stable storage. A simple

model was developed to identify the situations in which our protocol is more

effective than traditional fault tolerance protocols.

The thesis included work on a proactive fault tolerance scheme that tries to

evacuate processors in anticipation of a fault. We modified the Charm++ run-

time system such that if a warned processor were to crash later, the application

could continue execution on the remaining processors. We ensured that the

run-time system continued to function efficiently by modifying the reduction

and broadcast trees used by collective operations.

12.1 Limitations

Our protocol still has a number of drawbacks: some of them inherent to our

design and others that can be alleviated by future work. The sender side pes-

191

simistic logging protocol has significant overhead for fine grained applications.

Although our optimizations and object based virtualization reduce the perfor-

mance penalty to a great extent, it might still be too high for some fine grained

applications in certain situations. A user can use the analysis in Section 6.1 to

decide whether our protocol is suitable for his application on a particular ma-

chine. In some cases, a traditional checkpoint protocol might be more suitable

for a fine grained application than our fast recovery protocol

The memory overhead of our message logging protocol is another potential

barrier to its adoption. The stored message logs can greatly increase the memory

consumed by an application. Moreover, storing the checkpoint in the memory

of another processor further increases the memory consumption as does load

balancing. However, compressing the checkpoint does help reduce the memory

overhead. Local disks might also be used for storing checkpoints or message

logs if they grow beyond a certain size. Still, an application that barely fits

into memory without any fault tolerance protocol can not really use our fault

tolerance protocol. A disk based checkpoint protocol seems to be the only

possible solution for such a problem.

Our protocol is designed to reduce the chances of a set of catastrophic failures

that force an application to abort. It can recover from all single processor

failures and a large number of multiple failures. However, if a processor and its

buddy fail within the same checkpoint period then recovery becomes impossible.

Thus, we do not provide any guarantees that our protocol will let an application

continue no matter how many and which processors crash. We aim to build

a more reliable system out of unreliable components without assuming any

idealized stable storage or providing any cast-in-iron guarantees.

A limitation of our protocol in its current form is that it requires a pool

of extra processors from which some can be used when some of the original

192

processors involved in a run crash. Removing this need would require us to

carry out the recovery of the objects on the crashed processors on some of the

remaining processors. Moreover, we would have to change the run time system

so that it can continue to function without involving the crashed processor.

In addition, we would have to remap the buddies of processors such that every

processor has a buddy and no processor is the buddy of two processors. This re-

mapping would have to be done in such a way that the reliability of the overall

protocol does not get reduced. We do not yet have a complete solution for these

problems though some of the solutions already described can be leveraged.

12.2 Future Work

We now see how we might be able to overcome some of the limitations described

above. Our optimizations to reduce the performance penalty currently require

user input. We could try to develop adaptive schemes that would decide on

the buffer sizes and time out periods to use while combining protocol messages.

This would not only relieve the user of trying to find out the best parameters

but would also be better able to react to a program with dynamically varying

communication characteristics.

Another method of reducing the overhead of our fault tolerance protocol

would be to replace the sender based message logging protocol with a causal

logging protocol. This could reduce the performance penalty caused by the

increased latency of the message logging protocol. However, it would compli-

cate the recovery protocol and would probably require a major overhaul to the

existing fault tolerance code.

The memory overhead can be reduced by modifying the Charm++ object

packing framework so that it can compress an object’s state while packing it up.

193

We would use the streaming compression facility provided by the zlib library.

This could help us greatly reduce the peak memory usage of our fault tolerance

protocol by allowing us to generate compressed checkpoints as well as compress

objects being migrated to other processors. We would have to study the tradeoff

between time taken to compress and the benefits of having lower peak memory

usage. Similarly, message logs can themselves be stored in a streaming com-

pressed buffer. The compressed message logs can be uncompressed and sent

when a processor crashes and requires messages to be re-sent. Storing check-

points and even message logs, when they grow beyond a certain size, on local

disks might be a useful direction for investigation. As disks become faster the

cost of writing to local disk might not be too onerous for the message logging

protocol.

We would like to combine the fast recovery protocol with some of the ideas

from the proactive object evacuation protocol. This would help us eliminate the

need for a pool of extra processors. However, this would also require changing

the buddy relationships between processors to ensure that all of them had a

buddy and no processor was the buddy of two other processors.

We developed, presented and evaluated a fault tolerance protocol that pro-

vides fast recovery. It not only meets the goal of providing fast restarts but

also tries to keep the costs and overheads low. We believe that recovery time

will become an important issue for the adoption of fault tolerance protocols

as machines with ever more components make it certain that any application

running for a significant period of time will face faults. Every application will

have to perforce use some fault tolerance protocol and the execution time for an

application will depend on not only its own scalability but also the speed with

which its chosen fault tolerance protocol recovers from crashes. A fault toler-

ance protocol with fast recovery, like the one presented in this thesis, will be an

194

important tool as we try to speed up applications on these future machines.

195

References

[1] Coordinated and improved fault tolerance for high performance computing
systems. http://www.mcs.anl.gov/research/cifts/.

[2] Hardware monitoring by lm sensors. Available at
http://secure.netroedge.com/-lm78/info.html.

[3] Adnan Agbaria and Roy Friedman. Starfish: Fault-tolerant dynamic MPI
programs on clusters of workstations. Cluster Computing, 6(3):227–236,
July 2003.

[4] B. Allen. Monitoring hard disks with SMART. Linux Journal, January
2004.

[5] Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed Amir Husain, and
Asanka De Mel. An analysis of communication induced checkpointing.
In Symposium on Fault-Tolerant Computing, pages 242–249, 1999.

[6] Lorenzo Alvisi and Keith Marzullo. Message logging: Pessimistic, opti-
mistic, causal, and optimal. Software Engineering, 24(2):149–159, 1998.

[7] Gabriel Antoniu, Luc Bouge, and Raymond Namyst. An efficient and
transparent thread migration scheme in the PM2 runtime system. In Proc.
3rd Workshop on Runtime Systems for Parallel Programming (RTSPP)
San Juan, Puerto Rico. Lecture Notes in Computer Science 1586, pages
496–510. Springer-Verlag, April 1999.

[8] Padma Apparao and Greg Averill. Firmware-based platform reliability.
Intel white paper, October 2004.

[9] Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay Hoeflinger. Object-
Based Adaptive Load Balancing for MPI Programs. In Proceedings of the
International Conference on Computational Science, San Francisco, CA,
LNCS 2074, pages 108–117, May 2001.

[10] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, and
J. N. Seizovic. Myrinet: A gigabit per second local area network. IEEE
Micro, 15:29–36, 1995.

196

[11] Eric Bohm, Glenn J. Martyna, Abhinav Bhatele, Sameer Kumar,
Laxmikant V. Kale, John A. Gunnels, and Mark E. Tuckerman. Fine
Grained Parallelization of the Car-Parrinello ab initio MD Method on Blue
Gene/L. IBM Journal of Research and Development: Applications of Mas-
sively Parallel Systems (to appear), 2007.

[12] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault
tolerance under unix. In ACM Transactions on Computer Systems, pages
1–24, February 1989.

[13] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles
Fedak, Cedile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lody-
gensky, Frederic Magniette, Vencent Neri, and Anton Selikhov. Toward a
scalable fault tolerant mpi for volatile nodes. In Proceedings of SC 2002.
IEEE, 2002.

[14] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier, and
F. Magniette. MPICH-V2: A fault tolerant MPI for volatile nodes based on
the pessimistic sender based message logging programming via processor
virtualization. In Proceedings of SC’03, November 2003.

[15] Aurelien Bouteiller, Boris Collin, Thomas Herault, Pierre Lemarinier, and
Franck Cappello. Impact of event logger on causal message logging proto-
cols for fault tolerant mpi. In IPDPS’05, page 97, 2005.

[16] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
application-level checkpointing of mpi programs. In Principles and Practice
of Parallel Programming, June 2003.

[17] Robert K. Brunner and Laxmikant V. Kalé. Handling application-induced
load imbalance using parallel objects. In Parallel and Distributed Comput-
ing for Symbolic and Irregular Applications, pages 167–181. World Scientific
Publishing, 2000.

[18] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. In ACM Transactions on Computer Systems,
pages 3(1):63–75, February 1985.

[19] Yuqun Chen, James S. Plank, and Kai Li. Clip: A checkpointing tool
for message-passing parallel programs. In Proc. of the 1997 ACM/IEEE
conference on Supercomputing, pages 1–11, 1997.

[20] W. E. Cohen, R. K. Gaede, and W. D. Garrett. Interconnection network
independent characterization of communication traffic in the nas bench-
marks via processor performance monitoring hardware.

197

[21] E. N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent rollback-
recovery with low overhead, limited rollback, and fast output commit.
IEEE Transactions on Computers, 41(5):526–531, 1992.

[22] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message passing systems. Technical Report
CMU-CS-96-181, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA, October 1996.

[23] G. E. Fagg and J. J. Dongarra. Building and using a fault-tolerant MPI
implementation. International Journal of High Performance Computing
Applications, 18(3):353–361, 2004.

[24] Graham E Fagg, Thara Angskun, George Bosilca, Jelena Pjesivac-Grbovic,
and Jack J Dongarra. Scalable fault tolerant mpi: Extending the recovery
algorithm. In Proceedings of Recent Advances in Parallel Virtual Machine
and Messaging Passing Interface Users’ Group Meeting Euro PVMMPI
2005, pages pp 67–75. Springer Heidelberg, Lecture Notes in Computer
Science, 2005.

[25] A. Faraj and X. Yuan. Communication characteristics in the nas parallel
benchmarks. In Fourteenth IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS), pages 729–734, 2002.

[26] W. Feng. The importance of being low power in high performance
computing. CTWatch Quarterly, 1-3, August 2005. Available at
http://www.ctwatch.org/quarterly/articles/2005/08/the-importance-of-
being-low-power-in-high-performance-computing/.

[27] Filippo Gioachin, Amit Sharma, Sayantan Chakravorty, Celso Mendes,
Laxmikant V. Kale, and Thomas R. Quinn. Scalable cosmology simula-
tions on parallel machines. In VECPAR 2006, LNCS 4395, pp. 476-489,
2007.

[28] W. Gropp and E. Lusk. Fault tolerance in message passing interface pro-
grams. International Journal of High Performance Computing Applica-
tions, 18(3):363–372, 2004.

[29] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced con-
figuration and power interface specification. ACPI Specification Document,
Revision 3.0, September 2004. Available from http://www.acpi.info.

[30] Chao Huang. System support for checkpoint and restart of Charm++ and
AMPI applications. Master’s thesis, Dep. of Computer Science, University
of Illinois, Urbana, IL, 2004.

198

[31] J. N. Glosli and K. J. Caspersen and J. A. Gunnels and D. F. Richards and
R. E. Rudd and F. H. Streitz. Extending stability beyond cpu millennium:
A micron-scalesimulation of kelvin-helmholtz instability. In presented at
SuperComputing 2007, 2007.

[32] David B. Johnson and Willy Zwaenepoel. Sender-based message logging.
In The 7th annual international symposium on fault-tolerant computing.
IEEE Computer Society, 1987.

[33] L. V. Kalé and Sanjeev Krishnan. Charm++: Parallel programming with
message-driven objects. In Gregory V. Wilson and Paul Lu, editors, Par-
allel Programming using C++, pages 175–213. MIT Press, 1996.

[34] Laxmikant V. Kalé. Performance and productivity in parallel programming
via processor virtualization. In First Intl. Workshop on Productivity and
Performance in High-End Computing (HPCA 10), Madrid, Spain, Febru-
ary 2004.

[35] Laxmikant V. Kalé, Sameer Kumar, Gengbin Zheng, and Chee Wai Lee.
Scaling molecular dynamics to 3000 processors with projections: A perfor-
mance analysis case study. In Terascale Performance Analysis Workshop,
ICCS, Melbourne, Australia, June 2003.

[36] Gregory A. Koenig and Laxmikant V. Kale. Optimizing distributed appli-
cation performance using dynamic grid topology-aware load balancing. In
21st IEEE International Parallel and Distributed Processing Symposium,
March 2007.

[37] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[38] Orion Lawlor, Sayantan Chakravorty, Terry Wilmarth, Nilesh Choudhury,
Isaac Dooley, Gengbin Zheng, and Laxmikant Kale. Parfum: A parallel
framework for unstructured meshes for scalable dynamic physics applica-
tions. Engineering with Computers, 22(3-4):215–235, December 2006.

[39] Orion Sky Lawlor and L. V. Kalé. Supporting dynamic parallel object
arrays. Concurrency and Computation: Practice and Experience, 15:371–
393, 2003.

[40] Inseon Lee, Heon Young Yeom, Taesoon Park, and Hyoung-Woo Park. A
lightweight message logging scheme for fault tolerant mpi. In PPAM, pages
397–404, 2003.

[41] Kevib London, Shirley Moore, Daniel Terpstra, and Jack Dongarra. Sup-
port for simultaneous multiple substrate performance monitoring, October
2005. Poster Session at LACSI Symposium 2005.

199

[42] Sandhya Mangala, Terry Wilmarth, Sayantan Chakravorty, Nilesh Choud-
hury, Laxmikant V. Kale, and Philippe H. Geubelle. Parallel adaptive
simulations of dynamic fracture events. Engineering with Computers (ac-
cepted for publication), 2007.

[43] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Sivasubra-
maniam. Fault-aware job scheduling for BlueGene/L systems. Technical
Report RC23077, IBM Research, January (2004).

[44] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé.
NAMD: Biomolecular simulation on thousands of processors. In Proceed-
ings of SC 2002, Baltimore, MD, September 2002.

[45] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vi-
lalta, and A. Sivasubramaniam. Critical event prediction for proactive
management in large-scale computer clusters. In Proceedings og the ACM
SIGKDD, Intl. Conf. on Knowledge Discovery Data Mining, pages 426–
435, August 2003.

[46] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An ap-
proach to designing fault-tolerant computing systems. ACM Transactions
on Computer Systems, 1(3):222–238, 1983.

[47] Martin Schulz, Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Ke-
shav Pingali, and Paul Stodghill. Implementation and evaluation of a scal-
able application-level checkpoint-recovery scheme for mpi programs. sc,
00:38, 2004.

[48] Georg Stellner. CoCheck: Checkpointing and process migration for MPI.
In Proceedings of the 10th International Parallel Processing Symposium,
pages 526–531, 1996.

[49] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3(3):204–226, 1985.

[50] Y. Tamir and C. Equin. Error recovery in multicomputers using global
checkpoints. In 13th International Conference on Parallel Processing, pages
32–41, August 1984.

[51] Y. M. Wang. Space reclamation for uncordinated checkpointing in message-
passing systems. PhD thesis, University of Illinois U-C, Aug 1993.

[52] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E. Culler. Ar-
chitectural requirements and scalability of the nas parallel benchmarks. In
Proceedings of Supercomputing, 1999.

200

[53] Gengbin Zheng. Achieving High Performance on Extremely Large Par-
allel Machines: Performance Prediction and Load Balancing. PhD the-
sis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

[54] Gengbin Zheng, Lixia Shi, and Laxmikant V. Kalé. FTC-Charm++: An in-
memory checkpoint-based fault tolerant runtime for Charm++ and MPI.
In IEEE International Conference on Cluster Computing, September 2004.

201

Curriculum Vitae

Sayantan Chakravorty

4103 Siebel Center, Phone (office): (217) 333-5827

Dept. of Computer Science, Phone (mobile): (217) 369-8127

201 N. Goodwin Ave., Fax : (217) 265-4035

RESEARCH INTERESTS

Software based fault tolerance in large parallel systems. Runtime support for

massive simulations on big parallel machines. Development of applications that

scale to large numbers of processors, particularly in the fields of cosmology

and unstructured mesh simulations. Efficient parallel libraries for unstructured

mesh simulations. Using multiple paradigms of parallel programming in one

application.

EDUCATION

M.S. in Computer Science May 2005

University of Illinois at Urbana-Champaign GPA: 3.94/4.0

Advisor: Professor Laxmikant V. Kalé

202

B.Tech (Hons.) in Computer Science & Engineering May 2002

Indian Institute of Technology,Kharagpur GPA: 9.3/10.0

HONORS AND AWARDS

• Best Thesis in Graduating Undergraduate Class, Department of Com-

puter Science and Engineering, Indian Institute of Technology, Kharag-

pur, 2002

• Ranked 111/150,000 in the IIT Joint Entrance Examination, India 1998

• National Talent Search Examination Scholarship from National Council

for Education, Research and Training, India, India 1996

RESEARCH EXPERIENCE

• Research Assistant, PPL group, CS Department, University of Illinois

(Advisor: Prof. Kalé)

– A Fault Tolerance Protocol with Fast Recovery: Recovery

time is speeded up by developing a protocol that combines the ideas

of message logging and object-based processor virtualization to redis-

tribute the work of a recovering processor among other processors.

The protocol is being implemented in the Charm++ runtime sys-

tem and has been evaluated to show that it provides fast restarts

and has low fault-free overhead for most applications. Preliminary

results were presented at the FTPDS workshop at IPDPS in 2004

and subsequent results at IPDPS 2007. This is a part of my PhD

dissertation.

203

– Porting Charm++ to Infiniband : The Charm++ runtime sys-

tem has been ported to the Infiniband Verbs layer, specifically to

the libibverbs layer provided by OpenIB. This work is being done

keeping in mind the special requirements of Charm’s message driven

paradigm as opposed to MPI’s message passing paradigm. The im-

plementation is being currently evaluated with real life applications

like NAMD.

– Proactive Fault Tolerance in MPI Applications via Task Mi-

gration: This solution uses the concepts of processor virtualization

and dynamic task migration, provided by Charm++ and Adaptive

MPI (AMPI), to implement a mechanism that migrates tasks away

from processors which are expected to fail. This research was pre-

sented at HIPC 2006.

– Parallel Mesh Partition and Ghost Generation for Unstruc-

tured Meshes: This work parallelized the mesh partition and ghost

generation steps of a parallel unstructured mesh framework called

ParFUM. This allows ParFUM to be used with large meshes that

can not even be loaded on a single node. This work was my MS

thesis and was a part of a journal paper on ParFUM.

– Cosmological Simulator scalable to thousands of processors:

Co-developing a scalable cosmological simulator (recently released

as Changa) helped me study data caching, communication optimiza-

tions and load balance on large numbers of processors. A paper at

VECPAR 2006 shows it scaling to thousands of processors. This

work, done along with cosmologists at the University of Washington,

taught me the importance and challenges of coordinating develop-

204

ment among researchers from different academic backgrounds and

spread across multiple locations.

• Research Assistant, Center for Process Simulation and Design, CSE

Department, University of Illinois, (Advisor Prof. Kalé)

– Parallelization of space-time Discontinuous Galerkin method:

This work developed a parallel version of a space-time discontinu-

ous Galerkin finite element method. It involved researchers from a

wide variety of disciplines including physics, computational geom-

etry, graphics and parallel programming. I learnt the necessity of

well thought-out specifications and code modularity while working

in such a varied group of scientists.

– Adaptivity for Parallel Unstructured Mesh Application: This

work aimed to provide methods to dynamically refine and coarsen an

unstructured mesh. The degree of refinement or coarsening is deter-

mined by the application. This work has been submitted to a journal

for publication.

• Internship, Packaging Research Center, Georgia Tech, Summer 2001

Compared the performance of Chebyshev and Power Series Expansion

Functions for interpolating data.

SELECTED GRADUATE COURSES

Combinatorial Algorithms, Parallel Architecture, Advanced Compilers, Dis-

tributed Systems, Object Oriented Software Engineering, Information Theory,

Machine Learning

205

PUBLICATIONS

• Refereed Journal Articles

1. HPC-Colony: Services and Interfaces for Very Large Systems, Sayan-

tan Chakravorty, Celso L. Mendes, Laxmikant V. Kalé, Terry Jones,

Andrew Tauferner, Todd Inglett and Jose Moreira, ACM SIGOPS

Operating Systems Review: Operating and Runtime Systems for High-

end Computing Systems, 40(2), April,2006

2. ParFUM: A Parallel Framework for Unstructured Meshes for Scal-

able Dynamic Physics Applications, Orion Lawlor and Sayantan Chakra-

vorty and Terry Wilmarth and Nilesh Choudhury and Isaac Dooley

and Gengbin Zheng and Laxmikant Kale, Engineering with Comput-

ers, Volume 22, Numbers 3-4 / December, 2006

3. Parallel Adaptive Simulations of Dynamic Fracture Events, Sandhya

Mangala, Terry Wilmarth, Sayantan Chakravorty, Nilesh Choud-

hury, Laxmikant V. Kale and Philippe H. Geubelle, Submitted for

publication to Engineering with Computers

• Refereed Conference Papers

1. A Fault Tolerance Protocol with Fast Fault Recovery, Sayantan Chakra-

vorty, Laxmikant V. Kale, Proceedings of the 21st International Par-

allel and Distributed Processing Symposium, 2007, Long Beach Cal-

ifornia, IEEE Press, 2007

2. Proactive Fault Tolerance in MPI Applications via Task Migration

, Sayantan Chakravorty, Celso L. Mendes, Laxmikant V. Kale, Pro-

ceedings of International Conference on High Performance Comput-

ing, 2006, LNCS volume 4297, page 485

206

3. Scalable Cosmology Simulations on Parallel Machines, Filippo Gioachin

and Amit Sharma and Sayantan Chakravorty and Celso Mendes and

Laxmikant V. Kale and Thomas R. Quinn, Proceedings of 7th In-

ternational Meeting on High Performance Computing for Computa-

tional Science, July 2006

4. Comparison between Chebyshev and Power Series Expansion Func-

tions for Interpolating Data, S. Chakravorty, S. Hwan-Min and M.

Swaminathan, 10th Topical Meeting on Electrical Performance of

Electronic Packaging, Boston, Massachusetts, Oct. 2001, pp: 153-

156,

• Other Publications

1. A Fault Tolerant Protocol for Massively Parallel Machines, Sayantan

Chakravorty and L. V. Kale FTPDS Workshop for IPDPS 2004,

IEEE Press, 2004

2. Implementation of Parallel Mesh Partition and Ghost Generation for

the Finite Element Mesh framework, Sayantan Chakravorty, Mas-

ter’s Thesis Dept. of Computer Science, University of Illinois, 2005

207

