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Abstract

Cosmological simulators are an important com-
ponent in the study of the formation of galaxies
and large scale structures, and can help answer
many important questions about the universe. De-
spite their utility, existing parallel simulators do
not scale effectively on modern machines containing
thousands of processors. In this paper we present
ChaNGa, a recently released production simulator
based on the Charm++ infrastructure. To achieve
scalable performance, ChaNGa employs various op-
timizations that maximize the overlap between com-
putation and communication. We present experi-
mental results of ChaNGa simulations on machines
with thousands of processors, including the IBM
Blue Gene/L and the Cray XT3. The paper goes
on to highlight efforts toward even more efficient
and scalable cosmological simulations. In particu-
lar, novel load balancing schemes that base decisions
on certain characteristics of tree-based particle codes
are discussed. Further, the multistepping capabil-
ities of ChaNGa are presented, as are solutions to
the load imbalance that such multiphase simulations
face. We outline key requirements for an effective
practical implementation and conclude by discussing
preliminary results from simulations run with our
multiphase load balancer.

1 Introduction

The scientific case for performing cosmological
simulations is compelling. Theories of structure
formation built upon the nature of Dark Matter

and Dark Energy need to be constrained with com-
parisons to the observed structure and distribution
of galaxies. However, galaxies are extremely non-
linear objects, hence the connection between the
theory and the observations requires following the
non-linear dynamics using numerical simulations.
Thus, cosmological simulators are important com-
ponents for studying the formation of galaxies and
planets.

The simulation of galaxy formation is a challeng-
ing computational problem, requiring high resolu-
tions and dynamic timescales. As an example, to
form a stable Milky Way-like galaxy, tens of mil-
lions of resolution elements must be simulated to
the current epoch [5]. Locally adaptive timesteps
may reduce the CPU work by orders of magnitude,
but not evenly throughout the computational vol-
ume, thus posing a considerable challenge for par-
allel load balancing.

To address these issues, various cosmological sim-
ulators have been created recently. PKDGRAV [3],
developed at the University of Washington, can
be considered among the state-of-the-art in that
area. However, due to load imbalance, PKDGRAV
does not scale efficiently on the newer machines
with thousands of processors. In this work, we
present a new N-body cosmological simulator that
(like other simulators) utilizes the Barnes-Hut al-
gorithm [1] to compute gravitational forces. Our
recently released simulator, named ChaNGa, is
based on the Charm++ infrastructure [9]. We
leverage the object-based virtualization [8] and
the data-driven style of computation, inherent in
Charm++, to obtain adaptive overlap of communi-
cation and computation, as well as to perform auto-



matic measurement-based load balancing. ChaNGa
advances the state-of-the-art in N-Body simulations
by allowing the programmer to achieve higher levels
of resource utilization on large systems.

The remainder of this paper is organized as fol-
lows. Section 2 presents an overview of previous
work in the development of parallel simulators for
cosmology. Section 3 describes the major compo-
nents of ChaNGa. Section 4 presents scalability
results obtained with ChaNGa on various parallel
platforms, and Section 5 illustrates some of the more
advanced features in ChaNGa. Finally, Section 6
has our conclusions and future work directions.

2 Related Work

The study of the evolution of interacting particles
under the effects of Newtonian gravitational forces,
also known as the N-Body problem, has been exten-
sively reported in the literature. A popular method
to simulate such problems was proposed by Barnes
and Hut [1]. That method associates particles to a
hierarchical structure comprising a tree. By prop-
erly traversing the tree, one can compute the forces
between a pair of particles or between a particle
and a whole branch of the tree that is sufficiently
far away. By using such an approximation, this
method reduces the complexity of the problem from
O(N2) to O(N logN), where N is the number of
particles. O(N) methods for calculating the grav-
itational force have also been developed, e.g. the
Fast Multipole Method [6, 2]. However, the highly
clustered nature of typical astrophysical datasets re-
quires the organization of the data into some hier-
archical structure. This is essentially a “sort”, thus
the overall complexity is still O(N logN).

Hierarchical methods for N-Body simulations
have been adopted for quite some time by as-
tronomers [12, 18]. A pioneering parallel tree code
is the HOT code [19], which won the Gordon Bell
prize in 1992 and 1997. This code does not have
locally adaptive timesteps. Another widely used
code in this area is PKDGRAV [3], a tree-based
simulator that works on both shared-memory and
distributed-memory parallel systems. However, de-
spite its success in the past, PKDGRAV has shown
limited potential to scale to larger machine config-
urations, due to load balancing constraints. This
limitation makes PKDGRAV’s effective use on fu-
ture petascale systems very questionable.

Other recent cosmological simulators are GAD-

GET [17], developed at the Max-Planck-Institut für
Astrophysik, Garching and falcON [2], developed
at the Max-Planck-Institut für Astronomie, Heidel-
berg. falcON has shown good scalability with the
number of particles, but it is a serial simulator, and
does not have locally adaptive timesteps. Attempts
have been made to parallelize the algorithm, but
only to 16 processors [13]. GADGET, now in its
second version (GADGET-2), has a rich modeling
capability. The published scalability results have
been limited to 128 processors [15], but it has been
used on at least 512 processors with 10 billion parti-
cles for published scientific results [16]. Direct com-
parisons with GADGET will be in our future work.

In addition, some special purpose machines have
been developed in the past to simulate cosmologi-
cal N-body problems. Notable examples are Grape-
5 [11], which has 32 pipeline processors special-
ized for the gravitational force calculation, and an
FPGA-based system [10] constructed as an add-in
card connected to a host PC. Both systems achieve
great price/performance points, but have severe
memory constraints: the largest datasets that one
can use on them are limited to two million particles.

3 Structure of the ChaNGa Code

ChaNGa is implemented as a Charm++ appli-
cation, leveraging all the advanced features exist-
ing in the Charm++ runtime system. In this sec-
tion, after reviewing the basic Charm++ charac-
teristics, we describe ChaNGa’s internal organiza-
tion and point to its major optimizing features.

3.1 Charm++ Infrastructure

Charm++ is a parallel software infrastructure
that implements the concept of processor virtual-
ization [9]. In this abstraction, an application pro-
grammer decomposes the underlying problem into a
large number of objects and the interactions among
those objects. The Charm++ runtime system
automatically maps objects, also called chares, to
physical processors. Typically, the number of chares
is much greater than the number of processors. This
virtualization technique makes the number of chares
(and therefore the problem of decomposition) in-
dependent of the number of available processors.
With this separation between logical and physical
abstractions, Charm++ provides higher program-
mer productivity. This scheme has allowed the cre-



Figure 1. Components for parallel calculation of gravitational forces in ChaNGa

ation of parallel applications that scale efficiently to
thousands of processors, such as the molecular dy-
namics NAMD code [14], a winner of a Gordon Bell
award in 2002.

Besides mapping and scheduling chares on avail-
able processors, the Charm++ runtime system can
also dynamically migrate chares across processors.
This capability is used to implement a powerful
measurement-based load balancing mechanism in
Charm++ [20]. Chares can be migrated based on
observed values of various metrics, such as compu-
tation loads or communication patterns. This dy-
namic redistribution is critical to achieve good over-
all processor utilization.

3.2 ChaNGa Organization

The major task in any cosmological simulator is
to compute gravitational forces generated by the
interaction between particles and integrating those
forces over time to compute the movement of each
particle. As we previously described in [4], ChaNGa
accomplishes this task with an algorithm that uses a
tree to represent the space. This tree is constructed
globally over all particles in the dataset, and seg-
mented into elements named TreePieces. These
TreePieces are distributed by the Charm++ run-
time system to the available processors for parallel
computation of the gravitational forces. ChaNGa
allows various distribution schemes, including Mor-
ton and Peano-Hilbert Space-Filling-Curve (SFC)
and Oct-tree-based (Oct) methods. Each TreePiece
is implemented in ChaNGa as a Charm++ chare.

At the lowest level of the tree, particles corre-
sponding to tree leaves are grouped into buckets
of a predefined maximal size, according to spatial
proximity. To compute the forces on particles of a
given bucket, one must traverse the tree to collect

force contributions from all tree nodes. If a certain
node is sufficiently far in space from that bucket, an
aggregated contribution corresponding to all parti-
cles under that node is used; otherwise, the node is
opened and recursively traversed.

The parallel implementation of gravity calcula-
tion in ChaNGa is represented in Figure 1. Each
processor contains a group of TreePieces. To pro-
cess a certain bucket, the processor needs to col-
lect information from the entire tree. This might
correspond to interactions with TreePieces in the
same processor (local work) or with TreePieces from
remote processors (global work). To optimize the
access to identical remote information by buckets
in the same processor, ChaNGa employs a parti-
cle caching mechanism. This cache is essential to
achieve acceptable performance [4].

3.3 Major Optimizations in ChaNGa

Besides the particle caching mechanism men-
tioned in the previous subsection, ChaNGa imple-
ments various optimizations that contribute to its
parallel scalability. Some of the major optimiza-
tions are the following (for more details, see [4]):

Data Prefetching: Given the availability of
the particle caching mechanism, ChaNGa uses
prefetching to further optimize the access to remote
TreePieces. Before starting the gravity calculation
for a certain bucket, a full tree traversal is done,
to estimate the remote data that will be needed in
the regular tree traversal. The prefetch of this re-
mote data overlaps with local computation, thereby
masking latency.

Tree-in-Cache: To avoid the overhead of com-
munication between chares when accessing data
from a different TreePiece in the same processor,
ChaNGa employs another optimization that ex-



ploits the cache. Before computing forces, each
TreePiece registers its data with the software cache.
Thus, a larger tree, corresponding to the union of
all local TreePieces, is assembled in the local cache.
When any piece of that tree is needed during force
computation, it is immediately retrieved.

Selectable Computation Granularity:
ChaNGa accepts an input parameter that defines
how much computation is performed before the
processor is allowed to handle requests from remote
processors. This enables a good tradeoff between
responsiveness to communication requests and
processor utilization.

4 Scalability Experiments

To evaluate ChaNGa’s effectiveness as a produc-
tion simulator, we conducted a series of tests with
real cosmological datasets. These tests intended
both to assess the code’s portability across different
systems and to measure its performance scalability
in each particular type of system. We used the
three systems described in Table 1, and ran tests
with the following datasets:

lambs: Final state of a simulation of a 71Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Nearly three million particles
are used. This dataset is highly clustered on scales
less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this
dataset are obtained by taking random subsamples
of size thirty thousand, three hundred thousand,
and one million particles, respectively.
dwarf: Snapshot at z = .3 of a multi-resolution
simulation of a dwarf galaxy forming in a 28.5Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Although the mass distribution
in this dataset is uniform on scales approaching the
volume size, the particle distribution is very cen-
trally concentrated and therefore highly clustered
on all scales above the resolution limit. The total
dataset size is nearly five million particles, but
the central regions have a resolution equivalent to
20483 particles in the entire volume.
hrwh lcdms: Final state of a 90Mpc3 volume
of the Universe with 31% dark matter and 69%
dark energy realized with 16 million particles. This
dataset is used in [7], and is slightly more uniform
than lambs.
dwarf-50M: Same physical model as dwarf except

(a) lambs dataset

(b) dwarf dataset

Figure 2. Pictorial view of datasets

that it is realized with 50 million particles. The
central regions have a resolution equivalent to
61443 particles in the entire volume.
lambb: Same physical model as lambs except that
it is realized with 80 million particles.
drgas: Similar to lambs and lambb except that it is
the high redshift (z = 99) state of the simulation,
and it is realized with 730 million particles. The
particle distribution is very uniform.

To illustrate some of the features in these
datasets, Figure 2(a) presents a pictorial view of
lambs, which has a reasonably uniform particle dis-
tribution, whereas Figure 2(b) presents dwarf, con-
taining a much more clustered distribution. In these
pictures the color scale indicates the log of the mass
density and covers six orders of magnitude.

We conducted serial executions of ChaNGa and
PKDGRAV on NCSA’s Tungsten to compare scala-



Table 1. Characteristics of the parallel systems used in the experiments
System Number of Processors CPU CPU Memory Type of
Name Location Processors per Node Type Clock per Node Network

Tungsten NCSA 2,560 2 Xeon 3.2 GHz 3 GB Myrinet
Blue Gene/L IBM-Watson 40,960 2 Power440 700 MHz 512 MB Torus

Cray XT3 Pittsburgh 4,136 2 Opteron 2.6 GHz 2 GB Torus

bility with varying numbers of particles. Figure 3(a)
shows the results of this comparison using subsam-
ples of lambs. As expected, the performance for
both systems follows a linear aspect in this figure,
because of the O(N logN) algorithm employed by
both codes.

Despite their structural similarities PKDGRAV’s
serial performance is about 20% better than
ChaNGa’s. PKDGRAV is written in C whereas
ChaNGa is a C++ code. The Intel icc compiler
used for the tests uses different components to com-
pile C and C++. As a result, similar code fragments
in PKDGRAV and ChaNGa lead to differing object
codes. This difference in object code creates the
observed performance gap.

4.1 Parallel Performance on a Com-
modity Cluster

We conducted tests with parallel executions of
ChaNGa on NCSA’s Tungsten cluster, a typical
representative of current Linux-based commodity
clusters. We compared ChaNGa’s performance on
the gravity calculation phase to the performance of
PKDGRAV. We used the lambs dataset, with 3 mil-
lion particles, in a strong scaling test. Figure 3(b)
shows the observed results. In this kind of plot,
horizontal lines represent perfect scalability, while
diagonal lines correspond to no scalability.

Figure 3(b) shows that ChaNGa’s performance
is lower than PKDGRAV’s performance when the
number of processors is small. This is due to the su-
perior serial performance of PKDGRAV, as we had
observed in Figure 3(a). However, for 8 or 16 pro-
cessors, the two codes already reach similar perfor-
mance levels. Beyond that range, ChaNGa clearly
has superior performance. Since we did not use any
load balancers with ChaNGa in this test, the main
causes for the better performance of ChaNGa are
its various optimizations that overlap computation
and communication.

We can also observe from Figure 3(b) that
ChaNGa’s scalability starts to degrade at the right

extreme of the horizontal axis. This happens be-
cause the lambs dataset is not large enough to
effectively use 256 or more Tungsten processors.
However, a similar degradation occurs for a much
smaller number of processors in PKDGRAV. Hence,
even for this relatively small problem size, ChaNGa
presents significantly better parallel scalability than
PKDGRAV.

4.2 Parallel Performance on Blue
Gene/L

In addition to commodity clusters, we consid-
ered the scalability of ChaNGa on high end par-
allel machines. Figure 4(a) reports scalability on
the IBM Blue Gene/L system These results include
a large variety of datasets, from the smallest dwarf
(5 million particles) to the largest drgas (730 mil-
lion particles). Due to Blue Gene/L memory limita-
tions, larger datasets require larger minimal config-
urations. Given the difficulty in securing large num-
bers of Blue Gene/L processors for extended exper-
imentation, we focused on running only the largest
dataset on 32,768 processors. Near that level, the
other datasets already start to show degraded scal-
ability.

Over the entire range of simulation, we can see
good scalability. Naturally, larger datasets scale
better, having more computation to parallelize. In
particular, on 8,192 processors, lambb performs bet-
ter than dwarf-50M, despite lambb’s bigger size.
This occurs because lambb has a more uniform cos-
mological particle distribution. Like in the case of
NCSA’s Tungsten, we did not consider advanced
load balancing actions to improve performance in
these tests. We will address this issue in section 5.1

4.3 Parallel Performance on the Cray
XT3

We conducted executions of ChaNGa on the up-
graded 2068-node Cray XT3 at PSC (bigben). Due
to unavailability of the full machine for our tests,
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Figure 3. Comparisons between ChaNGa
and PKDGRAV on NCSA’s Tungsten

we could not use more than 2048 processors. Fig-
ure 4(b) illustrates the results of ChaNGa with
three distinct datasets: dwarf (5 million particles),
hrwh lcdms (16 million particles) and dwarf-50M (50
million particles). With the smallest dataset, we ob-
serve good scalability up to 256 processors. Beyond
that point, performance degrades because the prob-
lem size is not large enough to utilize processors ef-
fectively. For the 16 million particle dataset, there
is good scalability across the entire range of configu-
rations used in the test. Remember that hrwh lcdms
is a uniform dataset, so that the load is even across
processors and is sufficiently high to keep processors
busy in all configurations tested.

Meanwhile, in the case of the largest dataset
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Figure 4. Parallel performance of ChaNGa
on the IBM Blue Gene/L and Cray XT3.

(dwarf-50M), the scalability is good up to 2048 pro-
cessors and the data shows superlinear speedups
from 128 to 512 processors. The program does not
run on 64 or fewer processors due to memory lim-
itations. We are still studying in detail the mem-
ory behavior of ChaNGa to understand and correct
these anomalies. Nevertheless, these results show
that ChaNGa achieves very good scalability on the
Cray XT3 when adequate machine configurations
are used for the various datasets.

5 Towards Greater Scalability

The results from the previous section demon-
strate that scaling simulations beyond a few thou-
sand processors remains a challenge in some cases,



even with the optimizations described in Section 3.
In this section, we describe techniques that can fur-
ther improve execution efficiency, especially on large
system configurations. The first technique consists
of specialized load balancers that take into account
certain characteristics of particle codes. The sec-
ond, multistepping, reduces operation count.

5.1 Specialized Load Balancing

The results reported in the previous section used
a very simple load balancing strategy. The only dis-
tribution of work among processors was that of par-
ticles among TreePieces, which were then assigned
by Charm++ uniformly to each processor. Since
density can vary vastly over the simulated space,
different particles may require significantly differ-
ent amounts of work to compute the force they are
subject to. Thus, even SFC-based domain decom-
positions, which assign an equal number of particles
to each TreePiece, fail to obtain good load balance.
Figure 5 shows an example of this imbalance. The
shaded regions in the figure represent processor ac-
tivity during different iterations of execution. In the
first iteration there is significant imbalance of load
across processors.

Among the Charm++ suite of load balancers,
GreedyLB is one that attempts to minimize load
imbalance by continually assigning the heaviest re-
maining object to the least loaded processor. How-
ever, in our initial tests (not reported here), the
results obtained with GreedyLB were not encour-
aging: in many cases, the execution time increased
after load balancing, especially in large processor
configurations. The reason for this lies in the CPU
overhead to handle increased communication. In
ChaNGa, due to the processor-level optimizations,
TreePieces residing on the same processor do not
need to exchange messages. Given that TreePieces
containing particles close together in the simulation
space need to exchange more data, a higher vol-
ume of communication will be generated if these
TreePieces are all placed in different processors than
in the case where some of them are coresident.

To verify our reasoning, we executed ChaNGa
with the dwarf dataset on 1,024 Blue Gene/L pro-
cessors. Table 2 summarizes the observed number
of messages, amount of data transfered during one
iteration, as well as the iteration time, including
values both before and after load balancing. In ad-
dition to GreedyLB, we used other load balancing
schemes that we describe later in this section. As

Figure 5. Overview of three iterations of
dwarf simulation on 1,024 Blue Gene/L pro-
cessors with OrbLB. Horizontal axis is
time and each horizontal line represents
activity on a processor.

shown, the communication volume after GreedyLB
grows nearly three times.

The connection between this increase in com-
munication volume and the reduced performance is
shown graphically in the processor utilization view
of Figure 6. Here, orange and blue regions (the two
largest) constitute the global and local force com-
putations, respectively. The different components
of communication overhead are shown in red and
green. Notice that the second iteration, which be-
gins after GreedyLB load balancing, suffers a higher
CPU overhead for communication, as evidenced by
the larger red and green regions. The numbers in
Table 2 confirm this fact. Due to this overhead,
processors are not fully utilized by the application,
as communication is handled by the runtime sys-
tem. On the other hand, the steeply sloped profile
of iteration two reflects better load balance.

These results demonstrate that an effective load
balancer must take communication into account.
However, basing decisions on communication be-
tween objects is very difficult, since the particle
cache, acting as a proxy between TreePieces, ob-
scures this information. Furthermore, because com-
munication depends on the location of the other
TreePieces in the system, the communication data
can only be estimated. To complicate matters fur-
ther, creating a precise communication graph is ex-
pensive, and requires a large memory system.

Instead of estimating the point-to-point commu-
nication, we use SFC domain decomposition and
the OrbLB load balancer in tandem to arrive at a
heuristic for object placement. The SFC decom-
position procedure assigns particles to TreePieces



Table 2. Communication volume and execution time with dwarf on 1,024 Blue Gene/L proces-
sors using different load balancing strategies

Perf. parameter (per iteration) Original GreedyLB OrbLB OrbRefineLB

Messages exchanged (x 1,000) 5,480 16,233 5,590 8,370
Bytes transfered (MB) 7,125 23,891 7,227 9,873
Execution time (s) 5.6 6.1 5.3 5.0

Figure 6. Two iterations of dwarf simulation on 1,024 Blue Gene/L processors, separated by a
GreedyLB load balancing phase. Horizontal axis is time and vertical axis is combined proces-
sor utilization. Colors represent different activities.

preserving an interesting property: it ensures that
contiguous regions of the simulation space are rep-
resented by TreePieces having adjacent Charm++
identifiers (objId’s). Further, OrbLB begins by
sorting objects according to their objId’s. It then
proceeds recursively by assigning roughly balanced
‘halves’ of this sorted set to groups of processors,
one ‘half’ to each. Therefore, when applied to
TreePieces generated by such a decomposition, Or-
bLB would implicitly base its placement decision
on the simulation space coordinates of a TreePiece.
In other words, OrbLB makes use of the admit-
tedly rough correspondence between a TreePiece’s
objId and its location in the simulation space. In
this manner, TreePieces likely to exchange large
amounts of information are assigned to contiguously
ranked processors. Our placement heuristic is a
coarse one, since we use the position of TreePieces
along a unidimensional SFC line, whereas the simu-
lation space is three dimensional. The results from
OrbLB in Table 2 show that the communication
volume remains about the same, while the overall
performance is improved. Figure 5 shows processor
load in more detail, with execution iterations sepa-
rated by OrbLB phases.

From Figure 5, it is clear that while global load
distribution is improved by OrbLB, processors still

have very different loads. This observation mo-
tivates the use of a hybrid approach, which we
name OrbRefineLB: the high level distribution of
TreePieces among processors is performed by Or-
bLB, but neighboring processors (i.e. processors
with contiguous ranks) exchange objects according
to a greedy algorithm. This strategy yielded the
results in the last column of Table 2. As can be
seen, a small increase in communication volume re-
sults from the ‘smoothing,’ but the gains in load
balance offset this slight disadvantage. With this
hybrid load balancer, we re-ran three simulations,
dwarf, dwarf-50M and lambb, on Blue Gene/L. Fig-
ure 7 shows the corresponding reductions in execu-
tion times due to OrbRefineLB.

Although we obtain a reduction in execution time
by using OrbRefineLB, the total communication
volume increases. For this reason, we continue to
look into more advanced load balancing techniques
that will allow us to balance work across the sys-
tem without disrupting the application’s communi-
cation pattern. In particular, we are looking at load
balancers that are aware of the spatial layout of ob-
jects in all three dimensions. In another direction,
we are looking to reduce the cost per message ex-
changed by using the communication optimization
framework of Charm++.
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Figure 7. Scalability of ChaNGa before and
after load balancing on Blue Gene/L.

5.2 Multistepping

Gravitational instabilities in the context of cos-
mology lead to a large dynamic range of timescales:
from many gigayears on the largest scales to less
than a million years in molecular clouds. In
self gravitating systems this dynamical time scales
roughly as the square root of the reciprocal of the
local density. Hence density contrasts of a million or
more from the centers of galaxies to the mean den-
sity of the Universe correspond to a factor of 1000
in dynamical times. Indeed, large density contrasts
are the primary reason to use tree-based gravity al-
gorithms in cosmology.

Typically, only a small fraction of the particles
in a cosmological simulation are in the densest en-

Table 3. Ratio between singlestepped and
multistepped gravity calculation times for
dwarf simulations on NCSA’s Tungsten

Processors 1 4 8 16 32 64
Ratio 3.29 2.65 2.11 1.79 1.39 1.55

vironments; therefore, the majority of the particles
do not need their forces evaluated on the smallest
timestep. Large efficiencies can be gained by a mul-
tistep integration algorithm which on the smallest
timestep updates only those particles in dense re-
gions, and only infrequently calculates the forces on
all the particles. This type of algorithm poses an
obvious challenge for load balancing. Much of the
time, work from a small spatial region of the simu-
lation must be distributed across all the processors,
but on the occasional large timestep, the work in-
volves all the particles.

To study the influence of multistepping on
ChaNGa’s performance, we ran simulations of the
dwarf dataset on NCSA’s Tungsten. We started our
tests with two sequential executions, selecting ap-
propriate values of the simulated timestep such that
one execution would be in singlestepping mode and
the other in multistepping mode. Both executions
simulated the same amount of cosmological time.
For our chosen parameters, four timesteps in the
singlestepping case corresponded to one big step in
the multistepping case. Next, we repeated the pair
of executions, varying the number of Tungsten pro-
cessors used in each case. Table 3 compares the
execution times obtained under those two modes.

It becomes clear from Table 3 that multistepping
can greatly accelerate a simulation. On a single
processor, we observe more than a three-fold sav-
ings in execution time when multistepping is used.
The serial execution performance gain comes exclu-
sively from the algorithm used for multistepping.
This result confirms the importance of multistep-
ping capability for the computational performance
of a cosmological simulator.

Table 3 indicates that multistepping provides
performance gains across the entire range of proces-
sors tested. Although the gain with 64 processors
is still quite significant, the table reveals a trend of
slight decrease in the gain as the number of proces-
sors increases. We investigated this issue and found
that load imbalance was the cause of that effect, as
we explain in the next subsection.



(a) Duration: 613.3 s

(b) Duration: 428.7 s (c) Duration: 228 s

Figure 8. Comparison of phase durations
among (a) singlestepped, (b) multistepped
and (c) load balanced multistepped sim-
ulations of the dwarf dataset on 32 Blue
Gene/L processors.

5.3 Balancing Load in Multistepped
Executions

To better understand the load imbalance prob-
lem in multistepped executions, we studied ChaNGa
executions on 32 processors of Blue Gene/L. Fig-
ures 8(a) and 8(b) correspond to parts of the execu-
tion of the singlestepping and multistepping cases,
respectively. In both figures, the horizontal axis rep-
resents time, the vertical axis corresponds to pro-
cessors (32 in both cases). Shaded horizontal lines
represent processor activity during the simulation.

In Figure 8(a), where singlestepping was used,
there are four steps displayed. Figure 8(b) repre-
sents a big step, corresponding to the same cosmo-
logical duration as the four steps of singlestepping.
The computation for this big step is divided into
four substeps, and only select particles are active in
each. In turn, only the corresponding TreePieces are
active, leaving most with no work to do at all! As
Figures 8(a) and 8(b) show, multistepping affords
significant performance gains.

However, this scheme is not without its draw-
backs. The first three substeps of Figure 8(b)
demonstrate severe load imbalance – only a few pro-

cessors are busy, while the others remain mostly
idle. Such imbalance is stressed by the characteris-
tics of the dwarf dataset, which has a highly non-
uniform particle distribution. As the number of pro-
cessors grows, this imbalance increases, making par-
allelism less effective than in singlestepping.

From our discussion, it is clear that measure-
ment based load balancing in multistepped execu-
tions is significantly more challenging than for the
singlestepped case. Since different numbers of par-
ticles are active in each substep, load information
from an immediately preceding substep is unusable
in the current one. We must, therefore, correlate
load across instances of corresponding substeps.

Each substep can be viewed as a different phase
of execution. In Figure 8(b), the first and third
substeps correspond to phase 0, since they involve
only the fastest particles. Similarly, substep two
constitutes phase 1 and the last represents phase 2.
While the principle of persistence does not apply to
neighboring substeps, it does hold across different
instances of any phase. That said, the set of parti-
cles involved in the force computation of a certain
phase is not a static entity. It changes during the
course of the simulation, with variations in particle
velocities. Clearly, a load balancer must take the
multiphase nature of the simulation into account
when considering a placement strategy.

5.3.1 Balancing Techniques

We now outline a few techniques we devised in meet-
ing the challenges posed by the problem of severe
load imbalance during multiphase simulations.
Different strategies for different phases. Dif-
ferent phases of a computation present the load bal-
ancer with vastly differing load profiles. In Fig-
ure 8(b), the utilization profile for the first substep
shows that only a few TreePieces were active dur-
ing this phase. On the other hand, the last substep
involves all the TreePieces. In such an event, signif-
icant gains in performance can be achieved by using
fast and simple schemes for lower ranked phases, i.e.
those involving fewer TreePieces. The time taken by
the load balancer to compute placement decisions
for such phases is critical, since they occur very of-
ten. Using a fast, greedy load balancing algorithm
for the smaller phases, and the OrbRefineLB strat-
egy (Section 5.1) when all particles are active, we
obtain promising reductions in execution time, as
a comparison between Figures 8(b) and 8(c) illus-
trates. There are marked improvements both be-



Table 4. (a) Comparison between execution times for one big step of single- and multistepped
runs on 512 and 1024 processors of Blue Gene/L, (b) Reduction in execution time with increase
in number of TreePieces on 512 Blue Gene/L processors.

Number of Processors 512 1,024

Singlestepped time(s) 4,652.16 2,387.52
Multistepped time(s) 2,023.98 1,286.37

Number of TreePieces 4,096 8,192 16,384

Time (s) 2,524.97 2,198.91 2,023.98

(a) (b)

tween corresponding phases and in the overall time.
Multiphase instrumentation. We measure and
store object loads during different phases separately.
This is required since certain TreePieces are active
over multiple phases. Indeed, TreePieces with the
quickest particles are active over all computation
phases and might induce a different load in each.
Model-based load estimation. We noted earlier
that the principle of persistence holds over multiple
instances of the same phase. However, the quick-
est particles, in moving from one region of space
to another, might switch across distinct TreePieces
between iterations. This might lead to large dis-
crepancies between estimated and actual loads of
TreePieces, especially for lower-ranked phases. For
this reason, we allow for a model-based estimation
of phase load. In our multiphase load balancer, we
estimate the load of a TreePiece during phase φ as
the corresponding value from the immediately pre-
ceding instance of φ. If that information is unavail-
able, we use a fraction f of the load from the first
step. This first step involves all particles and exe-
cutes before any other. The fraction f is the ratio
of active particles to total particles in a TreePiece.

5.3.2 Preliminary Results

We now describe some preliminary results obtained
by using the principles outlined previously. We sim-
ulated the 80M particle dataset, lambb, using multi-
timestepping and our multiphase load balancer. For
brevity, we only present results from 512 and 1024
processor runs on Blue Gene/L.

Table 4(a) illustrates the complementary effects
of multistepping and load balancing. It compares
execution times of a load balanced multistepped
simulation and the same simulation when run in
singlestepped mode, without load balancing. There
are savings of nearly 50% on 1024 processors.

Table 4(b) brings a related issue to light, that
of the degree and grain of parallelism. We no-

ticed a significant reduction in computation time
as the number of TreePieces was increased for a
given number of processors. With more TreePieces
in the system, the load balancer is able to main-
tain a more even balance of work in the most fre-
quently repeated phases. This prevents such phases
from becoming the execution bottleneck. Indeed,
the overhead of finer grained work distribution is
offset by the prospect of greater balance in system
load. For this reason multistepped executions stand
to benefit even more from overdecomposition than
their singlestepped counterparts.

These results motivate more detailed analyses of
multiphase simulations in the context of load bal-
ance. In particular, we continue to develop more so-
phisticated load balancing strategies. For instance,
the ORB assignment of TreePieces to processors in
the OrbRefineLB strategy could be three dimen-
sional. Further, the exchange of objects therein
could be sensitive to machine topology. Finally,
multiphase computations could benefit from better
heuristics and more precise load estimation models.

6 Conclusions and Future Work

In this paper, we described our highly scalable
parallel gravity code ChaNGa, based on the well-
known Barnes-Hut algorithm. Scaling this compu-
tation to tens of thousands of processors requires
a sophisticated load balancing strategy. To enable
such automatic load balancing schemes, we devel-
oped ChaNGa using the Charm++ parallel pro-
gramming system and its adaptive Run-Time Sys-
tem. Since Charm++ requires overdecomposition
to empower its load balancing strategies, ChaNGa
decomposes the particles into a large number of
TreePieces. Multiple TreePieces assigned to a single
processor share a software cache that stores nodes of
the tree requested from remote processors as well as
local nodes. Requests for remote data are effectively
pipelined to mask any communication latencies.



Although using Charm++ enables load balanc-
ing, an appropriate load balancer must be chosen
or written for each application. A pure load-based
balancer was not adequate for this problem. We
showed that a combination of a coordinate-based
balancer, along with a measurement based refine-
ment strategy, led to good load balance without in-
creasing communication overhead significantly. We
demonstrated unprecedented speedups in cosmolog-
ical simulations based on real datasets, scaling well
to over 8,000 processors.

A new multiple time-stepping scheme was de-
scribed that reduces operation count, but is even
more challenging to load balance. We demonstrated
a multi-phase load balancing scheme that meets this
challenge, on several hundred processors.

Our code is currently being used for gravity com-
putations by astrophysicists. We intend to add hy-
drodynamics to it in the future. Alternative decom-
position schemes to further reduce communication,
and runtime optimizations to mitigate the impact
of communication costs are also planned.
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