
Overcoming Scaling Challenges in Biomolecular Simulations
across Multiple Platforms

Abhinav Bhatelé∗, Sameer Kumar‡, Chao Mei∗, James C. Phillips§, Gengbin Zheng∗, Laxmikant V. Kalé∗

∗Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail: {bhatele2, chaomei2, gzheng, kale}@uiuc.edu

‡ IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

E-mail: sameerk@us.ibm.com

§Beckman Institute
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail: jim@ks.uiuc.edu

Abstract

NAMD† is a portable parallel application for biomolec-
ular simulations. NAMD pioneered the use of hybrid spa-
tial and force decomposition, a technique now used by most
scalable programs for biomolecular simulations, includ-
ing Blue Matter and Desmond developed by IBM and D.
E. Shaw respectively. NAMD has been developed using
Charm++ and benefits from its adaptive communication-
computation overlap and dynamic load balancing. This
paper focuses on new scalability challenges in biomolec-
ular simulations: using much larger machines and simulat-
ing molecular systems with millions of atoms. We describe
new techniques developed to overcome these challenges.
Since our approach involves automatic adaptive runtime
optimizations, one interesting issue involves dealing with
harmful interaction between multiple adaptive strategies.
NAMD runs on a wide variety of platforms, ranging from
commodity clusters to supercomputers. It also scales to
large machines: we present results for up to 65,536 proces-
sors on IBM’s Blue Gene/L and 8,192 processors on Cray
XT3/XT4. In addition, we present performance results on
NCSA’s Abe, SDSC’s DataStar and TACC’s LoneStar clus-
ter, to demonstrate efficient portability. We also compare
NAMD with Desmond and Blue Matter.

†NAMD stands for NAnoscale Molecular Dynamics

1 Introduction

Molecular Dynamics (MD) simulations of biomolecular
systems constitute an important technique for understand-
ing biological systems, exploring the relationship between
structure and function of biomolecules and rational drug de-
sign. Yet such simulations are highly challenging to paral-
lelize because of the relatively small number of atoms in-
volved and extremely large time-scales. Due to the high fre-
quencies of bond vibrations, a time-step is typically about
1 femtosecond (fs). Biologically important phenomena re-
quire a time scale of at least hundreds of nanoseconds (ns),
or even a few microseconds (us), which means a million to
billion time-steps. In contrast to billion-atom simulations
needed in material science, biological systems require sim-
ulations involving only thousands of atoms to a few million
atoms, as illustrated in Fig. 1. The main challenge here is to
take a computation that takes only a few seconds per time-
step and run it on thousands of processors effectively.

Biomolecular systems are fixed and limited in size (in
terms of the number of atoms being simulated). Even so,
the size of the desired simulations has been increasing in
the past few years. Although molecular systems with tens
of thousands of atoms still remain the mainstay, a few simu-
lations using multi-million atom systems are being pursued.
These constitute a new set of challenges for biomolecu-
lar simulations. The other challenge is the emergence of
ever-larger machines. Several machines with over hundred

Figure 1. The size of biomolecular system that can be studied through all-atom simulation has in-
creased exponentially in size, from BPTI (bovine pancreatic trypsin inhibitor), to the estrogen recep-
tor and F1-ATPase to ribosome. Atom counts include solvent, not shown for better visualization.

thousand processors and petaFLOPS peak performance are
planned for the near future. NSF recently announced plans
to deploy a machine with sustained petaFLOPS perfor-
mance by 2011 and provided a biomolecular simulation
benchmark with 100 million atoms as one of the applica-
tions that must run well on such a machine. When com-
bined with lower per-core memory (in part due to high cost
of memory) on machines such as Blue Gene/L, this poses
the challenge of fitting within available memory.

This paper focuses on our efforts to meet these chal-
lenges and the techniques we have recently developed to
this end. One of these involves dealing with an interesting
interplay between two adaptive techniques – load balancing
and adaptive construction of spanning trees – that may be
instructive to researchers who use adaptive runtime strate-
gies. Another involves reducing memory footprint without
negative performance impact.

Another theme is that different machines, different num-
ber of processors, and different molecular systems may re-
quire a different choice or variation of algorithm. A paral-
lel design that is flexible and allows the runtime system to
choose between such alternatives, and a runtime system ca-
pable of making intelligent choices adaptively is required to
attain high performance over such a wide terrain of param-
eter space. Application scientists (biophysicists) would like
to run their simulations on any of the available machines at
the national centers, and would like to be able to checkpoint
simulations on one machine and then continue on another
machine. Scientists at different laboratories/organizations
typically have access to different types of machines. An

MD program, such as NAMD, that performs well across a
range of architectures is therefore desirable.

These techniques and resultant performance data are new
since our IPDPS’06 paper [11]. An upcoming paper in IBM
Journal Res. Dev. [12] will focus on optimizations specific
to Blue Gene/L, whereas an upcoming book chapter [14]
summarizes performance data with a focus on science. The
techniques in this paper are not described and analyzed in
these publications.

Finally, two new programs have emerged since our last
publication: Blue Matter [6, 7] from IBM that runs on the
Blue Gene/L machine, and Desmond [2] from D. E. Shaw
that runs on their Opteron-Infiniband cluster. We include
performance comparisons with these, for the first time. (In
SC’06, both programs compared their performance with
NAMD. This paper includes an updated response from the
NAMD developers). Both Desmond and Blue Matter are
highly scalable programs and use variations of the idea de-
veloped in NAMD (in our 1998 paper [9]) of computing
forces between atoms belonging to two processors (poten-
tially) on a third processor. NAMD assigns these force
computations based on a measurement-based dynamic load
balancing strategy (see Sec. 2.2), whereas the other ap-
proaches use fixed methods to assign them. We show that
NAMD’s performance is comparable with these programs
even with the specialized processors each runs on. More-
over NAMD runs on a much wider range of machines and
molecular systems not demonstrated by these programs.

We showcase our performance on different machines
including Cray XT3/XT4 (up to 8,192 processors), Blue

Gene/L (up to 65,536 processors), TACC’s Lonestar (up
to 1,024 processors) and SDSC’s DataStar cluster (up to
1,024 processors) on molecular systems ranging in size
from 5,570 atoms to 2.8 million atoms. We also present an
analysis that identifies new bottlenecks that must be over-
come to enhance the performance with a large number of
processors.

We first describe the basic parallelization methodology
adopted by NAMD. We then describe a series of optimiza-
tions, alternative algorithms, and performance trade-offs
that were developed to enhance the scalability of NAMD.
For many of these techniques, we provide analysis that may
be of use to MD developers as well as other parallel appli-
cation developers. Finally, we showcase the performance
of NAMD for different architectures and compare it with
other MD programs.

2 Background: Parallel Structure of NAMD

Classical molecular dynamics requires computation of
two distinct categories of forces: (1) Forces due to bonds (2)
Non-bonded forces. The non-bonded forces include electro-
static and Van der Waal’s forces. A naı̈ve evaluation of these
forces takes O(N2) time. However, by using a cut-off radius
rc and separating the calculation of short-range and long-
range forces, one can reduce the asymptotic operation count
to O(N log N). Forces between atoms within rc are calcu-
lated explicitly (this is an O(N) component, although with a
large proportionality constant). For long-range calculation,
the Particle Mesh Ewald (PME) algorithm is used, which
transfers the electric charge of each atom to electric poten-
tial on a grid and uses a 3D FFT to calculate the influence
of all atoms on each atom. PME is the generally accepted
method for long-range electrostatics in biomolecular simu-
lations, for good reasons. The O(N log N) complexity ap-
plies only to the FFT, which in practice is a vanishing frac-
tion of the runtime even for very large systems. The bulk of
the calculation is O(N). In addition, PME produces smooth
forces that conserve energy well at lower accuracy. Achiev-
ing energy conservation with multipole methods (some of
which are O(N) [8]) requires much higher accuracy than
dictated by the physics of the simulation. Thus, PME has a
significant performance advantage over multipole methods
for biomolecular simulations.

Prior to [9], parallel biomolecular simulation programs
used either atom decomposition, spatial decomposition, or
force decomposition for parallelization (for a good survey,
see Plimpton et. al [13]). NAMD was one of the first pro-
grams to use a hybrid of spatial and force decomposition
that combines the advantages of both. More recently, meth-
ods used in Blue Matter [6, 7], the neutral territory and mid-
point territory methods of Desmond [2], and those proposed
by Snir [15] use variations of such a hybrid strategy.

Figure 2. Placement of cells and computes on
a 2D mesh of processors

NAMD decomposes atoms into boxes called “cells” (see
Fig. 2). The size of each cell dmin along every dimension, is
related to rc. In the simplest case (called “1-Away” decom-
position), dmin= rc + margin, where the margin is a small
constant. This ensures that atoms that are within cutoff ra-
dius of each other, stay within the neighboring boxes over a
few (e.g. 20) time steps. The molecular system being sim-
ulated is in a simulation box of dimensions Bx × By × Bz

typically with periodic boundary conditions. The size di

of a cell along each dimension i is such that for some in-
teger m, Bi/m is just greater than dmin. For example, if
rc = 12 Å and margin = 4 Å, dmin = 16 Å, the cells
should be of size 16 × 16 × 16 Å. However, this is not the
right choice if the simulation box is 108.86×108.86×77.76
Å, as is the case in ApoLipoprotein-A1 (ApoA1) simulation
(see Table 5). Since the simulation box along X dimension
is 108.86 Å, one must pick di = 108.86/6 = 18.15 Å as the
size along X axis for the cell. (And the size of a cell will be
18.15×18.15×19.44 Å). This is the spatial decomposition
component of the hybrid strategy.

For every pair of interacting cells, (in our 1-Away de-
composition, that corresponds to every pair of touching
cells), we create an object (called a “compute object”)
whose responsibility is to compute the pairwise forces be-
tween the two cells. This is the force decomposition com-
ponent. Since each cell has 26 neighboring cells, one gets
14 × C compute objects (26/2 + 1 = 14), where C is the
number of cells. The fact that these compute objects are as-
signed to processors by a dynamic load balancer (Sec. 2.2)
gives NAMD the ability to run on a range of differing num-
ber of processors without changing the decomposition.

When the ratio of atoms to processors is smaller, we de-
compose the cells further. In general, along each axis X ,
Y or Z the size of a cell can be dmin/k where k is typi-
cally 1 or 2 (and rarely 3). Since the cells that are “2-Away”
from each other must interact if k is 2 along a dimension,

Figure 3. Time profile for ApoA1 on 1k processors of Blue Gene/L (with PME) in Projections

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 210 215 220 225 230 235 240 245 250 255

N
an

os
ec

on
ds

 p
er

 d
ay

No. of processors

ApoA1 on Blue Gene/L

ApoA1

Figure 4. NAMD performs well on any given
number of processors (Plot shows ApoA1
running on Blue Gene/L, with PME on a range
of processor counts varying from 207 to 255)

this decomposition is called 2-Away-X, 2-Away-XY or 2-
Away-XYZ etc. depending on which dimension uses k = 2.
The choice of which decomposition to use for a particu-
lar run is decided by the program depending on the atoms-
to-processor ratio and other machine-dependent heuristics.
NAMD also gives the user flexibility to choose the decom-
position for certain scenarios where the automatic choices
do not give the best results.

Neither the number of cells nor the number of compute
objects need to be equal to the exact number of processors.
Typically, the number of cells is smaller than the number of
processors, by an order of magnitude, which still generates
adequate parallelism (because of the separation of “com-
pute” objects) to allow the load balancer to optimize com-

munication, and distribute work evenly. As a result, NAMD
is able to exploit any number of available processors. Fig. 4
shows the performance of the simulation of ApoA1 on vary-
ing numbers of Blue Gene/L (BG/L) processors in the range
207-255. In contrast, schemes that decompose particles into
P boxes, where P is the total number of processors may
limit the number of processors they can use for a particular
simulation: they may require P to be a power of two or be
a product of three numbers with a reasonable aspect ratio.

We now describe a few features of NAMD and analyze
how they are helpful in scaling performance to a large num-
ber of processors.

2.1 Adaptive Overlap of Communication
and Computation

NAMD uses a message-driven runtime system to ensure
that multiple modules can be composed concurrently with-
out losing efficiency. In particular, idle times in one module
can be exploited by useful computations in another. Fur-
thermore, NAMD uses asynchronous reductions, whenever
possible (such as in the calculation of energies). As a result,
the program is able to continue without sharp reductions
in utilization around barriers. For example, Fig. 3 shows a
time profile of a simulation of ApoA1 on 1024 processors of
BG/L (This figure was obtained by using the performance
analysis tool Projections [10] available in the CHARM++
framework). A time profile shows vertical bars for each
(consecutive) time interval of 100 us, activities executed by
the program added across all the processors. The red (dark)
colored “peaks” at the bottom correspond to the force in-
tegration step, while the dominant blue (light) colored re-
gions represent non-bonded computations. The pink and
purple (dark at the top) shade appearing in a thin layer ev-
ery 4 steps represent the PME computation. One can notice

Processors 512 1024 1024 2048 4096 8192 8192 16384
Decomposition X X XY XY XY XY XYZ XYZ
No. of Messages 4797 7577 13370 22458 29591 35580 79285 104469
Avg Msgs. per processor 10 8 13 11 8 5 10 7
Max Msgs. per processor 20 31 28 45 54 68 59 88
Message Size (bytes) 9850 9850 4761 4761 4761 4761 2303 2303
Comm. Volume (MB) 47.3 74.6 63.7 107 141 169 182 241
Atoms per cell 296 296 136 136 136 136 60 60
Time step (ms) 17.77 11.6 9.73 5.84 3.85 3.2 2.73 2.14

Table 1. Communication Statistics for ApoA1 running on IBM’s Blue Gene/L (without PME)

that: (a) time steps “bleed” into each other, overlapping in
time. This is due to lack of a barrier, and especially useful
when running on platforms where the OS noise may intro-
duce significant jitter. While some processor may be slowed
down on each step, the overall impact on execution is rel-
atively small. (b) PME computations which have multiple
phases of large latencies, are completely overlapped with
non-bonded computations.

2.2 Dynamic Load Balancing

A challenging aspect of parallelizing biomolecular sim-
ulations is that a heterogeneous collection of computa-
tional work, consisting of bonded and direct electrostatic
force evaluation, PME and integration of equations of mo-
tion, has to be distributed to a large number of processors.
This is facilitated by measurement-based load balancing in
NAMD. Initially the cells and computes are assigned to
processors using a simple algorithm. After a user-specified
number of time-steps, the runtime system turns on auto-
instrumentation to measure the amount of work in each
compute object. It then uses a greedy algorithm to assign
computes to processors.

The load balancer assigns computes to processors so as
to minimize the number of messages exchanged, in addi-
tion to minimizing load imbalance. As a result, NAMD is
typically able to use less than 20 messages per processor
(10 during multicast of coordinates to computes and 10 to
return forces). Table 1 shows the number of messages (in
the non-PME portion of the computation) as a function of
number of processors for the ApoA1 simulation on BG/L.
The number of cells and the decomposition used is also
shown. The load balancer and the use of spanning trees
for multicast (Sec. 3.1) ensures that the variation in actual
number of messages sent/received by different processors
is small, and they are all close to the average number. The
size of each message is typically larger than that used by
Desmond and Blue Matter. Many modern parallel machines
use RDMA capabilities, which emphasize per message cost,
and hide the per byte cost (by off-loading communication to

co-processors). Thus, per-message overhead is a more im-
portant consideration and hence we believe fewer-but-larger
messages to be a better tradeoff.

NAMD can be optimized to specific topologies on ar-
chitectures where the topology information is available to
the application. For example the BG/L machine has a torus
interconnect for application message passing. The dimen-
sions of the torus and the mapping of ranks to the torus is
available through a personality data structure. At applica-
tion startup, the CHARM++ runtime reads this data struc-
ture [1]. As the periodic molecular systems are 3D Tori,
we explored mapping the cells on the BG/L torus to im-
prove the locality of cell to cell communication. We used
an ORB scheme to map cells to the processors [12]. First
the cell grid is split into two equally loaded partitions. The
load of each cell is proportional to the number of atoms
in that cell and the communication load of the cell. The
processor partition is then split into two with the sizes of
two sub-partitions corresponding to the sizes of the two cell
sub-partitions. This is repeated recursively till every cell is
allocated to a processor.

The above scheme enables locality optimizations for
cell-to-cell communication. The CHARM++ dynamic load-
balancer places compute objects that calculate the interac-
tions between cells near the processors which have the cell
data. The load-balancer tries to allocate the compute on
the least loaded processor that is within a few hops of the
midpoint of the two cells. We have observed that locality
optimizations can significantly improve the performance of
NAMD on BG/L.

3 Scaling Challenges and Techniques

Since the last paper at IPDPS [11], we have faced several
scaling challenges. Emergence of massively parallel ma-
chines with tens of thousands of processors is one. Needs
of biophysicists to run larger and larger simulations with
millions of atoms is another. Hence it became imperative to
analyze the challenges and find techniques to scale million-
atom systems to tens of thousands of processors. This sec-

Processors w/o (ms/step) with (ms/step)
512 6.02 5.01
1024 3.48 2.96
2048 2.97 2.25

Table 2. Comparison of running NAMD with
and without spanning trees (ApoA1 on Cray
XT3, without PME)

tion discusses the techniques which were used to overcome
these challenges and improve scaling of NAMD over the
last few years.

3.1 Interaction of Adaptive Runtime
Techniques

Multicasts in NAMD were previously treated as indi-
vidual sends, paying the overhead of message copying and
allocation. This is reasonable on a small number of pro-
cessors, since almost every processor is an originator of a
multicast and not much is gained by using spanning trees
(STs) for the multicast. However, when running on a large
number of processors, this imposes a significant overhead
on the multicast root processors (which have home cells)
when it needs to send a large number of messages. Table 1
shows that though the average number of messages (10) per
processor is small, the maximum can be as high as 88. This
makes a few processors bottlenecks on the critical path. To
remove this bottleneck, a spanning tree implementation for
the multicast operation was used to distribute the send over-
head among the spanning tree node processors. At each
level of a ST, an intermediate node forwards the message
to all its children using an optimized send function to avoid
message copying.

However, solving one problem unearthed another. Us-
ing Projections, we found that the multicast message gets
delayed at the intermediate nodes when the nodes are busy
doing computation. To prevent this from happening, we ex-
ploited immediate messages supported in CHARM++. Im-
mediate messages in CHARM++, on a platform such as
BG/L, bypass the message-queue, and are processed im-
mediately when a message arrives (instead of waiting for
computation to finish). Using immediate messages for the
multicast spanning trees helps to improve the responsive-
ness of intermediate nodes in forwarding messages [12].

Recently, it was noticed that even immediate messages
did not improve the performance as expected. Again using
Projections, we noticed that processors with multiple inter-
mediate nodes were heavily overloaded. The reason is as
follows: STs can only be created after the load balancing
step. So, when the load balancer re-assigns compute ob-

jects to processors, it has no knowledge of the new STs. On
the other hand, the spanning tree strategy does not know
about the new load balancing decisions and hence it does
not have any information about the current load. Moreover
since the STs for different cells are created in a distributed
fashion, multiple intermediate nodes end up on the same
processor. This is a situation where two adaptive runtime
techniques are working in tandem and need to interact to
take effective decisions. Our solution is to preserve the way
STs are built across load balancing steps as much as pos-
sible. Such persistent STs helps the load balancer evaluate
the communication overhead. For the STs, the solution is to
create the STs in a centralized fashion to avoid placing too
many nodes on a single processor. With these optimizations
of the multicast operations in NAMD, parallel performance
was significantly improved as shown in Table 2.

A further step is to unite these two techniques into a sin-
gle phase. We should do a load balancing step and using its
decisions, we should create the STs. Then we should update
the loads of processors which have been assigned interme-
diate nodes. With these updated loads we can do a final load
balancing step and modify the created STs to take the new
decisions into account. In the future, we expect that support
from lower-level communication layers (such as that used
in Blue Matter) and/or hardware support for multiple con-
current multicasts will reduce the load (and therefore the
importance) of STs.

3.2 Compression of Molecular Structure
Data

The design of NAMD makes every effort to insulate
the biophysicist from the details of the parallel decompo-
sition. Hence, the molecular structure is read from a single
file on the head processor and the data is replicated across
the machine. This structure assumes that each processor
of a parallel machine has sufficient memory to perform the
simulation serially. But machines such as BG/L assume
that the problem is completely distributed in memory and
hence 512 MB or less per processor is provided. Simula-
tions now stretch into millions of atoms, and future simu-
lations have been proposed with 100 million atoms. The
molecular structure of large systems whose memory foot-
print grows at least linearly with the number of atoms lim-
ited the NAMD simulations that could be run on BG/L to
several hundred-thousand atoms. To overcome this limita-
tion, it became necessary to reduce the memory footprint
for NAMD simulations.

The molecular structure in NAMD describes the whole
system including all atoms’ physical attributes, bonded
structures etc. To reduce the memory footprint for this static
information we developed a compression method that re-
duces memory usage by orders of magnitude and slightly

Molecular System No. of atoms No. of signatures Memory Footprint (MB)
Bonded Info Non-bonded Info Original Current

IAPP 5570 102 117 0.290 0.022
DHFR (JAC) 23558 389 674 1.356 0.107
Lysozyme 39864 398 624 2.787 0.104
ApoA1 92224 423 729 7.035 0.125
F1-ATPase 327506 737 1436 20.460 0.215
STMV 1066628 461 713 66.739 0.120
Bar Domain 1256653 481 838 97.731 0.128
Ribosome 2820530 1026 2024 159.137 0.304

Table 3. Number of Signatures and Comparison of Memory Usage for Static Information

Item Before Opt. After Opt. Reduction Rate (%)
Execution time (ms/step) 16.53 16.20 2.04

L1 Data Cache Misses (millions) 189.07 112.51 68.05
L2 Cache Misses (millions) 1.69 1.43 18.18

TLB Misses (millions) 0.30 0.24 25.00

Table 4. Reduction in cache misses and TLB misses due to structure compression for ApoA1 running
(with PME) on 128 processors of CrayXT3 at PSC

improves performance due to reduced cache misses. The
method leverages the similar structure of common building
blocks (amino acids, nucleic acids, lipids, water etc.) from
which large biomolecular simulations are assembled.

A given atom is always associated with a set of tuples.
This set is defined as its signature from which its static
information is obtained. Each tuple contains the informa-
tion of a bonded structure this atom participates in. Origi-
nally, such information is encoded by using absolute atom
indices while the compression technique changes it to rela-
tive atom indices. Therefore, atoms playing identical roles
in the molecular structure have identical signatures and each
unique signature needs to be stored only once. For exam-
ple, the oxygen atom in one water molecule plays identical
roles with any other oxygen atom in other water molecules.
In other words, all those oxygen atoms have the same sig-
nature. Therefore, the memory footprint for those atoms’
static information now is reduced to the memory footprint
of a signature.

Extracting signatures of a molecule system is performed
on a separate large-memory workstation since it requires
loading the entire structure. The signature information is
stored in a new molecular structure file. This new file is
read by NAMD instead of the original molecular structure
file. Table 3 shows the number of signatures for bonded and
non-bonded static information respectively across a bunch
of atom systems, and the resulting memory reduction ra-
tio. The number of signatures increases only with the num-
ber of unique proteins in a simulation. Hence, ApoA1 and

STMV have similar numbers of signatures despite an order
of magnitude difference in atom count. Thus, the technique
is scalable to simulations of even 100-million atoms.

Using structure compression we can now run million-
atom systems on BG/L with 512MB of memory per node,
including the 1.25 million-atom STMV and the 2.8 million-
atom Ribosome, the largest production simulations yet at-
tempted. In addition, we have also observed slightly better
performance for all systems due to this compression. For
example, the memory optimized NAMD version is faster
by 2.1% percent than the original version for ApoA1 run-
ning on 128 processors of Cray XT3. Using the CrayPat‡

performance analysis tool, we found this better performance
resulted from a overall reduction in cache misses and TLB
misses per simulation time-step, as shown in Table 4. Such
an effect is expected since the memory footprint for static
information is significantly reduced which now fits into the
L2 cache and requires fewer memory pages.

3.3 2D Decomposition of Particle Mesh
Ewald

NAMD uses the Particle Mesh Ewald method [4] to
compute long range Coulomb interactions. PME is based on
real-to-complex 3D Fast Fourier Transforms, which require
all-to-all communication but do not otherwise dominate the
computation. NAMD has used a 1D decomposition for the

‡http://www.psc.edu/machines/cray/xt3/#craypat

Molecular System No. of atoms Cutoff (Å) Simulation Box Time step (fs)
IAPP 5570 12 46.70× 40.28× 29.18 2
DHFR (JAC) 23558 9 62.23× 62.23× 62.23 1
Lysozyme 39864 12 73.92× 73.92× 73.92 1.5
ApoA1 92224 12 108.86× 108.86× 77.76 1
F1-ATPase 327506 12 178.30× 131.54× 132.36 1
STMV 1066628 12 216.83× 216.83× 216.83 1
Bar Domain 1256653 12 195.40× 453.70× 144.00 1
Ribosome 2820530 12 264.02× 332.36× 309.04 1

Table 5. Benchmarks and their simulation parameters used for running NAMD in this paper

System No. of Cores Clock Memory Type of
Name Location Nodes per Node CPU Type Speed per Node Network
Blue Gene/L IBM 20,480 2 PPC440 700 MHz 512 MB Torus

LLNL 65,536 2 PPC440 700 MHz 512 MB Torus
Cray XT3/XT4 PSC 2,068 2 Opteron 2.6 GHz 2 GB Torus

ORNL 8,532 2/4 Opteron 2.6 GHz 2 GB Torus
DataStar SDSC 272 8 P655+ 1.5 GHz 32 GB Federation

6 32 P690+ 1.7 GHz 128 GB
LoneStar TACC 1,300 4 Xeon 2.66 GHz 8 GB Infiniband
Abe NCSA 1,200 8 Intel64 2.33 GHz 8 GB Infiniband

Table 6. Specifications of the parallel systems used for the runs

Processors 1D (ms/step) 2D (ms/step)
2048 7.04 5.84
4096 5.05 3.85
8192 5.01 2.73

Table 7. Comparison of 1D and 2D decompo-
sitions for FFT (ApoA1 on Blue Gene/L, with
PME)

FFT operations, which requires only a single transpose of
the FFT grid and it is therefore the preferred algorithm with
slower networks or small processor counts. Parallelism for
the FFT in the 1D decomposition is limited to the number
of planes in the grid, 108 processors for ApoA1. Since the
message-driven execution model of CHARM++ allows the
small amount of FFT work to be interleaved with the rest of
the force calculation, NAMD can scale to thousands of pro-
cessors even with the 1D decomposition. Still, we observed
that this 1D decomposition limited scalability for large sim-
ulations on BG/L and other architectures.

PME is calculated using 3D FFTs [5] in Blue Matter.
We implemented a 2D decomposition for PME in NAMD,
where the FFT calculation is decomposed into thick pen-
cils with 3 phases of computation and 2 phases of transpose
communication. The FFT operation is computed by 3 ar-

rays of objects in CHARM++ with a different array for each
dimension. PME has 2 additional computation and commu-
nication phases that send grid data between the patches and
the PME CHARM++ objects. One of the advantages on the
2D decomposition is that the number of messages sent or re-
ceived by any given processor is greatly reduced compared
to the 1D decomposition for large simulations running on
large numbers of processors. Table 7 shows the advantages
of using 2D decomposition over 1D decomposition.

Similar to 2-Away decomposition choices, NAMD can
automatically choose between 1D and 2D decomposition
depending on the benchmark, number of processors and
other heuristics. This choice can also be overridden by the
user. Hence, NAMD’s design provides a runtime system
which is capable of taking intelligent adaptive runtime deci-
sions to choose the best algorithm/parameters for a particu-
lar benchmark-machine-number of processors combination.

4 Performance Results

A highly scalable and portable application, NAMD has
been tested on a variety of platforms for several bench-
marks. The platforms vary from small-memory and mod-
erate frequency processors like Blue Gene/L to faster pro-
cessors like Cray XT3. The results in this paper range from
benchmarks as small as IAPP with 5570 atoms to Ribosome

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

1 4 16 64 256 1K 4K 16K 64K

Ti
m

es
te

ps
 p

er
 s

ec
on

d

No. of processors

NAMD on Blue Gene/L

IAPP (5K)
DHFR (23K)

Lysozyme (39K)
ApoA1 (92K)

Atpase (327K)
STMV (1M)

Barbig (1.2M)
Ribosome (2.8M)

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

1 4 16 64 256 1K 4K

Ti
m

es
te

ps
 p

er
 s

ec
on

d

No. of processors

NAMD on XT3/XT4

IAPP (5K)
DHFR (23K)

Lysozyme (39K)
ApoA1 (92K)

Atpase (327K)
STMV (1M)

Barbig (1.2M)
Ribosome (2.8M)

Figure 5. Performance of NAMD on IBM BG/L
and Cray XT3/XT4

which has 2.8 million atoms. With the recent techniques
for parallelization and memory optimization, NAMD has
shown excellent performance in different regimes. Table 5
lists the various molecular systems and their simulation de-
tails which were used for the performance numbers in this
paper. A description of the various architectures on which
the results were obtained for this paper is shown in Table 6.

Fig. 5 shows the performance of the eight representa-
tive benchmarks from Table 5 on BG/L and XT3/XT4. On
BG/L, we present performance numbers for ATPase up to
32K and STMV up to 64K processors. We just had enough
time to run these two benchmarks on the larger 64K LLNL
BG/L. Using different adaptive runtime strategies and al-
gorithms discussed in the previous sections, we show good
scaling for all benchmarks on this machine. For Cray, we
present numbers for ApoA1 and ATPase on 8,192 proces-
sors on the Jaguar XT4 at ORNL. With the faster processors
we achieve a lowest time-step of 1.19 ms/step for DHFR
which corresponds to 72 ns of simulation per day. It is an
achievement that for IAPP running on XT3, we can simulate

 1

 4

 16

 64

 256

 1024

 4096

 16384

1 2 4 8 16 32 64 128 256 512 1024

Ti
m

e
(m

s/
st

ep
)

No. of cores

NAMD on various platforms

Blue Gene/L
BigRed (IU)

DataStar (SDSC)
BigBen (PSC)

LoneStar (TACC)
Abe (NCSA)

Figure 6. Performance of NAMD on multiple
parallel machines (Benchmark: ApoA1)

140 ns/day with a 2 fs time-step. Table 8 shows the floating
point operations per second (FLOPS) for some of the bench-
marks calculated for BG/L and Cray XT3. They were cal-
culated by using the Perfsuite performance suite on a Xeon
cluster (Tungsten) at NCSA. For STMV, we do nearly 8.5
TeraFLOPS on 64K processors of BG/L. We did not have
a chance to improve this number because we only have a
limited access to the LLNL BG/L.

Fig. 6 shows the performance of the ApoA1 benchmark
on a variety of machines including: SDSC’s DataStar and
TACC’s LoneStar and NCSA’s Abe. We ran our applica-
tion on these machines only recently and the numbers are
without any specific optimizations for these machines. This
exemplifies that even without any tuning for specific archi-
tectures, NAMD performs quite well on newer platforms.
We do not show performance beyond 1K processors be-
cause without further performance tuning for the respective
machines, NAMD does not scale well (beyond 1K). There
is still scope to optimize NAMD on these machines which
will improve the performance even more.

5 Comparison with other MD codes

In this section, we compare NAMD’s performance with
two other MD codes, Blue Matter [6, 7] and Desmond [2].
Fig. 7 shows the performance for ApoA1 using NAMD on
some representative machines, Blue Matter on BG/L and
Desmond on their cluster. It is noteworthy that NAMD run-
ning on 4K processors of XT3 achieves better performance
than Blue Matter on 32K processors of BG/L and similar
to Desmond running on 2K processors of their Opteron ma-
chine.

Blue Matter is a program developed and optimized for
the BG/L machine, and has achieved excellent scalability.

Benchmark ApoA1 F1-ATPase STMV Bar D. Ribosome
#Procs on BG/L 16,384 32,768 65,536 16,384 16,384
IBM BG/L (TFLOPS) 1.54 3.03 8.44 3.22 2.07
#Procs on Cray XT3 8,192 8,192 4,096 4,096 4,096
Cray XT3/XT4 (TFLOPS) 2.05 4.41 4.87 4.77 2.78

Table 8. Floating Point Performance of a few benchmarks on BG/L and XT3/XT4 in TeraFLOPS

Number of Nodes 512 1024 2048 4096 8192 16384
Blue Matter (2 pes / node) 38.42 18.95 9.97 5.39 3.14 2.09
NAMD CO mode (1 pe / node) 16.83 9.73 5.8 3.78 2.71 2.04
NAMD VN mode (2 pes / node) 9.82 6.26 4.06 3.06 2.29 2.11
NAMD CO mode (PME every step) 19.59 11.42 7.48 5.52 4.2 3.46
NAMD VN mode (PME every step) 11.99 9.99 5.62 5.3 3.7 -

Table 9. Comparison of benchmark times (in ms/step, ApoA1) for NAMD and Blue Matter

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

8 16 32 64 128 256 512 1K 2K 4K 8K 16K

Ti
m

e
(m

s/
st

ep
)

No. of cores

NAMD vs. Desmond and Blue Matter

NAMD on XT3
NAMD on TACC
NAMD on BG/L

Desmond
Blue Matter

Figure 7. Performance comparison of NAMD
with Desmond and Blue Matter for ApoA1

Table 9 compares its performance with NAMD. On BG/L,
each node has two processors and one has an option of us-
ing the second processor as a computational process (this is
called the “virtual node” (VN) mode) or just using it as a
co-processor. Blue Matter essentially uses the second pro-
cessor as a co-processor, but off-loads some computations
(PME) to it. NAMD can use both processors for compu-
tation, or just use one processor on each node. The co-
processor (CO) mode also has the advantage that the com-
munication hardware is not shared with the second proces-
sor. As the table shows, NAMD is about 1.95 times faster
than Blue Matter on 1,024 nodes even if we were to restrict
it to use only one processor per node. If it uses both proces-
sors (in VN mode), on the same hardware configuration of
1,024 nodes, it performs about 3.03 times faster than Blue
Matter. NAMD scales all the way up to 16K nodes both

in CO and VN mode. This has been achieved by improv-
ing the performance of NAMD by about 200% (since [11]
which was the basis for Blue Matter’s comparison in [7]) by
removing PME and communication bottlenecks. However,
it should be noted that NAMD performs a PME computa-
tion every 4 steps, whereas Blue Matter does it every step.
We believe that the numerical algorithm used in NAMD en-
sures that the multiple time-stepping scheme does not lose
accuracy. For a fair comparison, benchmark times for per-
forming the PME computation every step are also included.
Though Blue Matter has better scaling compared to NAMD
for PME every step runs, the performance of NAMD is still
comparable to that of Blue Matter.

We compare NAMD with Desmond using a machine
similar to that used in their SC’06 paper, although the TACC
machine has slightly faster Xeon 5100 processors (2.6 GHz)
compared to the Sun Fire V20z processors (2.4 GHz) on
their cluster. Both machines use Infiniband as the intercon-
nect. We used two cores per node for running NAMD on
LoneStar to compare fairly with the two cores per node runs
of Desmond. Our performance for ApoA1 and DHFR is
better than Desmond all the way up to 2048 cores. This in
spite of the (surmised) fact that Desmond used single preci-
sion arithmetic, and thereby exploited SSE instructions on
the processor. Since Desmond is proprietary software, so
we could not run it on the same machine as NAMD. Al-
though the comparison is not apples-to-apples (since pro-
cessor speeds and cache sizes for the two machines are dif-
ferent), it still demonstrates that NAMD’s performance ca-
pabilities are comparable with Desmond’s. Moreover, we
could not reproduce the anomalous performance of NAMD
cited in [2] on any similar machine.

No of Cores 8 16 32 64 128 256 512 1024 2048
Desmond ApoA1 256.8 126.8 64.3 33.5 18.2 9.4 5.2 3.0 2.0
NAMD ApoA1 199.25 104.96 50.69 26.49 13.39 7.12 4.21 2.53 1.94
Desmond DHFR 41.4 21.0 11.5 6.3 3.7 2.0 1.4
NAMD DHFR 27.25 14.99 8.09 4.31 2.37 1.5 1.12 1.03

Table 10. Comparison of benchmark times (ms/step) for NAMD (running on 2.6 GHz Opterons) and
Desmond (running on 2.4 GHz Opterons)

6 Future Work

Figure 8. Percentage increase of different
parts of NAMD with increase in number of
processors (ApoA1 on BG/L and XT3, with-
out PME)

The needs of biomolecular modeling community require
us to pursue strong scaling i.e. we must strive to scale the
same molecular system to an ever larger number of proces-
sors. We have demonstrated very good scalability with the
techniques described in this paper, but challenges remain,
especially if we have to exploit the petascale machines for
the same problems. To analyze if this is feasible and what
avenues are open for further optimizations, we carried out a

performance study of scaling that we summarize below.
We used the the summary data provided by Projections

which gives detailed information about the time elapsed in
the execution of each function in the program and also the
time for which each processor is idle. This data, collected
on the Cray XT3 machine at PSC and the BG/L machine at
IBM for 1 to 4,096 processors, is shown in Fig. 8.

To simplify the figures, functions involved in similar or
related activities are grouped together. The first observation
is that the idle time rises rapidly beyond 256 processors.
This is mostly due to load imbalance, based on further anal-
ysis. One of the next challenges is then to develop load
balancers that attain better performance while not spend-
ing much time or memory in the load balancing strategy it-
self. Also, there is a jump in the non-bonded work from
256 to 512 which can be attributed to the change in the
decomposition strategy from 2-Away-X to 2-Away-XY at
that point which doubles the number of cells. Since the es-
sential computational work involved in non-bonded force
evaluation does not increase, we believe that this increase
can be reduced by controlling the overhead in scheduling
a larger number of objects. The other important slowdown
is because of the increase in communication overhead as
we move across the processors. Looking back at Table 1
we see that from 512 to 16K processors, the computation
time per processor should ideally decrease 32-fold but does
not. This can be attributed in part to the communication
volume (per processor) decreasing only by a factor of about
10. Although some of this is inevitable with finer-grained
parallelization, there might be some room for improvement.

7 Summary

The need for strong scaling of fixed-size molecular sys-
tems to machines with ever-increasing number of proces-
sors has created new challenges for biomolecular simula-
tions. Further, some of the systems being studied now in-
clude several million atoms. We presented techniques we
developed or used, to overcome these challenges. These
included dealing with interaction among two of our adap-
tive strategies: generation of spanning trees and load bal-
ancing. We also presented new techniques for reducing

the memory footprint of NAMD to accommodate large
benchmarks, including NSF-specified 100M atom bench-
mark for the “Track-1” sustained petascale machine. We
then demonstrated portability, scalability over a number of
processors and scalability across molecular systems ranging
from small (5.5k atoms) to large (2.8M atoms), via perfor-
mance data on multiple parallel machines, going up to 64K
processors for the largest simulations. We also presented a
performance study that identifies new bottlenecks that must
be overcome to enhance the performance with a large num-
ber of processors, when the ratio of atoms to processors falls
below 50.

We believe that with these results NAMD has estab-
lished itself as a high performance program that can be
used at any of the national supercomputing centers. It is
a code which is routinely used and trusted by the biophysi-
cist. With the new techniques presented, it is ready for the
next generation of parallel machines that will be broadly de-
ployed in the coming years. Further optimizations for long
term multi-petascale future machines include a larger reduc-
tion in memory footprint to accommodate the NSF 100M
atom simulation, parallel I/O (especially to avoid memory
bottleneck) and improved load balancers.

Acknowledgments

This work was supported in part by a DOE Grant
B341494 funded by the Center for Simulation of Advanced
Rockets and a NIH Grant PHS 5 P41 RR05969-04 for
Molecular Dynamics. This research was supported in part
by NSF through TeraGrid resources [3] provided by NCSA
and PSC through grants ASC050039N and ASC050040N.
We thank Shawn T. Brown from PSC for helping us with
benchmark runs on BigBen. We also thank Fred Mintzer
and Glenn Martyna from IBM for access and assistance
in running on the Watson Blue Gene/L. We thank Wayne
Pfeiffer and Tom Spelce for benchmarking NAMD on the
SDSC DataStar and LLNL Blue Gene/L respectively. Fig-
ure 1 was prepared by Marcos Sotomayor as part of a pro-
posal to fund NAMD development.

References

[1] A. Bhatele. Application-specific topology-aware
mapping and load balancing for three-dimensional
torus topologies. Master’s thesis, Dept. of
Computer Science, University of Illinois, 2007.
http://charm.cs.uiuc.edu/papers/BhateleMSThesis07.shtml.

[2] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood,
B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes,
F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw.
Scalable algorithms for molecular dynamics simulations on
commodity clusters. In SC ’06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, New York, NY,
USA, 2006. ACM Press.

[3] C. Catlett and et. al. TeraGrid: Analysis of Organization,
System Architecture, and Middleware Enabling New Types
of Applications. In L. Grandinetti, editor, HPC and Grids in
Action, Amsterdam, 2007. IOS Press.

[4] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald.
An N·log(N) method for Ewald sums in large systems. JCP,
98:10089–10092, 1993.

[5] M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward,
and R. S. Germain. Scalable framework for 3D FFTs on
the Blue Gene/L supercomputer: Implementation and early
performance measurements. IBM Journal of Research and
Development, 49(2/3), 2005.

[6] B. Fitch, R. Germain, M. Mendell, J. Pitera, M. Pitman,
A. Rayshubskiy, Y. Sham, F. Suits, W. Swope, T. Ward,
Y. Zhestkov, and R. Zhou. Blue Matter, an application
framework for molecular simulation on Blue Gene. Journal
of Parallel and Distributed Computing, 63:759–773, 2003.

[7] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward,
M. Giampapa, and M. C. Pitman. Blue matter: Approach-
ing the limits of concurrency for classical molecular dynam-
ics. In SC ’06: Proceedings of the 2006 ACM/IEEE confer-
ence on Supercomputing, New York, NY, USA, 2006. ACM
Press.

[8] L. Greengard and V. I. Rokhlin. A fast algorithm for particle
simulations. Journal of Computational Physics, 73, 1987.

[9] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gur-
soy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan,
and K. Schulten. NAMD2: Greater scalability for paral-
lel molecular dynamics. Journal of Computational Physics,
1998.

[10] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar. Scaling Ap-
plications to Massively Parallel Machines Using Projections
Performance Analysis Tool. In Future Generation Computer
Systems Special Issue on: Large-Scale System Performance
Modeling and Analysis, volume 22, pages 347–358, Febru-
ary 2006.

[11] S. Kumar, C. Huang, G. Almasi, and L. V. Kalé. Achieving
strong scaling with NAMD on Blue Gene/L. In Proceedings
of IEEE International Parallel and Distributed Processing
Symposium 2006, April 2006.

[12] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J. C.
Phillips, H. Yu, and L. V. Kalé. Scalable Molecular Dynam-
ics with NAMD on Blue Gene/L. IBM Journal of Research
and Development: Applications of Massively Parallel Sys-
tems (to appear), 52(1/2), 2007.

[13] S. J. Plimpton and B. A. Hendrickson. A new parallel
method for molecular-dynamics simulation of macromolec-
ular systems. J Comp Chem, 17:326–337, 1996.

[14] K. Schulten, J. C. Phillips, L. V. Kale, and A. Bhatele.
Biomolecular modeling in the era of petascale computing.
In D. Bader, editor, Petascale Computing: Algorithms and
Applications, pages 165–181. Chapman & Hall / CRC Press,
2008.

[15] M. Snir. A note on n-body computations with cutoffs. The-
ory of Computing Systems, 37:295–318, 2004.

