
c© Copyright by Chao Huang, 2007

SUPPORTING MULTI-PARADIGM PARALLEL PROGRAMMING
ON AN ADAPTIVE RUN-TIME SYSTEM

BY

CHAO HUANG

B.Eng., Tsinghua University, 2001
M.S., University of Illinois at Urbana-Champaign, 2004

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

ii

Abstract

Recent developments in supercomputing have brought us massively parallel machines. With the

number of processors multiplying, the appetite for more powerful applications that can take ad-

vantage of these large scale platforms has never ceased growing. Modern parallel applications

typically have complex structure and dynamic behavior. These applications are composed of mul-

tiple components and have interleaving concurrent controlflows. The workload pattern of these

applications shifts during execution, causing load imbalance at run-time. Programming produc-

tivity, or the effectiveness and efficiency of programming high performance applications for these

parallel platforms, has become a challenging issue.

One of the most important observations during our pursuit ofhigh productivity with scalable

performance for complex and dynamic parallel applicationswas that adaptive resource manage-

ment can and should be automated. The PPL research group has developed an Adaptive Run-Time

System (ARTS) and a parallel programming language called Charm++ for automatic resource

management via migratable objects.

There are two obstacles in our pursuit of high productivity with the ARTS. The first is effective

expression of global view of control in complex parallel programs. Traditional paradigms such as

MPI and Global Address Space (GAS) paradigms, although popular, suffer from a drawback in

modularity. For applications with multiple modules, they do not allow the runtime control over

resource management of individual modules. Although Charm++ provides resources management

capabilities and logical separation of multiple modules, its object-based message-driven model

tends to obscure the global flow of control. We will explore new approaches to describing the flow

of control for complicated parallel applications. As a reference implementation, we introduce a

iii

languageCharismafor expressing the global view of control that can take advantage of the ARTS.

We carry out productivity and performance study of Charisma, with various examples and real-life

applications.

The second issue is to efficiently accommodate existing prevalent programming paradigms.

Different programming models suit different types of algorithms and applications. Also the pro-

grammer proficiency and preference may result in the varietyof choices of programming languages

and models. In particular, there are already many parallel libraries and applications written with

prevalent paradigms such as MPI. In this thesis, we explore research issues in providing adaptivity

support for prevalent paradigms. We will evaluate important existing parallel programming lan-

guages and develop virtualization techniques that bring the benefits of the ARTS to applications

written using them. As a concrete example, we evaluate our implementation ofAdaptive MPIin

the context of benchmarks and applications.

As applications grow in size, their development will be carried out by different teams with

different paradigms, to best accommodate the expertise of the programmers and the requirements

of the different application components. These paradigms include the new paradigm as repre-

sented by Charisma’s global description of control, as wellas existing ones such as MPI, GAS and

Charm++. Charm++’s adaptive run-time system is a good candidate for a common environment

for these paradigms to interoperate, and this thesis demonstrates the effectiveness of our research

work for interoperability across multiple paradigms. The ultimate goal is to unify these various

aspects and support multiparadigm parallel programming ona common run-time system for next-

generation parallel applications.

iv

v

vi

Acknowledgments

First and foremost, I thank my advisor Professor Laxmikant (Sanjay) Kalé, for his persistent in-

spiration and continuous guidance. During my six years at PPL, I have learned not only how to do

research and excel at school, but also how to cooperate and coordinate in such a big team as our

group. It definitely adds to my invaluable personal asset andwill benefit my career and life in the

future.

I thank my dissertation committee, Professor David Padua, Professor Marc Snir, Professor

Ponnuswamy (Saday) Sadayappan and Professor Maria Garzaran, for their helpful advice and

suggestions.

I thank my colleagues at PPL, whose names seem too long to listhere but I will give it a try.

I thank Gengbin Zheng, Eric Bohm, Terry Wilmarth, Celso Mendes, Chee Wai Lee, Sayantan

Chakravorty, Filippo Gioachin, Pritish Jetley, David Kunzman, Isaac Dooley, Abhinav Bhatele,

and Aaron Becker, as well as former PPLers, Sameer Kumar, Milind Bhandarkar, Orion Lawlor,

Greg Koenig, Jayant DeSouza, Yan Shi, and Mark Hills. It is mygreat honor to work (and play)

with such a brilliant group of people.

I thank all my friends at Urbana-Champaign. You made life in the corn field much more

interesting than it may sound. All the parties, games, dinners and excursions saved me from

becoming a nerd with Permanent Head Damage.

Most of all, I thank my family. My parents are most proud of me even though they have

absolutely no idea what or how I have been doing in my thesis research. I miss my late grandmother

Rui Qian, whose love and spirit drives me all along the way. I thank my newborn son David Rui

Huang for giving me a higher appreciation for life. Your arrival might have slowed down my thesis

vii

progress a little bit, but every time I think of you, I feel 110% motivated. Last but not least, I thank

my wonderful wife, Jia Guo, for always being there for me. Herunconditional love is simply

beyond the description of my language (no pun intended).

viii

Table of Contents

List of Tables xii

List of Figures xiv

Chapter 1 Introduction 1
1.1 Thesis Contributions 3
1.2 Thesis Organization 4

Chapter 2 Multi-Paradigm Parallel Programming Support 7
2.1 Charm++ and Its ARTS .. 7
2.2 Supporting Multi-Paradigm Programming on a Common ARTS. 10
2.3 Approach and Objectives 11

2.3.1 Thesis Objectives .. 12
2.3.2 Proposed Architecture .. . 13

Chapter 3 Toward a Productive Parallel Programming Language 15
3.1 A Motivating Example .. . 15
3.2 Design Goals .20

3.2.1 Higher Level of Abstraction 20
3.2.2 Separation of Parallelism Specification and Sequential Component Development 21
3.2.3 Interoperability with ARTS 22
3.2.4 Proposed Parallel Programming Paradigm 22

Chapter 4 Charisma: Orchestrating Migratable Parallel Obj ects 25
4.1 Language Design .. 25

4.1.1 Parallel Object Array .. . 26
4.1.2 Foreach Statement . 28
4.1.3 Producer-Consumer Model .. . 29
4.1.4 Data Dependence and Program Order 30
4.1.5 Program Determinacy .32
4.1.6 Describing Communication Patterns 33
4.1.7 Sequential Code . 37

4.2 Library Module Development with Charisma 38
4.2.1 Parallel Library Interfaces 39
4.2.2 Charisma Module Support .. 40

ix

4.2.3 Library Support for Charm++ .. . 44
4.3 Implementation Issues 45

4.3.1 Dependence Analysis .. 45
4.3.2 Control Transfer .46
4.3.3 User Code Integration .. 47
4.3.4 Generated Code Optimizations 47

4.4 Extensions, Restrictions and Limitations 48
4.4.1 Overlap Extension .48
4.4.2 Limitations of Charisma .. . 50

4.5 Related Work .52

Chapter 5 Evaluation of Charisma 55
5.1 Performance Evaluation 55

5.1.1 Stencil Calculation .. . 55
5.1.2 3D FFT . 57
5.1.3 Wator . 58

5.2 Classroom Productivity Study 60
5.2.1 Experiment Environment and Results 61
5.2.2 Productivity Analysis 63

5.3 Code Comparison: MD .. 65

Chapter 6 Charisma Application Case Study 69
6.1 LeanCP . 69

6.1.1 Implementation with Charisma 71
6.1.2 Results . 75

6.2 Parallel Topology Optimization 76
6.2.1 Development Process .. 77
6.2.2 Results . 79

Chapter 7 Adaptivity Support for Prevalent Languages 83
7.1 Design Goals .84
7.2 Processor Virtualization Via Migratable Threads 85

7.2.1 Charm++ Facilities .. 85
7.2.2 Implementing Virtual Processes 86
7.2.3 Handling Global Variables 88
7.2.4 Migrating Thread Data .. 89
7.2.5 Automatic Checkpointing .. . 90

7.3 Adaptive MPI .91
7.3.1 Support for Sequential Replay of an MPI Node 93

7.4 Adaptive Implementation of ARMCI 94
7.4.1 Performance Evaluation .. . 95

7.5 Interoperability Support 97
7.5.1 Inter-Module Interoperability 97
7.5.2 Inter-Paradigm Interoperability 98

7.6 Related Work .99

x

Chapter 8 Evaluation of Adaptive MPI 101
8.1 AMPI Performance Evaluation 101

8.1.1 Virtualization Overheads 102
8.1.2 Flexibility to Run .. 103
8.1.3 Adaptive Overlapping .. 104
8.1.4 Automatic Load Balancing .. . 107
8.1.5 Checkpoint Overhead .. 108

8.2 Application Case Study 110
8.2.1 Rocstar . 110
8.2.2 Fractography3D . 113

Chapter 9 Conclusions 117

Appendix A Charisma Manual 121
A.1 Charisma Syntax .. 121

A.1.1 Orchestration Code .. 121
A.1.2 Sequential Code . 128

A.2 Building and Running a Charisma Program 130
A.3 Support for Library Module 131
A.4 Writing Module Library 131
A.5 Using Module Library .. . 131
A.6 Using Load Balancing Module 132

A.6.1 Coding . 132
A.6.2 Compiling and Running .133

A.7 Handling Sparse Object Arrays 133

Appendix B LeanCP Orchestration Code 135
B.1 Header Section .. 135
B.2 Declaration Section 136
B.3 Orchestration Section 136

Appendix C AMPI Extension API 139
C.1 Running with Virtual Processes 139
C.2 Automatic Load Balancing Interface 139
C.3 Automatic Checkpointing Interface 140
C.4 Asynchronous Collective Communication Interface 140

References .. . 143

Author’s Biography 155

xi

xii

List of Tables

5.1 SLOC Comparison of Wator .. . 60
5.2 Number of Hours Spent on Development (Sample size 19) 61
5.3 Percentage of Development Time Reduction Using Charisma over Charm++ (Sample size 19) 62
5.4 Percentage of Development Time Reduction Using Charisma over Charm++ (Graduate vs. Undergraduate)
5.5 Percentage of Development Time Reduction Using Charisma over Charm++ (CS vs. Non-CS) 62

8.1 Timestep Time [ms] of 2403 3D 7-point Stencil Calculation with AMPI vs. Native MPI on Lemieux103
8.2 Timestep Time [ms] of 9603 3D 7-point Stencil Calculation with AMPI v.s. Native MPI on NCSA IA-64
8.3 Iteration Time [ms] of K3 3D 7-point Stencil Calculation on 8 PEs of NCSA IA-64 Cluster105
8.4 RocstarPerformance Comparison of 480-processor Dataset for TitanIV SRMU Rocket Motor on Apple

xiii

xiv

List of Figures

2.1 Parallel Programming Based On Migratable Objects 8
2.2 Message-Driven Execution With a Processor-Level Scheduler 9
2.3 Architecture Supporting Multi-Paradigm Parallel Programming on the ARTS . . . 13

3.1 Structure of a Molecular Dynamics Simulation Application: NAMD 17

4.1 Flowchart of Charisma 27
4.2 Charisma Orchestration Code Example: Parallel Object Arrays 27
4.3 Charisma Orchestration Code Example:foreach Statement 28
4.4 Charisma Orchestration Code Example: Publish Statement 29
4.5 Charisma Orchestration Code Example: Parameter Variables 30
4.6 Charisma Orchestration Code Example: Program Order 31
4.7 Charisma Orchestration Code Example: MD Example 32
4.8 Charisma Orchestration Code Example: Program Order with Loops 33
4.9 Charisma Orchestration Code Example: Point-to-Point Communication 34
4.10 Charisma Orchestration Code Example: Reduction 35
4.11 Charisma Orchestration Code Example: Multicast 35
4.12 Charisma Orchestration Code Example: Scatter 36
4.13 Charisma Orchestration Code Example: Gather 36
4.14 Charisma Orchestration Code Example: Permutation Operation 37
4.15 Charisma Sequential Code Example: Outport and Producing Values 38
4.16 Charisma Sequential Code Example: Reduction 38
4.17 Interaction Patterns for Parallel Library Modules 40
4.18 Library for Charisma: 3D FFT Example 41
4.19 Library for Charisma: Using 3D FFT Library 42
4.20 Library for Charisma: Using Multiple Instances of 3D FFT Library 43
4.21 Library for Charm++:start . 44
4.22 Library for Charm++:done . 45
4.23 Charisma Orchestration Code Example: Overlap Statement on Different Objects . . 49
4.24 Charisma Orchestration Code Example: Overlap Statement on Same Object 50

5.1 Performance of Stencil Calculation 56
5.2 Charisma Overhead Breakdownm 57
5.3 Transpose-based 3D FFT Algorithm 58
5.4 Performance of 3D FFT .. . 58
5.5 Orchestration Code for 3D FFT 58

xv

5.6 Screenshot of Realtime Visualization of Wator 59
5.7 Spread Plot of Development Time with Charisma vs. Charm++ 63
5.8 MD with Charisma: Clear Expression of Global View of Control 66
5.9 MD with Charm++: Overall Control Flow Buried in Objects’Code 66
5.10 MD with MPI: Additional Code Required for Performance 67

6.1 Visualization of Human Carbonic Anhydrase. The cloud inthe wire frame represents the electron density
6.2 Structure of LeanCP .. . 72
6.3 Point-to-Point Operation in LeanCP 74
6.4 Transpose and Reduction Operations in LeanCP 75
6.5 Multicast and Transpose Operations in LeanCP 75
6.6 Performance of Charisma Version of LeanCP on Turing Cluster 76
6.7 Topology Optimization Process 78
6.8 Visualization of Optimized Topology for 3D Heat Transfer Problem 80
6.9 Performance of 1,000,000 Element Topology Optimization Application on Turing Cluster 81

7.1 Implementation of Virtual Processors 87
7.2 Migrating a Thread Stack Allocated with Isomalloc 90
7.3 Structure of Rocket Simulation Code with Typical MPI Implementation 92
7.4 Structure of Rocket Simulation Code with AMPI’s Adaptivity Support 92
7.5 Contiguous Copy Performance of Adaptive and Native Implementations 96
7.6 Strided Copy Performance of Adaptive and Native Implementations 96
7.7 Example of Creating Charm++ Objects in an AMPI Program 99

8.1 Point-to-point Performance on NCSA IA-64 Cluster 102
8.2 Point-to-point Communication Time 103
8.3 Performance of Ping-pong vs Multi-ping Benchmark on Turing (Apple G5) Cluster 105
8.4 7-point Stencil Timeline with 1, 2 and 4 VPs Per Processor. 106
8.5 Load Balancing on NAS BT-MZ .. . 108
8.6 Checkpoint Overhead of NAS Benchmark on Turing Cluster 109
8.7 Titan IV Propellant Slumping Visualization 111
8.8 Fractography3D: Crack Propagation Visualization 113
8.9 CPU Utilization Projections Graph of Fractography3D Over Time With and Without Load Balancing113
8.10 CPU Utilization Graphs of Fractography3D Across Processor With and Without Load Balancing114

xvi

Chapter 1

Introduction

Recent developments in supercomputing have brought us massively parallel machines. Even with

the number of processors multiplying, the appetite for morepowerful applications that can take

advantage of these large scale platforms has never ceased growing. Programming productivity, or

the effectiveness and efficiency of programming high performance applications for these parallel

platforms, has become a challenging issue.

Modern parallel applications typically have complex structure and dynamic behavior. These

applications are composed of multiple components and may have concurrent control flows. The

workload pattern of these applications shifts during execution, causing load imbalance at run-time.

A good example is the rocket simulation code developed at theCenter for Simulation of

Advanced Rockets (CSAR). The focus of the code is the accurate physical simulation of solid-

propellant rockets, such as the Space Shuttle’s solid rocket boosters [1, 2]. One version of the

main CSAR simulation code consists of four major components: a fluid dynamics simulation, for

the hot gas flowing through and out of the rocket; a surface burning model for the solid propellant;

a non-matching but fully-coupled fluid/solid interface; and finally a finite-element solid mechanics

simulation for the solid propellant and rocket casing. The simulation exhibits a dynamic nature

and the MPI model is not always able to handle it well. For instance, as the solid propellant burns

away, each processor’s portion of the problem domain changes, which will change the CPU and

communication time required by that processor. Moreover, the simulator’s main loop consists of

one call to each of the simulation components in turn, in a one-at-a-time lockstep fashion. This

1

means, for example, the fluid simulation must finish its timestep before the solids can begin its

own with the current implementation with MPI model. Clearly, the application developers need

paradigms and tools that better accommodate the dynamic nature of their algorithms.

On the other hand, next-generation supercomputing platforms keep growing in size and com-

plexity. For example, Blue Gene/L [3] by IBM has 64K dual processor nodes, scoring over 280

teraflops sustained performance. With the large number of processors and physical cabling limita-

tions, the main communication interconnect is organized into a 3D torus. This means a relatively

smaller cross-section bandwidth and more hops across the machine, which requires extra resource

management attention in the programs. The forces driving these advances will continue to grow.

DARPA High Productivity Computing Systems Program [4, 5] has set high goals for building next

generation supercomputing systems. Its program mission puts equal stress on performance and

productivity.

• Performance: Improve the computational efficiency and performance of critical na-

tional security applications by 10X to 40X over today’s scalable vector and commodity

high performance solutions for systems comprised of ten’s to thousands of computing

nodes.

• Productivity: Reduce the cost of developing, operating, and maintaining HPCS appli-

cation solutions.

Several major vendors have been designing more aggressive architectures for supercomput-

ers to be built within the next 5-10 years. Many of them take advantage of system-on-chip and

multi-core technology. In terms of programmability, multi-core exposes much of the underlying

hardware to the programmer, allowing the development of very high performance, finely tuned

software. However, this comes at a price of increased difficulty of efficient programming, posing

greater productivity challenges to parallel programming.

2

1.1 Thesis Contributions

This thesis explores new research directions in supportingmulti-paradigm parallel programming

on an Adaptive Run-Time System (ARTS). An ARTS can enhance productivity by automating

dynamic resource management in a parallel program [6]. We derive our research objectives from

challenges and practical issues encountered in our research on achieving high productivity and

performance for a wide range of parallel applications. Firstly, we investigate a new paradigm

of programming global control flow via object-level orchestration. For this purpose we develop

a reference language called Charisma, and study the productivity benefit of various techniques.

Secondly, because prevalent paradigms capture a significant number of existing programs, we

investigate the techniques of supporting these paradigms on our adaptive run-time system. To

verify the advantages of adaptivity support for these paradigms with a common run-time system,

we created adaptive implementations of MPI and ARMCI standards. The implementations exhibit

performance benefits over benchmarks and applications. Theinteroperability across the underlying

run-time offers productivity benefits for developing large-scale multi-paradigm applications. In

short, our research work has achieved the desired effects and aims at inspiring further research in

the area of parallel productivity.

The thesis makes several contributions to the support of multi-paradigm programming with

both improved productivity and optimized performance, primarily in the following aspects.

• New paradigm that allows more efficient collaboration in parallel programming: From

our collaborations with scientists and engineers to develop parallel programs, we observed

some productivity issues and accordingly proposed a new paradigm and programming pat-

tern with separation of parallelism specification, to achieve more efficient collaboration in

parallel programming.

• A high level parallel language, Charisma:Charisma offers higher-level abstraction in de-

scribing global view of control in parallel program. It alsoseparates sequential components

development from parallel flow organization. The language is targeted for novice paral-

3

lel programmers with scientific and engineering background, and its productivity advantage

over Charm++ is demonstrated using a small classroom study.Furthermore, Charisma fa-

cilitates library development and reuse for both Charisma and Charm++ programs on the

ARTS.

• Adaptive implementations of MPI and ARMCI: Adaptivity support for existing prevalent

paradigms not only makes the performance benefits of Charm++’s run-time available to a

wider range of existing applications, but also enables future large scale parallel applications

to be built across multiple paradigms on top of the same run-time system.

• Interoperability: Programs built with both Charisma and our implementations of MPI and

ARMCI are capable of interoperating on the common adaptive run-time system, as other

Charm++ programs do. Our system facilitates cross-paradigm development, such as reusing

a Charisma library in a Charm++ program, or using a Charm++ module in an AMPI-based

application.

1.2 Thesis Organization

Chapter 2 overviews supporting multiparadigm parallel programming on a common run-time sys-

tem. We describe Charm++ and its ARTS with their novel features and performance benefits. Then

we explain the motivation behind this thesis’s topic: supporting multi-paradigm parallel program-

ming on the ARTS.

Chapter 3 introduces our research exploration in an effort to design a high productivity lan-

guage for parallel programming. We show a motivating example for our search for a high-level

language that allows global view of control expression, andexplain our design goals for the new

language, through analysis of the typical process of parallel program development.

In Chapter 4, we introduce our new high level language calledCharisma. Charisma is designed

to allow the programmer to describe the global flow of controland simultaneously specify logical

4

separation between modules for purposes of resource management in an object-based parallel pro-

gram. We explain various design and implementation issues of Charisma, as well as the challenges

of defining the library interface with Charisma.

Chapter 5 contains an evaluation of Charisma, in terms of both performance and productiv-

ity. Along with comparing scaling performance of benchmarks with Charisma vs. Charm++, we

present the results and analysis of a classroom study of Charisma’s productivity. This Chapter ends

with a concrete example of molecular dynamics coded in different languages, to further illustrate

the productivity advantage of Charisma.

In Chapter 6, we showcase two examples of Charisma being usedin complex applications: the

quantum chemistry simulationLeanCP, and topology optimizationtopt.

Chapter 7, we examine the existing parallel programming paradigms and explain research chal-

lenges we face in supporting adaptivity for them. As examples, we present our implementation of

two important models: MPI for message passing and ARMCI for global address space. Detailed

performance analysis and application showcases of Adaptive MPI are presented in Chapter 8.

Finally, Chapter 9 concludes the thesis and proposes futurework.

5

6

Chapter 2

Multi-Paradigm Parallel Programming
Support

This thesis is focused on means for achieving high productivity in parallel programming. Our

approach is to support productive multi-paradigm programming on top of an Adaptive Run-Time

System (ARTS). Before launching into a discussion of the benefits of having a common run-time

system and our proposed architecture, we first give a brief introduction to the Charm++ parallel

programming language and its ARTS.

2.1 Charm++ and Its ARTS

At the Parallel Programming Laboratory (PPL), our approachto parallel programming strives to

achieve an optimal division of labor between the run-time system and the programmer. In partic-

ular, it is based on the idea of migratable objects. The programmer decomposes the application

into a large number of parallel computations executed on parallel objects, while the run-time sys-

tem assigns those objects to processors (Figure 2.1). This approach gives the run-time system the

flexibility to migrate objects among processors to effect load balance and communication opti-

mizations.

Charm++ [6, 7] is an object-based parallel programming language that embodies this concept.

A Charm++ program consists of parallel entities, either objects calledcharesor light-weight user-

level threads. Many of these objects can be organized into anindexed collection, called achare

7

User View

System Implementation

Figure 2.1: Parallel Programming Based On Migratable Objects

array. A chare array can be 1-D or multi-dimensional, dense or sparse. The index on the object

array can be as flexible as user-defined bit patterns. For instance, an object array indexed via a

bit-vector can be organized to represent the structure of a tree. The underlying run-time system

typically maps multiple parallel objects onto one physicalprocessor and moves the migratable

objects across processors as needed.

Execution on an object is triggered when another object sends a message targeting the recipient

object’s entry point or a specially registered function forremote invocation. Note that the remote

invocation is asynchronous: it returns immediately after sending out the message, without blocking

or waiting for the response. Since each physical processor may house many migratable objects, the

ARTS has a scheduler to decide which object will execute next. This scheduler is message-driven;

only objects with a pending message can be chosen to execute.

Other important features of the ARTS include scalable message forwarding for migratable

objects and the ability to monitor the CPU usage and communication pattern of the system. Every

object has a “home” processor, and when the object migrates,the home processor will keep track

of its whereabouts and forward any message to it. If the communication is persistent, the home

processor may also inform the sender of the current locationof the destination object in order

to save the forwarding communication. This distributed forwarding mechanism is scalable and

efficient [8], and turns out to be very useful in supporting existing programming models.

The capability of observing CPU and network usage patterns enables several optimizations by

8

Figure 2.2: Message-Driven Execution With a Processor-Level Scheduler

the ARTS. One of the most important optimizations is automatic load balancing. The workload

and communication patterns captured by the run-time are fedinto a load balancing strategy chosen

by the user, which predicts a more efficient remapping schemeof the objects, and the objects are

migrated accordingly. A collection of such strategies was developed by Gengbin Zheng and other

group members at PPL through the study of load imbalance in modern applications on supercom-

puting architectures. A second optimization is of communication. The interconnect usage data

is helpful in deciding on the most suitable communication strategy for the current communica-

tion pattern, and the run-time is capable of switching the optimization strategy when a change in

communication pattern is detected.

In addition to adaptive overlap and automatic load balancing, the ARTS offers system-level

support for a collection of features. The migratability of parallel objects naturally allows the objects

to migrate to and from hard drives, which enables checkpointing/restart of the program [9]. The

ARTS also supports fault tolerance mechanisms based on message logging [10] as well as in-

memory checkpointing [11].

A large number of applications have been developed using theCharm++ framework, such

as NAMD [12, ?, 13], a production-level molecular dynamics simulation framework which has

demonstrated unprecedented speedups on thousands of processors, and LeanCP [14, 15], a Quantum-

Chemistry simulation application. Other examples includerocket simulation [16], computational

9

cosmology simulations [17], crack propagation simulation[18], space-time meshing with discon-

tinuous Galerkin solvers, dendritic growth in solidification processes, and parallel level-set meth-

ods [19].

2.2 Supporting Multi-Paradigm Programming on a Common

ARTS

Parallel applications vary in their structures and flows, communication patterns, data organization

and access schemes, and so on. Accordingly, different programming paradigms capture the vary-

ing nature of the applications. Consequently, next-generation parallel applications composed of

multiple components demand support for multiple paradigmsfor enhancing programming produc-

tivity. We propose extending the current ARTS for supporting multi-paradigm programming on a

common adaptive run-time system for several productivity benefits. Some of the most important

benefits are as follows.

• Automated Resource Management

Developing a high-performance parallel program involves efficiently allocating and manag-

ing resources for the program, including processors, memories and network. Achieving ef-

ficient resource management is challenging especially for irregularly structured and dynam-

ically varying applications, and consequently such resource management usually demands

a significant programming effort. To answer this challenge,Charm++’s ARTS is designed

to automate resource management in a parallel environment and significantly reduce the

programmer’s burden.

• Concurrent Composibility

Concurrent composibility is the ability to automatically interleave the execution of multiple

modules in an application such that idle time in one can be overlapped by useful compu-

tation in another [20]. Without this ability, the programmer would probably have to break

10

abstraction boundaries for the sake of performance. Havingthe shared ARTS among multi-

ple paradigms automates concurrent composibility withoutlosing efficiency or productivity,

and also supports co-existence of multiple paradigms in a single application.

• Common Functions at Run-Time Level

A common run-time system can provide common services that are needed across multiple

paradigms, such as load balancing, checkpoint/restart support, and communication optimiza-

tions. The common run-time system also makes interoperation among different paradigms

natural and easy. This capability allows library support across paradigms, further improving

programming productivity.

2.3 Approach and Objectives

In this thesis, we explore various directions and techniques encompassing the research topic of

supporting interoperable multi-paradigm programming. Through our reference implementations,

we demonstrate that it is indeed possible to provide supportfor multi-paradigm programming, and

such support does offer productivity benefits to developingcomplicated and dynamic applications.

Our approach is not to create a single panacea language that handles all paradigms; it is simply

not a practical solution to the problem due to the wide variance in the nature of parallel applications.

Any general purpose “complete” parallel programming language necessarily becomes complex.

Instead, we design severalincompletebut simple languages/implementations to capture various

characteristics of the applications. We offer the programmer the most suitable tools for different

paradigms to cover the whole spectrum of large-scale parallel applications of the future, and these

incomplete languages can be combined together, thanks to interoperability on the common ARTS.

11

2.3.1 Thesis Objectives

We observe that many prevalent languages, including MPI andmany of the Global Address Space

(GAS) languages, cannot separate work-and-data units of different modules due to their processor-

oriented model and single execution thread that artificially glues modules together. As an example,

in a version of the CSAR codes, the MPI implementation required that the fluids meshes and the

solids meshes be glued together on each processor, even though these two different meshes are

decomposed separately by each module and thus have no logical (or geometrical) connection. It

would improve productivity to have a new paradigm that allows expression of object-level paral-

lelism at the global level for better modularity. Another way to motivate this new language nota-

tion is as an enhancement to Charm++ to allow a clear expression of the global view of control in

the object-based programming model. Charm++’s object-based model is already able to separate

work-and-data units of each module with its own set of migratable objects, leading to better modu-

larity and various performance benefits. In addition, the programming model tends to obscure the

global view of control. Because the transfer of control is implemented by asynchronous method

invocation among parallel objects, the overall flow of control is fragmented and buried deep in the

objects’ class code. The first objective of this thesis isto support the paradigm of describing

global view of control in a parallel application.

Any research on improving productivity in parallel programming must deal with the fact that

multiple parallel programming methodologies have evolvedover the years. MPI provides an inter-

face for message passing in a processor oriented environment. It has become the most prevalent

standard for message passing programming and has been widely used. However, new paradigms of

parallel programming have also emerged that compete with and complement MPI. Notable among

these are models that support global address space (GAS) of some form, including Global Array

(GA) [21], Unified Parallel C (UPC) [22], Co-Array Fortran (CAF) [23], and Multiphase Shared

Arrays (MSA) [24]. These different programming models suitdifferent classes of algorithms and

applications. The programmer’s proficiency and preferencecan also result in a variety of choice

12

Figure 2.3: Architecture Supporting Multi-Paradigm Parallel Programming on the ARTS

in programming languages and models. Additionally, there are already many parallel libraries and

applications written with important existing paradigms. To empower the wider range of parallel

models, the second objective of this thesis isto support adaptivity for these prevalent paradigms

on top of a common ARTS to increase interoperability.

2.3.2 Proposed Architecture

Based on the above objectives, we propose the architecture of adaptivity support for multi-paradigm

parallel programming on the ARTS, as illustrated in Figure 2.3. In this architecture, the ARTS

serves as the foundation of the programming environment. Itprovides fundamental functionalities

such as abstract communication layer and automated parallel resource management. Immediately

on top of the ARTS is the object-based Charm++ language. Charm++, in addition, offers a series

of services such as migratable user-level thread support.

Above Charm++ are a number of components which are studied inthis thesis. As the first

component of the research presented in this thesis, we design Charisma, a high-level language for

clear expression of global view of control for parallel programming. Charisma takes advantage of

various features of Charm++ and its ARTS to achieve high productivity and performance. It helps

13

bridge the productivity gap of the message-driven model provided by Charm++.

In the second part, we seek to provide adaptivity support forprevalent paradigms, including

MPI, ARMCI, and other languages and environments, on top of Charm++’s ARTS. Our implemen-

tations will adapt ordinary code developed with these existing paradigms into “adaptive” programs,

so that the ARTS can perform automatic resource management and various other optimizations.

Our target is to support a wider variety of applications by adapting them on the ARTS with this

approach.

On the whole, we expect to have full interoperability acrossall these components on top of

the common ARTS. Consequently, large scale parallel applications can be built with multiple pro-

gramming paradigms, and at the same time are able to take advantage of the features and tools of

the run-time system.

14

Chapter 3

Toward a Productive Parallel Programming
Language

Although Charm++ has demonstrated its utility in runtime optimizations such as load balancing,

and it is more modular than MPI (Refer to [25]), it can be challenging to clearly express the flow

of control due to its local view of control, especially for complex applications that involve multiple

sets of object arrays. This is demonstrated by the motivating example in next section. Also,

in Charm++, methods clearly distinguish the places where data is to bereceived, but the places

where data is to besent(invocations) can be buried deeply inside functions of the object code.

This asymmetry often makes it hard to see the parallel structure of an application, which is useful

for understanding performance issues.

In this Chapter, we first motivate our new language for productive parallel programming through

a concrete example and the comparison of several existing parallel programming tools. Then we

discuss the design goals for the new language, before we describe our language in next Chapter.

3.1 A Motivating Example

Many scientific and engineering applications have complex structures. Some may involve a large

number of components with complicated interactions between them. Others may contain multiple

modules, each with complex structures. Unfortunately, forthese applications, conventional par-

allel programming models do not adequately maintain a balance between high performance and

15

programming productivity. OpenMP [26] programs have a shared view of data and control. The

programmer writes code for all the components of the program, with independent loop iterations

executed in parallel. This model may be easy to program for a subset of applications, but it is often

incapable of taking advantage of large scale parallelism among modules and concurrent control

flows, and consequently suffers poor scalability. MPI [27],which represents the message passing

model, provides a processor-centric programming model. A parallel job is divided into subtasks

according to the number of available processors, and data needed for each subtask is localized

onto that processor. Then the user expresses an algorithm inthe context of local MPI processes,

inserting message passing calls to exchange data with otherprocesses. Basically, it provides a local

view of data and a local view of control, although for SPMD programs, the global flow of control

is often similar to the local flow of control. Performance wise, MPI programs can achieve high

scalability, especially if the program has “regular” patterns, typically with systolic computation-

communication super-steps. Some algorithms are simply toodifficult to be written in such a fash-

ion. In terms of productivity, this model is fairly easy to program when the application does not

involve many modules. Otherwise the programmer will have tofirst partition the processors be-

tween modules, losing the potential performance opportunity of overlapping communication and

computation across modules, as well as doing resource management across modules. Some pro-

grammers may choose to assign multiple roles to the same group of processors for the sake of

performance. With MPI, this results in complexity in writing the message passing procedures, and

compromises productivity.

For a concrete example, consider a 3D molecular dynamics simulation application NAMD [28]

illustrated in Figure 3.1 (taken from [28]). This simplifiedversion of NAMD contains three types

of components. The spatially decomposed cubes, shown by squares with rounded corners, are

calledpatches. A patch, which holds the coordinate data for all the atoms inthe cube of space

corresponding to that patch, is responsible for distributing the coordinates, retrieving forces, and

integrating the equations of motion. The forces used by the patches are computed by a variety of

computeobjects, with Angle Computes and Pairwise Computes shown inthe figure as examples.

16

Figure 3.1: Structure of a Molecular Dynamics Simulation Application: NAMD

There are several varieties of compute objects, responsible for computing different types of forces

(bond, electrostatic, constraint, etc.). Some compute objects require data from one patch and only

calculate interaction between atoms within that single patch. Others are responsible for interac-

tions between atoms distributed among neighboring patches. PME objects implement the Particle

Mesh Ewald method [29], which is used to compute the long-range electrostatic forces between

atoms. PME requires two 3D Fast-Fourier-Transform (FFT) operations. The 3D FFT operations

are parallelized through a plane decomposition, where firsta 2D FFT is computed on a plane of the

grid, followed by a global transpose and a 1D FFT along the third dimension. The simulation in

NAMD is iterative. At each time step, the patches send out coordinate data to compute objects and

PME objects as necessary, and the compute objects and PME objects perform the force calcula-

tions in parallel. Once the resulting force information hasbeen calculated, it is then communicated

back to the patches, where integration is performed.

When we consider the various programming models for this relatively simple molecular dy-

namics application, we often find it difficult to reach a graceful balance between productivity and

17

performance. Programming with OpenMP, one will write code that, in effect, serializes the phases

of coordinate distribution, angle force calculation, pairwise force calculation, PME calculation,

force reduction, and patch integration. The flow in such codewould look clear, but it is incapable

of parallelizing concurrent subtasks, such as angle force calculation and pairwise force calculation,

unless wildcard receives with awkward cross-module flow of control are used. Performance and

scalability are sacrificed for the ease of programming.

MPI allows the programmer to partition the job into groups ofsubtasks and assign the subtasks

onto partitions of available MPI processes. The programmercan choose to overlap several subtasks

onto the same set of processes to keep the CPUs busy. For example, if we have some patch

objects and some compute objects residing on the same processor, the patches may use the CPU

for the coordinates multicast, and subsequently yield the CPU to the compute objects for force

calculation. Since MPI message passing is based on processors, when the programmer wants to

express the intention to “send message to subtaskS”, he/she needs to make the MPI call to send

the message explicitly to processor rankK instead of subtaskS’s ID. Therefore, the programmer

has to maintain a mapping between the subtask IDs to the process ranks.

To achieve higher CPU utilization, we want to be able to process the messages as soon as

they are received. When the message passing model does in-order message processing with tag

matching, the interconnect may deliver out-of-order messages. Therefore, the system overhead of

buffering out-of-order arrivals is difficult to avoid. The programmer can take advantage of wild-

card source and tag matching, accepting any incoming message, and processing them accordingly.

While it is possible to achieve high efficiency, this approach has a major productivity drawback.

When there are multiple subtasks from multiple components on one processor, it is difficult to

maintain a definite mapping from an arbitrary incoming message to its destination and handler

function. The message passing calls will look confusing, and the flow of control cannot be ex-

pressed clearly. Modularity is compromised, since to add a new message type to one module

(say A), one has to modify code outside the module (in principle, in all modules) to ensure that

whenever the message arrives, the appropriate code in module A is invoked.

18

Charm++, like MPI, provides a local view of control, but unlike MPI, it takes an object-based

approach. The programmer writes code for various classes for different subtasks, then instanti-

ates object arrays of arbitrary size from such classes. These objects are assigned onto physical

processors by the run-time system automatically, and therefore the programmer does not have to

be restricted by the concept of processor. In Charm++’s asynchronous method invocation model,

each object’s code specifies, in a reactive manner, what the object will do when presented with a

particular message. When a message is delivered, its destination object and the method to invoke

on that object are stated. Because the message contains information on what to do with it at the

receiver side, this can be called anactive message[30]. Such active messages ensure the prompt

processing of data as they become available. In addition, the Adaptive Run-Time System (ARTS)

offers further opportunities for performance optimization. However, for complex programs with a

large number of object arrays, this comes at a cost of obscuring the overall flow of control: The

transfer of control is fragmented by the message sending between objects. To follow the flow of

control, one often needs to dig deep into the objects’ class code and hop from one to another, and

in the meanwhile, to understand parallel operations, such as broadcast, multicast and reduction,

among the objects. This poses some difficulty for the expression of the parallel program for both

the programmer and its readers.

The above example is not an extremely complicated parallel program. Indeed, it has only three

types of components and a few short-running concurrent control flows. A quantum chemistry sim-

ulation [15] under development using Charm++ involves 11 different parallel structures, together

with complex concurrent flows (See Section 6.1). Clearly, understanding the global control flow is

difficult by looking at individual object’s codes.

Therefore, the language we design offers an easy mechanism for the programmer to describe

the overall view of control: a script-like language notation for orchestrating parallel objects on a

global level. In next section, we will take a closer look at this mechanism and the programming

pattern it entails.

19

3.2 Design Goals

In this section, we introduce the design goals of our new productive parallel programming lan-

guage. The new language offers an efficient parallel programming paradigm to the users, especially

those with limited training in parallel programming. Moreover, applying the principles embodied

by the new language can be an interesting addition to patterns for parallel programming [31, 32].

In order to justify our design goals, we start with examiningthe key elements in productive par-

allel programming in practical scientific and engineering settings. Typical parallel applications are

developed in an effort to speed up the solving of scientific and engineering problems. Ideally, the

process requires collaboration between two teams: scientists or engineers (referred to as “domain

experts” [33]) with knowledge of the problem in its specific domain, and parallel programming

specialists with experience in designing efficient parallel flows. The goal is to create a paradigm or

pattern through which the two parties can work together to design appropriate tools for the collab-

oration pattern. In particular, knowledge exchange between the two teams is critical, and a major

challenge. There needs to be a common language between the two teams with which the complex

ideas can be expressed. Meanwhile, it is also necessary to have certain mechanisms to separate

each team’s domain so that neither side is distracted by the other team’s problems.

3.2.1 Higher Level of Abstraction

During the collaboration described above, it is usually difficult for the two teams to communicate

effectively. The obstacle is that they do not speak the same language. While the scientists are

enthusiastic about formulas and theorems, the parallel programming specialists think in terms of

system details, such as subtask partitioning and message passing. How can they get ideas across in

such a scenario? One must develop language mechanisms that allow the domain experts to express

their ideas and needs without the technical jargon that is often incomprehensible to the parallel

programming specialists. On the other hand, the parallel programming specialists should be able

to explain the layout of the parallel flow in a higher level of abstraction.

20

Therefore, the first design goal of the new language isa higher level of abstraction in express-

ing global parallel flow. The object-oriented approach adopted by Charm++ has been proven to

promote modularity and hence is easier to work with, but the overall control flow in a Charm++

program tends to be buried in object code due to the nature of its Actor Model [34, 35]. To over-

come this drawback, our language will have the ability to coordinate parallel objects on a global

level. Also, a data-driven model of the language can shield the low-level communication details

away from the domain experts, making the program easier to understand.

3.2.2 Separation of Parallelism Specification and Sequential Component

Development

In the collaborative development process described above,the two teams (application scientists

and parallel programmers) have different areas of concern in their respective domains. The second

design goal for the new language is a mechanism to separate the two teams’ areas of concern.

Two key factors in developing a successful parallel programare good sequential performance and

efficient parallel flow organization. Good sequential performance can be obtained with a well-

designed domain model and highly optimized core computation code. Efficient parallel flow orga-

nization depends on the level of parallelism that can be exposed in the program. Success on both

these fronts requires the two teams work closely, but it alsorequires a mechanism to separate each

team’s domain models from the other. This isolation mechanism improves productivity because it

can avoid distraction from the ripple effect caused by the other team’s changes. For example, if the

domain experts should decide to switch the underlying implementation of a signal transformation

algorithm, it should not have a complicated impact on the parallel construct code.

Therefore, it would be ideal ifthe sequential part of the code could be kept separate from

the parallel constructs. The separation ensures a clear division of responsibilities. When the

domain experts work on the core computation, they do not haveto worry about the impact of their

code in the parallel context. Typically, the functions willhave some input data, do some local

21

computation, and yield some output data. To the parallel programming specialists, the sequen-

tial function can be abstracted to the object’s local behavior. Moreover, the task of translating

the mathematical formulae and the underlying physics can berestricted mostly to the sequential

code, once the basic parallel decomposition has been agreedupon. This further allows the parallel

programmers to focus on their area of expertise.

3.2.3 Interoperability with ARTS

The new language we are designing will use new mechanisms to enhance programming produc-

tivity. This, however, should not conflict with the goal of retaining existing performance benefits

and features from the ARTS. In fact, the third design goal isto take advantage of the adaptivity

benefits with interoperability with ARTS . Since Charm++’s run-time system already provide a

collection of powerful performance optimizations, it is naturally desirable to be able to use them

without incurring undue amount of extra programming complexity. The interoperability also gives

the program further productivity advantage, because the libraries developed with the new language

can be used across platform in other languages such as Charm++ and vice versa.

3.2.4 Proposed Parallel Programming Paradigm

Based on the above arguments, we propose the following paradigm for parallel programming with

our new language. The typical development process can be broken down into three steps.

First, the domain experts and the parallel programming specialists work together to design

the work/data decomposition and an efficient parallel control flow. At this step, the two teams

ignore the detailed behavior of any individual object, and they concentrate solely on constructing

a high-level description of parallel control flow with the new orchestration language. With the

focused effort, the domain experts can design an overall parallel flow organization while parallel

programming specialists can help optimize the parallel flowwhere necessary.

After the global flow is set, the domain experts can work on their specific core computation.

22

Now they do not have to be concerned with where the incoming data is from, where the resultant

data goes to, or what are the underlying mechanisms of data-driven flow in the program. They

simply code the computation in a sequential setting, with given inputs and outputs.

A final process is automatically performed by a translator/compiler of our new language, which

translates the orchestration code into remote invocationsand integrates the sequential code to gen-

erate the final parallel program in Charm++. The translationprocess fits the sequential components

into the big pictures of parallel control flow, and connects them into an efficient parallel program,

which can then be further tuned, built and run by the parallelprogramming specialists.

Last but not least, the above is only an ideal scenario where there is a parallel programming

team helping the parallelization process. However, in actual practice, this is often not the case, be-

cause many application scientist teams are not blessed withan experienced parallel programming

team to collaborate with. When the parallel programming specialists are missing, the domain ex-

perts will have to take up the responsibility of understanding and creating the parallel constructs.

This reality reinforces the necessity for a higher level of abstraction and more productive develop-

ment method, which our new language readily supports.

23

24

Chapter 4

Charisma: Orchestrating Migratable
Parallel Objects

In this Chapter, we introduce our high-level language for orchestrating migratable parallel objects

calledCharisma[36]1. Charisma extends our efforts toward multiparadigm parallel programming

framework as a highly productive language for describing global view of control in complicated

parallel applications and libraries.

4.1 Language Design

Charisma employs a macro dataflow approach for productive parallel programming. At the high-

est level of abstraction, the programmer creates a script-like orchestration program containing

statements that produce and consume collections of values.From analyzing such producing and

consuming statements, the control flows can be organized, and messages and method invocations

can be generated. This idea is similar to the macro dataflow model [37] and the hybrid dataflow

architecture model [38], where the data-driven distributed control model is combined with the tra-

ditional von Neumann sequential control model. In contrastto the instruction level dataflow mod-

els, Charisma’s object-level macro dataflow mechanism takes advantage of the message-driven

1In historical perspective, the termCharismahas been used by a previous project by Milind Bhandarkar. Theold
Charisma was a common component architecture for parallel programming, and it had the idea of separating sequential
code from parallel code. As with our new Charisma, his systemalso ensured that objects only have sequential data and
publish data without having to know the destination. However, it was not focused on the description of global view of
control in parallel programming, and did not consider complicated parallel structures and multiple modules.

25

execution model in Charm++’s and enables dynamic resource management such as automatic load

balancing.

A Charisma program consists of two components: theorchestration code(in one or more

.or files) that describes the global view of control, and thesequential code(in .h and.C files)

that specifies the local behavior of individual objects. TheCharisma compiler generates parallel

code from the orchestration statements and integrates the sequential methods to produce the tar-

get Charm++ program, which is then executed on the Adaptive RTS. This flow is illustrated in

Figure 4.1.

This design corresponds with the design goals of Charisma. First, the script-like orchestration

code adopts the macro-dataflow approach, allowing the programmer to express higher level of

parallelism abstraction. Secondly, the sequential code isstandard C++ code, which facilitates the

separate development work or reusing of existing sequential methods by the application scientists.

Thirdly, because the resulting program is built and run on the ARTS, it can take full advantage of

the performance benefits and features such as adaptive overlap and automatic load balancing.

Since the orchestration code is the center of Charisma notation, we first explain some of the

key elements of the orchestration language.

4.1.1 Parallel Object Array

In Charisma, a program is composed of parallel objects. A collection of such objects can be

organized into an array to perform a subtask, such as the patches and the force calculators in

the previous NAMD example. Although they are called “arrays”, these are really a collection of

objects indexed by a very general indexing mechanism. In particular, the objects can be organized

into 1-D or multi-dimensional arrays that can be sparse, or into collections indexed by arbitrary

bit-patterns or bit-strings. One can also dynamically insert and delete elements in an object array.

Charm++’s ARTS is responsible for adaptively mapping the object array elements onto available

physical processors efficiently.

Moreover, these objects are migratable with support from the underlying ARTS. Once created,

26

Figure 4.1: Flowchart of Charisma

these parallel objects report the workload at run-time to the system load balancer, and the load

balancer will automatically migrate the objects as necessary to achieve higher overall utilization.

The message delivery, however, will not be disturbed by the fact that the objects might have been

migrated away, because the ARTS implements a scalable message forwarding mechanism [8].

class Cell : ChareArray2D;
class CellPair : ChareArray4D;

obj cells : Cell[N,N];
obj cellpairs : CellPair[N,N,N,N];

Figure 4.2: Charisma Orchestration Code Example: ParallelObject Arrays

In Figure 4.2 is an example of object array declaration in orchestration code for a 2-D Molecular

Dynamics (MD) application. The first part is class declaration for classCell andCellPair. The

second part is the instantiation of two object arrayscells andcellpairs from these classes. The

arraycells is responsible for holding the atom information in the 2-D partition that corresponds

to its index, and the arraycellpairs does the pair-wise force calculation for a pair ofcells

27

objects.

4.1.2 Foreach Statement

In the main body of the orchestration code, the programmer describes the interactions between

the elements of the object arrays with combinations of orchestration statements. The most com-

mon kind of parallelism is the invocation of a method across all elements in an object array.

Charisma provides aforeachstatement for specifying such parallelism. The keywordsforeach

andend-foreach form an enclosure within which the parallel invocation is performed. The fol-

lowing code segment invokes the entry methoddoWork on all the elements of arraymyWorkers.

foreach i in myWorkers
myWorkers[i].doWork();

end-foreach

Figure 4.3: Charisma Orchestration Code Example:foreach Statement

Theforeach statement looks very much like theFORALL statement in HPF [39]. Indeed, they

both express the global flow of control. In HPF,FORALL provides a parallel mechanism for value

assignment of elements of a distributed data array, whereastheforeach statement in Charisma

specifies the parallelism among the entry method invocationof parallel objects.

The programmer can have multiple statements within oneforeach enclosure, if those state-

ments are invoked on the same object array with the same indexing. The statements within one

foreach enclosure cannot be called on different object arrays, because eachforeach statement

is specific to an object array. For the same reason, nestedforeach statements is meaningless, as

a natural consequence of the semantics.

This is really a shorthand notation for having oneforeach enclosure for each of these state-

ments. Note also that the implementation does not need to broadcast a control message to all

objects to implement this. Global control can be compiled into local control, and modulated by

data dependences described below.

28

4.1.3 Producer-Consumer Model

In the MPI model, message passing is specified via the destination processor’s rank and commu-

nicator, with a tag to be matched. As explained earlier, thismechanism does not always work

well in achieving both performance and clear algorithm expression in the presence of complex

parallel programs. Charm++’s message delivery specifies the destination object and the function

handler. With this information, the destination object knows which function to invoke to process

the incoming message. While Charm++ offers a more intuitiveway of dealing with communica-

tions between subtasks, the programmer still needs to worryabout sending and receiving messages

while writing an object’s local code in a sequential context. To further separate the task of writing

communication code for parallelism and composing the sequential computation blocks in a parallel

program, Charisma supports producer-consumer communication directly.

In the orchestration code, there is no function call for explicitly sending or receiving message

between objects. Instead, each object method invocation can have input and output parameters via

inportsandoutports. Here is an orchestration statement that exemplifies the syntax for input and

output of an object methodworkers.foo.

foreach i in workers
(q[i]) <- workers[i].foo(p[i+1]);

end-foreach

Figure 4.4: Charisma Orchestration Code Example: Publish Statement

Here, the entry methodworkers[i].foo produces (orpublishes, in Charisma terminology)

a valueq, enclosed in a pair of parentheses before the publishing sign “<-”. Meanwhile,p is the

value consumed by the entry method. An entry method can have an arbitrary number of published

values and consumed values. In addition to basic data types,each of these values can also be an

object of arbitrary type. The values published byA[i] must have the indexi, whereas values

consumed can have the indexe(i), which is an index expression in the form ofi±c wherec is

a constant. Although this example uses different symbols (p andq) for the input and the output

variables, they are allowed to overlap.

29

The variables that can be used as input and output values constitute theparameter spacein

Charisma. The parameter space resembles the concept of I-Structure and M-Structure [40, 41] in

functional languages in their put-take operations and their purpose of exposing parallelism. The

variables in the parameter space correspond to global data items or data arrays of a restricted

shared-memory abstraction. The programmer uses them solely in the orchestration code to facil-

itate the producer-consumer model, and has no knowledge of them in the local-view sequential

components. A parameter variable can be of an intrinsic or user-defined data type, or a data array,

and are declared in the orchestration code as shown below.

param error : double;
param atoms : AtomBucket;
param celldata : double [CELLSIZE];

Figure 4.5: Charisma Orchestration Code Example: Parameter Variables

In other words, parameter variables appear only ininportsandoutportsof publish statements.

Charisma compiler identifies the inports and outports through parameter variables and uses the

ports to connect the statements. Fortran M [42] is similar toCharisma because they both use the

concept ofport. In Fortran-M, ports are connected to createchannelsfrom which point-to-point

communications are generated. It is useful in facilitatingdata exchange between dissimilar sub-

tasks. Charisma analyzes theinportsandoutportsof data and generate messages for both point-

to-point and collective operations among object arrays, byanalyzing data dependences among

parameters in the orchestration code. The goal of Charisma is to provide a way of clearly express-

ing global flow of control in complicated parallel programs.In addition, Charisma is built on top

of a powerful adaptive run-time system which offers the generated program performance benefits

at no additional cost of programming complexity.

4.1.4 Data Dependence and Program Order

As defined by the language semantics, Charisma usesprogram orderto determine data dependence

and connect producing and consuming ports. In other words, any consuming statement will look

30

for the value produced by the immediate preceding statementthat publishes the same value in the

program order. Any produced value may be consumed by multiple consuming statements. If a

producing statement does not have a following consuming statement, the produced value will not

have any effect on the program behavior. In a legal orchestration program, any consumed value in

any statement should always have its corresponding produced value in a statement. This condition

is trivial to satisfy in simple orchestration code which does not contain any loops. We will discuss

program order in the presence of loops later in this section.

Beyond the program order restriction of the data flow, Charisma is consistent with Charm++’s

asynchronous invocation model. Charisma currently does not support explicit barrier or other

synchronization operation supported. The programmer, however, can always enforce a barrier

though an artificial reduction operation, either among an object array, or globally among all object

arrays.

This also means there is no further implicit barrier betweenforeach statements. For instance,

in the code segment in Figure 4.6,workers[2].barwaits till the data itemp[1] is published by

workers[1].foo, but it does not have to wait afterworkers[14].foo has completed, because

there is no implicit barrier between the twoforeach statements. The execution order is dictated

only by data dependence in this code.

foreach i in workers
(p[i]) <- workers[i].foo();

end-foreach
foreach i in workers

workers[i].bar(p[i-1]);
end-foreach

Figure 4.6: Charisma Orchestration Code Example: Program Order

Loops are a frequently used control constructs in parallel application development. They are

supported withfor statement andwhile statement in Charisma, and the rules for data dependence

and program order are slightly different from a straight-line program. For the first loop iteration,

the first consuming statement within a loop block looks for values produced by the last produc-

ing statement before the loop block. For the following iterations, the first consuming statement

31

matches with the last producing statement within the loop block. At the last iteration, the last

produced values will be disseminated to the consuming statement following the loop block.

Take the following code segment as an example, thecoords produced in the firstforeach

statement is consumed by the first consuming statement in thefor-loop. Thereafter, each iteration

produces a freshcoords from theintegrate function at the end to be consumed at the next

iteration. The produced parameter ofcoords is available after the for-loop, although it is not used

here in this example.

foreach i,j,k in cells
(coords[i,j,k]) <- cells[i,j,k].produceCoords();

end-foreach
for iter = 1 to MAX_ITER
foreach i1,j1,k1,i2,j2,k2 in cellpairs
(+forces[i1,j1,k1],+forces[i2,j2,k2])

<- cellpairs[i1,j1,k1,i2,j2,k2].calcForces(
coords[i1,j1,k1],coords[i2,j2,k2]);

end-foreach
foreach i,j,k in cells
(coords[i,j,k]) <- cells[i,j,k].integrate(forces[i,j,k]);

end-foreach
end-for

Figure 4.7: Charisma Orchestration Code Example: MD Example

4.1.5 Program Determinacy

With the above data dependence semantics, Charisma is designed to be a deterministic language.

To ensure that, the implementation needs to satisfy the following deterministic execution con-

straint. For any individual object, all Charisma methods are always executed in the program order

at each run.

Refer to the example in Figure 4.6. It is understood thatworkers[2].bar has to wait for

workers[1].foo to finish due to data dependence. For the sake of determinacy,however,

workers[2].bar should also wait forworkers[2].foo to finish before it can start in order

to respect the program order prescribed by the orchestration code.

32

In straight-line code in Figure 4.6, the implementation uses a state counter in each object to

enforce method execution in program order. The counter marks the progress of method invocation

and prevents out-of-order execution. In presence of a loop,the counter needs to be reset to point

to the beginning of the loop body at each new iteration.

Epoch control is also necessary to enforce deterministic execution of loop statements. Epoch

control avoids sending values to the next iteration prematurely. In our implementation, we impose

barrier where necessary for epoch control. As future work, we can automate this or implement

more intelligent epoch control schemes to achieve higher efficiency.

The following is another illustration of program determinacy in Charisma. In this example,

Si andRi representsforeach statements. If the values produced by any of theSi statements

are not consumed by any of theRi statements and vice versa, then the two loops can execute

in a interleaving fashion without breaking determinacy. Otherwise, the firstwhile loop has to

complete before the second loop can start.

while e
{

while e1
{

S1;
S2;

}
while e2
{

R1;
R2;

}
}

Figure 4.8: Charisma Orchestration Code Example: Program Order with Loops

4.1.6 Describing Communication Patterns

The method invocation statement in the orchestration code specifies its consumed and published

values. These actions of consuming and publishing are viewed as input and output ports, and

33

the Charisma run-time willconnectthese ports by automatically generating efficient messaging

between them. Using the language and the extensions described below, the programmer is able to

express various communication patterns.

• Point-to-point communication

We now introduce the mechanism to allow point-to-point communication among objects via

the producer-consumer model. For example, in the code segment below,p[i] is communicated

via a message in asynchronous method invocation between elements of object arrayA andB.

foreach i in A
(p[i]) <- A[i].f(...);

end-foreach
foreach i in B

(...) <- B[i].g(p[i]);
end-foreach

Figure 4.9: Charisma Orchestration Code Example: Point-to-Point Communication

From this code segment, a point-to-point message will be generated fromA[i]’s publishing

port toB[i]’s consuming port. WhenA[i] calls the local functionproduce(), the message is

created and sent to the destinationB[i]. By this mechanism, we avoid using any global data and

reduce potential synchronization overhead. For example, in the code segment above,B[2].g()

does not have to wait on allA[i].f() is completed to start its execution; as soon asA[2].f()

is done and the value p[2] is filled,B[2].g() can be invoked. In fact, even beforeA[i].f()

completes,p[i] can be sent as soon as it is produced, using callback in the implementation.

• Reduction

In Charisma, the publishing statement uses a+ to mark a reduced parameter whose value is

to be obtained by a reduction operation across the object array. Following is an example of a

reduction of valueerr on a 2-D object arrayA.

The reduction operation to be used is not specified in the orchestration code. Instead, it is coded

in the sequential part (See Section 4.1.7).

The dimensionality of the reduced output parameter must be asubset of that of the array pub-

34

foreach i,j in workers
(..., +err) <- workers[i,j].bar(...);

end-foreach
...
Main.testError(err);

Figure 4.10: Charisma Orchestration Code Example: Reduction

lishing it. Thus reducing from a 2-D object array onto a 1-D parameter value is allowed, and

the dimension(s) on which the reduction will be performed onis inferred from comparison of the

dimensions of the object array and the reduced parameter.

• Multicast

A value produced by a single statement may be consumed by multiple object array elements.

For example, in the following code segment,A[i] is a 1-D object array,B[j,k] is a 2-D object

array, andpoints is a 1-D parameter variable. Suppose they all have the same dimensional size

N.

foreach i in A
(points[i]) <- A[i].f(...);

end-foreach
foreach k,j in B

(...) <- B[k,j].g(points[k]);
end-foreach

Figure 4.11: Charisma Orchestration Code Example: Multicast

There will be N messages to send each published value to the consuming places. For example,

point[1] will be multicast to N elements inB[1,0..N-1].

• Scatter

A collection of values produced by one object may be split andconsumed by multiple object

array elements for a scatter operation. Conversely, a collection of values from different objects can

be gathered to be consumed by one object. Combining the two, we have the permutation operation.

A wildcard dimension “*” inA[i].f()’s outputpoints specifies that it will publish multiple

data items. At the consuming side, eachB[k,j] consumes only one point in the data, and there-

35

/* Scatter Example */
foreach i in A

(points[i,*]) <- A[i].f(...);
end-foreach
foreach k,j in B

(...) <- B[k,j].g(points[k,j]);
end-foreach

Figure 4.12: Charisma Orchestration Code Example: Scatter

fore a scatter communication will be generated fromA to B. For instance,A[1] will publish data

points[1,0..N-1] to be consumed by multiple array objectsB[1,0..N-1].

• Gather

Similar to the scatter example, if a wildcard dimension “*” is in the consumed parameter and

the corresponding published parameter does not have a wildcard dimension, there is a gather oper-

ation generated from the publishing statement to the consuming statement. In the following code

segment, eachA[i,j] publishes a data point, then data points fromA[0..N-1,j] are combined

together to for the data to be consumed byB[j].

/* Gather Example */
foreach i,j in A

(points[i,j]) <- A[i,j].f(...);
end-foreach
foreach k in B

(...) <- B[k].g(points[*,k]);
end-foreach

Figure 4.13: Charisma Orchestration Code Example: Gather

• Permutation Operation

Combining scatter and reduction operations, we get the permutation operation. Here is an

example of 2-D array of values being decomposed and distributed into two 1-D object arraysA and

B, with different orientation of decomposition.A holds data along Y-axis andB holds data along

X-axis. The following code segment is a transposition between the two object arrays.

36

foreach i in A
(points[i,*]) <- A[i].f(...);

end-foreach
foreach k in B

(...) <- B[k].g(points[*, k]);
end-foreach

Figure 4.14: Charisma Orchestration Code Example: Permutation Operation

4.1.7 Sequential Code

The Charisma programmer supplies sequential code that specifies the local behavior of objects.

In a .h header file for a specific class, the local member variables and methods that are needed

for sequential user code are declared. Note that this headerfile does not have complete class

declaration. It just has the variables and methods declaration used in the sequential code. The

definition of those sequential functions is provided in the.C files. The.C files typically contain

function definitions for the class, including those functions that appears in the publish statement

in the orchestration code. We will take a closer look that this kind of function with inports and

outports.

When composing local functions with consumed and produced values (inports and outports),

the programmer does not need the knowledge of the sources of the input data or the destinations

of the output data. The input data is seen as parameters passed in, and the output data is published

via a local function call. Specifically, for producing, a reserved keywordoutport is used to mark

the parameter name to be produced as appears in the orchestration code, and aproducecall asso-

ciates the outport parameter name with an actual local variable whose value is to be sent out. For

instance, in the sequential code forWorkerClass::foo, the programmer makes a local function

call produce with outportvariableq to publishthe value of a local variablelocal q (assuming

p andq are double precision type).

For reduction, the producing mechanism of connecting a local variable to the outgoing pa-

rameter is the similar, only with a different keywordreduce and an additional reduction opera-

tor/function. The following code segment shows the sequential functionWorkerClass::bar, in

37

// Sequential function for "(q[i]) <- workers[i].foo(p[i+1])"
WorkerClass::foo(double p[], outport q[]) {

local_q[i] = ...;
...
produce(q, local_q, n);

}

Figure 4.15: Charisma Sequential Code Example: Outport andProducing Values

which a reduction is specified. The programmer calls a local functionreduce to publish its local

valuelocal err and specifies the reduction operation “>” (for MAX). Similar to the produce

call, anoutport keyword indicates for which output port parameter this reduce call is publish-

ing data. This call is almost identical to theproduce primitive, only with an extra parameter for

specifying the reduction operation.

// Sequential function for "(+err) <- workers[i,j].bar(...)"
WorkerClass::bar(..., outport err) {

local_err = ...;
...
reduce(err, local_err, ">");

}

Figure 4.16: Charisma Sequential Code Example: Reduction

4.2 Library Module Development with Charisma

Charisma is designed to be a language that provides high programming productivity. As reusability

is a crucial element in productivity, Charisma must supportthe ability to develop reusable modules

for parallel programs on the ARTS. Due to the difficulty of developing parallel programs and

modules, there is a higher premium on reusability of parallel code. Yet, the nature of parallel

algorithms makes it harder to design and reuse parallel modules in software development. There

are different work partitioning schemes, data distribution schemes, and complicated data flows and

control flows to be taken into account. Indeed, the complexity in the interactions between the main

program (library caller) and the parallel module (library callee) becomes the most challenging topic

38

in our research. We first discuss the design alternatives forparallel library interface, and describe

the Charisma Module System in detail.

4.2.1 Parallel Library Interfaces

Before discussing parallel library interfaces, we first take a look at how sequential library interact

with its caller. Typically, a library module is invoked by calling one or a sequence of subroutines

with appropriate parameters. For example, a version of FFTWlibrary [43] requires the caller to

call a subroutine to set up the FFT computation, including registering input and output data, a

second subroutine to execute the plan, and a final subroutineto destroy the plan. In sequential

libraries, the data is passed in and out via subroutine parameters, and the control flow is linear.

For parallel library modules [25], neither the data flow nor the control flow is linear. The

data might be fed in and extracted out in a distributed fashion. A synchronization point is not

necessarily required before or after the library module is called. There are many ways of invoking

a parallel library module and exchanging data with it, and most interactions can be categorized

into two patterns: centralized interface and distributed interface, as illustrated in Figure 4.17.

With the centralized interface, the library module exposesa proxy object with subroutines to

pass in data and invoke computation. The proxy object may then distributed data into internal

parallel objects and initiate the computation in parallel.The results of the parallel subtasks have to

be gathered to the proxy object and returned to the caller viaa callback. The centralized interaction

pattern has better encapsulation of its internals, as only the proxy object’s interface is visible to the

caller. On the down side, it requires synchronization points and data distribution and gathering that

could be eliminated.

In the distributed interaction pattern, the library moduleand the calling program are more

closely coupled. The input data is passed to parallel processes in the library in a distributed and

asynchronous fashion, and when the results become available, they are sent back to the callers in

the same way. This design improves efficiency by allowing distributed flow of data and avoidance

of sequential bottlenecks. The price is weaker encapsulation and added programming complexity.

39

(a) Centralized Interface Design (b) Distributed Interface Design

Figure 4.17: Interaction Patterns for Parallel Library Modules

For example, the programmer is responsible to ensure the dimensionality of the calling subtasks

matches with that of the library processes.

4.2.2 Charisma Module Support

As we discussed above, the distributed interface provides parallel and asynchronous interface

which allows closer coupling. However, it could result in higher programming complexity to

match up the distributed library interface at the main program side. Fortunately, Charisma has a

few features such as parameter space and publish statement that facilitate the interface matching

and minimize programmer effort necessary.

Our approach is to integrate the orchestration code from thelibrary into the main program.

After the integration, the parallel library caller and callee exist in the same orchestration code

and we rely on the existing dependence analysis mechanism tomatch up the inputs and outputs

between the caller and callee.

40

Because we want to support calling multiple instances of thesame library from the same

Charisma program, we need to be able to declare and initialize library instances with different

names and configurations. Our design requires a library module to post its configuration variables

right after its name in the orchestration file, before the library can use any of these configuration

variables in the orchestration code or sequential code. Also, the library module declares its inputs

and outputs with keywordinparam andoutparam. In the following code segment, the library

moduleFFT3D posts 3 configuration variablesCHUNK, M andN, and input parameterindata and

output parameteroutdata.

// module name with configuration variables
module FFT3D (CHUNK, M, N)
inparam indata;
outparam outdata;

class FFT3DPlanes1 : ChareArray1D;
class FFT3DPlanes2 : ChareArray1D;
obj planes1 : FFT3DPlanes1[M];
obj planes2 : FFT3DPlanes2[M];

param pencildata : complex[CHUNK*CHUNK*N];

// orchestration code that declares the library objects
// and defines their flow with inputs and outputs
begin

foreach x in planes1
(pencildata[x,*]) <- planes1[x].fft1d(indata[x]);

end-foreach
foreach y in planes2

(outdata[y]) <- planes2[y].fft2d(pencildata[*,y]);
end-foreach

end

Figure 4.18: Library for Charisma: 3D FFT Example

In the main program’s orchestration code, the programmer first includes the library module by

name with a reserved keyworduse followed by the module name. Secondly, the library instances

can be initiated with library name and values assigned to itsconfiguration variables. The following

example shows how a library instancefftlib is created from the moduleFFT3D with a set of

41

configuration variables.

program main-program

// include the module by name
use FFT3D;

// instantiate library instance with parameter initialization
library fftlib : FFT3D(CHUNK=10,M=10,N=100);

// declare classes, objects and params used in main program
class Worker : ChareArray1D;
obj workers : Worker[10];
param fftlib_indata : complex [10*100*100];
param fftlib_outdata : complex [10*100*100];

begin
// data are consumed and produced by library instances
// the flows are in parallel whenever possible
foreach i in workers

(fftlib_indata[i]) <- workers[i].producePlanes();
end-foreach
(fftlib_outdata[*]) <- fftlib:call(fftlib_indata[*]);
foreach i in workers

workers[i].getResult(fftlib_outdata[i]);
end-foreach

end

Figure 4.19: Library for Charisma: Using 3D FFT Library

The invocation on a library instance is similar to calling a publish statement, with consumed

parameters passed in and published parameters coming out. The only difference is that the function

name is in the format of library instance name and the keywordcall connected with a colon.

With the facility of parameter space, matching the parallelinterface becomes easy to code and

to understand. Internally, the library instance might havemultiple arrays of objects and complex

control flows, but they are hidden behind the library interface. In the implementation, the library

code is expanded and inserted into the main program with different sets of configuration variables.

Then Charisma compiler process the expanded program as one single orchestration file.

In the following code segment, two instancesfftlib1 andfftlib2 are created, with differ-

ent sets of values assigned toFFT3D’s configuration variables. They each use a set ofinparams

42

andoutparams. The two instances can coexist in the code and their execution can interleave with

each other.

program main-program

// include the module by name
use FFT3D;

// multiple library instances initialized from same module
library fftlib1 : FFT3D(CHUNK=10,M=10,N=100);
library fftlib2 : FFT3D(CHUNK=4,M=4,N=16);

// declare classes, objects and params used in main program
class Worker : ChareArray1D;
obj workers : Worker[10];
param fftlib1_indata : complex [10*100*100];
param fftlib1_outdata : complex [10*100*100];
param fftlib2_indata : complex [4*4*16];
param fftlib2_outdata : complex [4*4*16];

begin
foreach i in workers

(fftlib1_indata[i]) <- workers[i].producePlanes();
end-foreach
(fftlib1_outdata[*]) <- fftlib1:call(fftlib1_indata[*]);
foreach i in workers

workers[i].getResult(fftlib1_outdata[i]);
end-foreach
. . .
(fftlib2_outdata[*]) <- fftlib2:call(fftlib2_indata[*]);
. . .

end

Figure 4.20: Library for Charisma: Using Multiple Instances of 3D FFT Library

Use of the distributed interface eliminates the sequentialbottleneck. For instance, in the above

code,workers[0] sendsfftlib indata[0] directly to the first element in the library module’s

consuming object array, and that element can start computation immediately upon the receipt of the

data. This happens asynchronously with other elements in the same object array, which maximizes

the adaptive overlap and improves machine utilization.

43

4.2.3 Library Support for Charm++

For library support for Charm++, Charisma generates Charm++ code to be incorporated into the

main program. Because the generated interface can be too complicated to be human readable,

writing code to match the parallel interface is difficult. Therefore, in addition to the distributed in-

terface, we also provide the centralized interface to simplify the interactions between the Charisma

library and the calling Charm++ program to hide the complexity.

On the central proxy object (doubled by the library module’smain chare), the library module

defines 2 function callsstart and done, and the interaction can be unified into a two-phase

process.

First, the calling program invokes the library via astart call, with input data and callback

function. The code segment typically looks as follows. Notethat the start function involves two

built-in entities in the library’s main chare:doneCB is the callback object to be sent out at exit

of library module, andnext main 0() is the function to call to trigger the flow of the library

module.

void start(char* param, int n, CkCallback& cb){
// processing of incoming data
. . .
// register callback
doneCB = cb;
// trigger the flow in the library
next_main_0();

}

Figure 4.21: Library for Charm++:start

After the parallel computation, the final results are packedinto a message. As the last statement

in the library module’s generated control flow, the message is sent out with the callback object

doneCB in adone function.

Thanks to the use of asynchronous callback, the efficiency ofthe library module can be im-

proved by overlapping work from the main program with work inthe library. Admittedly, the

centralized mode adds extra synchronization that could be eliminated, but the distributed interface

44

void done(void){
// prepare outgoing results
msg = . . .
// send out callback with results
doneCB.send(msg);

}

Figure 4.22: Library for Charm++:done

would require the Charm++ programmer understand the details of the code Charisma generated

for the library. Since the generated code can be human-unreadable, the distributed alternative is

not a good option in this case. In next section, we will explain how a distributed interface is used

in library support for Charisma.

4.3 Implementation Issues

After we designed the language, a compiler is implemented toparse code written in the new lan-

guage and generate Charm++ code. The compiler has the typical components such as lexer, parser

and code generator. There are also a few interesting research issues specific to this parallel lan-

guage. We explain these issues in this Section.

4.3.1 Dependence Analysis

In Charisma’s producer-consumer model, the orchestrationstatements have consumed and pub-

lishedparameters. The Charisma compiler collects information of each inportand outport from

every statement. The information collected includes parameter name, type, location, subscript of

the parameter, and subscript of the associated object array.

Subsequently, dependence analysis [44] is performed to detect if a dependence exists between

any inport-outport pair with the same parameter name. The results from the dependence analysis

can be organized into a dependence graph among the statements and their parameters. Note that

since there will be iterative loop in the control flow, the dependence graph is different from those in

the traditional dataflow programs as described in [45]. These dependences represent one or more

45

messages which need to be generated and pass from the publishing ports to the consuming ports in

order to drive the flow of the program.

The dependence testing is capable of identifying loop-carried dependences and loop-independent

dependences. When parsing the statements and collecting parameter information, the compiler

keeps track of loop level of each occurrence of every parameter. Loop level is useful in creating

backward loop-carried dependence and differentiating dependences across loop boundary (needs

barrier) and dependences within same loop (does not need barrier).

The Charisma compiler then generates a structures calltriggers for the dependence graph. If

an orchestration statement has an incoming trigger, Charisma will generate code for the corre-

sponding class object to receive and buffer incoming Charm++ messages and drive the subsequent

program flow. Likewise, if a statement has an outgoing trigger, Charisma generates code to send

out Charm++ messages to the destination. Depending on the communication pattern used, the

generated messaging code can range from point-to-point to collective operations such as reduction

and multicast/broadcast.

4.3.2 Control Transfer

In the initial version of Charisma, the orchestration statements were numbered and sequenced,

and a central main thread was responsible for driving of the control flow. For example, after

each parallelforeach call, a barrier was imposed, and afterward the main thread decides which

statement to invoke next. This clearly was not an optimal implementation. For one thing, the

centralized main thread control could cause unnecessary global barriers and synchronization.

In later versions we have remedied this by moving the controltransfer code into object code

and combining it with a control token issued from the main chare. When an orchestration statement

only has data dependence on consumed parameters, it should be fired off as soon as the parameters

are published at an earlier statement. An object in an array does not have to wait for other objects

in the array to finish their execution of the statement to proceed to the next statement, if the data

availability is satisfied. When there is control dependenceinvolved, for instance, for loop-carried

46

dependence, the main chare will issue a progress token whichis needed in addition to the consumed

parameters at the triggering of the next statement. This implementation ensures efficient distributed

dependence driven control transfer whenever possible.

4.3.3 User Code Integration

Charisma generates Charm++ code that deals with communication and parallel flow of control,

from the orchestration code (.or file). The programmer supplies sequential code in several sepa-

rate files: one header file for each class declaring its class member variables and methods, and a

collection of C++ files for definition of the class methods. These sequential components will be in-

tegrated into the generated parallel code to form a completeCharm++ program, which is compiled

and built by the Charm++ compiler.

Charisma offers flexibility for the programmer to integrateother sequential or sometimes par-

allel code as needed. Additional user code can be included using theinclude keyword in the

orchestration code. It can be sequential auxiliary class definitions, or it can be parallel construct

that is not automatically generated by Charisma. For instance, in Section 5.1.3, the realtime par-

allel visualization module is added in the Wator code in the form of included code, because the

code is highly specific to the structure of the object array and cannot be automatically generated

by Charisma.

4.3.4 Generated Code Optimizations

High productivity programming requires not only fast and easy development process, but also high

performance from the output program. We put much effort intooptimizing generated code of

Charisma. Our methodology is a repeated process of locatingthe inefficiencies through perfor-

mance analysis and designing better mechanisms to remove the bottlenecks. Following are two

examples of techniques we developed to make Charisma generate better optimized code.

First, we eliminated unnecessary memory copy in the generated code. For a statement that

47

consumes multiple parameters, because all the values do notarrive together at the same time,

an initial design of Charisma buffers the early arrivals in the object’s local space, requiring a

memory copy. In data-intensive applications such as 3D FFT with an all-to-all transpose operation,

our performance visualization shows that the memory copy overhead accounts for 3-5% of total

execution time. Then we designed a new scheme that takes advantage of Charm++’s lower level

message type, which can hold the data temporarily till all required messages have arrived.

Our second example involves efficient object migration. Theefficiency of object migration

is affected by the quantity and size of local variables to take along. The most efficient way is

to take only those variables absolutely necessary to re-create the object when it arrives on a new

processor, but this set of live variables changes with the location where migration is invoked. The

foolproof alternative is to copy everything over, to ensuresafety of anytime migration. The final

version of Charisma is capable of generating code for eithercase. When the programmer restricts

the migration time, the minimal set of live variables are migrated. The programmer can always fall

back to the safe mode of migrating all the variables.

4.4 Extensions, Restrictions and Limitations

In this section we discuss the overlap extension of Charisma, as well as restrictions and limitations

of the language.

4.4.1 Overlap Extension

Complicated parallel programs usually have concurrent flows of control. If two data-dependence

flows are independent in the orchestration code, as in the case of Figure 4.8 when two loops are data

independent, they should execute independently and concurrently beyond the restriction of pro-

gram order. In order to override program order and explicitly express overlapping flows, Charisma

provides an extension calledoverlap statement, whereby the programmer can fire multiple over-

lapping control flows. These flows may contain different number of steps or statements, and their

48

execution should be independent of one another so that theirprogress can interleave with arbitrary

order and always return correct results.

The code in Figure 4.23 shows anoverlap statement. The two blocks in curly brackets are

explicitly allowed to execute in overlapping flows. Becausethe program order for data depen-

dence is overridden with theoverlap statement, in the lastforeach statement, for example,

arrayworker2 looks for produced data only from above theoverlap statement, skipping any

outport in the overlapping flow. Their independent executions join back to one at the end mark of

end-overlap after which program order is resumed.

overlap
{

foreach i in workers1
(lb[i], rb[i]) <- workers1[i].produceBorders();

end-foreach
foreach i in workers1

workers1[i].compute(lb[i+1], rb[i-1]);
end-foreach

}
{

foreach i in workers2
(lb[i], rb[i]) <- workers2[i].compute(lb[i+1], rb[i-1]);

end-foreach
}
end-overlap

Figure 4.23: Charisma Orchestration Code Example: OverlapStatement on Different Objects

A different overlap example is shown in Figure 4.24, where the object array is thesame

in the overlapping flows, it is natural to raise the question of determinacy. When theoverlap

modifies the program order and allows an object to invoke its methods in arbitrary order, the

overall behavior is deterministic if and only if the object states and messages are invariant under

all possible interleaving scenarios. In this case, we trustthe programmer to ensure that condition

for determinacy.

In this example, the user is responsible for guaranteeing that invoking the methods in all possi-

ble sequences always give the same outport values and internal object state at the exit ofoverlap

49

overlap
{

foreach i in workers1
(lb[i], rb[i]) <- workers1[i].produceBorders();

end-foreach
foreach i in workers1

workers1[i].compute(lb[i+1], rb[i-1]);
end-foreach

}
{

foreach i in workers1
(lb[i], rb[i]) <-

workers1[i].computeAndProduceBorders(lb[i+1], rb[i-1]);
end-foreach

}
end-overlap

Figure 4.24: Charisma Orchestration Code Example: OverlapStatement on Same Object

block for any element inworkers1.

4.4.2 Limitations of Charisma

Charisma is designed as a simple language to capture the programming productivity need for a

subset of parallel applications. We are confident that Charisma does an excellent job in expressing

the global control flow in its targeted applications, which covers a sufficiently big class of parallel

programs. With this design, we demonstrate the feasibilityof using a simple but restricted language

to capture a class of parallel problems. Therefore, the language is not meant to be a complete

one that handles every characteristics in parallel applications. When the control flow is data-

dependent and determined only at run time, Charisma does notlead to efficient solutions. The

issue arises from the difficulty of performing a static capture of dynamic data-driven control flow.

The following example illustrates this issue.

Consider a N-Body cosmological simulator calledParallelGravity[17] that utilizes the Barnes-

Hut tree method [46] to compute gravitational forces. In thetree structure, nodes holding particles

are calledTreePieces, and they are implemented as parallel objects. The index of aTreePiece

object is a bit-vector, whose content depends on the depth and location of the node that object

50

represents in the tree, which is in turn decided by the distribution of the particles in the simulated

universe system.

The main difficulty arises from the fact that the dataflow in this simulation is data-dependent.

In ParallelGravity, each TreePiece object is responsible for gathering information needed to com-

pute the gravity forces on the particles in that node. According to the Barnes-Hut method, it does

not need to collect all the other particles in the universe. Instead, approximation is used whenever

reasonable. For TreePieces that are far way, a mathematicalapproximation is used for an approx-

imate particle-TreePiece force calculation. Only TreePieces that are too close for approximation

are fetched and opened up for particle-particle force calculation. Also, to avoid duplicate retrieval

of TreePieces, there is a per-processor caching mechanism for remote TreePieces particles.

As a consequence, it is impossible to explicitly specify thedataflow in the simulation before

hand. Only at run-time can it be decided which set of far enough TreePiece objects whose centroids

can be used for approximation, and which set of nearby TreePiece objects from which full particle

information is needed. In addition to this complexity, it isdynamically determined during the tree

traversal whether the local per-processor particle cache already has the needed particle information,

or new requests are necessary to fetch particle informationremote TreePieces.

Due to the incompatibility of such data-dependent dataflow nature and Charisma’s dataflow

driven method, it is hard to utilize Charisma’s facility to lay out the global control flow before

hand for this type of application. In this case, we recommendthe programmer use lower-level

languages such as Charm++ to capture the dynamic flow in the program. Similarly, for algorithms

where a global view of data is essential, Multiphase Shared Arrays (MSA) can be used. For its

targeted class of applications, as next Chapter will show, Charisma is a power tool to enhance

parallel programming productivity without incurring unduly overhead.

51

4.5 Related Work

Charisma is designed to allow expression of global control flow, and it is not a dataflow lan-

guage in the traditional sense. In Charisma, objects have persistent states whereas typical dataflow

languages are functional. However, Charisma uses macro dataflow to drive the progress of the

program and expose parallelism, as most dataflow languages do [45]. In fact, there are a number

of parallel programming languages that apply similar ideas.

P-COM2 [47] is a language with a compiler that composes parallel anddistributed programs

from independently written components [48]. It proposes a two-phase programming method that

separates the individual component development, and the organization and integration of compo-

nents to form a parallel program. In this sense, it shares thesame methodology with Charisma. In

comparison, P-COM2 programs express global control flow implicitly through connecting inter-

faces of distributed components, whereas Charisma enablesexplicit description of global control

flow with the orchestration language notation.

Many visual parallel languages also adopt the two-step programming methods used by Charisma

and P-COM2. Among them are two interesting examples, HeNCE [49] and CODE [50]. They both

treat sequential subroutines as their primitive components, and exploit the expressiveness of visual

graph in composing parallel programs. In comparison [51], CODE is more aggressive in its use

of dataflow. Each arc in CODE’s graph language represent a data movement, and the combina-

tion permits expression of various communication patterns. However, the explicit dataflow also

increases the complexity of graphs and hence the difficulty of understanding the program. In

HeNCE, dataflow is implicit, with the arcs representing control flow, such as invocation of the next

components. HeNCE is a better fit for expressing the flow chartof structured programs. Charisma

can be thought of combining the benefits of these two approaches, in addition to its own bene-

fits of virtualization. It exposes as much parallelism opportunity as possible with dataflow driven

progress, and inserts control constructs where needed to ensure clear expression of the program

structure.

52

Other visual parallel programming environments include VPE [52], a visual programming en-

vironment based on PVM [53] that allows explicit message-passing representing tasks with nodes

and messages with arcs. In contrast, Charisma is based on object-oriented Charm++. Its underlying

adaptive run-time system conveniently provides performance optimizations for parallel programs

generated by Charisma.

All these visual parallel programming languages enjoy the advantage of natural expressiveness

that is easier to understand. For developers, not all work isdone in forms of visual graph. There

are typically interface specifications in text, and text annotations in the graph for the nodes and

arcs. This complexity is likely to result in a steep learningcurve.

53

54

Chapter 5

Evaluation of Charisma

We evaluate Charisma by looking at two aspects: performanceand productivity. In the first part of

our experiments, we compare the performance scalability aswell as Source Lines Of Code (SLOC)

of a few typical parallel programs written in Charisma and Charm++. In the second part, we show

the results from our preliminary productivity study in a classroom setting.

5.1 Performance Evaluation

Now we present three benchmark applications, each implemented with Charm++ and Charisma.

We compare the SLOC of both versions and their parallel performance on up to 1024 processors.

We use these results to illustrate that Charisma does not incur undue performance overhead while

reducing SLOC significantly. The platforms used for the performance evaluation are PSC’s Cray

XT3 MPP system with 2068 dual 2.6 GHz AMD Opteron compute nodes linked by a custom-

designed interconnect, and NCSA’s Tungsten Cluster with 1280 dual 3.2 GHz Intel Xeon nodes

and Myrinet network.

5.1.1 Stencil Calculation

Our first benchmark is a 2-D 5-point stencil calculation. This is a multiple timestepping calculation

involving regions produced by the 2-D decomposition of a 2-Dmesh. At each timestep, every

region exchanges its boundary data with its immediate neighbors in 4 directions and performs

55

PSC Cray XT3 System
E

xe
cu

tio
n

T
im

e
P

er
 S

te
p

(m
s)

0

100

200

300

400

500

600

Number of Processors
8 16 32 64 128 256 512 1024

Charm++ (SLOC=255)
Charisma (SLOC=140)

NCSA Tungsten Cluster

E
xe

cu
tio

n
T

im
e

P
er

 S
te

p
(m

s)

0

500

1000

1500

2000

2500

Number of Processors
4 8 16 32 64 128 256

Charm++ (SLOC=255)
Charisma (SLOC=140)

Figure 5.1: Performance of Stencil Calculation

local computation based on the neighbors’ data. This is a simplified model of many applications

including fluid dynamics and heat dispersion simulation, and therefore it can serve the purpose of

demonstration.

Figure 5.1 compares the performances of the stencil calculation benchmark written in Charisma

and Charm++. The benchmark problem consists of a 163842 mesh decomposed onto 4096 objects.

The performance overhead introduced by Charisma is 2 - 6% andthe performance scales up to

1024 processors. Because this benchmark is relatively simple, the parallel code in Charm++ forms

a significant part of the code. Therefore we see a 45% reduction in SLOC with Charisma.

The overhead can be broken down into two major categories: memory overhead and control

overhead. Memory overhead includes overhead incurred by extra data copying and message buffer-

ing in the implementation of Charisma. It usually accounts for a larger portion in the total overhead

and is dependent on the memory performance of specific computing platform. The rest of the over-

head results from parallel control constructs added by Charisma. For example, Charisma program

imposes a global barrier at the end of loops to ensure programdeterminacy. Thanks to efficient

implementation of such parallel operations in Charm’s ARTS, control overhead has a lower impact

on the total performance. Figure?? illustrates the overhead breakdown of this Jacobi example on

56

Breakdown of Charisma Overhead

4 8 16 32 64 128

0

20

40

60

80

100

120

140

160

Ite
ra

tio
n

O
ve

rh
ea

d
(m

s)

P

6.5%

5.0%

6.0%

4.9%
9.4%

2.1%

Memory Overhead

Control Overhead

(Percentage of total
overhead shown on
top of each bar)

Figure 5.2: Charisma Overhead Breakdownm

the Turing Cluster. The percentage is the total overhead of the total running time for each run.

5.1.2 3D FFT

FFTs are frequently used in engineering and scientific computations. Since highly optimized se-

quential algorithms are available for 1-D FFTs, multi-dimensional FFTs containing multiple 1-D

FFTs on each dimension can be parallelized using a transpose-based approach [54].

We now present the main body of the orchestration code for thetranspose-based algorithm for

3D FFT. From this code segment, Charisma generates the transpose operation between the two

planes holding the data. Messages are created and deliveredaccordingly.

Figure 5.4 compares the performance overhead of runs with problem size of 5123 on 256 ob-

jects, on up to 128 processors. From the results, we can see that Charisma, in this benchmark,

incurs up to 5% performance overhead, which can be attributed to additional buffer copy for param-

eter variables. The reduction in SLOC is 37%. In this specificbenchmark, sequential components

dealing with local 1D and 2D FFT computation constitute a significant portion of the program, and

57

y
z

x

b) Transpose with Pencils

c) 2D FFT in XZ Planea) 1D FFT on Y Direction

Figure 5.3: Transpose-based 3D FFT Algorithm

NCSA Tungsten Cluster

E
xe

cu
tio

n
T

im
e

P
er

 S
te

p
(s

)

0

2

4

6

8

10

Number of Processors
8 16 32 64 128

Charm++ (SLOC=199)
Charisma (SLOC=126)

Figure 5.4: Performance of 3D FFT

foreach x in planes1
(pencildata[x,*]) <- planes1[x].fft1d();

end-foreach
foreach y in planes2
planes2[y].fft2d(pencildata[*,y]);

end-foreach

Figure 5.5: Orchestration Code for 3D FFT

therefore the reduction in the SLOC is not as significant as simpler programs. This percentage of

SLOC reduction is expected to be even smaller on larger and more complex programs. It must

be noted, however, that SLOC alone does not make a good metricof productivity as it does not

reflect the actual programming effort. In fact, in more complicated applications, expressing paral-

lel flow of control is far more difficult than in simpler cases,and tools such as Charisma can help

programmers code with less effort.

5.1.3 Wator

This program simulates a toroidal water (hence the name “Wator”) world. Each cell in the wator

world has either a shark or a fish, or water. Sharks and fish interact according to a set of rules.

Simple rules describe the movements of sharks and fish and thefact that sharks eat fish. More

58

Figure 5.6: Screenshot of Realtime Visualization of Wator

complicated ones may involve breeding, aging and starving of sharks and fish. The program con-

structs a 2-D decomposition of the 2-D wator world, similar to that in the 2-D stencil calculation.

At each time step, objects exchange border information in case sharks and fish move into neigh-

boring cells across an object boundary. Wator is more complicated than a 2-D stencil calculation

in that it contains two phases of updating the boundaries: fish action and shark action.

For this experiment, we added two features to the baseline program: automatic load balancing

and realtime visualization. Automatic load balancing is a feature provided by Charm++’s adaptive

run-time system. Once it is activated, the run-time will monitor the work load of all the processors,

and when a load balancing session is triggered, the run-timewill migrate objects across processors

to achieve a more equal work load distribution. Most of the object migration is done automatically

by the system and the programmer only has to provide code for packing and unpacking an object’s

memory and for triggering load balancing sessions.

The second feature called LiveViz, offers realtime visualization of a parallel program (See

Figure 5.6). The GUI client is a standalone Java tool sendingperiodic requests to the parallel

59

Charisma Charm++ SLOC Reduction
Baseline 253 354 28%
Load Balance 273 383 29%
Visualization 307 407 24%
Both 327 436 25%

Table 5.1: SLOC Comparison of Wator

application and each object answers the request by providing a buffer of color coded values. For

instance, in this experiment, different colors are used to represent water, fish and sharks in a cell.

In Table 5.1, we list the SLOC comparison for the baseline program and scenarios with differ-

ent features added using Charisma and Charm++. A 24-29% reduction in SLOC is observed when

Charisma is used to implement these features. Indeed, it is usually easier to add features to a paral-

lel program with Charisma. For example, to add load balancing to the Wator program, a Charm++

programmer needs 29 additional SLOC, while a Charisma programmer needs 20, because some of

the code is automatically generated by Charisma.

It is also worth noting that SLOC is a very linear measure. Notall lines of code contribute

equally to complexity. In this example as well as other examples where sequential components

make up a dominant part of the code, we would get an even largerpercentage of SLOC reduction

if we separate out the sequential functions and subroutineswhich are identical in both cases.

5.2 Classroom Productivity Study

Productivity of a HPC language is understood to be more difficult to measure than its performance.

In previous work [55, 56, 57], SLOC was used as a major metric of programmer productivity.

While SLOC provides valuable information about productivity, it is widely recognized to be an

incomplete means of measurement. For this reason, we conducted a preliminary classroom study

[58] to further investigate the productivity of programming in Charisma.

60

(Hours) 2D Stencil Wator
Charm++ Charisma Charm++ Charisma

Mean 16.84 11.18 24.08 20.47
Median 15.00 10.00 20.00 15.00
StdDev 11.12 6.23 12.39 12.91

Table 5.2: Number of Hours Spent on Development (Sample size19)

5.2.1 Experiment Environment and Results

Our study involved 25 students in an introductory course in parallel programming. The students

included 9 undergraduate students with a CS major, and 16 graduate students from both CS and

non-CS majors such as Material Science, Mechanical Engineering, Physics and Aerospace. The

average programming experience of the students was 6.16 years, and average years of parallel

programming experience was 0.58.

During this course, various parallel algorithms and programming languages/tools were taught

and the students were assigned a set of parallel programmingtasks, among which were 2D Stencil

and Wator, and they were asked to report the time spent (or estimate the time if the task was not

actually done) on each programming task with Charm++ and Charisma.

Among the 25 students, 4 did not finish the assignments and hence were unable to provide

dependable information. There were 2 entries with numbers too large or too small, so we excluded

them as well. The analysis is done on data from 19 students, 13graduates and 6 undergraduates.

We first looked at the number of hours spent on developing 2D Stencil and Wator programs.

The mean, median and standard deviation are listed in Table 5.2. Then we realized that since the

students have different levels of experience in programming and different levels of familiarity with

parallel programming languages, the percentage of development time reduction is a better metric

than the absolute number of hours. Therefore, we calculatedthe percentage of time saved by using

Charisma instead of Charm++, and the mean, median and standard deviation are given in Table 5.3.

Table 5.3 clearly illustrates that the standard deviation for all 19 students is large, pointing

to a wide distribution of results. We then tried two different schemes of grouping the students,

61

(Percentage) 2D Stencil Wator
Mean 22.35 15.90

Median 26.67 12.13
StdDev 37.76 26.45

Table 5.3: Percentage of Development Time Reduction Using Charisma over Charm++ (Sample
size 19)

(Percentage) Graduate (13) Undergraduate (6)
2D Stencil Wator 2D Stencil Wator

Mean 37.84 32.01 -4.21 -10.98
Median 38.33 40 0 -8.33
StdDev 24.38 19.13 43.41 12.56

Table 5.4: Percentage of Development Time Reduction Using Charisma over Charm++ (Graduate
vs. Undergraduate)

graduate vs. undergraduate, and CS major vs. non-CS major. The reason behind the grouping

is to differentiate between various levels of familiarity with programming and with engineering

models. Graduate students usually have more experience with programming in a research context

than undergraduates do and the non-CS majors typically havemore real-life experience working

on scientific or engineering models and have better understanding of the problems that needs par-

allelization. The results in Table 5.4 and Table 5.5 confirmed the validity of the classification

schemes, with the graduate and non-CS groups having much higher average development time

reduction and smaller standard deviation in the results, while the undergrad group and CS major

group find less merit in Charisma in terms of productivity, with a larger standard deviation.

Another method of visualizing the results is through a x-y spread plot as shown in Figure 5.7.

(Percentage) Non-CS (8) CS (11)
2D Stencil Wator 2D Stencil Wator

Mean 47.14 29.78 4.32 9.44
Median 51.47 37.50 0.00 0.00
StdDev 19.34 15.67 38.15 30.09

Table 5.5: Percentage of Development Time Reduction Using Charisma over Charm++ (CS vs.
Non-CS)

62

Jacobi Development Time (Hours)

Charm++
0 10 20 30 40 50

C
ha

ris
m

a

0

10

20

30

40

50
CS Undergrad

CS Grad

Non−CS Grad

Wator Development Time (Hours)

Charm++
0 10 20 30 40 50

C
ha

ris
m

a

0

10

20

30

40

50
CS Undergrad

CS Grad

Non−CS Grad

Figure 5.7: Spread Plot of Development Time with Charisma vs. Charm++

The non-CS graduate students (circles), who represent Charisma’s target users, are consistently

below the 45◦ line. In contrast, data points for other students (triangles) are spread more widely

and on both sides of the 45◦ line. We discuss the possible reasons in the next section.

5.2.2 Productivity Analysis

The productivity benefit of a parallel programming languagenotation is decided by a variety of

factors. Some factors such as programmer’s level of familiarity and experience, and knowledge of

problem domains, have little to do with the language itself.Others are properties of the language,

like the language complexity. The language complexity has two major components: syntactic

complexity and semantic complexity [55].

Syntactic complexity describes the difficulty of transforming an algorithm into source code in

that language. Since most programmers are accustomed to thesyntax of prevalent programming

languages such as C/C++, Fortran, or even Pascal, extraneous syntax beyond that in a new lan-

guage may make programs harder to write or to read with additional syntactic complexity. Many

63

parallel programming languages and tools minimally extendexisting languages to avoid syntactic

complexity. For instance, tools such as UPC and HPF have onlysimple extensions to the prevalent

languages. MPI has language bindings with C/C++ and Fortran, and provides a set of standard

library calls to perform the communications. Charisma is also designed with a goal of reducing

syntactic complexity by limiting the number of new syntactic features such as publish statement

and reusing keywords from existing languages in the orchestration code. In the sequential code, the

programmer is asked to write standard C/C++ code. As a futureplan, Charisma may incorporation

language binding for Fortran too.

A less obvious but arguably more significant issue is semantic complexity of the language.

Semantic complexity decides the difficulty of transformingfrom the sequential problem to the

parallel model that fits the language. It is largely independent of the syntax of the language, but

more closely connected with the programming model that the language provides, as well as the

level of abstraction. For example, MPI programs are writtenaround the concept of processors,

and therefore the programmers are expected to take into account the decomposition of the parallel

problem into processors, the mapping between processor andsubtask, communication optimiza-

tion, load balancing, and so forth. In contrast, Charisma isbuilt on top of an adaptive run-time

system that supports migratable objects and automates parallel resource management. In addition,

Charisma allows clear description of the global view of control in a parallel program. All these

factors contributes to a reduced semantic complexity when programming with Charisma.

In Section 3.2, we pointed out that Charisma’s targeted users are domain experts with am-

ple knowledge in their specific scientific and engineering fields but little parallel programming

training. In our classroom study, they are represented by the non-CS graduate students. To these

non-CS students, Charisma and Charm++ are equally alien languages to allow a fair comparison on

productivity, whereas to CS students, Charm++, being an extension to C++, has some advantage

on syntactic familiarity. Furthermore, the non-CS students typically have some experience with

programming but not much with parallel programming. When they take the course, they usually

have an actual problem in their fields of research that they hope to parallelize. To them, the key

64

to the productivity of a parallel language is its semantic complexity, or how difficult it is to trans-

form their sequential problems into the parallel model. Charisma’s object-based model apparently

makes it easier for them to parallelize their engineering problems. To CS students, who do not have

much opportunity to work with actual engineering problems,the syntactical factor plays a more

important role. They may find the syntactical elements of theorchestration code, such as publish

statement and parallel foreach, less than intuitive to use,and are consequently reluctant to accept

Charisma.

As this is only a preliminary classroom study, certain aspects can be improved. Firstly, we

can extend the set of applications to include examples from more problem domains. Secondly, we

can explore a larger metric space. In addition to development time, we can look at time spent on

designing, coding, debugging and running. Since what we really care is “time to solution”, scaling

performance of the resultant parallel program should also be taken into account. Literature on

related research on this topic can be found in [59, 60, 61]. Wehave plans to continue this parallel

programming productivity study in the future.

5.3 Code Comparison: MD

In this section, we show how Charisma can overcome some of Charm++’s difficulty of describing

global view of control with a concrete example. This exampleis a simplified version of the NAMD

simulation explained in Section 3.1, with only the pairwiseforce calculation included.Cells are

the objects that hold the coordinates of atoms in patches, and cellpairs are the objects calcu-

lating pairwise forces between twocells. In the following comparison, definitions for sequential

functions such asCell::Integrate andCellPair::calcForces are not listed, since they

access only local data and should be the same for both versions.

With Charisma, the MD code is listed in Figure 5.8. First, elements in object arraycells

producetheir coordinates, providing the initial data for the first iteration. During each iteration,

cellpairs calculate forces byconsumingthe coordinates provided by twocells elements. In

65

foreach i,j,k in cells
(coords[i,j,k]) <- cells[i,j,k].produceCoords();

end-foreach
for iter = 1 to MAX_ITER
foreach i1,j1,k1,i2,j2,k2 in cellpairs
(+forces[i1,j1,k1],+forces[i2,j2,k2])

<- cellpairs[i1,j1,k1,i2,j2,k2].calcForces(
coords[i1,j1,k1],coords[i2,j2,k2]);

end-foreach
foreach i,j,k in cells
(coords[i,j,k],+energy)

<- cells[i,j,k].integrate(forces[i,j,k]);
end-foreach
MDMain.updateEnergy(energy);

end-for

Figure 5.8: MD with Charisma: Clear Expression of Global View of Control

Figure 5.9: MD with Charm++: Overall Control Flow Buried in Objects’ Code

66

/* post recvs for all possible messages */
MPI_Irecv(...,reqs[0]);
. . .
MPI_Irecv(...,reqs[K-1]);
/* handle any incoming message

resulting broken modularity */
while(received<K){

MPI_Waitany(...,reqs,...);
switch(GET_TYPE(buf)){
case (FOR_ANGLE):

/* calculate angle forces */
case (FOR_PAIR_LEFT):

/* calculate pairwise forces */
case (FOR_PAIR_RIGHT):

/* calculate pairwise forces */
}

}

Figure 5.10: MD with MPI: Additional Code Required for Performance

the same statement,cellpairs produceforces combined via a reduction within acell’s neigh-

borhood. These values getconsumedin the integration phase. The integration alsoproduces

coordinates for the next iteration and total energy via a reduction operation across allcells. In

the Charisma code, each orchestration statement specifies which pieces of data itconsumesand

produces, without having to know the source and destination of those data items.

Figure 5.9 lists corresponding Charm++ pseudo code for the same program. In three boxes

are method definitions for three classesMainChare, Cell, andCellPair, which are typically

separated in different C files. Note thatCell andCellPair are object arrays. To organize the

global control flow, one has to dig into the files and hop among them. The control flows, as

represented by the arrows, are fragmented and buried in the object code. Following control flow in

such a parallel program is more complicated than in sequential object-oriented programming code

for two main reasons. Firstly, these arrows do not representregular function calls as in ordinary

object-oriented programs. The results of a function do not return immediately with the exit of

that function. Instead, there is a split phase control, where the values are returned with a separate

message and method invocation. Secondly, due to the complexity of the parallel operations among

67

the objects, the control transfers can take form of various communication such as point-to-point

communication, reduction, multicast and broadcast. For instance, collecting force data among a

cell’s neighboringcellpairs through a neighborhood reduction requires non-trivial code (not

shown in the pseudo code here), and this kind of code is automatically generated in the Charisma

version.

The corresponding MPI version will be much more complicatedthan the Charm++ version. In

addition to handling the collective operations, the MPI programmer has to write code for explicitly

managing various sets of subtasks, maintaining mapping scheme between subtasks’ identities and

their physical locations (processor number), and auxiliary code such as load balancing. When the

programmer wants to achieve higher degree of overlap between computation and communication,

more code is needed to handle the wildcard source and tag matching, as illustrated by the code

segment in Figure 5.10.

68

Chapter 6

Charisma Application Case Study

In this Chapter, we present two applications developed withCharisma. These two applications

both represent relatively new methods that become practical with recent development of parallel

computing tools. They are both complicated in structure.LeanCPhas nearly a dozen different

parallel objects and overlapping control flows, and topology optimization has multiple rounds of

nesting loops in its analysis process. We show the productivity benefits of Charisma through

describing the development and results of such applications. The performance results are obtained

on the Turing cluster with 640 dual Apple G5 nodes connected with Myrinet network at University

of Illinois.

6.1 LeanCP

Many important problems in material science, chemistry, solid-state physics, and biophysics re-

quire a modeling approach based on fundamental quantum mechanical principles. The exquisite

detail provided by atomistic simulation permits new mechanisms and processes to be easily identi-

fied and studied in a control way, and to provide novel insightinto well known phenomena that are

not understood at a basic level. For example, atom-level simulation study of enzyme structure and

reactivity (Figure 6.1) plays an important role in the advancement of science and technology [62].

Among the many variants of atomistic simulation, one important method is molecular dynamics

(MD), solving Newton’s equations of motion of aggregates ofatom and yielding both the structural

69

Figure 6.1: Visualization of Human Carbonic Anhydrase. Thecloud in the wire frame represents
the electron density of theab initio atoms.

and dynamical properties of the simulated system [63]. MD with classical Newton’s equations

is a powerful tool where the physically motivated gravitational forces are dominant. For more

complex systems undergoing reactions, however, an atomistic perspective needs to be taken into

account. At this level, the atoms consist of nuclei and electrons, and the system is driven by

interactions generated by electrostatic forces between the nuclei and interactions derived from

the quantum mechanical solution of electronic energy at fixed nuclear position. While the nuclei

remain classical objects subject to Newton’s laws, the forces upon them are derived from anab

initio or first principles approach [64]. Calculations based on this more advancedab initioapproach

are more powerful and more computationally intensive.

A particular approach that has been proven to be relatively efficient and useful is Car-Parrinello

ab initio molecular dynamics (CPAIMD) [65]. Parallelization of thisapproach is challenging due

to the complex dependences among various subcomputations,which lead to complex communica-

tion optimization and load balancing problems. In the implementation of CPAIMD with Charm++,

calledLeanCP, the subcomputations are implemented as different sets of object arrays, and the

communication optimization and load balancing are handledautomatically by the run-time sys-

70

tem. However, the complicated flow of control is buried deeply inside object code of the various

classes. Thus, it makes a perfect example where Charisma canoffer higher productivity via clear

expression of global view of control while still sustainingthe benefits of the adaptive run-time

system. It is worth noting that LeanCP is a Charm++ application developed in a collaboration in-

volving a team of scientists and parallel programmers. The collaboration has generated more than

20,000 lines of source code during several years of hard work. As a result, LeanCP code is highly

optimized in terms of both parallel programming techniquesand scientific algorithms. Since we

cannot quite match the effort involved for this study, we aimat making sure that we can capture

the overall structure of this application with Charisma.

6.1.1 Implementation with Charisma

In CPAIMD, the ground state electronic energy is calculatedby minimizing a functional of the elec-

tron density following the principles of Density Functional Theory[66]. The functional contains

several terms, the quantum mechanicalkinetic energy of non-interacting electrons, the Coulomb

interaction between electrons or theHartreeenergy, the correction of the Hartree energy to account

for the quantum nature of the electrons or theexchange-correlationenergy, and the interaction of

the electrons with the atoms in the system or theexternalenergy. In the last term, the interaction of

the valence electrons with the atoms is treated explicitly,and the core electrons are mathematically

removed, resulting in what is called thenon-localenergy.

The CPAIMD computation consists of several steps of computation and communication. These

steps include (1) computation of the electron density from the electronic states, (2) computation of

the exchange correlation and Hartree from the density and the computation of the local electron-

particle interaction, (3) computation of the structure factor from the particles, (4) computation of

the non-local electron particle energy/forces from the electronic states and the structure factor (5)

computation of the lambda-matrix from the forces and (6) computation of the S-matrix from the

states.

Figure 6.2 shows the structure of LeanCP, where 11 distinctive object arrays are created to

71

Figure 6.2: Structure of LeanCP

72

execute different subtasks. The object arrays and their functionalities are listed below.

• GSpaceandRealSpace: Working together, these “State” object arrays create the electronic

density in real space (R-Space) and pass it to the “Density” object arrays (Phases I and II).

They also receive force data in R-Space from Density object arrays and derive it into G-

Space force data (Phases V and VI). The communications between the two object arrays are

transpose operations, and the communications between RealSpace and RhoR are a reduction

and a multicast. Note that in the figure, boxes representing GSpace and RealSpace arrays

are shown twice for Phase I and Phase VI for the sake of clarity.

• RhoR andRhoG: These two Density object arrays transform electron density from R-Space

to G-Space (Phase III), and perform or prepare to perform computation of the “exchange-

correlation energy”. The exchange-correlation energy hasa few components which are de-

rived here with or without the gradient of the electronic density in R-Space (Phase IV). In

addition, they copy the Fourier coefficients of the density to the “Hartree” object arrays to

compute the “Hartree and external energies”. Finally, the energies are sent back to State

object arrays with a reduction. The communications involveinclude transpose operations

for 3D FFT, and point-to-point communication between the Hartree objects, and multicast

and reduction with the State objects.

• RhoRHart andRhoGHart : These two Hartree object arrays calculate the Hartree and ex-

ternal energies (Phase IV). Similar to the above Density objects, transpose and point-to-point

communications are used.

• Particle and RealParticle: The kinetic energy of the non-interacting electrons are com-

puted without communication in these two “Particle” objectarrays (Phase IX). This flow is

independent of the computation in Phases II-VI.

• Ortho , Lambda andPair Calculator: After the forces have been computed, a series of

matrix multiplications are performed for regularization and ortho-normalization, in these

73

three object arrays (Phases VII and VIII).

Although the Charm++ implementation could give unprecedented scalability performance [14,

15] on this problem, it suffers from an obscure flow of control, especially at a global view. With

the overlapping flows of interactions among the objects shown in Figure 6.2, one can imagine how

difficult it would be to follow the control flow in the object-based code at a global level. The sheer

number of object arrays and variety of communication patterns involved pose a great productivity

challenge to developers and readers of the program alike.

Our goal is to collect first-hand experience in terms of productivity and performance through

developing a Charisma version of LeanCP. By examining the orchestration code, we exhibit that

Charisma is able to significantly reduce the effort in programming as well as in understanding the

flows in the program.

The following code segment is a simple example of a point-to-point communication. When

the indexes on the producing object array (rhoG) and consuming object array (rhoGHart) match

with the indexes of the parameter variablecRGToRGHart, each object produces and consumes

exactly one element in the parameter, and hence the generated communication is a point-to-point

operation.

foreach y in rhoG
(...,cRGToRGHart[y]) <- rhoG[y].PhaseIV1(cRRealToRG[y,*]);

end-foreach

foreach y in rhoGHart
(...) <- rhoGHart[y].PhaseIV1(cRGToRGHart[y]);

end-foreach

Figure 6.3: Point-to-Point Operation in LeanCP

The next code segment shows the transpose and reduction operations in Phases II and III.

The two object arrays are 2-D:gSpacePlane is with [nstate, ny], andrealSpacePlane is in

[nstate, nz]. Correspondingly, the parameter variablecSGToSReal is 3-D with [nstate, ny, nz].

The wildcard “*” in the produced parameter denotes that eachgSpacePlane object is producing

74

multiple (nz, to be exact) elements ofcSGToSReal data structure, and the wildcard in the con-

sumed parameter means eachrealSpacePlane collectsny elements ofcSGToSReal before the

method can be invoked.

foreach i,y in gSpacePlane
(cSGToSReal[i,y,*]) <- gSpacePlane[i,y].PhaseI();

end-foreach

foreach i,z in realSpacePlane
(+rSRealToRReal[z])

<- realSpacePlane[i,z].PhaseII(cSGToSReal[i,*,z]);
end-foreach

foreach z in rhoReal
(...) <- rhoReal[z].PhaseIII1(rSRealToRReal[z]);

end-foreach

Figure 6.4: Transpose and Reduction Operations in LeanCP

Similarly, this is the orchestration code for Phases V and VI, involving a multicast followed by

a transpose operation.

foreach z in rhoReal
(rSRealToRReal[z]) <- rhoReal[z].PhaseIII2(...);

end-foreach

foreach i,z in realSpacePlane
(cSRealToSG[i,*,z])

<- realSpacePlane[i,z].PhaseV(rSRealToRReal[z]);
end-foreach

foreach i,y in gSpacePlane
gSpacePlane[i,y].PhaseVI(cSRealToSG[i,y,*]);

end-foreach

Figure 6.5: Multicast and Transpose Operations in LeanCP

6.1.2 Results

We measured the performance of our Charisma version of LeanCP on the Turing cluster, and

the results are shown in Figure 6.6. It is necessary to repeatthat we do not expect to match the

75

1

10

Ite
ra

tio
n

T
im

e
(s

)

P
8 16 32 64 128 256 512

Figure 6.6: Performance of Charisma Version of LeanCP on Turing Cluster

performance of the Charisma version with the original Charm++ version, because it is impossible

to repeat the significant amount of effort devoted in the Charm++ version within the given period

time allowed for preparing this example. Although our Charisma version is not equipped with

many optimizations, it scales smoothly up to 128 PEs.

6.2 Parallel Topology Optimization

The Topology optimization method [67] has become an interesting subject of research with recent

developments in structural optimization. Traditional structural optimization aims to find structures

such that their size or shape is optimal in a certain sense andsatisfies certain constraints. For

example, the 3D shape with minimal surface area for a given volume is a sphere. In addition to

size and shape, topology optimization takes into account the topology of the structure, including

connectivity and boundaries. It has been applied to a wide range of structural design problems in

such fields as civil engineering. The topology optimizationmethod is extremely computationally

intensive. For this reason, even though the theoretical methods were proposed a long time ago,

practical use has not been widespread until recently, as massively parallel supercomputers have

76

become available [68, 69].

The problem to solve in this specific application is to find a structure that maximizes the trans-

portation of heat from a heat source to the boundary of the design space, given a limited amount

of conductive material. It is an interesting problem because the resultant 3D structure will resem-

ble that of blood vessel and capillary system in nature. The heat transfer formulation is elegantly

simple, so that the complexity of the finite element analysiscan be reduced.

The formal description of the problem is as follows.

min
ρe

θ(u, ρe) s.t.K(Ee)u = f (6.1)

Ee = ρp
e Eo (6.2)

n∑

e=1

ρeve ≤ Vo (6.3)

0 ≤ ρe ≤ 1, e = 1..n (6.4)

whereθ is the objective function to be minimized, in this case the temperature at the heat source;

n is the number of elements in the domain;Ee is the conductivity corresponding to intermediate

densities;Eo is the conductivity of the base material;K(Ee) is the conductivity matrix, which is a

function of the material propertiesEe; Vo is the upper bound constraint on the total volume of the

structure.

6.2.1 Development Process

The process of topology optimization is shown in the flow chart in Figure 6.7. It is an iterative

method. First, the initial parameters and conditions are set, and we parameterize the design prob-

lem by dividing the domain into finite elements. At each step,the tentative model goes through

finite element analysis to obtain the performance of the evolving structure. Then sensitivity anal-

ysis is carried out to assess how the performance will changewhen design variables are changed.

The result from sensitivity analysis is used for an appropriate optimization algorithm to update the

77

Initial

model

Finite element analysis

Sensitivity analysis

Update material distribution

Converged?

Result

Yes

No

Figure 6.7: Topology Optimization Process

design variables. At the end of the design process, after theevolution of the structure is tested to

be converged, each point in the domain has either a point withmaterial or without material (with

density of 1 or 0). The optimized structure emerges as material points cluster together to form

interconnected members. The material points define the structure in a similar way to how pixels

define a image, except that it is in 3D space.

The development team consists of 4 people, with 2 students from a civil engineering back-

ground and 2 students from computer science with parallel programming experience. We chose

Charisma as the parallel programming tool and follow the development method described in Sec-

tion 3.2.4. The group was divided into two teams: thedomain team, which includes the two civil

engineering students, is responsible for developing the domain model and preparing sequential

components. At the first group meeting, the domain team explained the problem to theparallel

team, which includes the two computer science students. The parallel team then proposed alterna-

tive approaches of partitioning and parallelizing the problem. Thanks to Charisma’s higher-level

abstraction, it is easy to illustrate how the domain is partitioned into subtasks (parallel objects) and

78

how they interact during the whole process in a global view. Subsequently, the two team discussed

the overheads and complexities of each alternative approach and decided on a final parallelization

scheme.

Charisma separates the specification of parallelism from sequential component development,

so the two teams can focus on their respective tasks. The parallel team worked on creating data

structures used in the parallel data flow (parameter space variables) and organizing the global

control flow with the orchestration code. The domain team wrote code (or transformed existing

sequential code) for local computations of the parallel objects. With no parallel context involved

in the local operations, the functions are simpler for developers on the domain team.

Then the two teams met again to integrate their code. The interfaces of some local functions

were slightly adjusted to fit in, and Charisma compiler generated the parallel code which invokes

these local computation functions. With the generated parallel code, the domain team was able

to verify the correctness with small scale runs, while the parallel team worked on optimizations

such as performance tuning and adding load balancing modules, before the program was finally

submitted for performance runs.

6.2.2 Results

In order to construct high quality 3D structures, a large number of design variables are required,

which requires significant amount of computing capacity. Figure 6.8 shows the visualization of the

outputs from our application, with different number of elements in the model, and hence different

levels of resolution quality as well as different amount of total computation.

Our topology optimization application with 1,000,000 elements in the mesh scales from 2 to

256 processors on Turing Cluster, as shown in Figure 6.9. Thescalability is less than perfect in this

case, because the communication between the objects is veryheavy, including all the boundary ex-

change in neighboring faces, edges and corners. These factors are independent of the programming

language used. Again, the most interesting part is the development process of this application and

how quickly a fairly complicated parallel program can be developed.

79

(a) 64 Elements (b) 4,096 Elements

(c) 262,144 Elements (d) 1,000,000 Elements

Figure 6.8: Visualization of Optimized Topology for 3D HeatTransfer Problem

80

10

100

Ite
ra

tio
n

T
im

e
(s

)

P
4 8 16 32 64 128 256

Figure 6.9: Performance of 1,000,000 Element Topology Optimization Application on Turing
Cluster

81

82

Chapter 7

Adaptivity Support for Prevalent
Languages

There are a variety of important programming languages, libraries and tools that offer advanced

features and useful programming models. The messaging passing paradigm represented by MPI

has established itself as the dominant programming model for scalable scientific applications, with

its explicit management of communication. A collection of global address space (GAS) languages

compete and complement the message passing model by supporting a global view of distributed

data structures. Some of the important GAS languages include Global Array (GA) [21], Unified

Parallel C (UPC) [22], and Co-Array Fortran (CAF) [23]. GAS languages furnish high productivity

programming abstractions to applications written in standard programming languages such as C,

C++ or Fortran.

This thesis proposes providing adaptivity support for important existing parallel programming

paradigms, including the message passing and distributed shared memory models, and further

supporting existing applications developed with such models and languages. Specifically, we in-

vestigate research issues in adaptivity support for Message Passing Interface (MPI) and Aggregate

Remote Memory Copy Interface (ARMCI) [70] on the Adaptive Run-Time System (ARTS). MPI

and ARMCI represent different data-exchange models, and our research will explore how these

models can be developed on the foundation of ARTS.

83

7.1 Design Goals

Based on the features available on the adaptive run-time system, we set the following design goals

for supporting adaptivity in prevalent programming paradigms.

Adaptive overlap between communication and computation: Effective overlap between

communication and computation boosts the efficiency of a parallel system and hence is an impor-

tant performance issue in parallel programming. For example, when an MPI program hits a receive

operation, ideally the corresponding message should have already arrived so that the process is not

blocked and can avoid wasting CPU time. To achieve this, the programmer tries to move sends up

and receives down, and fit some computation between sends andreceives, giving time for commu-

nication to complete. This manual approach adds to the programming complexity, and even that is

often inadequate. Our design should allow adaptive overlapof communication and computation,

improving program efficiency without inducing this kind of programming complexity.

Automatic load balancing: Many scientific applications have dynamically varying workload

distribution. The computing hotspots can be constantly shifting, as exemplified in the fracture

propagation simulation and adaptive mesh refinement methods. For parallel programs load im-

balance has an especially high performance impact, becausethe slowest node dictates the overall

performance of the whole system. Run-time load balancing should be effective, adaptive to the

application as well as to the parallel platform, and be automated so that minimal user effort is

required.

We explore our design alternatives with these goals in mind.We take an over-decomposition

approach to adaptive overlapping and virtualize processeswith parallel flows of control. Design

alternatives for parallel flows of control that we examined include processes, kernel threads, and

user-level threads. On a wide range of platforms, we compared various aspects including maximum

number of flows per processor, context switch overhead, and migratability [71]. We concluded that

user-level thread is the best fit.

Load balancing requires migratability of our user-level threads as well as the capability of the

84

underlying run-time system to monitor workload distribution dynamically. The run-time should

also be able to observe communication patterns happening inthe system, so that it can advise

communication-aware load balancing strategies. The design should be built on top of a run-time

system with such capabilities.

7.2 Processor Virtualization Via Migratable Threads

Our approach to adaptivity support for prevalent paradigmson the ARTS is based onprocessor

virtualization [72]. The basic idea is to execute parallel processes with Charm++ migratable ob-

jects on each process. Several of these Virtual Processors (VPs) can be mapped onto one physical

processor. This gives the run-time system flexibility in resource management for the VPs, and

gives the programmer freedom to decompose the parallel job the way that best suits the algorithm.

7.2.1 Charm++ Facilities

Charm++ offers a set of features that facilitate processor virtualization for common programming

paradigms. To start with, Charm++’s abstraction of object arrays, which is a collection of objects

indexed by any general index structure, turns out to providea basic functionality needed by most

paradigms. The objects are indexed by their rank and the run-time system offers efficient mech-

anisms for locating objects, redirecting messages to them after migration, and maintaining tables

of known locations. Moreover, Charm++’s built-in communication functions, including broadcast

and reduction, can also be used for intrinsic communications for some of the paradigms such as

MPI Bcast andMPI Reduce.

One of the most important performance benefits of Charm++’s ARTS is automatic load balanc-

ing. It is based on an empirical heuristic calledPrinciple of Persistence[72], which simply says

that for most parallel programs expressed in terms of VPs, the computation loads and communi-

cation patterns tend to persist over time. Based on the principle of persistence, our ARTS uses a

measurement based load balancing scheme in which a load balance manager constantly monitors

85

the work load distribution across the system and migrates objects according to a given load bal-

ancing strategy to redistribute the work load. The load balancing module is responsible for making

decisions and migrating objects around, yet it is the objects’ responsibility to ensure the integrity

of their data during migration, also called migratability of objects.

Threaded Charm++, orTCharm, is a framework built on top of Charm++ that provides common

run-time support for migratable and light-weight threads1. These threads are created and scheduled

by user-level code rather than by the operating system kernel. The advantage of user-level threads

are fast context switching2, control over scheduling, and control over stack allocation. Thus,

it is feasible to run a large number of such threads on one physical processor. TCharm threads

are scheduled non-preemptively. When another framework needs thread support, the programmer

simply “binds” the set of objects from that framework onto a set of TCharm threads. The virtual

processes then use the bound threads as needed for blocking and resuming functionalities. The

ARTS always migrates the bound objects and threads together.

7.2.2 Implementing Virtual Processes

In order to take advantage of these Charm++ facilities, we choose to implement virtual processes

in prevalent paradigms as user-level threads bound to parallel objects, as illustrated in Figure 7.1.

The rank of a VP corresponds to the index of the parallel object and is independent of the rank

of the physical processor it resides on. As the parallel object and the user-level thread are bound

together, they always migrate together, for example, during a load balancing session.

The threads used are TCharm threads. Because they are light-weight user-level threads, we

are able to run thousands of threads per processor [73] and keep the context switch overhead at

microsecond level. One experiment shows the overhead for suspend/schedule/resume operation is

0.45 microsecond on a 1.8 GHz AMD AthlonXP machine.

1TCharm was created by former PPL member Orion Lawlor and maintained by Gengbin Zheng and other group
members.

2Overhead for a spend/schedule/resume operation is less than 1 microsecond on a 1.8 GHz AMD AthlonXP work-
station.

86

Figure 7.1: Implementation of Virtual Processors

Communication among VPs is implemented as messages among the parallel objects. Although

it has been explain in Section 2.1, it is worth reiterating for the sake of clarity how the ARTS

supports efficient routing and forwarding of these messagesin the presence of object migration.

When the destination VP migrates during the transmission ofa message, the Charm++ message

will be delivered to the object regardless of its current physical location. The ARTS provides a

scalable mechanism to determine the location of a given VP. First of all, the system maps any VP

index onto a home processor that always knows where the corresponding VP can be reached. When

the VP migrates away, it updates its home processor of its current location. A message destined

for it will still be sent to its home processor, which in turn forwards the message to its current

residing processor. Since this forwarding is inefficient, the home processor will inform the sender

of the VP’s current location, advising it to send future messages directly to the new location. This

mechanism avoids having a central registry which consumes enormous non-distributed storage and

presents a serial bottleneck or a broadcast-based mechanism that wastes bandwidth.

87

7.2.3 Handling Global Variables

The use of global variables can result in a confusing program, since the value of a global variable

can be changed by any code in any scope in the program, making the code harder to understand.

It can cause potential naming problems when global variables in different modules with the same

name cause naming conflict. Despite all this, the practice ofusing global variables is not un-

common in existing parallel paradigms such as MPI. In our thread-based design, however, global

variables can pose an even larger data integrity problem, because when many threads run on one

processor, global variables in the user code become unsafe in such a multi-threading environment.

Indeed, while a global variable is processor-private in a traditional processor-based paradigm such

as MPI, the same “global variable” is meant to be a thread-private variable in our thread-based

implementation. To ensure the thread safety of user global variables with minimum programmer

involvement, we have explored several alternative approaches.

The first solution is calledswap-globalimplemented on run-time level. It is based on the

Executable and Linking Format (ELF) in a way similar to the Weaves run-time framework [74].

Previous group member Sameer Kumar together with Gengbin Zheng started implementing this

scheme. ELF [75] is a common standard binary file format amongvarious Unix systems including

Linux, Solaris, and FreeBSD. In a dynamically linked ELF executable, the set of global variables

are accessed via the Global Offset Table (GOT), which contains one pointer to each global variable.

The scheme makes a copy of the GOT for each thread, and swaps the pointer to the corresponding

GOT when the thread scheduler switches threads. With this approach, the additional context switch

overhead is negligible, since it is only swapping a pointer.

On platforms where the GOT does not exists, a variation of this approach makes copies of the

global variable data items, and copies in and out the data when threads switch. This alternative,

calledcopy-global, is a feasible alternative when the total size of the global variables is not too

large.

The third approach is global variable removal done at code level. The idea is to collect all

88

the global variables into a non-global data structure and pass it into each function referencing any

of the global variables. This process is mechanical and sometimes cumbersome. In some simple

cases, this task can be performed manually. More than often,the user code is too complicated

to remove global variables by hand. Fortunately, it can be automated by source-to-source trans-

lation, such asAMPIzer[76] based on Polaris [77] that privatizes global variablesfrom arbitrary

MPI code in Fortran77 or Fortran90 and generates necessary code for moving the data across pro-

cessors. Similar tool for handling C/C++ code is also being built based on the source-to-source

transformation framework Rose [78, 79] by PPL group members.

7.2.4 Migrating Thread Data

One of the biggest challenges in migrating threads is to migrate thread data. Specifically, it is

challenging to extract the useful stack and heap data that belongs to a thread, and to update the

correct values of pointers contained in thread data, including function return addresses, frame

pointers and pointer variables, on the new processor after migration. Our design includes two

different approaches: automaticisomallocand manualPUPer functions.

The idea behind isomalloc is to guarantee that a data item of athread will always have exactly

the same address on the new processor as on the old processor.With this guarantee satisfied, no

pointers need to be updated because all the references remain valid on the new processor. This idea

was originally developed for thread migration in the PM2 run-time system [80].

As illustrated in Figure 7.2, a unused range of virtual address space common across all pro-

cessors, callediso-addressarea, is reserved on all processors. The iso-address area isthen divided

into P regions, each for one processor. Note that only virtual memory is reserved, and not any

physical memory is actually allocated. When the thread allocates data, the slot corresponding to

that thread will be used. When the thread moves to a new processor, the run-time system simply

copies over the iso-mallocated data in the corresponding slot, knowing the same virtual addresses

are guaranteed to be valid on the destination processor.

While the isomalloc approach enables automatic thread datamigration, it requires large virtual

89

Figure 7.2: Migrating a Thread Stack Allocated with Isomalloc

address space, especially when the number of threads is large. The second solution takes an alter-

native approach, requiring the programmer to specify in code the data items to move at migration.

As an extension to the system’s PUP (Packing and UnPacking) framework, the programmer writes

a PUP’er function to iterate through the data items chosen tobe moved. Compared with the isoma-

lloc approach which copies every piece of data with the thread, this scheme allows the programmer

to choose data items to move along. Since the programmer has the best knowledge of the life cycle

of the data items, only those essential for restarting the thread execution on the new processor are

moved. Therefore, the PUPer solution has an performance advantage at the cost of addition user

code.

7.2.5 Automatic Checkpointing

Based on migratable threads, the ARTS supports checkpoint/restart mechanisms with minimal

user intervention required. Because the program comprisesmigratable parallel threads, the ARTS

checkpoints the program by migrating all the threads from the processors to stable media: either

hard disk drive or memory on peer nodes[11]. At restart phase, the threads are migrated back from

the storage, run-time system information and user data restored, and the execution is restarted from

where the checkpoint has happened[9].

90

It is important to note that the checkpoint/restart mechanism in the ARTS has benefits beyond

fault tolerance. It also offers the capability of adapting to a changing computing environment.

Imagine if we lose 1 node out of a 1024-node partition in the middle of a long execution. We can

immediately work around this failure and restart the checkpointed program, with the same number

of VPs, on 1023 physical processors. Moreover, this conceptcan be extended to a shrink/expand

feature, which allows an adaptive application executed on the ARTS to shrink or expand the set of

physical nodes on which it runs at run-time, adapting to changing load on workstation clusters, or

enabling more flexible job scheduling for time-shared machines.

7.3 Adaptive MPI

Adaptive MPI is our implementation of MPI on top of the ARTS. It was started by Milind Bhan-

darkar [81] and other previous group members with a minimal set of functions implemented as a

proof of concept. I continued this project by developing a complete MPI-1.1 implementation and

a partial MPI-2 implementation. Together with other group members at PPL, I also carried out a

set of performance analysis and applied various performance optimizations. With my work, AMPI

has become a mature MPI implementation that are used in real-life applications.

Traditional MPI programs divide the computation ontoP processes and typical MPI implemen-

tations simply execute each process on one of theP processors. In contrast, an AMPI programmer

divides the computation intoV virtual MPI processes (VPs). The system maps these VPs onto

P physical processors. The number of VPs,V , and the number of physical processors,P , are

independent, allowing the programmer to design a more natural expression of the algorithm.

For example, algorithmic considerations often restrict the number of processors to a power of

two or a cube number, and with AMPI,V can still be a cube number even thoughP is prime.

WhenV = P , the program executes the same way it would with any typical MPI implementation,

and it enjoys only part of the benefits of AMPI, such as collective communication optimization.

To take full advantage of the AMPI run-time system, we haveV much larger thanP .

91

Figure 7.3: Structure of Rocket Simulation Code with Typical MPI Implementation

Figure 7.4: Structure of Rocket Simulation Code with AMPI’sAdaptivity Support

AMPI offers an effective division of labor between the programmer and the run-time system.

The program for each process still has the same syntax as specified in the MPI Standard. Further,

not being restricted by the physical processors, the programmer is able to design more flexible

partitioning that best fits the nature of the parallel problem. The run-time system, on the other hand,

has the opportunity of adaptively mapping and re-mapping the programmer’s virtual processors

onto the physical machine.

Besides the performance benefits that we are going to presentin Chapter 8, this design helps

AMPI programmers to practice good software engineering disciplines such as high cohesion and

low coupling. High cohesion means any module in a program should be understandable as a mean-

ingful unit and components of a module should be closely related to one another. Low coupling

requires that different modules be understandable separately and have low interaction with one

another. With MPI’s traditional processor-centric programming model, it is often almost inevitable

that programmers will violate these principles. With virtualized processes, on the other hand, pro-

grammers are given the freedom to partition and structure the parallel application in accordance

with good software engineering principles.

92

For a realistic example, consider a version of the rocket simulation code developed at the Cen-

ter for Simulation of Advanced Rockets (CSAR) at Illinois [1, 2] (See Section 8.2.1). Figures

shown here are simplified representation of the applicationstructure which consists of two mod-

ules,RocfloandRocsolid. Rocflo module simulates the structure of fluid dynamics of the burning

gas in a rocket booster, and the Rocsolid module models the structure of the solid fuel inside the

booster. With typical MPI implementation, the fluid mesh andthe solid meshes are required to be

glued together on each processor, even though these two different meshes are decomposed sep-

arately by each module and have no logical connection, as shown in Figure 7.3. With AMPI’s

adaptivity support, the work-and-data units of each modulewith its own set of VPs of different

sizes can be separated to allow natural expression of the algorithm, as illustrated in Figure 7.4.

7.3.1 Support for Sequential Replay of an MPI Node

When we use AMPI in our petascale simulation project BigSim at PPL, support for sequential re-

play of a node in a parallel MPI program is needed for higher simulation accuracy. BigSim [82, 83]

is an emulation/simulation system based on the adaptive run-time system built by Gengbin Zheng,

Terry Wilmarth and other group members at PPL. Its objectiveis to allow one to develop, debug

and tune/scale/predict the performance of large scale applications for petascale supercomputers

before such machines are available, so that the applications can be ready when the machine first

becomes operational. It also allows easier “offline” experimentation of parallel performance tuning

strategies, without using the full parallel computer. To the machine architects, BigSim provides

a method for modeling the impact of architectural choices onactual, full-scale applications. The

BigSim system consists of an emulator and a simulator. The emulator can take any Charm++ or

AMPI program and run it with a specified number of emulated processors. On the emulator, the

application can be tested and debugged with the same number of processes as a performance run,

offering a more realistic environment. Also, the emulator can generate traces that are used for

timing predictions and performance analysis with the simulator. The trace-driven parallel discrete

even simulator is capable of modeling architectural parameters of the target machine.

93

For more accurate performance prediction, we run the application on a vendor-supplied archi-

tectural simulator, where interesting sections of the application can be simulated with instruction-

level accuracy. One obstacle is that many architectural simulators operate under a sequential setting

only. It is impossible to set up a parallel run of a group of simulators with communication among

them. Therefore, support for sequential replay of a node in aparallel AMPI program run is needed.

Our solution is to replicate the change of MPI context on the chosen processor. MPI context

includes not only the incoming and outgoing messages, but also MPI environmental variables such

as communicators and outstanding requests. Firstly, in communication-related MPI calls, all the

incoming messages are logged so that the in-order delivery can be repeated. Outgoing messages

are simply discarded since they are not used in the sequential replay anyways. In addition, in MPI

environment management calls, such as MPI communicator manipulations, the output parameters

are saved in log files. At the sequential replay phase, the application is launched as a stand-alone

program. When an MPI call is reached, the output data, such asan incoming message, is read

in from the log file, and whenever a non-communication call isreached, the values of its output

parameters are retrieved from the log file. With the above support, the sequential replay skips the

actual MPI communication on the architectural simulator, allowing it to focus on simulating the

more interesting section of the application.

7.4 Adaptive Implementation of ARMCI

Aggregate Remote Memory Copy Interface (ARMCI) is a libraryfor high-performance remote

memory copy supported on multiple platforms. It provides aninterface for data transfer operations

including put, get and accumulate, in both blocking and nonblocking modes. Thanks to its well

designed interface, wide portability and low overhead, ARMCI has been used in several global

address space languages and parallel distributed-array libraries and compiler run-time systems,

including Global Array[21] and Co-Array Fortran Compiler[23].

Our effort to support adaptivity in ARMCI started with an preliminary implementation by Chee

94

Wai Lee and later on developed and maintained by me. Virtual ARMCI processes are implemented

with user-level TCharm threads embedded in migratable objects. Each VP encapsulates the state of

an ARMCI process required for operations, such as the memorypointers maintained remote copy.

As described in Section 7.2.1, each VP is bound to a user-level thread so that they always migrate

together during load balancing. To support migratable VPs,memory copy is implemented through

messages between objects, because messages can be forwarded by the ARTS to the destination VP

even after migration.

ARMCI provides a collective memory allocation scheme for use with copy operations. The

collective call returns to every ARMCI VP an array of pointers to the newly allocated memory

on each ARMCI VP. The user then uses these pointers to determine the memory locations for

copy operations. In general, to support adaptivity and migration under this scheme for memory

allocation, the system would have to broadcast the new pointer locations for each allocated memory

block of each migrated ARMCI VP to every other ARMCI VP. We have chosen to implement this

memory allocation scheme usingisomalloc heap, which shares the same idea as in isomalloc stack

in Section 7.2.1. When the collective malloc function is called, each VP allocates a region of

memory space in its own isomalloc slot for later memory copy use. This ensures a remote address

would remain valid after the VP migrates.

7.4.1 Performance Evaluation

In this section we show some preliminary performance results of adaptive implementation of

ARMCI. Because our implementation uses messages to implement memory copy, and our cur-

rent implementation does not make full use of the native RDMAmechanism available, we do not

expect to have better performance than the native implementation now. The short message latency

of the adaptive implementation is 28µs for get and 27µs for put, about 12µs slower than the native

implementation. This is due to an extra ARMCI message header(∼70 bytes) and a 2 - 4 microsec-

ond increase in thread context switch overhead as well as scheduling overhead. For long messages,

data in Figures 7.5 and 7.6 show that we pay the overhead of extra message copying in order to

95

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Contiguous Get

Adaptive
Native

(a) Get

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Contiguous Put

Adaptive
Native

(b) Put

Figure 7.5: Contiguous Copy Performance of Adaptive and Native Implementations

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Strided Get

Adaptive
Native

(a) Get

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Strided Put

Adaptive
Native

(b) Put

Figure 7.6: Strided Copy Performance of Adaptive and NativeImplementations

96

support migratable objects. It is important to note that adaptivity features such as adaptive overlap

and automatic load balancing are expected to enable our implementation to outperform in real-life

applications.

7.5 Interoperability Support

Interoperability is essential for large scale parallel application development, and a common adap-

tive run-time system is an ideal foundation to build the interoperability on. We will describe our

support for inter-module and inter-paradigm interoperability in detail.

7.5.1 Inter-Module Interoperability

Large scale parallel applications are usually composed of multiple modules from many disciplines.

For example, the rocket simulation application described in Section 7.3 has modules developed by

scientists and engineers from various backgrounds, such asfluid dynamics, structural dynamics,

and combustion. The modules are developed by different teams in a collaborative way, but each

still maintains certain level of independence. In the case of MPI, each module usually has their

own MPI COMM WORLD and their set of communicators. To permit inter-module communication

in this kind of application, we have implemented an extension to AMPI. Similar process can be

applied to add the extension to adaptive implementations toall other paradigms.

Normally, each AMPI application module runs VPs within its own group of user-level threads

distributed over the physical parallel machine. The VPs areorganized into communicators such

asMPI COMM WORLD and they start execution from theMPI Main function. When there are more

than one modules co-existing within the same executable, there are several things that needs to be

changed. First, a top level registration routine needs to beextended to register all the modules’ main

functions. This tells the run-time system to invoke all the modules from their entrance points. Sec-

ondly, acommunicator universeis added to unite all theMPI COMM WORLDs so that inter-module

communication is possible. A communicator universe, aptlycalledMPI COMM UNIVERSE, is im-

97

plemented as an array of communicators. For instance, in therocket simulation example, the call to

send a message from the Solids VP number 36 to the Fluids VP number 47 looks like the following.

In the Solids module:

MPI_Send(nSolids, 1, MPI_INT, tag, 47,

MPI_Comm_Universe(Fluids_Comm));

And in the Fluids module:

MPI_Recv(nSolids, 1, MPI_INT, tag, 36,

MPI_Comm_Universe(Solids_Comm), &stat);

7.5.2 Inter-Paradigm Interoperability

Beyond inter-module interoperability within the same paradigm, it is equally if not more impor-

tant to enable inter-paradigm interoperability. In our context, it is the capability of interoperate

between a Charm++ module and an AMPI or ARMCI module on the common ARTS. In fact, our

adaptivity support enables one to run legacy code in these prevalent paradigms on the adaptive run-

time system, with the VPs executed as Charm++ objects. This makes the interoperation between

modules across paradigms a natural and easy process. For instance, in the MPI or ARMCI code,

the programmer can create Charm object arrays and invoke entry methods on them. In a Charm++

or Charisma program, the user can also take advantage of any function calls in MPI or ARMCI.

The following code segment is an example of creating a Charm++ object arraymyArrayID in

an AMPI program. VP 0 initializes the object array, broadcasts its array ID to all VPs, where the

array elements are locally inserted.

Inter-paradigm interoperability makes library support across paradigms possible. We can reuse

a library developed with Charm++ in an AMPI program, and viceversa. In real life, we have

been using a Charm++ library called Multiphase Shared Arrays (MSA) [24] in an AMPI-based

framework, Parallel Framework for Unstructured Meshing (ParFUM) [84]. MSA provides a global

data abstraction with a migratable Charm++ object array holding the data pages, and it enforces a

98

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
if (myRank == 0){
//array binds to TCharm array
CkArrayOptions opts;
opts.bindTo(TCharm::get()->getProxy());
myArrayID = CProxy_UserArray::ckNew(opts);

}

// myArrayID is broadcast to every node
MPI_Bcast((void *)&myArrayID, sizeof(CkArrayID),

MPI_CHAR, 0, MPI_COMM_WORLD);

// Array element is locally inserted
myArrayID(myrank).insert();

Figure 7.7: Example of Creating Charm++ Objects in an AMPI Program

disciplined multiphase access mode. The three available modes include multiple-read mode, one-

write mode, and accumulate mode. Used in ParFUM, MSA is a global hashtable to store elements

on shared edges. Partitions in the ParFUM framework contribute elements on a particular edge in

MSA’s accumulate mode, and read elements on a shared edge in multiple-read mode.

7.6 Related Work

Several projects have put significant efforts into providing benefits of adaptive overlap between

computation and communication and automatic load balancing. Because of MPI’s popularity

among parallel programmers, most of the related projects wediscuss here are based on MPI model.

Some MPI implementations support multi-threading programming within one processor to ex-

pose an additional degree of concurrency and exploit overlapping between communication and

computation. For instance, TMPI [85] uses a two-level multi-threaded design to optimize the

scheduling process. TMPI focuses their research for sharedmemory SMP machines on minimiz-

ing CPU spinning and exploiting cache affinity. AMPI, in contrast, optimizes execution for all

kinds of supercomputing platforms, even heterogeneous grids [86, 87].

Mobile MPI [88] shares the same over-decomposition strategy as AMPI and uses threads to

99

execute MPI tasks too. It supports running MPI programs across a heterogeneous environment like

grid, but it does it through a portable checkpointing system, which requires a checkpoint/restart

process. AMPI does not have this limitation, because it is based on truly migratable user-level

threads.

As an extension to MPI, hybrid programming model with the combination of MPI/OpenMP [89,

90] approaches the problem by redistributing OpenMP threads among MPI processes to expose

more parallelism, but this approach entails significant programming complexity overhead and re-

quires rewriting existing MPI code, which can be prohibitively difficult for legacy code base.

To support automatic load balancing in traditional MPI model, there are two different ap-

proaches. The first is run-time process migration support. Early efforts in migrating MPI process

include those in the CoCheck [91] and related Tool-Set project [92]. Since traditional MPI map

parallel tasks onto OS processes, the migration process incurs expensive overheads. In contrast,

AMPI’s migratable threads minimize the load balancing overhead. Additionally, because AMPI

typically maps many VPs per physical processor, load balancing is more natural and effective when

VPs are moved instead of processes.

The alternative approach to dynamic load balancing is through library support. It improves

performance for a specific category of parallel applications. For example, Zoltan [93] is a pro-

gramming toolkit that supports dynamic load balancing, butits interface is incompatible with that

of MPI. Other library solutions for load balancing are limited to certain types of parallel appli-

cations, as exemplified by Chombo [94] library for adaptive mesh refinement applications. The

restriction on their applications makes AMPI’s integrated, efficient and automated load balancing

mechanism for a wide range of applications more desirable.

100

Chapter 8

Evaluation of Adaptive MPI

The Message Passing Interface (MPI) has become thede factostandard for message passing pro-

gramming. The MPI Standard specifies interface for a set of message passing functions. There are

several very successful implementations from academia such as MPICH [95, 96], LAM/MPI [97,

98] and Open MPI [99], and almost all vendors of high performance computing platforms have

their own native implementation of MPI.

8.1 AMPI Performance Evaluation

In this section, we present performance analysis of AMPI with various benchmarks and appli-

cations to demonstrate its advantages. Our main benchmarking platforms are the Turing Cluster

with 640 dual Apple G5 nodes connected with Myrinet network and MPICH 1.2.6 at University

of Illinois at Urbana-Champaign, NCSA’s IA-64 TeraGrid Cluster with 888 dual Intel Itanium 2

nodes and Myrinet network installed with MPICH 1.2.5, NCSA’s Tungsten Cluster with 1280 dual

Intel Xeon nodes and Myrinet network with MPICH 1.2.5, and the Lemieux Cluster with 750

dual Alpha nodes and Quadrics network installed with MPICH 1.2.6 at Pittsburgh Supercomputer

Center.

As a competitive implementation of MPI, AMPI offers performance benefits and functionality

extensions to MPI applications, especially those with a dynamic nature. We now take a closer

look at the comparison between AMPI and typical native MPI implementations, starting with a

101

(a) Short Messages (b) Long Messages

Figure 8.1: Point-to-point Performance on NCSA IA-64 Cluster

quantitative breakdown of the virtualization overheads ofAMPI.

8.1.1 Virtualization Overheads

Because AMPI is implemented on top on the ARTS, which is typically implemented on top of

native MPI (or the lowest level communication layer accessible to us), we do not expect to have

better performance than native MPI on a ping-pong style microbenchmark. Point-to-point perfor-

mance on the benchmarking platforms are listed in Figures 8.2(a), 8.2(b) and 8.2(c). To explain the

breakdown of the virtualization overhead in the ping-pong benchmark, AMPI has a left-shift due to

the 70+ byte AMPI message header, and a 2-4 microsecond increase in time for the short message

latency due to thread context switch overhead as well as scheduling overhead (See Figure 8.1(a)).

For longer messages, we pay the overhead of extra message copying in order to support migratable

threads (See Figure 8.1(b)). Active research work is being carried out to reduce overhead for both

situations.

In practice, the virtualization overheads are usually hidden via appropriate subtask assignment.

From our experiences, the few microseconds of virtualization overhead is negligible when the

average work driven by one message is at hundreds of microseconds level, which is achieved by

the choice of number of VPs per processor. It should be noted that such “good choice” has a fairly

102

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

T
im

e
(u

s)

MsgSize (B)

MPI Ping-pong
AMPI Ping-pong

(a) Turing (Apple G5) Cluster

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

T
im

e
(u

s)

MsgSize (B)

MPI Ping-pong
AMPI Ping-pong

(b) NCSA IA-64 Cluster

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

T
im

e
(u

s)

MsgSize (B)

MPI Ping-pong
AMPI Ping-pong

(c) Tungsten (Xeon) Cluster

Figure 8.2: Point-to-point Communication Time

#PE 19 27 33 64 80 105 125 140 175 216 250 512
Native MPI - 29.4 - 14.2 - - 9.12 - - 8.07 - 5.52
AMPI 42.4 30.5 24.7 15.6 12.6 10.9 10.8 10.6 9.39 8.63 7.55 5.46

Table 8.1: Timestep Time [ms] of 2403 3D 7-point Stencil Calculation with AMPI vs. Native MPI
on Lemieux

#PE 19 27 33 64 80 105 125 140 175 216 250 512
Native MPI - 1786 - 702 - - 367 - - 212 - 91.7
AMPI 3633 1782 1367 697 711 705 364 387 385 207 250 92.1

Table 8.2: Timestep Time [ms] of 9603 3D 7-point Stencil Calculation with AMPI v.s. Native MPI
on NCSA IA-64 Cluster

large tolerance, since the virtualization overhead is not very sensitive to the number of VPs per

processor. Moreover, the cost of supporting virtualization and coordinating the VPs is further offset

by other benefits of virtualization. Therefore, it is safe toconclude that the functionality extensions

and performance advantages of AMPI do not come at an undue price in basic performance.

8.1.2 Flexibility to Run

AMPI supports virtual MPI processes, thus giving the programmer the freedom to run multiple

MPI processes on one physical processor. We illustrate thisfunctionality extension with a more re-

alistic benchmark, a 3D stencil-type calculation. The 3D stencil calculation is a multiple timestep-

ping calculation involving a group of regions in a mesh. At each timestep, every region exchanges

part of its data with its 6 immediate neighbors in 3D space anddoes some computation based on

103

the neighbors’ data. This is a simplified model of many applications, like fluid dynamics or heat

dispersion simulation, so it serves well the purpose of demonstration.

We show the flexibility of AMPI with a 2403 3D 7-point stencil calculation. The algorithm in

this particular benchmark divides a 2403 block of data intok3 partitions, each of which is a smaller

cube assigned to an MPI processor. Natural expression of this algorithm requiresk3 number of

processors to run on. This benchmark represents the type of applications that require specific

number of processors.

On the Lemieux cluster, we first run the benchmark with nativeMPI. As described above, this

program runs only onk3 processors: 27, 64, 125, 216, 512, etc. Then, with virtualized AMPI,

the program runs transparently on any given number of processors, exhibiting the flexibility that

virtualization offers. The comparison between these two runs are listed in Tables 8.1 and 8.2.

Note that on some arbitrary number of processors such as 19 and 80, the native MPI program

cannot be launched, whereas AMPI runs the job with no difficulty. This flexibility has been proven

to be very useful in real application development. For instance, during the development of the

CSAR code, a specific software bug occurs only on 480 processors. Consequently, to debug it, the

developers require 480 nodes on a parallel platform to launch their problematic run. With AMPI,

the 480 processor run can be performed on a much smaller partition that is easier to get, offering

the developer a great productivity advantage.

8.1.3 Adaptive Overlapping

The performance benefit of adaptive overlapping arises fromthe fact that the actual CPU overhead

in a blocking communication operation is typically smallerthan the total elapsed time. We show

this with a multi-ping benchmark. In the benchmark, processor A sends multiple ping messages

to processor B, which responds with a short pong message after it has received all of them. This

communication pattern differs from the usual ping-pong benchmark in that it fills the pipeline

on a message’s path from sender to receiver: sender CPU, sender NIC, interconnect, receiver

NIC, and receiver CPU. The performance from the multi-ping benchmark represents the limiting

104

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000

T
im

e
(u

s)

MsgSize (B)

AMPI Ping-pong
AMPI Multi-Ping

Figure 8.3: Performance of Ping-pong vs Multi-ping Benchmark on Turing (Apple G5) Cluster

K VP=8 VP=16 VP=32 VP=64 MPICH
128 25.0 25.8 25.8 25.8 10.6
256 97.7 96.8 91.3 90.4 100.1
512 744.9 772.7 776.7 770.6 751.6
1024 7418 6545 5908 5894 7437

Table 8.3: Iteration Time [ms] of K3 3D 7-point Stencil Calculation on 8 PEs of NCSA IA-64
Cluster

factor in the pipeline, namely the price for a point-to-point communication. The gap between its

curve and the ping-pong benchmark’s curve is the time spent waiting for the communication to

complete. Figure 8.2(a) shows a large gap between the two curves, suggesting that much of the

time usually attributed to communication can be utilized for useful computation. Many traditional

MPI implementations, however, cannot take advantage of this gap easily.

In AMPI, several VPs can be mapped onto one physical processor. This design naturally al-

lows adaptive overlapping of computation and communication without any additional program-

ming complexity. When one VP is blocked at a communication call, it yields the CPU so that

another VP residing on the same processor can take over and utilize it, as illustrated by the follow-

ing stencil calculation benchmark.

105

Figure 8.4: 7-point Stencil Timeline with 1, 2 and 4 VPs Per Processor

Table 8.3 shows the iteration time of 3D stencil calculations on 8 physical processors on an

NCSA IA-64 Cluster. The calculations are of different sizesK3, and with AMPI of various VP

numbers. It can be observed that the overall performance increases when more VPs are mapped

onto one processor in the given range. The underlying reasonis illustrated by the projections

visualization in Figure 8.4. The solid blocks represent computation and the gaps are idle time when

CPU is waiting for communication to complete. As the number of VPs per processor increases,

there are more opportunities for the smaller blocks (smaller pieces of computation on multiple

VPs) to fill in the gaps, and consequently the CPU utilizationincreases.

It can also be observed that virtualization does not always result in performance improvement.

As we introduce more VPs on one processor, virtualization overhead might overweigh the benefit

from adaptive overlap and cause longer execution time, as wehave discussed in previous sections.

Besides adaptive overlapping, the caching effect is also a favorable influence. VPs residing on

the same processor can increase the spatial locality and turn some inter-processor communication

106

into intra-processor communication.

8.1.4 Automatic Load Balancing

Load balancing is one of the key factors for achieving high performance on large parallel machines

when solving highly irregular problems. AMPI supports automatic measurement-based dynamic

load balancing and thread migration based on the load balancing framework. In this section, we

present the case studies of load balancing several MPI benchmarks and a real-world application.

NAS Parallel Benchmark (NPB) is a well known parallel benchmark suite. Its Multi-Zone

version, LU-MZ, SP-MZ and BT-MZ, “solve discretized versions of the unsteady, compressible

Navier-Stokes equations in three spatial dimensions”[100]. The multi-zone version is characterized

by partitioning of the problems on a coarse-grain level to expose more parallelism and to stress the

need for balancing the computational load. Particularly onBT-MZ, the partitioning of the mesh is

done such that the sizes of the zones span a significant range,creating imbalance in workload across

processors. For such a problem, the load balancing requirestwo considerations, as suggested in

[101]: careful zone grouping to minimize inter-processor communication and a multi-threading

scheme to balance the computation workload across processors.

AMPI is naturally equipped with an automatic load balancingmodule to take these two aspects

of a parallel program into consideration: communication load and computation load. The following

results illustrate AMPI’s effectiveness on load balancingBT-MZ.

In this benchmark, add a function call to trigger the automatic load balancing in AMPI run-

time system. After 3 timesteps, when the run-time has collected sufficient information to advise

the load balancer, the AMPI VPs are migrated from more heavily loaded processors onto more

lightly loaded ones. The execution time is visualized in Figure 8.5.

When the number of processor increases for the same problem scale, we can make two ob-

servations. Firstly, the execution time without load balancing increases. BT-MZ creates work-

load imbalance by allocating different amounts of work among the processors, and with a larger

number of processors, the degree of imbalance increases. Consequently, overall utilization drops.

107

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

0

40

80

120

160

200

A.4,4PE A.8,4PE A.16,4PE | B.8,8PE B.16,8PE B.32,8PE B.64,8PE

Without Load Balancing

With Load Balancing

Figure 8.5: Load Balancing on NAS BT-MZ

Secondly, with load balancing, having more VPs per processor allows the load balancing module

to work more effectively, simply because there are more threads to move around if necessary. That

is the reason that having number of VP much larger than numberof P is recommended for the load

balancer to be effective.

This benchmark demonstrates the effect of load balancing onapplications with static load im-

balance. This scenario is not uncommon. Handling uneven initial workload distribution and mi-

grating the job away from faulty nodes are two cases that we have experienced where such load

balancing is useful. For applications with a dynamically varying workload, the load balancer can

be triggered periodically. The application example in Section 8.2.2 demonstrates this use.

8.1.5 Checkpoint Overhead

To illustrate the checkpoint overhead of AMPI, we perform our experiments with two NAS bench-

marks FT and LU class B on the Turing cluster. The total amountof data to save is different: FT

class B has nearly 2GB regardless of number of processor, while LU class B has saved data size

roughly proportional to the number of processors, so the perprocessor data is nearly constant.

The results are shown in Figure 8.6(a) for FT and Figure 8.6(b) for LU. The x-axis is increasing

108

.1

1

10

100

C
he

ck
po

in
t O

ve
rh

ea
d

(s
)

P
4 8 16 32 64

(a) NFS disk

(b) Double in−memory

(e) Double in−disk

(a) FT Class B

10

100

1000

C
he

ck
po

in
t O

ve
rh

ea
d

(s
)

P
4 8 16 32 64

(a) NFS disk

(b) Double in−memory

(e) Double in−disk

(b) LU Class B

Figure 8.6: Checkpoint Overhead of NAS Benchmark on Turing Cluster

number of processors, the y-axis is checkpoint time in seconds, and both axes are logarithmic. In

each figure, there are 3 curves representing 3 series of runs with the benchmark. The “NFS disk”

scheme saves data to NFS disk. The “Double in-memory” and “Double in-disk” schemes save data

in peers’ memory or local disk to avoid the NFS disk bottleneck and use double checkpointing to

ensure single fault tolerance.

For both benchmarks, the NFS disk scheme is the most expensive. Thanks to RAID disks, it

scales to 4 and 8 processors for FT-B, but beyond that the NFS bottleneck becomes the limiting

factor and the performance deteriorates as number of processors increases. The two double check-

pointing runs utilize the fast Myrinet interconnect to transfer checkpoint data, and have similar

scaling behavior. Because writing to local hard disk is not as fast as storing to peers’ memory,

we observe that the overhead of in-disk variation is always higher than its in-memory counterpart.

With lower overhead from the in-memory scheme, we can checkpoint the program more often, and

hence reduce the work lost since last checkpoint when a faultoccurs.

In some cases external factors may constrain the available checkpointing options. In Fig-

ure 8.6(a) with FT class B, the double checkpoint scheme is unable to run on 4 processors, be-

cause the memory footprint for that specific benchmark (2GB)is too large for the machine. The

same problem occurs on systems with relatively small per-node memory configuration, including

109

IBM’s BlueGene/L. In this scenario, the user has two potential solutions. First, the user can use

the in-disk variation of double checkpoint scheme. However, when a local disk is unavailable,

as on BlueGene/L, the NFS disk checkpoint can still be used. Moreover, when the socket error

detection required by the double checkpoint scheme is missing, the NFS disk scheme becomes the

only choice.

8.2 Application Case Study

In this section, we discuss two parallel applications whichbenefit from AMPI. These two projects

are part of our collaboration with scientific and engineering researchers, and the benefits are not

limited to performance gains.

8.2.1 Rocstar

The Center for Simulation of Advanced Rockets (CSAR) is an academic research organization

funded by the Department of Energy and affiliated with the University of Illinois. The focus of

CSAR is the accurate physical simulation of solid-propellant rockets, such as the Space Shuttle’s

solid rocket boosters. CSAR consists of several dozen faculty and professional staff from a number

of different engineering and science departments. The mainCSAR simulation code consists of

several major components in various domains, including a fluid dynamics simulation, for the hot

gas flowing through and out of the rocket; a surface burning model for the solid propellant; a

nonmatching but fully-coupled fluid/solid interface; and finally a finite-element solid mechanics

simulation for the solid propellant and rocket casing. Eachone of these components - fluids,

burning, interface, and solids - began as an independently developed parallel MPI program.

One of the most important early benefits CSAR found in using AMPI is the ability to run a

partitioned set of input files on a different number of virtual processors than physical processors.

For example, a CSAR developer was faced with an error in mesh motion that only appeared when

110

(a) Cutaway View of Fluids Domain (b) Propellant Deformation After One Second

Figure 8.7: Titan IV Propellant Slumping Visualization

AMPI MPI
P 16 30 60 120 240 480 480

Time(s) 15.33 8.41 5.02 3.01 1.66 2.415 2.732

Table 8.4:RocstarPerformance Comparison of 480-processor Dataset for TitanIV SRMU Rocket
Motor on Apple Cluster

111

a particular problem was partitioned for 480 processors. Finding and fixing the error was difficult,

because a job for 480 physical processors can only be run after a long wait in the batch queue at

a supercomputer center. Using AMPI, the developer was able to debug the problem interactively,

using 480 virtual processors distributed over 32 physical processors of a local cluster, which made

resolving the error much faster and easier.

Because each of the CSAR simulation components are developed independently, and each has

its own parallel input format, there are difficult practicalproblems involved in simply preparing

input meshes that are partitioned for the correct number of physical processors available. Using

AMPI, CSAR developers can simply use a fixed number of virtualprocessors, which allows a wide

range of physical processors to be used without repartitioning the problem’s input files.

To demonstrate the performance benefits of virtualization using AMPI, we compared the per-

formance ofRocstarusing AMPI and MPICH/GM on different numbers of processors of the Tur-

ing Apple cluster with Myrinet interconnect at CSAR. Our test used a 480-processor dataset of

the Titan IV SRMU Prequalification Motor #1. This motor exploded during a static test firing on

April 1, 1991 due to excessive deformation of the aft propellant segment just below the aft joint

slot [102]. Figure 8.7 shows a cutaway view of the fluids domain and the propellant deformation,

obtained fromRocstar’s 3-D simulations at nearly one second after ignition for anincompressible

neoHookean material model.

We ranRocstarusing AMPI (implemented on the native GM library) on variousnumbers of

physical processors ranging from 16 to 480, and ran the same simulation with MPICH/GM on 480

processors. Table 8.4 shows the wall-clock times per iteration. The AMPI-based run outperformed

the MPICH/GM-based by about 12% on 480 processors, demonstrating the efficiency of our AMPI

implementation directly on top of the native GM library. Note that even better performance was

obtained on 240 processors with two AMPI threads per physical processor. This virtualization

allowed the AMPI run-time system to dynamically overlap communication with computation to

exploit the otherwise idle CPU cycles while reducing interprocessor-communication overhead for

the reduction in the number of physical processors, leadingto a net performance gain for this test.

112

Figure 8.8: Fractography3D: Crack Propagation
Visualization

C
P

U
 U

til
iz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
0 10000 20000 30000 40000 50000 60000 70000 80000

Utilization with LB
Utilization without LB

Figure 8.9: CPU Utilization Projections Graph
of Fractography3D Over Time With and With-
out Load Balancing

8.2.2 Fractography3D

Fractography3d is a dynamic 3D crack propagation simulation program to simulate pressure-driven

crack propagation in structures. It was developed by Professor Philippe Geubelle in the Department

of Aerospace Engineering at the University of Illinois and his students in collaboration with our

group. The Fractography3d code is implemented on the FEM framework [103] and AMPI.

For this experiment, the application simulates a force-induced crack propagating throughout a

solid material and the conversion of the material from elastic to plastic in the zone along the crack,

as illustrated in Figure 8.8. This crack propagation simulation was run with 1000 AMPI virtual

processors on 100 processors of the Turing Cluster.

There are two factors that may contribute to the load imbalance in this simulation problem.

When external force is applied to the material under study, the initial elastic state of the material

converts to plastic along the wave propagation, which results in much heavier computation for

the plastic elements. Second, to detect a crack in the domain, additional elements are inserted

between some of the existing elements depending upon the forces exerted on the nodes. These

added elements, which have zero volume, are calledcohesive elements. At each iteration of the

simulation, pressure exerted upon the plastic structure may propagate cracks, and therefore more

113

(a) Without Load Balancing (b) With Load Balancing

Figure 8.10: CPU Utilization Graphs of Fractography3D Across Processor With and Without Load
Balancing

cohesive elements may have to be inserted. Thus, the amount of computation for some mesh

partitions may increase during the simulation. This results in severe load imbalance.

The simulation without load balancing runs for 24 hours. TheProjections view on CPU uti-

lization over time is shown in the bottom curve of Figure 8.9.It can be seen that at around 1000

seconds, the application CPU utilization dropped from around 85% to only about 44%. This is

due to the start of the conversion of elements from elastic toplastic along the crack, leading to

load imbalance. As more elastic elements convert to plastic, the CPU utilization slowly increases

until all elements have converted to plastic. The load imbalance can easily be seen in the CPU

utilization vs. processor graph as shown in Figure 8.10(a).While some of the processors have an

average CPU utilization as high as about 90%, some processors only have an average utilization of

about 50% for the duration of the simulation.

The top curve of Figure 8.9 illustrates the results of automatic load balancing of the same

crack propagation simulation in the view of overall CPU utilization over time. Load balancing is

invoked every 500 time-steps of the simulation with a greedystrategy. The automatic load balancer

uses run-time load and communication information obtainedvia a few instrumentation steps to

migrate chunks from the overloaded processor to underloaded processors, leading to improved

performance. As figure 8.9 shows, the overall CPU utilization on all processors throughout the

114

entire simulation stays around 80-90%. Figure 8.10(b) further illustrates that load balance has

been improved over that shown in Figure 8.10(a). It can be seen that CPU utilization of at least

80% is achieved on all processors with little load variance.The simulation with load balancing now

takes about 18.5 hours to complete, yielding approximatelya 23% performance improvement.

115

116

Chapter 9

Conclusions

This thesis aims at improving parallel programming productivity by supporting multi-paradigm

programming on top of an adaptive run-time system. In this final Chapter, we summarize the

aspects of our research work completed in the thesis to achieve the goal, and conclude with future

directions of further investigation.

As the first component in our framework, we explored a novel programming paradigm that

allows clear expression of global view of control. This new paradigm combines the producer-

consumer model and object-based parallel programming. It enables more efficient collaboration

between parallel programmers and scientists/engineers who wish to parallelize applications in their

specialty fields. It improves productivity with two primaryfeatures: higher-level abstraction and

separation of parallelism specification and sequential component development.

To study the effectiveness of the proposed paradigm, we designed a reference language called

Charisma. The philosophy behind Charisma is to allow explicit description of the program’s global

view of control by separating it from the sequential functions of the program. The new language

features capability of producing efficient parallel code while reducing programming order for its

target class of applications. It also provides facilities for developing reusable parallel libraries for

both Charm++ and Charisma programming.

We developed a parallel programming environment for Charisma including a compiler that

is capable of parsing the orchestration code and integrating sequential components to generate

an optimized Charm++ program or library module. We improvedthe efficiency of the generated

117

program with various optimizations in the language implementation. We also discovered more

cost-effective ways to coordinate message delivery and to eliminate data copying between local

variables and generated messages. We conducted performance evaluation with various benchmark

programs, and Charisma significantly cut SLOC while retaining performance.

To measure Charisma’s productivity advantage over Charm++, we carried out a preliminary

classroom study on productivity metrics beyond SLOC. The results show that to the target users,

namely science and engineering application developers without significant parallel programming

background, programming with Charisma is consistently easier than programming with Charm++

on two different applications. Feedback says that Charismais “more intuitive” and takes less time

to program with. It is also easier to add various features such as load balancing with Charisma than

with Charm++.

Because parallel programming is more difficult than sequential programming, developing li-

brary modules and reusing code is an important way to improveproductivity. A challenging de-

sign question is how to provide interfaces for library development with Charisma. Parallel libraries

usually involve more complicated interactions between thecalling main program and the library

module than their sequential counterparts. We studied alternatives for library interface design, and

developed capabilities for library module development forboth Charisma and Charm++.

Beside the new paradigm represented by Charisma and the existing object-based message-

driven paradigm represented by Charm++, we extend our support for existing prevalent paradigms.

We designed generic mechanisms to support virtualized processors (VP) via migratable user-level

threads embedded in communicating objects. This mechanismis portable under various environ-

ments. With this mechanism, we are able to develop adaptive implementations of both MPI and

ARMCI, covering both the message passing and global addressspace paradigms.

Adaptive MPI combines the power of the ARTS and MPI programming model, enabling per-

formance improvement for a wide range of applications and libraries. The work on Adaptive MPI

was initiated with a partial implementation by previous group members, and I have continued ex-

ploring new research directions with our implementation. Significant research efforts have since

118

been put into more features and performance optimizations of AMPI. For instance, several alterna-

tive all-to-all schemes are integrated and applied according to the message size. Meanwhile, AMPI

is ported to new HPC platforms to study its behavior on various architectures, such as IBM Blue

Gene machines. With our work, AMPI has become a mature and competitive MPI implementation

that delivers good performance for MPI programs with a dynamic nature. Adaptive ARMCI is a re-

cent effort to integrate more paradigms, especially globaladdress space languages, into the ARTS.

We have implemented a functionally critical portion of the interface and conducted a preliminary

performance study.

Charisma, AMPI and adaptive ARMCI are included as part of thelatest release of Charm++

framework, together with a collection of stand-alone applications and library modules developed

with Charisma and AMPI to demonstrate the effectiveness of our approach. User manuals are also

prepared for Charisma and AMPI. We are confident that these tools will benefit future users with

improved parallel programming productivity.

This thesis has an ambitious goal to inspire future researchtopics. With the design and imple-

mentation of our infrastructure for our high level language, the foundation has been laid for further

investigations on improving parallel productivity. For example, current infrastructure for data de-

pendence and control dependence analysis can be useful in important features such as out-of-core

execution [104], critical path analysis [105], and other optimizations.

Looking forward, the future exploration based on the dataflow concept used by Charisma can

include the following aspects. First, the same techniques that are used in orchestrate overall con-

trol flow in a parallel program can be applied to other fields. As an example, if a streaming-based

dataflow applications such as the one described in [106] is tobe developed with Charisma, streams

of data can flow into nodes with inports and outports such thatall modules can be pipelined and par-

allelization would be much easier. Secondly, during the static analysis, cost estimation at each node

can be added to aid appropriate flow adjustment [107] to optimize overall performance. Thirdly,

new generation performance analysis tools such as Projections [108] can take advantage of the

information available in the orchestration code, since allthe parallel flows are explicitly described.

119

Lastly, one can explore the future direction of evolving Charisma into a visual programming lan-

guage [45] that looks more straightforward to programmers.

Future research directions also include supporting a widerarray of global address space lan-

guages and their applications on the common run-time system. The ultimate goal for such im-

plementations is porting various scientific and engineering applications and frameworks on top

of the ARTS. We expect future research will demonstrate the advantage of the ARTS support by

port existing benchmarks, libraries and applications, andshow the performance gains from our

implementations.

120

Appendix A

Charisma Manual

This manual describes Charisma, an orchestration languagefor migratable parallel objects.

A.1 Charisma Syntax

A Charisma program is composed of two parts: the orchestration code in a .or file, and sequential

user code in C/C++ form.

A.1.1 Orchestration Code

The orchestration code in the .or file can be divided into two part. The header part contains informa-

tion about the program, included external files, defines, anddeclaration of parallel constructs used

in the code. The orchestration section is made up of statements that forms a global control flow

of the parallel program. In the orchestration code, Charisma employs a macro dataflow approach;

the statements produce and consume values, from which the control flows can be organized, and

messages and method invocations generated.

Header Section

The very first line should give the name of the Charisma program with theprogram keyword.

program jacobi

121

Theprogram keyword can be replaced withmodule, which means that the output program is going

to be a library module instead of a stand-alone program. Please refer to Section A.3 for more details.

Next, the programmer can include external code files in the generated code with keywordinclude

with the filename without extension. For example, the following statement tells the Charisma compiler to

look for header file “particles.h” to be included in the generated header file “jacobi.h” and to look for C/C++

code file “particles.[C/cc/cpp/cxx/c]” to be included in the generated C++ code file “jacobi.C”.

include particles;

It is useful when there are source code that must precede the generated parallel code, such as basic data

structure declaration.

After theinclude section is thedefine section, where environmental variables can be defined for

Charisma. For example, to tell Charisma to generate additional code to enable the load balancing module,

the programmer needs to define “ldb” in the orchestration code. Please refer to Section A.6 for details.

Declaration Section

Next comes the declaration section, where classes, objectsand parameters are declared. A Charisma pro-

gram is composed of multiple sets of parallel objects which are organized by the orchestration code. Dif-

ferent sets of objects can be instantiated from different class types. Therefore, we have to specify the class

types and object instantiation. Also we need to specify the parameters (See Section A.1.1) to use in the

orchestration statements.

A Charisma program or module has one “MainChare” class, and it does not require explicit instantiation

since it is a singleton. The statement to declare MainChare looks like this:

class JacobiMain : MainChare;

For object arrays, we first need to declare the class types inherited from 1D object array, 2D object array,

etc, and then instantiate from the class types. The dimensionality information of the object array is given in

a pair of brackets with each dimension size separated by a comma.

122

class JacobiWorker : ChareArray1D;

obj workers : JacobiWorker[N];

class Cell : ChareArray3D;

obj cells : Cell[M,M,M];

Note that key word “class” is for class type derivation, and “obj” is for parallel object or object array

instantiation. The above code segment declares a new class type JacobiWorker which is a 1D object array,

(and the programmer is supposed to supply sequential code for it in files “JacobiWorker.h” and “Jacobi-

Worker.C” (See Section A.1.2 for more details on sequentialcode). Object array “workers” is instantiated

from “JacobiWorker” and has 16 elements.

The last part is orchestration parameter declaration. These parameters are used only in the orchestration

code to connect input and output of orchestration statements, and their data type and size is declared here.

More explanation of these parameters can be found in SectionA.1.1.
param lb : double[N];

param rb : double[N];

With this, “lb” and “rb” are declared as parameters of that can be “connected” with local variables of

double array with size of 512.

Orchestration Section

In the main body of orchestration code, the programmer describes the behavior and interaction of the ele-

ments of the object arrays using orchestration statements.

• Foreach Statement

The most common kind of parallelism is the invocation of a method across all elements in an object

array. Charisma provides aforeachstatement for specifying such parallelism. The keywordsforeach and

end-foreach forms an enclosure within which the parallel invocation is performed. The following code

segment invokes the entry methodcompute on all the elements of arraymyWorkers.
foreach i in workers

workers[i].compute();

end-foreach

123

• Publish Statement and Produced/Consumed Parameters

In the orchestration code, an object method invocation can have input and output (consumed and pro-

duced) parameters. Here is an orchestration statement thatexemplifies the input and output of this object

methodsworkers.produceBorders andworkers.compute.
foreach i in workers

(lb[i], rb[i]) <- workers[i].produceBorders();

workers[i].compute(lb[i+1], rb[i-1]);

(+error) <- workers[i].reduceData();

end-foreach

Here, the entry methodworkers[i].produceBorders produces (calledpublishedin Charisma)

values oflb[i], rb[i], enclosed in a pair of parentheses before the publishing sign “<-”. In the second

statement, functionworkers[i].computeconsumes values oflb[i+1], rb[i-1], just like normal

function parameters. If a reduction operation is needed, the reduced parameter is marked with a “+” before

it, like theerror in the third statement.

A entry method can have arbitrary number of published (produced and reduced) values and consumed

values. In addition to basic data types, each of these valuescan also be an object of arbitrary type. The

values published byA[i] must have the indexi, whereas values consumed can have the indexe(i),

which is an index expression in the form ofi±c wherec is a constant. Although we have used different

symbols (p andq) for the input and the output variables, they are allowed to overlap.

The parameters are produced and consumed in the program order. Namely, a parameter produced in

an early statement will be consumed by the next consuming statement, but will no longer be visible to any

consuming statement after that. Special rules involving loops are discussed later with loop statement.

• Overlap Statement

Complicated parallel programs usually have concurrent flows of control. To explicitly express this,

Charisma provides aoverlap keyword, whereby the programmer can fire multiple overlapping control

flows. These flows may contain different number of steps or statements, and their execution should be

independent of one another so that their progress can interleave with arbitrary order and always return

correct results.

124

overlap

{

foreach i in workers1

(lb[i], rb[i]) <- workers1[i].produceBorders();

end-foreach

foreach i in workers1

workers1[i].compute(lb[i+1], rb[i-1]);

end-foreach

}

{

foreach i in workers2

(lb[i], rb[i]) <- workers2[i].compute(lb[i+1], rb[i-1]);

end-foreach

}

end-overlap

This example shows anoverlap statement where two blocks in curly brackets are executed inparallel.

Their execution join back to one at the end mark ofend-overlap.

• Loop Statement

Loops are supported withfor statement andwhile statement. Here are two examples.

for iter = 0 to MAX_ITER

workers.doWork();

end-for

while (err > epsilon)

(+err) <- workers.doWork();

MainChare.updateError(err);

end-while

The loop condition infor statement is independent from the main program; It simply tells the program

to repeat the block for so many times. The loop condition inwhile statement is actually updated in the

MainChare. In the above example,err andepsilon are both member variables of classMainChare,

125

and can be updated as the example shows. The programmer can active the “autoScalar” feature by including

a “define autoScalar;” statement in the orchestration code. When autoScalar is enabled, Charisma

will find all the scalars in the.or file, and create a local copy in theMainChare. Then every time the

scalar is published by a statement, an update statement willautomatically be inserted after that statement.

The only thing that the programmer needs to do is to initialize the local scalar with a proper value.

Rules of connecting produced and consumed parameters concerning loops are natural. The first con-

suming statement will look for values produced by the last producing statement before the loop, for the

first iteration. The last producing statement within the loop body, for the following iterations. At the last

iteration, the last produced values will be disseminated tothe code segment following the loop body. Within

the loop body, program order holds.

for iter = 1 to MAX_ITER

foreach i in workers

(lb[i], rb[i]) <- workers[i].compute(lb[i+1], rb[i-1]);

end-foreach

end-for

One special case is when one statement’s produced parameterand consumed parameter overlaps. It

must be noted that there is no dependency within the sameforeach statement. In the above code segment,

the values consumedlb[i], rb[i] by worker[i] will not come from its neighbors in this iteration.

The rule is that the consumed values always originate from previousforeach statements orforeach

statements from a previous loop iteration, and the published values are visible only to followingforeach

statements orforeach statements in following loop iterations.

• Scatter and Gather Operation

A collection of values produced by one object may be split andconsumed by multiple object array

elements for a scatter operation. Conversely, a collectionof values from different objects can be gathered to

be consumed by one object.

126

foreach i in A

(points[i,*]) <- A[i].f(...);

end-foreach

foreach k,j in B

(...) <- B[k,j].g(points[k,j]);

end-foreach

A wildcard dimension “*” inA[i].f()’s outputpoints specifies that it will publish multiple data

items. At the consuming side, eachB[k,j] consumes only one point in the data, and therefore a scatter

communication will be generated fromA toB. For instance,A[1]will publish datapoints[1,0..N-1]

to be consumed by multiple array objectsB[1,0..N-1].

foreach i,j in A

(points[i,j]) <- A[i,j].f(...);

end-foreach

foreach k in B

(...) <- B[k].g(points[*,k]);

end-foreach

Similar to the scatter example, if a wildcard dimension “*” is in the consumed parameter and the cor-

responding published parameter does not have a wildcard dimension, there is a gather operation generated

from the publishing statement to the consuming statement. In the following code segment, eachA[i,j]

publishes a data point, then data points fromA[0..N-1,j] are combined together to for the data to be

consumed byB[j].

Many communication patterns can be expressed with combination of orchestration statements. For more

details, please refer to PPL technical report 06-18, “Charisma: Orchestrating Migratable Parallel Objects”.

Last but not least, all the orchestration statements in the.or file together form the dependency graph.

According to this dependency graph, the messages are created and the parallel program progresses. There-

fore, the user is advised to put only parallel constructs that are driven by the data dependency into the

orchestration code. Other elements such as local dependency should be coded in the sequential code.

127

A.1.2 Sequential Code

Sequential Files

The programmer supplies the sequential code for each class as necessary. The files should be named in the

form of class name with appropriate file extension. The header file is not really an ANSI C header file.

Instead, it is the sequential portion of the class’s declaration. Charisma will generate the class declaration

from the orchestration code, and incorporate the sequential portion in the final header file. For example, if a

molecular dynamics simulation has the following classes (as declared in the orchestration code):
class MDMain : MainChare;

class Cell : ChareArray3D;

class CellPair : ChareArray6D;

The user is supposed to prepare the following sequential files for the classes: MDMain.h, MDMain.C,

Cell.h, Cell.C, CellPair.h and CellPair.C, unless a class does not need sequential declaration and/or definition

code. Please refer to the example in the Appendix.

For each class, a member function “void initialize(void)” can be defined and the generated constructor

will automatically call it. This saves the trouble of explicitly call initialization code for each array object.

Producing and Consuming Functions

The C/C++ source code is nothing different than ordinary sequential source code, except for the produc-

ing/consuming part. For consumed parameters, a function treat them just like normal parameters passed in.

To handle produced parameters, the sequential code needs todo two special things. First, the function should

have extra parameter for output parameters. The parameter type is keywordoutport, and the parameter

name is the same as appeared in the orchestration code. Second, in the body of the function, the keyword

produce is used to connect the orchestration parameter and the localvariables whose value will be sent

out, in a format of a function call, as follows.

produce(produced_parameter, local_variable[, size_of_array]);

When the parameter represents a data array, we need the additionalsize of array to specify the size

of the data array.

The dimensionality of an orchestration parameter is divided into two parts: its dimension in the orches-

128

tration code, which is implied by the dimensionality of the object arrays the parameter is associated, and

the local dimensionality, which is declared in the declaration section. The orchestration dimension is not

explicitly declared anywhere, but it is derived from the object arrays. For instance, in the 1D Jacobi worker

example, “lb” and “rb” has the same orchestration dimensionality of workers, namely 1D of size [16]. The

local dimensionality is used when the parameter is associated with local variables in sequential code. Since

“lb” and “rb” are declared to have the local type and dimension of “double [512]”, the producing statement

should connect it with a local variable of “double [512]”.

void JacobiWorker::produceBorders(outport lb, outport rb){

. . .

produce(lb,localLB,512);

produce(rb,localRB,512);

}

Special cases of the produced/consumed parameters involvescatter/gather operations. In scatter opera-

tion, since an additional dimension is implied in the produced parameter, we thelocal variable should

have additional dimension equal to the dimension over whichthe scatter is performed. Similarly, the input

parameter in gather operation will have an additional dimension the same size of the dimension of the gather

operation.

For reduction, one additional parameter of type char[] is added to specify the reduction operation. Built-

in reduction operations are “+” (sum), “*” (product), “<” (minimum), “>” (maximum) for basic data types.

For instance the following statements takes the sum of all local value ofresult and for output insum.

reduce(sum, result, ‘‘+’’);

If the data type is a user-defined class, then you might use thefunction or operator defined to do the

reduction. For example, assume we have a class called “Force”, and we have an “add” function (or a “+”

operator) defined.

Force& Force::add(const Force& f);

In the reduction to sum all the local forces, we can use

reduce(sumForces, localForce, "add");

129

Miscellaneous Issues

In sequential code, the user can access the object’s index bya keyword “thisIndex”. The index of 1-D to

6-D object arrays are:
1D: thisIndex

2D: thisIndex.{x,y}

3D: thisIndex.{x,y,z}

4D: thisIndex.{w,x,y,z}

5D: thisIndex.{v,w,x,y,z}

6D: thisIndex.{x1,y1,z1,x2,y2,z2}

A.2 Building and Running a Charisma Program

There are two steps to build a Charisma program: generating Charm++ program from orchestration code,

and building the Charm++ program.

1) Charisma compiler, currently namedorchc, is used to compile the orchestration code (.or file) and

integrate sequential code to generate a Charm++ program. The resultant Charm++ program usually consists

of the following code files: Charm++ Interface file ([modulename].ci), header file ([modulename].h) and

C++ source code file ([modulename].C). The command for this step is as follows.

> orchc [modulename].or

2) Charm++ compiler, charmc, is used to parse the Charm++ Interface (.ci) file, compile C/C++ code,

and link and build the executable. The typical commands are:
> charmc [modulename].ci

> charmc [modulename].C -c

> charmc [modulename].o -o pgm -language charm++

Running the Charisma program is the same as running a Charm++program, using Charm++’s job

launchercharmrun. (On some platforms like CSE’s Turing Cluster, use the customized job launcherrjq

or rj.)

> charmrun pgm +p4

Please refer to Charm++’s manual and tutorial for more details of building and running a Charm++

130

program.

A.3 Support for Library Module

Charisma is capable of producing library code for reuse withanother Charisma program. We explain this

feature in the following section.

A.4 Writing Module Library

The programmer uses the keywordmodule instead ofprogram in the header section of the orchestration

code to tell the compiler that it is a library module. Following keywordmodule is the module name, then

followed by a set of configuration variables in a pair parentheses. The configuration variables are used in

creating instances of the library, for such info as problem size.

Following the first line, the library’s input and output parameters are posted with keywordsinparam

andoutparam.
module FFT3D(CHUNK, M, N);

inparam indata;

outparam outdata1,outdata2;

The body of the library is not very different from that of a normal program. It takes input parameters

and produces out parameters, as posted in the header section.

A.5 Using Module Library

To use a Charisma module library, the programmer first needs to create an instance of the library. There are

two steps: including the module and creating an instance.
use FFT3D;

library f1 : FFT3D(CHUNK=10,M=10,N=100);

library f2 : FFT3D(CHUNK=8,M=8,N=64);

The keyworduse and the module name includes the module in the program, and the keywordlibrary

creates an instance with the instance name, followed by the module name with value assignment of config-

131

uration variables. These statements must appear in the declaration section before the library instance can be

used in the main program’s orchestration code.

Invoking the library is like calling a publish statement; the input and output parameters are the same,

and the object name and function name are replaced with the library instance name and the keywordcall

connected with a colon.

(f1_outdata[*]) <- f1:call(f1_indata[*]);

Multiple instances can be created out of the same module. Their execution can interleave without

interfering with one another.

A.6 Using Load Balancing Module

A.6.1 Coding

To activate load balancing module and prepare objects for migration, there are 3 things that needs to be

added in Charisma code.

First, the programmer needs to inform Charisma about the load balancing with a ”define ldb;”

statement in the header section of the orchestration code. This will make Charisma generates extra Charm++

code to do load balancing such asPUP methods.

Second, the user has to provide aPUP function for each class with sequential data that needs to be

moved when the object migrates. When choosing which data items topup, the user has the flexibility to

leave the dead data behind to save on communication overheadin migration. The syntax for the sequential

PUP is similar to that in a Charm++ program. Please refer to the load balancing section in Charm++ manual

for more information onPUP functions. A typical example would look like this in user’s sequential.C file:
void JacobiWorker::sequentialPup(PUP::er& p){

p|myLeft; p|myRight; p|myUpper; p|myLower;

p|myIter;

PUParray(p,(double *)localData,1000);

}

Thirdly, the user will make the call to invoke load balancingsession in the orchestration code. The call

132

is AtSync(); and it is invoked on all elements in an object array. The following example shows how to

invoke load balancing session every 4th iteration in a for-loop.
for iter = 1 to 100

// work work

if(iter % 4 == 0) then

foreach i in workers

workers[i].AtSync();

end-foreach

end-if

end-for

If a while-loop is used instead of for-loop, then the test-condition in theif statement is a local variable

in the program’s MainChare. In the sequential code, the usercan maintain a local variable callediter in

MainChare and increment it every iteration.

A.6.2 Compiling and Running

Unless linked with load balancer modules, a Charisma program will not perform actual load balancing. The

way to link in a load balancer module is adding-module EveryLB as a link-time option.

At run-time, the load balancer is specified in command line after the+balanceroption. If the balancer

name is incorrect, the job launcher will automatically print out all available load balancers. For instance, the

following command usesRotateLB.

> ./charmrun ./pgm +p16 +balancer RotateLB

A.7 Handling Sparse Object Arrays

In Charisma, when we declare an object array, by default a dense array is created with all the elements

populated. For instance, when we have the following declaration in the orchestration code, an array of

NxNxN is created.
class Cell : ChareArray3D;

obj cells : Cell[N,N,N];

133

There are certain occasions when the programmer may need sparse object arrays, in which not all ele-

ments are created. An example is neighborhood force calculation in molecular dynamics application. We

have a 3D array of Cell objects to hold the atom coordinates, and a 6D array of CellPair objects to per-

form pairwise force calculation between neighboring cells. In this case, not all elements in the 6D array

of CellPair are necessary in the program. Only those which represent two immediately neighboring cells

are needed for the force calculation. In this case, Charismaprovides flexibility of declaring a sparse object

array, with asparse keyword following the object array declaration, as follows.
class CellPair : ChareArray6D;

obj cellpairs : CellPair[N,N,N,N,N,N],sparse;

Then the programmer is expected to supply a sequential function with the namegetIndex ARRAYNAME

to generate a list of selected indices of the elements to create. As an example, the following function essen-

tially tells the system to generate all the NxNxNxNxNxN elements for the 6D array.
void getIndex_cellpairs(CkVec<CkArrayIndex6D>& vec){

int i,j,k,l,m,n;

for(i=0;i<N;i++)

for(j=0;j<N;j++)

for(k=0;k<N;k++)

for(l=0;l<N;l++)

for(m=0;m<N;m++)

for(n=0;n<N;n++)

vec.push_back(CkArrayIndex6D(i,j,k,l,m,n));

}

134

Appendix B

LeanCP Orchestration Code

In this Appendix we show the orchestration code for Charismaversion of LeanCP. The code is accompanied

with 19 sequential C++ code files, which are not shown here. The orchestration code is composed of three

sections, which are listed here with brief explanations. Some code segments are omitted to keep the layout

clear.

B.1 Header Section

In the first section, the name of the Charisma program is givenafter theprogram keyword. For library

modules, the keywordmodule is used instead.

Immediately following that, the programmer can include external files in the generated code with the

keywordinclude and the filename to be included. Unlike in C/C++,include goes beyond including

header files. It can also be used to include Charm++’s interface definition file in.ci format. For example,

statement “include FFTGroup” integratesFFTGroup.h, FFTGroup.ci andFFTGroup.C in the

generated files for classFFTGroup, which defines a per-processor object array that optimizes memory

performance for FFT operations.

program leanCP

include params;
include FFTGroup;

135

B.2 Declaration Section

Next in the orchestration code is declaration section, where the classes, objects and object arrays, and pa-

rameter variables are declared. For each class, the programmer uses theclass keyword to specify its

inheritance from the base class such as generic 1D object array. Similarly, the keywordobj is used to

instantiate objects and object arrays from the class type and dimensionality information. The third compo-

nents in this section declares parameter variables that will serve as produced/consumed parameters in the

orchestration statements.

class leanCPMain : MainChare;
class State_GSpacePlane : ChareArray2D;
class State_RealSpacePlane : ChareArray2D;
class Rho_RealSpacePlane : ChareArray1D;
class Rho_GSpacePlane : ChareArray1D;
. . .

obj main : leanCPMain;
obj gSpacePlane : State_GSpacePlane [nStates, sizeY];
obj realSpacePlane : State_RealSpacePlane [nStates, sizeZ];
obj rhoReal : Rho_RealSpacePlane [sizeZ];
obj rhoG : Rho_GSpacePlane [sizeY];
. . .

param cSGToSReal : complex[sizeX];
param cSRealToSG : complex[sizeX];
param rSRealToRReal : double[sizeX*sizeY];
param rRRealToSReal : double[sizeX*sizeY];
param iRRealToRRHart : int;
param cRRealToRG : complex[sizeX];
param cRGToRReal : complex[sizeX];
param cRGToRRealdiv : complex[3*sizeX];
. . .

B.3 Orchestration Section

Orchestration section is the core of an orchestration program, as it comprises all the orchestration statements

that describe the behavior of and interactions among the parallel objects in the program. This section begins

with abegin keyword and ends with anend keyword.

136

begin
// initialization
leanCPMain.init();
for iter = 1 to MAXITER
foreach i,y in gSpacePlane
(cSGToSReal[i,y,*],cSGToGPP[i,y])

<- gSpacePlane[i,y].PhaseI();
end-foreach
overlap
{ // density calculation
foreach i,z in realSpacePlane
(+rSRealToRReal[z])

<- realSpacePlane[i,z].PhaseII(cSGToSReal[i,*,z]);
end-foreach
foreach z in rhoReal
(cRRealToRG[*,z],+iRRealToRRHart)

<- rhoReal[z].PhaseIII1(rSRealToRReal[z]);
end-foreach
foreach y in rhoG
(cRGToRRealdiv[y,*],cRGToRGHart[y])

<- rhoG[y].PhaseIV1(cRRealToRG[y,*]);
end-foreach
. . .

}
{ // Non-Local energy
foreach i,y in particlePlane
(cGPPToRPP[i,y,*])

<- particlePlane[i,y].PhaseIX1(cSGToGPP[i,y]);
end-foreach
foreach i,z in realParticlePlane
(cRPPToGPP[i,*,z])

<- realParticlePlane[i,z].PhaseIX(cGPPToRPP[i,*,z]);
end-foreach
foreach i,y in particlePlane
(cGPPToSG[i,y])

<- particlePlane[i,y].PhaseIX2(cRPPToGPP[i,y,*]);
end-foreach

}
end-overlap

// integration
foreach i,y in gSpacePlane
gSpacePlane[i,y].PhaseVI(cSRealToSG[i,y,*],cGPPToSG[i,y]);

end-foreach
. . .

end-for
leanCPMain.final();

end

137

138

Appendix C

AMPI Extension API

Beyond what is specified in the MPI Standard, AMPI defines a setof extensions, including an extra option

for running with virtual processes, and several additionalcalls for various extension functionalities. The

extension functions’ names start withAMPI instead of the usualMPI , and their syntax and behavior are

explained as follows.

C.1 Running with Virtual Processes

When the user run an AMPI program the usual way with the-np P option, the program is launched on

P processors, with one virtual process on each processor, hence without any adaptivity support. AMPI

provides a+vp VPoption to specify to total number of virtual processes to runon theP processors.

• ampirun -np P pgm: launch programpgmonP processors, with one virtual process on each processor.

(P = VP)

• ampirun -np P pgm +vp VP: launch programpgmon P processors, withVPvirtual processes.

C.2 Automatic Load Balancing Interface

AMPI provides three load balancing function calls as extension of the MPI Standard.

• void AMPI Migrate(void): collective call that signals possible load balancing point. This call sus-

pends the execution of the virtual processes, even though the actual migration may or may not happen,

depending on the LB Manager’s decision.

139

• void AMPI AsyncMigrate(void): collective call that starts load balancing session while allowing the

application to continue, such that load balancing overlapswith computation. When the load balancing

decision is available, the threads could be migrated asynchronously.

• void AMPI Setmigratable(int comm, int mig): collective call that enables or disables load balancing

in a communicator according to the value ofmig.

• void AMPI Migrateto(int destPE): local call to force migration of the calling VP todestPEwithout

being directed by the LB Manager.

C.3 Automatic Checkpointing Interface

AMPI extension for checkpointing on disk and in peers’ system memory includes two function calls.

• void AMPI Checkpoint(char *dname): collective call that initiates on-disk checkpointing of the cur-

rent program into directory given bydname.

• void AMPI MemCheckpoint(): collective call that initiates in-memory checkpointing.The peers on

which the thread’s data is saved are chosen by the run-time system.

C.4 Asynchronous Collective Communication Interface

Collective calls involves many or all MPI processes and are time-consuming. AMPI offers the flexibility of

making non-blocking collective communication calls such as reduction and all-to-all. These calls help the

user exploit the large gap between the elapsed time and CPU time of collective operations. This features is

especially helpful in the context of our adaptive implementation. When virtual processes in a communicator

are blocked on a collective operation, the CPUs they reside on can be used by other virtual processes on the

same physical processors.

The function interface is very much like the blocking counterpart, with an extraMPI Request* request

parameter returning the request handler.

• void AMPI Ireduce(..., MPIRequest* request)

140

• void AMPI Iallreduce(..., MPIRequest* request)

• void AMPI Ialltoall(..., MPI Request* request)

• void AMPI Iallgather(..., MPIRequest* request)

141

142

References

[1] M. T. Heath and W. A. Dick. Virtual rocketry: Rocket science meets computer science.IEEE

Comptational Science and Engineering, 5(1):16–26, 1998.

[2] I. D. Parsons, P. V. S. Alavilli, A. Namazifard, J. Hales,A. Acharya, F. Najjar, D. Tafti, and X. Jiao.

Loosely coupled simulation of solid rocket moters. InFifth National Congress on Computational

Mechanics, Boulder, Colorado, August 1999.

[3] An Overview of the Blue Gene/L Supercomputer. InSupercomputing 2002 Technical Papers, Balti-

more, Maryland, 2002. The Blue Gene/L Team, IBM and LawrenceLivermore National Laboratory.

[4] DARPA. High Productivity Computing System (HPCS) Industry Study: Proposer Information Pam-

phlet. http://www.darpa.mil/ipto/solicitations/closed/02-09 PIP.htm.

[5] DARPA. High Productivity Computing System Program Website. http://www.highproductivity.org/.

[6] Laxmikant V. Kalé. Performance and productivity in parallel programming via processor virtualiza-

tion. In Proc. of the First Intl. Workshop on Productivity and Performance in High-End Computing

(at HPCA 10), Madrid, Spain, February 2004.

[7] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System Based on

C++. In A. Paepcke, editor,Proceedings of OOPSLA’93, pages 91–108. ACM Press, September

1993.

[8] Orion Sky Lawlor and L. V. Kalé. Supporting dynamic parallel object arrays. Concurrency and

Computation: Practice and Experience, 15:371–393, 2003.

[9] Chao Huang. System support for checkpoint and restart ofcharm++ and ampi applications. Master’s

thesis, Dept. of Computer Science, University of Illinois,2004.

143

[10] Sayantan Chakravorty and L. V. Kale. A fault tolerance protocol with fast fault recovery. InProceed-

ings of the 21st IEEE International Parallel and Distributed Processing Symposium. IEEE Press,

2007.

[11] Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Performance evaluation of automatic

checkpoint-based fault tolerance for ampi and charm++.ACM SIGOPS Operating Systems Review:

Operating and Runtime Systems for High-end Computing Systems, 40(2), April 2006.

[12] Sameer Kumar, Chao Huang, Gengbin Zheng, Eric Bohm, Abhinav Bhatele, James C. Phillips, Hao

Yu, and Laxmikant V. Kalé. Scalable Molecular Dynamics with NAMD on Blue Gene/L.IBM Jour-

nal of Research and Development: Applications of MassivelyParallel Systems (to appear), 52(1/2),

2007.

[13] Laxmikant V. Kalé, Sameer Kumar, Gengbin Zheng, and Chee Wai Lee. Scaling molecular dynamics

to 3000 processors with projections: A performance analysis case study. InTerascale Performance

Analysis Workshop, International Conference on Computational Science(ICCS), Melbourne, Aus-

tralia, June 2003.

[14] Eric Bohm, Glenn J. Martyna, Abhinav Bhatele, Sameer Kumar, Laxmikant V. Kale, John A. Gun-

nels, and Mark E. Tuckerman. Fine Grained Parallelization of the Car-Parrinello ab initio MD Method

on Blue Gene/L.IBM Journal of Research and Development: Applications of Massively Parallel Sys-

tems (to appear), 52(1/2), 2007.

[15] Ramkumar V. Vadali, Yan Shi, Sameer Kumar, L. V. Kale, Mark E. Tuckerman, and Glenn J. Mar-

tyna. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large

supercomputers.Journal of Comptational Chemistry, 25(16):2006–2022, Oct. 2004.

[16] Xiangmin Jiao, Gengbin Zheng, Orion Lawlor, Phil Alexander, Mike Campbell, Michael Heath,

and Robert Fiedler. An integration framework for simulations of solid rocket motors. In41st

AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, Arizona, July 2005.

[17] Filippo Gioachin, Amit Sharma, Sayantan Chakravorty,Celso Mendes, Laxmikant V. Kale, and

144

Thomas R. Quinn. Scalable cosmology simulations on parallel machines. InVECPAR 2006, LNCS

4395, pp. 476-489, 2007.

[18] Gengbin Zheng, Michael S. Breitenfeld, Hari Govind, Philippe Geubelle, and Laxmikant V. Kale.

Automatic dynamic load balancing for a crack propagation application. Technical Report 06-08,

Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana-

Champaign, June 2006.

[19] Kai Wang, Anthony Chang, Jonathan A. Dantzig, and Laxmikant V. Kale. Parallelization of level set

methods for solving solidification problems. Technical Report 05-22, Parallel Programming Labora-

tory, Department of Computer Science , University of Illinois, Urbana-Champaign, 2005.

[20] Attila Gursoy and L.V. Kalé. Performance and modularity benefits of messagedriven execution.

Journal of Parallel and Distributed Computing, 64:461–480, 2004.

[21] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuniform memory access

programming model for high-performance computers.J. Supercomputing, (10):197–220, 1996.

[22] Tarek El-Ghazawi and Francois Cantonnet. Upc performance and potential: a npb experimental study.

In Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–26, Los Alamitos,

CA, USA, 2002. IEEE Computer Society Press.

[23] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-platform co-array fortran com-

piler. In Proceedings of the 13th International Conference of Parallel Architectures and Compilation

Techniques (PACT 2004), Antibes Juan-les-Pins, France, October 2004.

[24] Jayant DeSouza and Laxmikant V. Kalé. MSA: Multiphasespecifically shared arrays. InProceed-

ings of the 17th International Workshop on Languages and Compilers for Parallel Computing, West

Lafayette, Indiana, USA, September 2004.

[25] L. V. Kale and Attila Gursoy. Modularity, reuse and efficiency with message-driven libraries. In

Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, pages

738–743, San Francisco, California, USA, February 1995.

145

[26] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard API for Shared-Memory

Programming.IEEE Computational Science & Engineering, 5(1), January-March 1998.

[27] Message Passing Interface Forum. MPI: A Message Passing Interface. InProceedings of Supercom-

puting ’93, pages 878–883. IEEE Computer Society Press, 1993.

[28] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. NAMD: Biomolecu-

lar simulation on thousands of processors. InProceedings of the 2002 ACM/IEEE conference on

Supercomputing, pages 1–18, Baltimore, MD, September 2002.

[29] T.A. Darden, D.M. York, and L.G. Pedersen. Particle mesh Ewald. An N·log(N) method for Ewald

sums in large systems.JCP, 98:10089–10092, 1993.

[30] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Messages: a Mechanism for

Integrated Communication and Computation. InProceedings of the 19th International Symposium

on Computer Architecture, Gold Coast, Australia, May 1992.

[31] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns for Parallel Program-

ming. Addison-Wesley Professional, 2004.

[32] B. Massingill, T. Mattson, and B. Sanders. Patterns forparallel application programs. InProceedings

of the Sixth Pattern Languages of Programs Workshop (PLoP99), 1999.

[33] E. Evans.Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley,

Boston, 2004.

[34] Gul A. Agha and Wooyoung Kim. Actors: a unifying model for parallel and distributed computing.

J. Syst. Archit., 45(15):1263–1277, 1999.

[35] Gul Agha and Carl Hewitt.Concurrent Programming Using Actors: Exploiting Large-Scale Paral-

lelism, volume 206 ofLecture Notes in Computer Science, pages 19–40. Springer-Verlag, Berlin-

Heidelberg-New York, October 1985.

[36] L. V. Kalé, Mark Hills, and Chao Huang. An orchestration language for parallel objects. InPro-

146

ceedings of Seventh Workshop on Languages, Compilers, and Run-time Support for Scalable Systems

(LCR 04), Houston, Texas, October 2004.

[37] Jean-Luc Gaudiot and Liang-Teh Lee. Multiprocessor systems programming in a high-level data-flow

language. InProceedings of the Parallel Architectures and Languages Europe, Volume I: Parallel

Architectures PARLE, pages 134–151, London, UK, 1987. Springer-Verlag.

[38] G. R. Gao. An efficient hybrid dataflow architecture model. J. Parallel Distrib. Comput., 19(4):293–

307, 1993.

[39] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E. Zosel.The High Performance

Fortran Handbook. MIT Press, 1994.

[40] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data structures for parallel comput-

ing. ACM Transactions on Programming Languages and Systems, 11(4):598–632, 1989.

[41] P. S. Barth, R. S. Nikhil, and Arvind. M-Structures: Extending a Parallel, Non-Strict, Functional Lan-

guage with State. InFPCA’91 — Conference on Functional Programming Languages and Computer

Architectures, volume 523, pages 538–568, Harvard, MA, 1991. Springer-Verlag.

[42] I. Foster and K.M. Chandy. FORTRAN M: A Language for Modular Parallel Programming.Journal

of Parallel and Distributed Computing, 25(1), 1995.

[43] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.Proceedings of

the IEEE, 93(2):216–231, 2005. special issue on ”Program Generation, Optimization, and Platform

Adaptation”.

[44] Ken Kennedy and John R. Allen.Optimizing compilers for modern architectures: a dependence-

based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[45] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow programming

languages.ACM Comput. Surv., 36(1):1–34, 2004.

[46] J. E. Barnes and P. Hut. A hierarchical O(NlogN) force calculation algorithm.Nature, 324, 1986.

147

[47] Nasim Mahmood, Guosheng Deng, and James C. Browne. Compositional development of parallel

programs. InLecture Notes in Computer Sciences, volume 2958, pages 109–126, College Station,

Texas, USA, October 2003. Springer-Verlag.

[48] Young Yoon, James C. Browne, Mathew Crocker, Samit Jain, and Nasim Mahmood. Productivity

and performance through components: the asci sweep3d application: Research articles.Concurrency

and Computation: Practice and Experience, 19(5):721–742, 2007.

[49] Adam Beguelin, Jack J. Dongarra, George Al Geist, Robert Manchek, and Keith Moore. HeNCE: a

heterogeneous network computing environment.Scientific Programming, 3(1):49–60, Spring 1994.

[50] Peter Newton and James C. Browne. The code 2.0 graphicalparallel programming language. InICS

’92: Proceedings of the 6th international conference on Supercomputing, pages 167–177, New York,

NY, USA, 1992. ACM Press.

[51] James C. Browne, Jack Dongarra, Syed I. Hyder, Keith Moore, and Peter Newton. Experiences with

CODE and HeNCE in visual programming for parallel computing. IEEE Parallel and Distributed

Technology, 1995.

[52] P. Newton and J. Dongarra. Overview of VPE: A visual environment for message-passing. InPro-

ceedings of the 4th Heterogeneous Computing Workshop, 1995.

[53] V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing.Concurrency: Practice and

Experience, 2(4), December 1990.

[54] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to parallel comput-

ing: design and analysis of algorithms. Benjamin-Cummings Publishing Co., Inc., Redwood City,

CA, USA, 1994.

[55] Francois Cantonnet, Yiyi Yao, Mohamed Zahran, and Tarek El-Ghazawi. Productivity analysis of the

upc language. In18th International Parallel and Distributed Processing Symposium, page 254, 2004.

[56] Bradford L. Chamberlain, Steven J. Deitz, and LawrenceSnyder. A comparative study of the nas mg

benchmark across parallel languages and architectures. InSupercomputing ’00: Proceedings of the

148

2000 ACM/IEEE conference on Supercomputing (CDROM), page 46, Washington, DC, USA, 2000.

IEEE Computer Society.

[57] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, and Lawrence Snyder. The high-level par-

allel language ZPL improves productivity and performance.In Proceedings of the IEEE International

Workshop on Productivity and Performance in High-End Computing, 2004.

[58] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili. Parallel programmer

productivity: A case study of novice parallel programmers.In Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, page 35, Washington, DC, USA, 2005. IEEE Computer Society.

[59] Marvin Zelkowitz, Victor Basili, Sima Asgari, Lorin Hochstein, Jeff Hollingsworth, and Taiga Naka-

mura. Measuring productivity on high performance computers. In METRICS ’05: Proceedings of

the 11th IEEE International Software Metrics Symposium (METRICS’05), page 6, Washington, DC,

USA, 2005. IEEE Computer Society.

[60] Robert W. Numrich, Lorin Hochstein, and Victor R. Basili. A metric space for productivity measure-

ment in software development. InSE-HPCS ’05: Proceedings of the second international workshop

on Software engineering for high performance computing system applications, pages 13–16, New

York, NY, USA, 2005. ACM Press.

[61] Andrew Funk, Victor Basili, Lorin Hochstein, and Jeremy Kepner. Application of a development time

productivity metric to parallel software development. InSE-HPCS ’05: Proceedings of the second in-

ternational workshop on Software engineering for high performance computing system applications,

pages 8–12, New York, NY, USA, 2005. ACM Press.

[62] K.P. Eurenius, D.C. Chatfield, B.R. Brooks, and M. Hodoscek. Enzyme mechanism with hybrid

quantum and molecular mechanical potentials i. theory.International Journal of Quantum Chemistry,

60:1189, (1996).

[63] H. Goldstein.Classical Mechanics. Addison-Wesley, Reading, MA, (1980).

[64] M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L.Klein. Ab initio molecular dynamics

simulations.Journal of Physical Chemistry, 100:12878, (1996).

149

[65] R. Car and M. Parrinello. Unified approach for moleculardynamics and density-functional theory.

Physical Review Letters, 55:2471–2474, (1985).

[66] R. G. Parr and W. Yang.Density Functional Theory of atoms and molecules. Oxford University

Press, Oxford, (1989).

[67] M.P. Bendsoe and O. Sigmund.Topology Optimization. Springer, February 2004.

[68] T. Borrvall and J. Petersson. Large-scale topology optimization in 3d using parallel computing.Com-

puter Methods in Applied Mechanics and Engineering, 190(46):6201–6229(29), September 2001.

[69] G. DeRose Jr. and A. Diaz. Hierarchical solution of large-scale three-dimensional topology optimiza-

tion problems. InProceedings Of The 1996 ASME Design Engineering Technical Conference and

Computer in Engineering Conference, Irvine, CA, August 1996.

[70] Jarek Nieplocha and Bryan Carpenter. Armci: A portableremote memory copy library for distributed

array libraries and compiler run-time systems.J. Rolim eat al. (eds.) Parallel and Distributed Pro-

cessing, Springer Verlag LNCS 1586, 1999.

[71] Gengbin Zheng, Orion Sky Lawlor, and Laxmikant V. Kalé. Multiple flows of control in migratable

parallel programs. In2006 International Conference on Parallel Processing Workshops (ICPPW’06),

pages 435–444, Columbus, Ohio, August 2006. IEEE Computer Society.

[72] Laxmikant V. Kalé. The virtualization model of parallel programming : Runtime optimizations and

the state of art. InLACSI 2002, Albuquerque, October 2002.

[73] Neelam Saboo, Arun Kumar Singla, Joshua Mostkoff Unger, and L. V. Kalé. Emulating petaflops

machines and blue gene. InWorkshop on Massively Parallel Processing (IPDPS’01), San Francisco,

CA, April 2001.

[74] Joy Mukherjee and Srinidhi Varadarajan. Weaves: A framework for reconfigurable programming.

International Journal of Parallel Programming, 33(2-3):279–305, 2005.

[75] John R. Levine.Linkers and Loaders. Morgan-Kauffman, 1999.

150

[76] Karthikeyan Mahesh. Ampizer: An mpi-ampi translator.Master’s thesis, Computer Science Depart-

ment, University of Illinois at Urbana-Champiagn, 2001.

[77] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David Padua, Paul

Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen Weatherford. Polaris: Im-

proving the effectiveness of parallelizing compilers. InProceedings of 7th International Workshop

on Languages and Compilers for Parallel Computing, number 892 in Lecture Notes in Computer

Science, pages 141–154, Ithaca, NY, USA, August 1994. Springer-Verlag.

[78] Markus Schordan and Daniel Quinlan. A source-to-source architecture for user-defined optimiza-

tions. In Lecture Notes in Computer Science: Proc. of Joint Modular Languages Conference

(JMLC03), volume 2789, pages 214–223. Springer-Verlag, June 2003.

[79] Daniel Quinlan, Qing Yi, Gary Kumfert, Thomas Epperly,and Tamara Dahlgren. Toward the auto-

mated generation of components from existing source code.

[80] Gabriel Antoniu, Luc Bouge, and Raymond Namyst. An efficient and transparent thread migration

scheme in thePM
2 runtime system. InProc. 3rd Workshop on Runtime Systems for Parallel Pro-

gramming (RTSPP) San Juan, Puerto Rico. Lecture Notes in Computer Science 1586, pages 496–510.

Springer-Verlag, April 1999.

[81] Milind A. Bhandarkar.Charisma: A Component Architecture for Parallel Programming. PhD thesis,

Dept. of Computer Science, University of Illinois, 2002.

[82] Nilesh Choudhury, Yogesh Mehta, Terry L. Wilmarth, Eric J. Bohm, and Laxmikant Ṽ. Kalé. Scal-

ing an optimistic parallel simulation of large-scale interconnection networks. InProceedings of the

Winter Simulation Conference, 2005.

[83] Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and Laxmikant V. Kalé. Simulation-based

performance prediction for large parallel machines. InInternational Journal of Parallel Program-

ming, volume 33, pages 183–207, 2005.

[84] Orion Lawlor, Sayantan Chakravorty, Terry Wilmarth, Nilesh Choudhury, Isaac Dooley, Gengbin

151

Zheng, and Laxmikant Kale. Parfum: A parallel framework forunstructured meshes for scalable

dynamic physics applications.Engineering with Computers, 22(3-4):215–235.

[85] Hong Tang, Kai Shen, and Tao Yang. Program transformation and runtime support for threaded

MPI execution on shared-memory machines.ACM Transactions on Programming Languages and

Systems, 22(4):673–700, 2000.

[86] Gregory A. Koenig and Laxmikant V. Kale. Optimizing distributed application performance using

dynamic grid topology-aware load balancing. In21st IEEE International Parallel and Distributed

Processing Symposium, March 2007.

[87] Gregory A. Koenig and Laxmikant V. Kale. Using message-driven objects to mask latency in grid

computing applications. In19th IEEE International Parallel and Distributed Processing Symposium,

April 2005.

[88] Rohit Fernandes, Keshav Pingali, and Paul Stodghill. Mobile mpi programs in computational grids.

In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 22–31, New York, NY, USA, 2006. ACM Press.

[89] N. Drosinos and N. Koziris. Performance comparison of pure mpi vs hybrid mpi-openmp paral-

lelization models on smp clusters. InProceedings of the 18th International Parallel and Distributed

Processing Symposium 2004 (CDROM), page 10, Santa Fe, New Mexico, 2004.

[90] Lorna Smith and Mark Bull. Development of mixed mode mpi/ openmp applications.Scientific Pro-

gramming, 9(2-3/2001):83–98. Presented at Workshop on OpenMP Applications and Tools (WOM-

PAT 2000), San Diego, Calif., July 6-7, 2000.

[91] R. Wismller, T. Ludwig, A. Bode, R. Borgeest, S. Lamberts, M. Oberhuber, C. Rder, and G. Stellner.

The tool-set project: Towards an integrated tool environment for parallel programming. InProceed-

ings of Second Sino-German Workshop on Advanced Parallel Processing Technologies, APPT’97,

Koblenz, Germany, pages 9–16. Verlag Dietmar Folbach, September 1997.

[92] Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. InProceedings of the 10th

International Parallel Processing Symposium (IPPS ’96), Honolulu, Hawaii, 1996.

152

[93] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson, James D. Teresco, Jamal

Faik, Joseph E. Flaherty, and Luis G. Gervasio. New challenges in dynamic load balancing.Appl.

Numer. Math., 52(2–3):133–152, 2005.

[94] P. Colella, D.T. Graves, T.J. Ligocki, D.F. Martin, D. Modiano, D.B. Serafini, and

B. Van Straalen. Chombo Software Package for AMR Applications Design Document, 2003.

http://seesar.lbl.gov/anag/chombo/ChomboDesign-1.4.pdf.

[95] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. MPICH: A High-Performance, Portable Implementa-

tion of the MPI Message Passing Interface Standard.Parallel Computing, 22(6):789–828, September

1996.

[96] W. Gropp and E. Lusk. The MPI communication library: itsdesign and a portable implementation.

In Proceedings of the Scalable Parallel Libraries Conference, October 6–8, 1993, Mississippi State,

Mississippi, pages 160–165, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994.

IEEE Computer Society Press.

[97] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment for MPI. InPro-

ceedings of Supercomputing Symposium, pages 379–386, 1994.

[98] Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for LAM/MPI. InProceed-

ings, 10th European PVM/MPI Users’ Group Meeting, number 2840 in Lecture Notes in Computer

Science, pages 379–387, Venice, Italy, September / October2003. Springer-Verlag.

[99] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.

Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Cas-

tain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and

design of a next generation MPI implementation. InProceedings, 11th European PVM/MPI Users’

Group Meeting, Budapest, Hungary, September 2004.

[100] Rob F. Van der Wijngaart and Haoqiang Jin. Nas parallelbenchmarks, multi-zone versions. Technical

Report NAS Technical Report NAS-03-010, July 2003.

153

[101] Haoqiang Jin and Rob F. Van der Wijngaart. Performancecharacteristics of the multi-zone nas parallel

benchmarks. InProceedings of the International Parallel and DistributedProcessing Symposium

(IPDPS), 2004.

[102] W. G. Wilson, J. M. Anderson, and M. Vander Meyden. Titan IV SRMU PQM-1 overview, 1992.

AIAA Paper 92-3819.

[103] Milind Bhandarkar and L. V. Kalé. A Parallel Framework for Explicit FEM. In M. Valero, V. K.

Prasanna, and S. Vajpeyam, editors,Proceedings of the International Conference on High Perfor-

mance Computing (HiPC 2000), Lecture Notes in Computer Science, volume 1970, pages 385–395.

Springer Verlag, December 2000.

[104] Mani Potnuru. Automatic out-of-core exceution support for charm++. Master’s thesis, University of

Illinois at Urbana-Champaign, 2003.

[105] Cui-Qing Yang and Barton P. Miller. Critical path analysis for the execution of parallel and distributed

programs. InProceedings of the Eighth International Conference on Distributed Computing Systems,

pages 366–373, 1988.

[106] S. Chandrasekaran and M. Franklin. Remembrance of streams past: Overload-sensitive management

of archived streams. InProceedings of VLDB, 2004.

[107] Vivek Sarkar and John Hennessy. Partitioning parallel programs for macro-dataflow. InLFP ’86:

Proceedings of the 1986 ACM conference on LISP and functional programming, pages 202–211,

New York, NY, USA, 1986. ACM Press.

[108] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. Scaling applications to mas-

sively parallel machines using projections performance analysis tool. InFuture Generation Computer

Systems Special Issue on: Large-Scale System Performance Modeling and Analysis, volume 22, pages

347–358, February 2006.

154

Author’s Biography

Chao Huang was born in Xianning, Hubei, China, and grew up in that small town until he went to high

school as one of the 26 outstanding students selected nationwide to form the National Science Class in

Shanghai.

In 1997, he entered Tsinghua University in Beijing, China, and was awarded merit-based scholarship for

four consecutive years. In 2001, he received a B.E. degree inComputer Science from Tsinghua University.

He then started his graduate study at the University of Illinois at Urbana-Champaign. He joined the

Parallel Programming Laboratory as a research assistant under the guidance of Professor L. V. Kalé. Uti-

lizing Charm++’s run-time system, he worked to improve and optimize an adaptive implementation of the

MPI standard calledAMPI. In 2004, he earned an M.S. degree in Computer Science. His master thesis is

on System Support for Checkpoint/Restart of Charm++ and AMPI Applications. Subsequently, he started

his investigation on the topic of high-level language that allows expression of overall flow of control in

complicated parallel programs, which became his Ph.D. thesis topic.

155

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Thesis Contributions
	Thesis Organization

	Chapter 2 Multi-Paradigm Parallel Programming Support
	Charm++ and Its ARTS
	Supporting Multi-Paradigm Programming on a Common ARTS
	Approach and Objectives
	Thesis Objectives
	Proposed Architecture

	Chapter 3 Toward a Productive Parallel Programming Language
	A Motivating Example
	Design Goals
	Higher Level of Abstraction
	Separation of Parallelism Specification and Sequential Component Development
	Interoperability with ARTS
	Proposed Parallel Programming Paradigm

	Chapter 4 Charisma: Orchestrating Migratable Parallel Objects
	Language Design
	Parallel Object Array
	Foreach Statement
	Producer-Consumer Model
	Data Dependence and Program Order
	Program Determinacy
	Describing Communication Patterns
	Sequential Code

	Library Module Development with Charisma
	Parallel Library Interfaces
	Charisma Module Support
	Library Support for Charm++

	Implementation Issues
	Dependence Analysis
	Control Transfer
	User Code Integration
	Generated Code Optimizations

	Extensions, Restrictions and Limitations
	Overlap Extension
	Limitations of Charisma

	Related Work

	Chapter 5 Evaluation of Charisma
	Performance Evaluation
	Stencil Calculation
	3D FFT
	Wator

	Classroom Productivity Study
	Experiment Environment and Results
	Productivity Analysis

	Code Comparison: MD

	Chapter 6 Charisma Application Case Study
	LeanCP
	Implementation with Charisma
	Results

	Parallel Topology Optimization
	Development Process
	Results

	Chapter 7 Adaptivity Support for Prevalent Languages
	Design Goals
	Processor Virtualization Via Migratable Threads
	Charm++ Facilities
	Implementing Virtual Processes
	Handling Global Variables
	Migrating Thread Data
	Automatic Checkpointing

	Adaptive MPI
	Support for Sequential Replay of an MPI Node

	Adaptive Implementation of ARMCI
	Performance Evaluation

	Interoperability Support
	Inter-Module Interoperability
	Inter-Paradigm Interoperability

	Related Work

	Chapter 8 Evaluation of Adaptive MPI
	AMPI Performance Evaluation
	Virtualization Overheads
	Flexibility to Run
	Adaptive Overlapping
	Automatic Load Balancing
	Checkpoint Overhead

	Application Case Study
	Rocstar
	Fractography3D

	Chapter 9 Conclusions
	Appendix A Charisma Manual
	Charisma Syntax
	Orchestration Code
	Sequential Code

	Building and Running a Charisma Program
	Support for Library Module
	Writing Module Library
	Using Module Library
	Using Load Balancing Module
	Coding
	Compiling and Running

	Handling Sparse Object Arrays

	Appendix B LeanCP Orchestration Code
	Header Section
	Declaration Section
	Orchestration Section

	Appendix C AMPI Extension API
	Running with Virtual Processes
	Automatic Load Balancing Interface
	Automatic Checkpointing Interface
	Asynchronous Collective Communication Interface

	References
	Author's Biography

