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Abstract

Recent developments in supercomputing have brought usvelsgarallel machines. With the
number of processors multiplying, the appetite for more gréw applications that can take ad-
vantage of these large scale platforms has never ceasedhgroModern parallel applications
typically have complex structure and dynamic behavior.sehegpplications are composed of mul-
tiple components and have interleaving concurrent coffivals. The workload pattern of these
applications shifts during execution, causing load imibeéaat run-time. Programming produc-
tivity, or the effectiveness and efficiency of programmingihperformance applications for these
parallel platforms, has become a challenging issue.

One of the most important observations during our pursultigh productivity with scalable
performance for complex and dynamic parallel applicatias that adaptive resource manage-
ment can and should be automated. The PPL research groupvesmked an Adaptive Run-Time
System (ARTS) and a parallel programming language callear@h+ for automatic resource
management via migratable objects.

There are two obstacles in our pursuit of high productivithwhe ARTS. The first is effective
expression of global view of control in complex parallel grams. Traditional paradigms such as
MPI and Global Address Space (GAS) paradigms, althoughlpgpauffer from a drawback in
modularity. For applications with multiple modules, they kot allow the runtime control over
resource management of individual modules. Although Charprovides resources management
capabilities and logical separation of multiple modulés,abject-based message-driven model
tends to obscure the global flow of control. We will exploravregmproaches to describing the flow

of control for complicated parallel applications. As a refece implementation, we introduce a



languageCharismafor expressing the global view of control that can take atlge of the ARTS.
We carry out productivity and performance study of Chariswith various examples and real-life
applications.

The second issue is to efficiently accommodate existingabeatv programming paradigms.
Different programming models suit different types of aions and applications. Also the pro-
grammer proficiency and preference may result in the vaoiethoices of programming languages
and models. In particular, there are already many pardiedries and applications written with
prevalent paradigms such as MPI. In this thesis, we exp&search issues in providing adaptivity
support for prevalent paradigms. We will evaluate impdreisting parallel programming lan-
guages and develop virtualization techniques that briegonefits of the ARTS to applications
written using them. As a concrete example, we evaluate opleimentation oAdaptive MPIin
the context of benchmarks and applications.

As applications grow in size, their development will be gadrout by different teams with
different paradigms, to best accommodate the expertideegbtogrammers and the requirements
of the different application components. These paradigmbide the new paradigm as repre-
sented by Charisma’s global description of control, as agkxisting ones such as MPI, GAS and
Charm++. Charm++’s adaptive run-time system is a good ckatelifor a common environment
for these paradigms to interoperate, and this thesis denates the effectiveness of our research
work for interoperability across multiple paradigms. THenuate goal is to unify these various
aspects and support multiparadigm parallel programming common run-time system for next-

generation parallel applications.
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Chapter 1

Introduction

Recent developments in supercomputing have brought uswvegsarallel machines. Even with
the number of processors multiplying, the appetite for mmowerful applications that can take
advantage of these large scale platforms has never ceasgthgr Programming productivity, or
the effectiveness and efficiency of programming high penéorce applications for these parallel
platforms, has become a challenging issue.

Modern parallel applications typically have complex stame and dynamic behavior. These
applications are composed of multiple components and meg bancurrent control flows. The
workload pattern of these applications shifts during ekeaicausing load imbalance at run-time.

A good example is the rocket simulation code developed atCieter for Simulation of
Advanced Rockets (CSAR). The focus of the code is the aceynaysical simulation of solid-
propellant rockets, such as the Space Shuttle’s solid tdm@sters[[1[12]. One version of the
main CSAR simulation code consists of four major componemftiid dynamics simulation, for
the hot gas flowing through and out of the rocket; a surfaceibgmodel for the solid propellant;
a non-matching but fully-coupled fluid/solid interfaceddmally a finite-element solid mechanics
simulation for the solid propellant and rocket casing. Timeusation exhibits a dynamic nature
and the MPI model is not always able to handle it well. Foranse, as the solid propellant burns
away, each processor’s portion of the problem domain clengeich will change the CPU and
communication time required by that processor. Moreover simulator's main loop consists of

one call to each of the simulation components in turn, in aar@time lockstep fashion. This
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means, for example, the fluid simulation must finish its titepdefore the solids can begin its
own with the current implementation with MPI model. Cleatlye application developers need

paradigms and tools that better accommodate the dynamicenaittheir algorithms.

On the other hand, next-generation supercomputing pfadeep growing in size and com-
plexity. For example, Blue Gene/Ll1[3] by IBM has 64K dual pgesor nodes, scoring over 280
teraflops sustained performance. With the large numberaaigssors and physical cabling limita-
tions, the main communication interconnect is organizéa 3D torus. This means a relatively
smaller cross-section bandwidth and more hops across tbleinga which requires extra resource
management attention in the programs. The forces driviagetadvances will continue to grow.
DARPA High Productivity Computing Systems Prograr(]4, 5§ kat high goals for building next
generation supercomputing systems. Its program missitgrual stress on performance and

productivity.

e Performance: Improve the computational efficiency and performance dicaii na-
tional security applications by 10X to 40X over today’s sddé¢ vector and commodity
high performance solutions for systems comprised of tenthousands of computing

nodes.

e Productivity: Reduce the cost of developing, operating, and maintainiR@ &l appli-

cation solutions.

Several major vendors have been designing more aggressivieatures for supercomput-
ers to be built within the next 5-10 years. Many of them takeaathge of system-on-chip and
multi-core technology. In terms of programmability, mtdtire exposes much of the underlying
hardware to the programmer, allowing the development of gh performance, finely tuned
software. However, this comes at a price of increased ditfiaf efficient programming, posing

greater productivity challenges to parallel programming.
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1.1 Thesis Contributions

This thesis explores new research directions in supponialgi-paradigm parallel programming
on an Adaptive Run-Time System (ARTS). An ARTS can enhanoéymtivity by automating
dynamic resource management in a parallel progfam [6]. WWeealeur research objectives from
challenges and practical issues encountered in our résearachieving high productivity and
performance for a wide range of parallel applications. thirsve investigate a new paradigm
of programming global control flow via object-level orchrasibn. For this purpose we develop
a reference language called Charisma, and study the preithuttenefit of various techniques.
Secondly, because prevalent paradigms capture a significember of existing programs, we
investigate the techniques of supporting these paradigmsuo adaptive run-time system. To
verify the advantages of adaptivity support for these pgrad with a common run-time system,
we created adaptive implementations of MPI and ARMCI stastglal he implementations exhibit
performance benefits over benchmarks and applicationsntdreperability across the underlying
run-time offers productivity benefits for developing laigale multi-paradigm applications. In
short, our research work has achieved the desired effedtaiars at inspiring further research in
the area of parallel productivity.

The thesis makes several contributions to the support ofiqpatadigm programming with

both improved productivity and optimized performancemarily in the following aspects.

e New paradigm that allows more efficient collaboration in pallel programming: From
our collaborations with scientists and engineers to devpbrallel programs, we observed
some productivity issues and accordingly proposed a neadpan and programming pat-
tern with separation of parallelism specification, to aghtimore efficient collaboration in

parallel programming.

¢ A high level parallel language, Charisma:Charisma offers higher-level abstraction in de-
scribing global view of control in parallel program. It alseparates sequential components

development from parallel flow organization. The languagyéargeted for novice paral-
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lel programmers with scientific and engineering backgroand its productivity advantage
over Charm++ is demonstrated using a small classroom sfealghermore, Charisma fa-
cilitates library development and reuse for both Charismé @harm++ programs on the

ARTS.

e Adaptive implementations of MPI and ARMCI: Adaptivity support for existing prevalent
paradigms not only makes the performance benefits of Chasmttr-time available to a
wider range of existing applications, but also enablesréutarge scale parallel applications

to be built across multiple paradigms on top of the same ime-system.

e Interoperability: Programs built with both Charisma and our implementatidrid®l and
ARMCI are capable of interoperating on the common adaptivetime system, as other
Charm++ programs do. Our system facilitates cross-pamadigvelopment, such as reusing
a Charisma library in a Charm++ program, or using a Charm+géutein an AMPI-based

application.

1.2 Thesis Organization

ChaptefR overviews supporting multiparadigm paralleppamnming on a common run-time sys-
tem. We describe Charm++ and its ARTS with their novel fezdand performance benefits. Then
we explain the motivation behind this thesis’s topic: sugipg multi-paradigm parallel program-
ming on the ARTS.

ChaptelB introduces our research exploration in an effodesign a high productivity lan-
guage for parallel programming. We show a motivating exanigt our search for a high-level
language that allows global view of control expression, exjlain our design goals for the new
language, through analysis of the typical process of pnatbgram development.

In ChaptefH, we introduce our new high level language ca&learisma Charisma is designed

to allow the programmer to describe the global flow of conéiradl simultaneously specify logical
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separation between modules for purposes of resource maeaga an object-based parallel pro-
gram. We explain various design and implementation issti€harisma, as well as the challenges
of defining the library interface with Charisma.

Chaptel[b contains an evaluation of Charisma, in terms df petformance and productiv-
ity. Along with comparing scaling performance of benchnsankth Charisma vs. Charm++, we
present the results and analysis of a classroom study ofsbies productivity. This Chapter ends
with a concrete example of molecular dynamics coded in iffelanguages, to further illustrate
the productivity advantage of Charisma.

In ChaptefB, we showcase two examples of Charisma beinginisethplex applications: the
guantum chemistry simulatidreanCR and topology optimizatiotopt

Chaptefl, we examine the existing parallel programminggigms and explain research chal-
lenges we face in supporting adaptivity for them. As example present our implementation of
two important models: MPI for message passing and ARMCI fobgl address space. Detailed
performance analysis and application showcases of AdaptRI are presented in Chaplér 8.

Finally, ChaptefP concludes the thesis and proposes futork.






Chapter 2

Multi-Paradigm Parallel Programming
Support

This thesis is focused on means for achieving high prodigtim parallel programming. Our
approach is to support productive multi-paradigm programgnon top of an Adaptive Run-Time
System (ARTS). Before launching into a discussion of theefiemnof having a common run-time
system and our proposed architecture, we first give a brieddnction to the Charm++ parallel

programming language and its ARTS.

2.1 Charm++ and Its ARTS

At the Parallel Programming Laboratory (PPL), our appro@&cparallel programming strives to
achieve an optimal division of labor between the run-tim&tey and the programmer. In partic-
ular, it is based on the idea of migratable objects. The rogner decomposes the application
into a large number of parallel computations executed oallghobjects, while the run-time sys-
tem assigns those objects to processors (Figule 2.1). Ppisach gives the run-time system the
flexibility to migrate objects among processors to effeetddoalance and communication opti-
mizations.

Charm++[6/7] is an object-based parallel programminglagg that embodies this concept.
A Charm++ program consists of parallel entities, eitheeoty calleccharesor light-weight user-

level threads. Many of these objects can be organized infadexed collection, called ehare
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Figure 2.1: Parallel Programming Based On Migratable Qbjec

array. A chare array can be 1-D or multi-dimensional, dense orsgpafhe index on the object

array can be as flexible as user-defined bit patterns. Fanost an object array indexed via a
bit-vector can be organized to represent the structure odea tThe underlying run-time system

typically maps multiple parallel objects onto one physigadcessor and moves the migratable
objects across processors as needed.

Execution on an object is triggered when another objectsamilessage targeting the recipient
object’s entry point or a specially registered functionfemote invocation. Note that the remote
invocation is asynchronous: it returns immediately afégrdsng out the message, without blocking
or waiting for the response. Since each physical procesagihmuse many migratable objects, the
ARTS has a scheduler to decide which object will execute.riihis scheduler is message-driven;
only objects with a pending message can be chosen to execute.

Other important features of the ARTS include scalable ngesg$arwarding for migratable
objects and the ability to monitor the CPU usage and comnatinit pattern of the system. Every
object has a “home” processor, and when the object migrdtesyome processor will keep track
of its whereabouts and forward any message to it. If the comcation is persistent, the home
processor may also inform the sender of the current locaifaine destination object in order
to save the forwarding communication. This distributedManding mechanism is scalable and
efficient [8], and turns out to be very useful in supportingsérg programming models.

The capability of observing CPU and network usage pattenables several optimizations by

8
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Figure 2.2: Message-Driven Execution With a ProcessoelL8eheduler

the ARTS. One of the most important optimizations is autaerlatid balancing. The workload

and communication patterns captured by the run-time armfed load balancing strategy chosen
by the user, which predicts a more efficient remapping schaftiee objects, and the objects are
migrated accordingly. A collection of such strategies wasetbped by Gengbin Zheng and other
group members at PPL through the study of load imbalance shemmoapplications on supercom-
puting architectures. A second optimization is of commatian. The interconnect usage data
is helpful in deciding on the most suitable communicatiaategy for the current communica-

tion pattern, and the run-time is capable of switching thiénogation strategy when a change in

communication pattern is detected.

In addition to adaptive overlap and automatic load balagpcihe ARTS offers system-level
support for a collection of features. The migratability afallel objects naturally allows the objects
to migrate to and from hard drives, which enables checkpujfrestart of the programi][9]. The
ARTS also supports fault tolerance mechanisms based onagee$sgging [[10] as well as in-
memory checkpointing [11].

A large number of applications have been developed usindCtt@m++ framework, such
as NAMD [12,?, [13], a production-level molecular dynamics simulatioanfiework which has
demonstrated unprecedented speedups on thousands afgmscend LeanCE14,]15], a Quantum-

Chemistry simulation application. Other examples inclunteket simulation[[16], computational

9



cosmology simulation$17], crack propagation simulaff®l, space-time meshing with discon-

tinuous Galerkin solvers, dendritic growth in solidificatiprocesses, and parallel level-set meth-

ods [19].

2.2 Supporting Multi-Paradigm Programming on a Common

ARTS

Parallel applications vary in their structures and flowsnominication patterns, data organization
and access schemes, and so on. Accordingly, different@moging paradigms capture the vary-
ing nature of the applications. Consequently, next-gditergarallel applications composed of
multiple components demand support for multiple paradifpnenhancing programming produc-
tivity. We propose extending the current ARTS for suppartnulti-paradigm programming on a
common adaptive run-time system for several productivitgdiits. Some of the most important

benefits are as follows.

e Automated Resource Management

Developing a high-performance parallel program involv@isiently allocating and manag-
ing resources for the program, including processors, mesand network. Achieving ef-
ficient resource management is challenging especiallyfegularly structured and dynam-
ically varying applications, and consequently such resemanagement usually demands
a significant programming effort. To answer this challer@earm++'s ARTS is designed
to automate resource management in a parallel environnmehsignificantly reduce the

programmer’s burden.

e Concurrent Composibility

Concurrent composibility is the ability to automaticalhterleave the execution of multiple
modules in an application such that idle time in one can belapped by useful compu-

tation in another[20]. Without this ability, the programnveould probably have to break
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abstraction boundaries for the sake of performance. Hati@aghared ARTS among multi-
ple paradigms automates concurrent composibility withasing efficiency or productivity,

and also supports co-existence of multiple paradigms inglesapplication.

e Common Functions at Run-Time Level

A common run-time system can provide common services tleah@eded across multiple
paradigms, such as load balancing, checkpoint/restgoostjand communication optimiza-
tions. The common run-time system also makes interoperatioong different paradigms
natural and easy. This capability allows library supporbas paradigms, further improving

programming productivity.

2.3 Approach and Objectives

In this thesis, we explore various directions and techrsgerecompassing the research topic of
supporting interoperable multi-paradigm programminthrough our reference implementations,
we demonstrate that it is indeed possible to provide sugpomulti-paradigm programming, and

such support does offer productivity benefits to developmmplicated and dynamic applications.

Our approach is not to create a single panacea languageatidiels all paradigms; it is simply
not a practical solution to the problem due to the wide vaan the nature of parallel applications.
Any general purpose “complete” parallel programming laagginecessarily becomes complex.
Instead, we design seveliacompletebut simple languages/implementations to capture various
characteristics of the applications. We offer the programthe most suitable tools for different
paradigms to cover the whole spectrum of large-scale ghegblications of the future, and these

incomplete languages can be combined together, thanksetoperability on the common ARTS.
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2.3.1 Thesis Objectives

We observe that many prevalent languages, including MPhaendly of the Global Address Space
(GAS) languages, cannot separate work-and-data unit$§fefeht modules due to their processor-
oriented model and single execution thread that artificgliles modules together. As an example,
in a version of the CSAR codes, the MPI implementation rexglithat the fluids meshes and the
solids meshes be glued together on each processor, evaghthimese two different meshes are
decomposed separately by each module and thus have noll@@iggeometrical) connection. It
would improve productivity to have a new paradigm that al@xpression of object-level paral-
lelism at the global level for better modularity. Anotheryata motivate this new language nota-
tion is as an enhancement to Charm++ to allow a clear express$ithe global view of control in
the object-based programming model. Charm++’s objectdbasodel is already able to separate
work-and-data units of each module with its own set of majoée objects, leading to better modu-
larity and various performance benefits. In addition, thegpsmming model tends to obscure the
global view of control. Because the transfer of control iplemented by asynchronous method
invocation among parallel objects, the overall flow of cohis fragmented and buried deep in the
objects’ class code. The first objective of this thesimisupport the paradigm of describing

global view of control in a parallel application.

Any research on improving productivity in parallel programg must deal with the fact that
multiple parallel programming methodologies have evolveer the years. MPI provides an inter-
face for message passing in a processor oriented envirdnitédras become the most prevalent
standard for message passing programming and has beey wsael. However, new paradigms of
parallel programming have also emerged that compete witltamplement MPI. Notable among
these are models that support global address space (GA8nef ®rm, including Global Array
(GA) [21]], Unified Parallel C (UPC)]22], Co-Array Fortran AE) [23], and Multiphase Shared
Arrays (MSA) [24]. These different programming models slifferent classes of algorithms and

applications. The programmer’s proficiency and prefererarealso result in a variety of choice
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Figure 2.3: Architecture Supporting Multi-Paradigm PllaProgramming on the ARTS

in programming languages and models. Additionally, theeeadready many parallel libraries and
applications written with important existing paradigms dmpower the wider range of parallel
models, the second objective of this thesi®isupport adaptivity for these prevalent paradigms

on top of a common ARTS to increase interoperability

2.3.2 Proposed Architecture

Based on the above objectives, we propose the architedtadaptivity support for multi-paradigm
parallel programming on the ARTS, as illustrated in Figur& 2n this architecture, the ARTS
serves as the foundation of the programming environmeptoitides fundamental functionalities
such as abstract communication layer and automated paesteirce management. Immediately
on top of the ARTS is the object-based Charm++ language. ©harin addition, offers a series
of services such as migratable user-level thread support.
Above Charm++ are a number of components which are studidtisrthesis. As the first

component of the research presented in this thesis, werd€sigrisma, a high-level language for
clear expression of global view of control for parallel pragming. Charisma takes advantage of

various features of Charm++ and its ARTS to achieve highypetdty and performance. It helps
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bridge the productivity gap of the message-driven modelidexl by Charm++.

In the second part, we seek to provide adaptivity supporpfevalent paradigms, including
MPI, ARMCI, and other languages and environments, on topgafr®++'s ARTS. Our implemen-
tations will adapt ordinary code developed with these exggtaradigms into “adaptive” programs,
so that the ARTS can perform automatic resource managemeniaaious other optimizations.
Our target is to support a wider variety of applications bggthg them on the ARTS with this
approach.

On the whole, we expect to have full interoperability acrabgshese components on top of
the common ARTS. Consequently, large scale parallel agpdics can be built with multiple pro-
gramming paradigms, and at the same time are able to taketagesof the features and tools of

the run-time system.
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Chapter 3

Toward a Productive Parallel Programming
Language

Although Charm++ has demonstrated its utility in runtimeimzations such as load balancing,
and it is more modular than MPI (Refer {0 ]25]), it can be obradjing to clearly express the flow
of control due to its local view of control, especially fomaplex applications that involve multiple
sets of object arrays. This is demonstrated by the motigatikample in next section. Also,
in Charm++, methods clearly distinguish the places wheta @ato bereceived but the places
where data is to bsent(invocations) can be buried deeply inside functions of thgat code.
This asymmetry often makes it hard to see the parallel strecif an application, which is useful
for understanding performance issues.

In this Chapter, we first motivate our new language for préisea@arallel programming through
a concrete example and the comparison of several existirajglgprogramming tools. Then we

discuss the design goals for the new language, before welltescir language in next Chapter.

3.1 A Motivating Example

Many scientific and engineering applications have compieictures. Some may involve a large
number of components with complicated interactions betvtkem. Others may contain multiple
modules, each with complex structures. Unfortunatelytti@se applications, conventional par-

allel programming models do not adequately maintain a loaldetween high performance and
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programming productivity. OpenMP_[26] programs have a sthiatiew of data and control. The
programmer writes code for all the components of the proguaith independent loop iterations
executed in parallel. This model may be easy to program fabaet of applications, but it is often
incapable of taking advantage of large scale parallelismrgmmodules and concurrent control
flows, and consequently suffers poor scalability. MPI [2vfjch represents the message passing
model, provides a processor-centric programming modelalfel job is divided into subtasks
according to the number of available processors, and dadedefor each subtask is localized
onto that processor. Then the user expresses an algorittme context of local MPI processes,
inserting message passing calls to exchange data withmribhegsses. Basically, it provides a local
view of data and a local view of control, although for SPMD gmaims, the global flow of control

is often similar to the local flow of control. Performance &isPI programs can achieve high
scalability, especially if the program has “regular” patte typically with systolic computation-
communication super-steps. Some algorithms are simplditboult to be written in such a fash-
ion. In terms of productivity, this model is fairly easy toogram when the application does not
involve many modules. Otherwise the programmer will havérgs partition the processors be-
tween modules, losing the potential performance oppastwifioverlapping communication and
computation across modules, as well as doing resource reareag across modules. Some pro-
grammers may choose to assign multiple roles to the same groprocessors for the sake of
performance. With MPI, this results in complexity in wrigithe message passing procedures, and

compromises productivity.

For a concrete example, consider a 3D molecular dynamiagaiion application NAMDI[[Z2B]
illustrated in Figuré_-3]1 (taken frorh[28]). This simplifigdrsion of NAMD contains three types
of components. The spatially decomposed cubes, shown resjwith rounded corners, are
called patches A patch, which holds the coordinate data for all the atomthecube of space
corresponding to that patch, is responsible for distrilmithe coordinates, retrieving forces, and
integrating the equations of motion. The forces used by #iehgs are computed by a variety of

computeobjects, with Angle Computes and Pairwise Computes showimeiigure as examples.
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Figure 3.1: Structure of a Molecular Dynamics SimulatiorpAgation: NAMD

There are several varieties of compute objects, resp@fgibbomputing different types of forces
(bond, electrostatic, constraint, etc.). Some computeatdjequire data from one patch and only
calculate interaction between atoms within that singlelpaOthers are responsible for interac-
tions between atoms distributed among neighboring patéPd& objects implement the Particle
Mesh Ewald method[29], which is used to compute the longeaglectrostatic forces between
atoms. PME requires two 3D Fast-Fourier-Transform (FFT@rapons. The 3D FFT operations
are parallelized through a plane decomposition, wheredi2f FFT is computed on a plane of the
grid, followed by a global transpose and a 1D FFT along thel thimension. The simulation in
NAMD is iterative. At each time step, the patches send outdioate data to compute objects and
PME objects as necessary, and the compute objects and PME&®perform the force calcula-
tions in parallel. Once the resulting force information bagen calculated, it is then communicated

back to the patches, where integration is performed.

When we consider the various programming models for thatikaly simple molecular dy-

namics application, we often find it difficult to reach a grfatéalance between productivity and
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performance. Programming with OpenMP, one will write cdu tin effect, serializes the phases
of coordinate distribution, angle force calculation, pase force calculation, PME calculation,
force reduction, and patch integration. The flow in such cedeld look clear, but it is incapable
of parallelizing concurrent subtasks, such as angle fami@ation and pairwise force calculation,
unless wildcard receives with awkward cross-module flowanftol are used. Performance and

scalability are sacrificed for the ease of programming.

MPI allows the programmer to partition the job into groupswlbtasks and assign the subtasks
onto partitions of available MPI processes. The prograntaeichoose to overlap several subtasks
onto the same set of processes to keep the CPUs busy. For lexampe have some patch
objects and some compute objects residing on the same porcHse patches may use the CPU
for the coordinates multicast, and subsequently yield tR& @ the compute objects for force
calculation. Since MPI message passing is based on prasegden the programmer wants to
express the intention to “send message to subtédske/she needs to make the MPI call to send
the message explicitly to processor raiikinstead of subtask’s ID. Therefore, the programmer

has to maintain a mapping between the subtask IDs to the ggoaaks.

To achieve higher CPU utilization, we want to be able to psscthe messages as soon as
they are received. When the message passing model doedenroessage processing with tag
matching, the interconnect may deliver out-of-order mgssaTherefore, the system overhead of
buffering out-of-order arrivals is difficult to avoid. Theqgrammer can take advantage of wild-
card source and tag matching, accepting any incoming mesaad processing them accordingly.
While it is possible to achieve high efficiency, this apptoaas a major productivity drawback.
When there are multiple subtasks from multiple componentsme processor, it is difficult to
maintain a definite mapping from an arbitrary incoming mgss@® its destination and handler
function. The message passing calls will look confusingl ere flow of control cannot be ex-
pressed clearly. Modularity is compromised, since to adéw message type to one module
(say A), one has to modify code outside the module (in prie¢ip all modules) to ensure that

whenever the message arrives, the appropriate code in médslinvoked.
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Charm++, like MPI, provides a local view of control, but k@iMPI, it takes an object-based
approach. The programmer writes code for various classedifferent subtasks, then instanti-
ates object arrays of arbitrary size from such classes. eTbbgects are assigned onto physical
processors by the run-time system automatically, and fibver¢he programmer does not have to
be restricted by the concept of processor. In Charm++'sa@spmous method invocation model,
each object’s code specifies, in a reactive manner, whatdjeetowill do when presented with a
particular message. When a message is delivered, its dgstirobject and the method to invoke
on that object are stated. Because the message contaimmatiion on what to do with it at the
receiver side, this can be called active messagf80]. Such active messages ensure the prompt
processing of data as they become available. In additienAttaptive Run-Time System (ARTS)
offers further opportunities for performance optimizatiéiowever, for complex programs with a
large number of object arrays, this comes at a cost of obsgtine overall flow of control: The
transfer of control is fragmented by the message sendingdeet objects. To follow the flow of
control, one often needs to dig deep into the objects’ clade @and hop from one to another, and
in the meanwhile, to understand parallel operations, ssdir@adcast, multicast and reduction,
among the objects. This poses some difficulty for the expyassf the parallel program for both

the programmer and its readers.

The above example is not an extremely complicated paralbgiram. Indeed, it has only three
types of components and a few short-running concurrentalifdws. A quantum chemistry sim-
ulation [15] under development using Charm++ involves Tfedint parallel structures, together
with complex concurrent flows (See Section 6.1). Clearlgaratanding the global control flow is

difficult by looking at individual object’s codes.

Therefore, the language we design offers an easy mechaarstnef programmer to describe
the overall view of control: a script-like language notatior orchestrating parallel objects on a
global level. In next section, we will take a closer look astmechanism and the programming

pattern it entails.

19



3.2 Design Goals

In this section, we introduce the design goals of our new yectide parallel programming lan-
guage. The new language offers an efficient parallel progriasgparadigm to the users, especially
those with limited training in parallel programming. Moxew, applying the principles embodied
by the new language can be an interesting addition to patferrparallel programming [31L, B2].

In order to justify our design goals, we start with examirting key elements in productive par-
allel programming in practical scientific and engineeriatgiiags. Typical parallel applications are
developed in an effort to speed up the solving of scientifit @mgineering problems. Ideally, the
process requires collaboration between two teams: ssismr engineers (referred to as “domain
experts” [38]) with knowledge of the problem in its specifiendain, and parallel programming
specialists with experience in designing efficient pafl#libevs. The goal is to create a paradigm or
pattern through which the two parties can work together sxgieappropriate tools for the collab-
oration pattern. In particular, knowledge exchange betvike two teams is critical, and a major
challenge. There needs to be a common language betweenaheams with which the complex
ideas can be expressed. Meanwhile, it is also necessarywéocestain mechanisms to separate

each team’s domain so that neither side is distracted byttiex team’s problems.

3.2.1 Higher Level of Abstraction

During the collaboration described above, it is usuallyiclitt for the two teams to communicate
effectively. The obstacle is that they do not speak the samguiage. While the scientists are
enthusiastic about formulas and theorems, the parallgiraroming specialists think in terms of
system details, such as subtask partitioning and messagmgaHow can they get ideas across in
such a scenario? One must develop language mechanismBdiveth@ domain experts to express
their ideas and needs without the technical jargon thattenahcomprehensible to the parallel
programming specialists. On the other hand, the paraltgjramming specialists should be able

to explain the layout of the parallel flow in a higher level bs&action.
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Therefore, the first design goal of the new languageigher level of abstraction in express-
ing global parallel flow. The object-oriented approach adopted by Charm++ has begempto
promote modularity and hence is easier to work with, but terall control flow in a Charm++
program tends to be buried in object code due to the natuts éfcior Model [34/°35]. To over-
come this drawback, our language will have the ability tordotate parallel objects on a global
level. Also, a data-driven model of the language can shiedaw-level communication details

away from the domain experts, making the program easierdersitand.

3.2.2 Separation of Parallelism Specification and SequealiComponent

Development

In the collaborative development process described alibeetwo teams (application scientists
and parallel programmers) have different areas of concettmeir respective domains. The second
design goal for the new language is a mechanism to sepamtevthteams’ areas of concern.
Two key factors in developing a successful parallel progaaengood sequential performance and
efficient parallel flow organization. Good sequential perfance can be obtained with a well-
designed domain model and highly optimized core computatiale. Efficient parallel flow orga-
nization depends on the level of parallelism that can be sagdn the program. Success on both
these fronts requires the two teams work closely, but it @gaires a mechanism to separate each
team’s domain models from the other. This isolation medranmproves productivity because it
can avoid distraction from the ripple effect caused by tiheoteam’s changes. For example, if the
domain experts should decide to switch the underlying impeletation of a signal transformation
algorithm, it should not have a complicated impact on thaltelrconstruct code.

Therefore, it would be ideal the sequential part of the code could be kept separate from
the parallel constructs The separation ensures a clear division of responséslitiwhen the
domain experts work on the core computation, they do not tawerry about the impact of their

code in the parallel context. Typically, the functions wWikhve some input data, do some local
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computation, and yield some output data. To the parallejq@ammming specialists, the sequen-
tial function can be abstracted to the object’s local betvavMoreover, the task of translating
the mathematical formulae and the underlying physics caresteicted mostly to the sequential
code, once the basic parallel decomposition has been agpeed This further allows the parallel

programmers to focus on their area of expertise.

3.2.3 Interoperability with ARTS

The new language we are designing will use new mechanismshi@nee programming produc-
tivity. This, however, should not conflict with the goal otaaing existing performance benefits
and features from the ARTS. In fact, the third design go#t imke advantage of the adaptivity
benefits with interoperability with ARTS . Since Charm++’s run-time system already provide a
collection of powerful performance optimizations, it istunally desirable to be able to use them
without incurring undue amount of extra programming comipye The interoperability also gives
the program further productivity advantage, because tinaries developed with the new language

can be used across platform in other languages such as ChameHvice versa.

3.2.4 Proposed Parallel Programming Paradigm

Based on the above arguments, we propose the following iganddr parallel programming with
our new language. The typical development process can lzednwn into three steps.

First, the domain experts and the parallel programmingiajists work together to design
the work/data decomposition and an efficient parallel adrftow. At this step, the two teams
ignore the detailed behavior of any individual object, amelytconcentrate solely on constructing
a high-level description of parallel control flow with thewerchestration language. With the
focused effort, the domain experts can design an overalllpaflow organization while parallel
programming specialists can help optimize the parallel fMvere necessary.

After the global flow is set, the domain experts can work orirthigecific core computation.
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Now they do not have to be concerned with where the incomitg idrom, where the resultant
data goes to, or what are the underlying mechanisms of datnadflow in the program. They
simply code the computation in a sequential setting, witleigiinputs and outputs.

A final process is automatically performed by a translatompiler of our new language, which
translates the orchestration code into remote invocatiadsntegrates the sequential code to gen-
erate the final parallel program in Charm++. The translgtiatess fits the sequential components
into the big pictures of parallel control flow, and connetisn into an efficient parallel program,
which can then be further tuned, built and run by the pargllegramming specialists.

Last but not least, the above is only an ideal scenario whenestis a parallel programming
team helping the parallelization process. However, inagitactice, this is often not the case, be-
cause many application scientist teams are not blessecawiéixperienced parallel programming
team to collaborate with. When the parallel programmingghsts are missing, the domain ex-
perts will have to take up the responsibility of understagdand creating the parallel constructs.
This reality reinforces the necessity for a higher levelludteaction and more productive develop-

ment method, which our new language readily supports.
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Chapter 4

Charisma: Orchestrating Migratable
Parallel Objects

In this Chapter, we introduce our high-level language fahestrating migratable parallel objects
caIIedCharisma[BHH. Charisma extends our efforts toward multiparadigm parallogramming
framework as a highly productive language for describirapgl view of control in complicated

parallel applications and libraries.

4.1 Language Design

Charisma employs a macro dataflow approach for productikedlpbprogramming. At the high-
est level of abstraction, the programmer creates a sdkiptarchestration program containing
statements that produce and consume collections of vakresn analyzing such producing and
consuming statements, the control flows can be organizedmassages and method invocations
can be generated. This idea is similar to the macro datafloden87] and the hybrid dataflow
architecture model[38], where the data-driven distridutentrol model is combined with the tra-
ditional von Neumann sequential control model. In contrashe instruction level dataflow mod-

els, Charisma’s object-level macro dataflow mechanismstakiantage of the message-driven

1n historical perspective, the ter@harismahas been used by a previous project by Milind Bhandarkar.clthe
Charisma was a common component architecture for paratigramming, and it had the idea of separating sequential
code from parallel code. As with our new Charisma, his systlsmensured that objects only have sequential data and
publish data without having to know the destination. HoweNavas not focused on the description of global view of
control in parallel programming, and did not consider caogted parallel structures and multiple modules.
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execution model in Charm++’s and enables dynamic resouate&gement such as automatic load
balancing.

A Charisma program consists of two components: dhghestration codd€in one or more
. or files) that describes the global view of control, and skeguential codéin . h and. Cfiles)
that specifies the local behavior of individual objects. Ttarisma compiler generates parallel
code from the orchestration statements and integratestieestial methods to produce the tar-
get Charm++ program, which is then executed on the Adaptiv®. R his flow is illustrated in
Figure[4].

This design corresponds with the design goals of Charisiinst, Ehe script-like orchestration
code adopts the macro-dataflow approach, allowing the anogrer to express higher level of
parallelism abstraction. Secondly, the sequential codtaisdard C++ code, which facilitates the
separate development work or reusing of existing sequenéthods by the application scientists.
Thirdly, because the resulting program is built and run @ARTS, it can take full advantage of
the performance benefits and features such as adaptivaprt automatic load balancing.

Since the orchestration code is the center of Charismaiaonfate first explain some of the

key elements of the orchestration language.

4.1.1 Parallel Object Array

In Charisma, a program is composed of parallel objects. Aectbn of such objects can be
organized into an array to perform a subtask, such as thégmtand the force calculators in
the previous NAMD example. Although they are called “arfayisese are really a collection of
objects indexed by a very general indexing mechanism. lticpdar, the objects can be organized
into 1-D or multi-dimensional arrays that can be sparsentwr collections indexed by arbitrary
bit-patterns or bit-strings. One can also dynamically ihaed delete elements in an object array.
Charm++'s ARTS is responsible for adaptively mapping thgctbarray elements onto available
physical processors efficiently.

Moreover, these objects are migratable with support froerutiderlying ARTS. Once created,
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Figure 4.1: Flowchart of Charisma

these parallel objects report the workload at run-time todistem load balancer, and the load
balancer will automatically migrate the objects as neagssaachieve higher overall utilization.
The message delivery, however, will not be disturbed by dlce that the objects might have been

migrated away, because the ARTS implements a scalable geeksavarding mechanisrl[8].

class Cell : ChareArray2D;
class Cell Pair : ChareArray4D;

obj cells : Cell[NN;
obj cellpairs : CellPair[N,N N N;

Figure 4.2: Charisma Orchestration Code Example: Pakalygdct Arrays

In Figure[4.2 is an example of object array declaration itmestration code for a 2-D Molecular
Dynamics (MD) application. The first part is class declanmafior clasCel | andCel | Pai r. The
second part is the instantiation of two object arregk| s andcel | pai r s from these classes. The
arraycel | s is responsible for holding the atom information in the 2-Dtip@n that corresponds

to its index, and the arrayel | pai r s does the pair-wise force calculation for a paircaf | s
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objects.

4.1.2 For each Statement

In the main body of the orchestration code, the programmscrd®es the interactions between
the elements of the object arrays with combinations of athéon statements. The most com-
mon kind of parallelism is the invocation of a method acrobsl@ments in an object array.
Charisma provides toreachstatement for specifying such parallelism. The keywdraiseach
andend- f or each form an enclosure within which the parallel invocation isfpemed. The fol-

lowing code segment invokes the entry metldod\ér k on all the elements of arrayWor ker s.

foreach i in nyWrkers
myWor kers[i].dowrk();
end- f or each

Figure 4.3: Charisma Orchestration Code Exampite:each Statement

Thef or each statement looks very much like tIFRORALL statement in HPF[39]. Indeed, they
both express the global flow of control. In HRFERALL provides a parallel mechanism for value
assignment of elements of a distributed data array, whehedsor each statement in Charisma
specifies the parallelism among the entry method invocatigrarallel objects.

The programmer can have multiple statements withinfareeach enclosure, if those state-
ments are invoked on the same object array with the sameingleXhe statements within one
f or each enclosure cannot be called on different object arrays,Usscaaclh or each statement
is specific to an object array. For the same reason, nésteshch statements is meaningless, as
a natural consequence of the semantics.

This is really a shorthand notation for having drer each enclosure for each of these state-
ments. Note also that the implementation does not need &dbast a control message to all
objects to implement this. Global control can be compiled incal control, and modulated by

data dependences described below.
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4.1.3 Producer-Consumer Model

In the MPI model, message passing is specified via the déstinarocessor’s rank and commu-
nicator, with a tag to be matched. As explained earlier, théchanism does not always work
well in achieving both performance and clear algorithm egpion in the presence of complex
parallel programs. Charm++’s message delivery specifesiéstination object and the function
handler. With this information, the destination object Wsavhich function to invoke to process
the incoming message. While Charm++ offers a more intuitiag of dealing with communica-
tions between subtasks, the programmer still needs to vatwoyt sending and receiving messages
while writing an object’s local code in a sequential contdxt further separate the task of writing
communication code for parallelism and composing the seitpleomputation blocks in a parallel
program, Charisma supports producer-consumer commionagitectly.

In the orchestration code, there is no function call for exgy sending or receiving message
between objects. Instead, each object method invocatiohaee input and output parameters via
inportsandoutports Here is an orchestration statement that exemplifies thiexsyar input and

output of an object methogbr ker s. f oo.

foreach i in workers
(gq[i]) <- workers[i].foo(p[i+1]);
end-f oreach

Figure 4.4: Charisma Orchestration Code Example: Publiste®ent

Here, the entry methodor ker s[i ] . f oo produces (opublishesin Charisma terminology)
a valueq, enclosed in a pair of parentheses before the publishimg“sig’. Meanwhile,p is the
value consumed by the entry method. An entry method can hraaebétrary number of published
values and consumed values. In addition to basic data tgaeb, of these values can also be an
object of arbitrary type. The values published &fyi ]| must have the indek, whereas values
consumed can have the indeki ) , which is an index expression in the formiotc wherec is
a constant. Although this example uses different symhopbBndq) for the input and the output

variables, they are allowed to overlap.
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The variables that can be used as input and output valuesitoteshe parameter spacen
Charisma. The parameter space resembles the conceptroctie and M-Structuré [40,41] in
functional languages in their put-take operations and thaipose of exposing parallelism. The
variables in the parameter space correspond to global thates ior data arrays of a restricted
shared-memory abstraction. The programmer uses theny $olile orchestration code to facil-
itate the producer-consumer model, and has no knowleddgeeati in the local-view sequential
components. A parameter variable can be of an intrinsic erdsfined data type, or a data array,

and are declared in the orchestration code as shown below.

paramerror : doubl e;
param at ons : AtonBucket;
param cel |l data : doubl e [ CELLSI ZE] ;

Figure 4.5: Charisma Orchestration Code Example: Paraivat@bles

In other words, parameter variables appear onipportsandoutportsof publish statements.
Charisma compiler identifies the inports and outports thhoparameter variables and uses the
ports to connect the statements. Fortran M [42] is similaCha@risma because they both use the
concept ofport. In Fortran-M, ports are connected to creabt@nnelsfrom which point-to-point
communications are generated. It is useful in facilitatiaga exchange between dissimilar sub-
tasks. Charisma analyzes timports and outportsof data and generate messages for both point-
to-point and collective operations among object arraysabglyzing data dependences among
parameters in the orchestration code. The goal of Charisttoggrovide a way of clearly express-
ing global flow of control in complicated parallel progranis.addition, Charisma is built on top
of a powerful adaptive run-time system which offers the gatesl program performance benefits

at no additional cost of programming complexity.

4.1.4 Data Dependence and Program Order

As defined by the language semantics, Charismausgsam orderto determine data dependence

and connect producing and consuming ports. In other wordscansuming statement will look
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for the value produced by the immediate preceding statethahpublishes the same value in the
program order. Any produced value may be consumed by melldphsuming statements. If a

producing statement does not have a following consumirtgrsent, the produced value will not

have any effect on the program behavior. In a legal orchéstrarogram, any consumed value in
any statement should always have its corresponding prddwadae in a statement. This condition

is trivial to satisfy in simple orchestration code which do®t contain any loops. We will discuss
program order in the presence of loops later in this section.

Beyond the program order restriction of the data flow, Cnaaiss consistent with Charm++'s
asynchronous invocation model. Charisma currently doéssapport explicit barrier or other
synchronization operation supported. The programmer,eliewy can always enforce a barrier
though an artificial reduction operation, either among gedalarray, or globally among all object
arrays.

This also means there is no further implicit barrier betwle@neach statements. For instance,
in the code segment in Figure Bv@r ker s[ 2] . bar waits till the data itenp[ 1] is published by
wor ker s[ 1] . f 0o, but it does not have to wait afteor ker s[ 14] . f oo has completed, because
there is no implicit barrier between the tWor each statements. The execution order is dictated

only by data dependence in this code.

foreach i in workers

(p[i]) <- workers[i].foo();
end- f or each
foreach i in workers

wor kers[i].bar(p[i-1]);
end- f or each

Figure 4.6: Charisma Orchestration Code Example: ProgreserO

Loops are a frequently used control constructs in parafiplieation development. They are
supported with or statement andhi | e statement in Charisma, and the rules for data dependence
and program order are slightly different from a straightlprogram. For the first loop iteration,
the first consuming statement within a loop block looks fduea produced by the last produc-

ing statement before the loop block. For the following itenas, the first consuming statement
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matches with the last producing statement within the loazhl At the last iteration, the last
produced values will be disseminated to the consumingratatefollowing the loop block.

Take the following code segment as an example cth& ds produced in the first or each
statement is consumed by the first consuming statement iiotie@op. Thereafter, each iteration
produces a freshoor ds from thei nt egr at e function at the end to be consumed at the next
iteration. The produced parametercafor ds is available after the for-loop, although it is not used

here in this example.

foreach i,j,k in cells
(coords[i,j,k]) <- cells[i,j,k].produceCoords();
end- f or each
for iter = 1 to MAX ITER
foreach i1,j1,k1,i2,j2,k2 in cellpairs
(+forces[il,j1,kl1],+forces[i2,]2,k2])
<- cellpairs[il,j1,k1,i2,j2,k2].calcForces(
coords[i1,)1,kl],coords[i2,]2,k2]);
end-f oreach
foreach i,j,k in cells
(coords[i,j,k]) <- cells[i,j,k].integrate(forces[i,j,k]);
end-f oreach
end- f or

Figure 4.7: Charisma Orchestration Code Example: MD Exampl

4.1.5 Program Determinacy

With the above data dependence semantics, Charisma isxdddig be a deterministic language.
To ensure that, the implementation needs to satisfy theviillg deterministic execution con-
straint. For any individual object, all Charisma methodsalways executed in the program order
at each run.

Refer to the example in Figufe"#%.6. It is understood thatker s[ 2] . bar has to wait for
wor ker s[ 1] . f oo to finish due to data dependence. For the sake of determihagyever,
wor ker s[ 2] . bar should also wait fomor ker s[ 2] . f oo to finish before it can start in order

to respect the program order prescribed by the orchegstratide.
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In straight-line code in Figure—4.6, the implementationsuaestate counter in each object to
enforce method execution in program order. The counter srthkkprogress of method invocation
and prevents out-of-order execution. In presence of a lthe@pcounter needs to be reset to point
to the beginning of the loop body at each new iteration.

Epoch control is also necessary to enforce determinisgcution of loop statements. Epoch
control avoids sending values to the next iteration premeituln our implementation, we impose
barrier where necessary for epoch control. As future work,can automate this or implement
more intelligent epoch control schemes to achieve highigieicy.

The following is another illustration of program deternggan Charisma. In this example,
Si andRi represents or each statements. If the values produced by any of $hestatements
are not consumed by any of tiRe statements and vice versa, then the two loops can execute
in a interleaving fashion without breaking determinacyh@&wise, the firsthi | e loop has to

complete before the second loop can start.

while e
{
while el
{
S1;
S2:;
}
while e2
{
R1;
R2;
}
}

Figure 4.8: Charisma Orchestration Code Example: ProgreaderQvith Loops

4.1.6 Describing Communication Patterns

The method invocation statement in the orchestration cpdeiftes its consumed and published

values. These actions of consuming and publishing are deageinput and output ports, and
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the Charisma run-time wilkkonnectthese ports by automatically generating efficient messgagin
between them. Using the language and the extensions deddrébow, the programmer is able to

express various communication patterns.

e Point-to-point communication
We now introduce the mechanism to allow point-to-point camioation among objects via
the producer-consumer model. For example, in the code sedméow,p[i] is communicated

via a message in asynchronous method invocation betweeepte of object arrayx andB.

foreach i in A

(pli]) <= ALi].f(...);
end- f or each
foreach i in B

(...) < Bli].g(p[i]);

end-f oreach

Figure 4.9: Charisma Orchestration Code Example: Pouiteimt Communication

From this code segment, a point-to-point message will begded fromA[ i ] 's publishing
port toB[ i ] ’'s consuming port. WheA[ i ] calls the local functiomr oduce() , the message is
created and sent to the destinati&jn ] . By this mechanism, we avoid using any global data and
reduce potential synchronization overhead. For examplthe code segment abowgf,2] . g()
does not have to waiton al i ] . f () is completed to start its execution; as soogg] . f ()
is done and the value p[2] is filled[ 2] . g() can be invoked. In fact, even befogi]. f ()

completesp[ i ] can be sent as soon as it is produced, using callback in tHenmemtation.

e Reduction

In Charisma, the publishing statement usesta mark a reduced parameter whose value is
to be obtained by a reduction operation across the objeay.affollowing is an example of a
reduction of valuer r on a 2-D object arrap.

The reduction operation to be used is not specified in theastcétion code. Instead, itis coded
in the sequential part (See Section4.1.7).

The dimensionality of the reduced output parameter mustdubaet of that of the array pub-
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foreach i,j in workers
(..., +err) <- workers[i,j].bar(...);
end- f or each

Mai n.testError(err);

Figure 4.10: Charisma Orchestration Code Example: Renlucti

lishing it. Thus reducing from a 2-D object array onto a 1-Dgmaeter value is allowed, and
the dimension(s) on which the reduction will be performedimferred from comparison of the

dimensions of the object array and the reduced parameter.

e Multicast

A value produced by a single statement may be consumed bypiteudbject array elements.
For example, in the following code segmeAi, | is a 1-D object arrayB[ j , k] is a 2-D object
array, ancpoi nt s is a 1-D parameter variable. Suppose they all have the samendional size

N.

foreach i in A

(points[i]) <- Ali].f(...);
end- f or each
foreach k,j in B

(...) <= B[k,j].9(points[k]);
end- f or each

Figure 4.11: Charisma Orchestration Code Example: Mugtica

There will be N messages to send each published value to tiseiocong places. For example,

poi nt [ 1] will be multicastto N elementsiB[ 1, 0. . N- 1] .

e Scatter
A collection of values produced by one object may be split emasumed by multiple object
array elements for a scatter operation. Conversely, actmleof values from different objects can
be gathered to be consumed by one object. Combining the tevbawe the permutation operation.
A wildcard dimension “*”inA[ i ] . f () 's outputpoi nt s specifies that it will publish multiple

data items. At the consuming side, ea&jlk, j ] consumes only one point in the data, and there-
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[+ Scatter Exanple x/
foreach i in A

(points[i,*x]) <- Ali].f(...);
end- f or each
foreach k,j in B

(...) < Blk,j].g(points[k,j]);
end- f or each

Figure 4.12: Charisma Orchestration Code Example: Scatter

fore a scatter communication will be generated frano B. For instanceA[ 1] will publish data

poi nts[ 1, 0.. N- 1] to be consumed by multiple array obje8fsL, 0. . N- 1] .

e Gather

Similar to the scatter example, if a wildcard dimension “§”in the consumed parameter and
the corresponding published parameter does not have aardldimension, there is a gather oper-
ation generated from the publishing statement to the comgustatement. In the following code
segment, each[ i, j] publishes a data point, then data points fran®. . N- 1, j ] are combined

together to for the data to be consumeddpy ] .

[+ Gat her Example =/
foreach i,j in A

(points[i,j]) <- Ali,j].f(...);
end-f oreach
foreach k in B

(...) <- B[k].g(points[*,Kk]);
end- f or each

Figure 4.13: Charisma Orchestration Code Example: Gather

e Permutation Operation

Combining scatter and reduction operations, we get the y@tion operation. Here is an
example of 2-D array of values being decomposed and disgédkato two 1-D object arraysand
B, with different orientation of decompositio holds data along Y-axis arglholds data along

X-axis. The following code segment is a transposition betwine two object arrays.
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foreach i in A

(points[i,*]) <- Ali].f(...);
end- f or each
foreach k in B

(...) <~ B[k].g(points[*, k]);
end- f or each

Figure 4.14: Charisma Orchestration Code Example: Petroot@peration
4.1.7 Sequential Code

The Charisma programmer supplies sequential code thaifisgeitie local behavior of objects.
In a. h header file for a specific class, the local member variabldsnagthods that are needed
for sequential user code are declared. Note that this hddeletoes not have complete class
declaration. It just has the variables and methods demaratsed in the sequential code. The
definition of those sequential functions is provided in tig=files. The. Cfiles typically contain
function definitions for the class, including those funo8dhat appears in the publish statement
in the orchestration code. We will take a closer look thas #ind of function with inports and

outports.

When composing local functions with consumed and produedakeg (inports and outports),
the programmer does not need the knowledge of the sourcés afiput data or the destinations
of the output data. The input data is seen as parametersdgass@ad the output data is published
via a local function call. Specifically, for producing, a eeged keywordutportis used to mark
the parameter name to be produced as appears in the ortioestiade, and @roducecall asso-
ciates the outport parameter name with an actual localariahose value is to be sent out. For
instance, in the sequential code far ker C ass: : f 0o, the programmer makes a local function
call pr oduce with outportvariableq to publishthe value of a local variableocal _q (assuming

p andq are double precision type).

For reduction, the producing mechanism of connecting al le@aable to the outgoing pa-
rameter is the similar, only with a different keywordduce and an additional reduction opera-

tor/function. The following code segment shows the seqakfunctionWor ker C ass: : bar, in
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/1l Sequential function for "(q[i]) <- workers[i].foo(p[i+1])"
Wor ker Cl ass: : foo(double p[], outport q[]) {
local _q[i] = ...;

produce(q, local _g, n);

Figure 4.15: Charisma Sequential Code Example: OutporPaoducing Values

which a reduction is specified. The programmer calls a lagattionr educe to publish its local
valuel ocal _err and specifies the reduction operatian™(for MAX). Similar to the pr oduce
call, anout port keyword indicates for which output port parameter this pedaall is publish-
ing data. This call is almost identical to theoduce primitive, only with an extra parameter for

specifying the reduction operation.

/1l Sequential function for "(+err) <- workers[i,j].bar(...)"
Wor ker Cl ass::bar (..., outport err) {
| ocal _err = ...;

reduce(err, local _err, ">");

Figure 4.16: Charisma Sequential Code Example: Reduction

4.2 Library Module Development with Charisma

Charisma is designed to be a language that provides higihgamoging productivity. As reusability

is a crucial element in productivity, Charisma must supguetability to develop reusable modules
for parallel programs on the ARTS. Due to the difficulty of dping parallel programs and
modules, there is a higher premium on reusability of pdralbele. Yet, the nature of parallel
algorithms makes it harder to design and reuse parallel tesd software development. There
are different work partitioning schemes, data distribmBohemes, and complicated data flows and
control flows to be taken into account. Indeed, the complerithe interactions between the main

program (library caller) and the parallel module (librag}iee) becomes the most challenging topic

38



in our research. We first discuss the design alternativegdullel library interface, and describe

the Charisma Module System in detail.

4.2.1 Parallel Library Interfaces

Before discussing parallel library interfaces, we firsetakook at how sequential library interact
with its caller. Typically, a library module is invoked byltag one or a sequence of subroutines
with appropriate parameters. For example, a version of FHbY&ry [43] requires the caller to
call a subroutine to set up the FFT computation, includirgistering input and output data, a
second subroutine to execute the plan, and a final subrotgtidestroy the plan. In sequential
libraries, the data is passed in and out via subroutine peteas) and the control flow is linear.

For parallel library modules[25], neither the data flow nloe tontrol flow is linear. The
data might be fed in and extracted out in a distributed fashi& synchronization point is not
necessarily required before or after the library modulalked. There are many ways of invoking
a parallel library module and exchanging data with it, andsimioteractions can be categorized
into two patterns: centralized interface and distributedrface, as illustrated in Figure4117.

With the centralized interface, the library module expasesoxy object with subroutines to
pass in data and invoke computation. The proxy object may th&tributed data into internal
parallel objects and initiate the computation in paralléie results of the parallel subtasks have to
be gathered to the proxy object and returned to the callex galback. The centralized interaction
pattern has better encapsulation of its internals, as telptoxy object’s interface is visible to the
caller. On the down side, it requires synchronization moamd data distribution and gathering that
could be eliminated.

In the distributed interaction pattern, the library modated the calling program are more
closely coupled. The input data is passed to parallel psasem the library in a distributed and
asynchronous fashion, and when the results become awithBly are sent back to the callers in
the same way. This design improves efficiency by allowingrithisted flow of data and avoidance

of sequential bottlenecks. The price is weaker encapsulaid added programming complexity.
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Library Module

Library Module

KEY O Library Caller @ Module Proxy Object KEY O Library Caller O Module Parallel Object

—» Data Flow O Module Parallel Object —» Data Flow

(a) Centralized Interface Design (b) Distributed Interface Design

Figure 4.17: Interaction Patterns for Parallel Library Mtes$

For example, the programmer is responsible to ensure therdilmnality of the calling subtasks

matches with that of the library processes.

4.2.2 Charisma Module Support

As we discussed above, the distributed interface provideallpl and asynchronous interface
which allows closer coupling. However, it could result irglhéer programming complexity to
match up the distributed library interface at the main paogiside. Fortunately, Charisma has a
few features such as parameter space and publish statdmaefddilitate the interface matching
and minimize programmer effort necessary.

Our approach is to integrate the orchestration code fronlilhary into the main program.
After the integration, the parallel library caller and eallexist in the same orchestration code
and we rely on the existing dependence analysis mechanisnatch up the inputs and outputs

between the caller and callee.
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Because we want to support calling multiple instances ofstlie library from the same
names and configurations. Our design requires a library feddyost its configuration variables
right after its name in the orchestration file, before thedli{p can use any of these configuration
variables in the orchestration code or sequential codeo, Alhe library module declares its inputs
and outputs with keywordnpar amandout par am In the following code segment, the library
moduleFFT3D posts 3 configuration variabl€IUNK, MandN, and input parametémdat a and

output parametesut dat a.

/1 nmodul e nane with configuration variabl es
nodul e FFT3D (CHUNK, M N)

i nparam i ndat a;

out par am out dat a;

cl ass FFT3DPlI anesl : ChareArraylD;
cl ass FFT3DPl anes2 : ChareArraylD;
obj planesl : FFT3DPl anesl[M;
obj planes2 : FFT3DPl anes2[M;

param pencil data : conpl ex] CHUNK* CHUNK* N] ;

/1l orchestration code that declares the library objects
/1 and defines their floww th inputs and outputs
begi n
foreach x in planesl
(pencildata[ x,*]) <- planesl[x].fftld(indata[x]);
end- f or each
foreach y in planes2
(outdatal[y]) <- planes2[y].fft2d(pencildatal=*,y]);
end- f or each

end

Figure 4.18: Library for Charisma: 3D FFT Example

In the main program’s orchestration code, the programmrificludes the library module by
name with a reserved keywoud e followed by the module name. Secondly, the library instance
can be initiated with library name and values assigned moit$iguration variables. The following

example shows how a library instancet | i b is created from the module=T3D with a set of
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configuration variables.

program mai n- progr am

/! include the nodul e by name
use FFT3D

/1l instantiate library instance with paranmeter initialization
library fftlib : FFT3D( CHUNK=10, M=10, N=100) ;

/1 declare classes, objects and parans used in main program
cl ass Wirker : ChareArraylD

obj workers : Worker[10];

paramfftlib_indata : conplex [10+100+100];
paramfftlib_outdata : conplex [10+x100+100];

begi n
/1 data are consumed and produced by library instances
/1l the flows are in parallel whenever possible
foreach i in workers
(fftlib_indata[i]) <- workers[i].producePl anes();
end- f or each
(fftlib_outdata[*]) <- fftlib:call(fftlib_indata[*]);
foreach i in workers
workers[i].getResult(fftlib_outdatal[i]);
end- f or each
end

Figure 4.19: Library for Charisma: Using 3D FFT Library

The invocation on a library instance is similar to callingublish statement, with consumed
parameters passed in and published parameters comingraubnly difference is that the function
name is in the format of library instance name and the keywatd connected with a colon.

With the facility of parameter space, matching the paratiedrface becomes easy to code and
to understand. Internally, the library instance might haweétiple arrays of objects and complex
control flows, but they are hidden behind the library integfaln the implementation, the library
code is expanded and inserted into the main program witaretfit sets of configuration variables.
Then Charisma compiler process the expanded program asnghe grchestration file.

In the following code segment, two instandég | i b1 andf ft i b2 are created, with differ-

ent sets of values assignedRBT3D's configuration variables. They each use a sehparams
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andoutparams The two instances can coexist in the code and their exeta#no interleave with

each other.

program mai n- pr ogr am

/1 include the nodul e by nane
use FFT3D

[l multiple library instances initialized fromsame nodul e
[ibrary fftlibl : FFT3D( CHUNK=10, M=10, N=100) ;
library fftlib2 : FFT3D( CHUNK=4, M=4, N=16) ;

/1 declare classes, objects and parans used in main program
cl ass Worker : ChareArraylD

obj workers : Worker[10];

paramfftlibl indata : conplex [10+x100+100];

paramfftlibl outdata : conplex [10x100x100];

paramfftlib2 indata : conplex [4*4*x16];

paramfftlib2 outdata : conplex [4*x4x16];

begi n

foreach i in workers

(fftlibl_indata[i]) <- workers[i].producePl anes();
end- f or each
(fftlibl_outdata[+*]) <- fftlibl:call(fftlibl_ indata[*]);
foreach i in workers

workers[i].getResult(fftlibl outdatali]);
end-f or each

(fftlib2 outdata[+]) <- fftlib2:call(fftlib2_indata[*]);

end

Figure 4.20: Library for Charisma: Using Multiple Instascs 3D FFT Library

Use of the distributed interface eliminates the sequebhttleneck. For instance, in the above
codewor ker s[ 0] sendg ftli b_.i ndat a[ 0] directly to the first element in the library module’s
consuming object array, and that element can start compuiatmediately upon the receipt of the
data. This happens asynchronously with other elementgisaime object array, which maximizes

the adaptive overlap and improves machine utilization.
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4.2.3 Library Support for Charm++

For library support for Charm++, Charisma generates Chargotle to be incorporated into the
main program. Because the generated interface can be toplicatad to be human readable,
writing code to match the parallel interface is difficult.€rbfore, in addition to the distributed in-
terface, we also provide the centralized interface to sijnfhle interactions between the Charisma
library and the calling Charm++ program to hide the comgiexi

On the central proxy object (doubled by the library moduitaan chare), the library module
defines 2 function callst art anddone, and the interaction can be unified into a two-phase
process.

First, the calling program invokes the library viassgart call, with input data and callback
function. The code segment typically looks as follows. N the start function involves two
built-in entities in the library’s main charedloneCB is the callback object to be sent out at exit
of library module, anchext _-mai n_0() is the function to call to trigger the flow of the library

module.

void start(char* param int n, CkCall backé& ch){
/'l processing of incom ng data

/'l register call back

doneCB = cb;

/[l trigger the flowin the library
next _main_0();

Figure 4.21: Library for Charm+4st ar t

After the parallel computation, the final results are packéala message. As the last statement
in the library module’s generated control flow, the messagsent out with the callback object
doneCBin adone function.

Thanks to the use of asynchronous callback, the efficiendfiefibrary module can be im-
proved by overlapping work from the main program with worktlve library. Admittedly, the

centralized mode adds extra synchronization that coulditenated, but the distributed interface
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voi d done(voi d){
/'l prepare outgoing results
nsg = . .
/1l send out callback with results
doneCB. send(nsgq) ;

Figure 4.22: Library for Charm++done

would require the Charm++ programmer understand the dethilhe code Charisma generated
for the library. Since the generated code can be human-daioés the distributed alternative is
not a good option in this case. In next section, we will explaow a distributed interface is used

in library support for Charisma.

4.3 Implementation Issues

After we designed the language, a compiler is implementgzhtee code written in the new lan-
guage and generate Charm++ code. The compiler has theltgpro@onents such as lexer, parser
and code generator. There are also a few interesting réseages specific to this parallel lan-

guage. We explain these issues in this Section.

4.3.1 Dependence Analysis

In Charisma’s producer-consumer model, the orchestratiatements have consumed and pub-
lishedparameters The Charisma compiler collects information of each in@ord outport from
every statement. The information collected includes patarmame, type, location, subscript of
the parameter, and subscript of the associated object array

Subsequently, dependence analyisi$ [44] is performed extiéh dependence exists between
any inport-outport pair with the same parameter name. Tédtefrom the dependence analysis
can be organized into a dependence graph among the staseamehtheir parameters. Note that
since there will be iterative loop in the control flow, the dagence graph is different from those in

the traditional dataflow programs as describedin [45]. E€ldependences represent one or more
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messages which need to be generated and pass from the puppsiits to the consuming ports in
order to drive the flow of the program.

The dependence testing is capable of identifying loopieddependences and loop-independent
dependences. When parsing the statements and collectiaqei@r information, the compiler
keeps track of loop level of each occurrence of every paramébop level is useful in creating
backward loop-carried dependence and differentiatinggdégnces across loop boundary (needs
barrier) and dependences within same loop (does not neadrpar

The Charisma compiler then generates a structuresrigdersfor the dependence graph. If
an orchestration statement has an incoming trigger, Gharigill generate code for the corre-
sponding class object to receive and buffer incoming Charmessages and drive the subsequent
program flow. Likewise, if a statement has an outgoing trigG&arisma generates code to send
out Charm++ messages to the destination. Depending on thenaaication pattern used, the
generated messaging code can range from point-to-pointlectve operations such as reduction

and multicast/broadcast.

4.3.2 Control Transfer

In the initial version of Charisma, the orchestration steats were numbered and sequenced,
and a central main thread was responsible for driving of thr&rol flow. For example, after
each parallet or each call, a barrier was imposed, and afterward the main threattiede which
statement to invoke next. This clearly was not an optimall@mgntation. For one thing, the
centralized main thread control could cause unnecessalpglgbarriers and synchronization.

In later versions we have remedied this by moving the contesisfer code into object code
and combining it with a control token issued from the mairreh&/hen an orchestration statement
only has data dependence on consumed parameters, it stediidelcboff as soon as the parameters
are published at an earlier statement. An object in an amwag dot have to wait for other objects
in the array to finish their execution of the statement to eealcto the next statement, if the data

availability is satisfied. When there is control dependdneelved, for instance, for loop-carried
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dependence, the main chare will issue a progress token vame®ded in addition to the consumed
parameters at the triggering of the next statement. Thisementation ensures efficient distributed

dependence driven control transfer whenever possible.

4.3.3 User Code Integration

Charisma generates Charm++ code that deals with commiomcantd parallel flow of control,
from the orchestration codedr file). The programmer supplies sequential code in sevepa-se
rate files: one header file for each class declaring its classlmr variables and methods, and a
collection of C++ files for definition of the class methodse$ha sequential components will be in-
tegrated into the generated parallel code to form a com@lletem++ program, which is compiled
and built by the Charm++ compiler.

Charisma offers flexibility for the programmer to integrateer sequential or sometimes par-
allel code as needed. Additional user code can be includied tisei nclude keyword in the
orchestration code. It can be sequential auxiliary claggitiens, or it can be parallel construct
that is not automatically generated by Charisma. For istaim Sectioi 5.113, the realtime par-
allel visualization module is added in the Wator code in therf of included code, because the
code is highly specific to the structure of the object array eannot be automatically generated

by Charisma.

4.3.4 Generated Code Optimizations

High productivity programming requires not only fast andyedevelopment process, but also high
performance from the output program. We put much effort mptimizing generated code of
Charisma. Our methodology is a repeated process of locHiminefficiencies through perfor-
mance analysis and designing better mechanisms to remeueotlienecks. Following are two
examples of techniques we developed to make Charisma detetser optimized code.

First, we eliminated unnecessary memory copy in the geegredde. For a statement that
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consumes multiple parameters, because all the values darrg together at the same time,
an initial design of Charisma buffers the early arrivals e bbject’s local space, requiring a
memory copy. In data-intensive applications such as 3D F#Tam all-to-all transpose operation,
our performance visualization shows that the memory cogytmad accounts for 3-5% of total
execution time. Then we designed a new scheme that takeatageaof Charm++'s lower level
message type, which can hold the data temporarily till @lireed messages have arrived.

Our second example involves efficient object migration. €Heiency of object migration
is affected by the quantity and size of local variables tetalong. The most efficient way is
to take only those variables absolutely necessary to @etbe object when it arrives on a new
processor, but this set of live variables changes with tbatlon where migration is invoked. The
foolproof alternative is to copy everything over, to enssaéety of anytime migration. The final
version of Charisma is capable of generating code for etthse. When the programmer restricts
the migration time, the minimal set of live variables are ratgd. The programmer can always fall

back to the safe mode of migrating all the variables.

4.4 Extensions, Restrictions and Limitations

In this section we discuss the overlap extension of Charissevell as restrictions and limitations

of the language.

4.4.1 Overlap Extension

Complicated parallel programs usually have concurrentdlofwcontrol. If two data-dependence
flows are independent in the orchestration code, as in tleeaf&sgurd 4B when two loops are data
independent, they should execute independently and camtlyr beyond the restriction of pro-
gram order. In order to override program order and expyie¥press overlapping flows, Charisma
provides an extension calleder | ap statement, whereby the programmer can fire multiple over-

lapping control flows. These flows may contain different nemiif steps or statements, and their
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execution should be independent of one another so thatgtagress can interleave with arbitrary
order and always return correct results.

The code in Figur&4.23 shows amer | ap statement. The two blocks in curly brackets are
explicitly allowed to execute in overlapping flows. Becatise program order for data depen-
dence is overridden with thever | ap statement, in the lagtor each statement, for example,
arraywor ker 2 looks for produced data only from above theer | ap statement, skipping any
outport in the overlapping flow. Their independent exeagimin back to one at the end mark of

end- over | ap after which program order is resumed.

overl ap
{
foreach i in workersl
(I'b[i], rb[i]) <- workersl[i].produceBorders();
end- f or each
foreach i in workersl
wor kersl[i].conpute(lb[i+1], rb[i-1]);
end- f or each

}
{
foreach i in workers?2
(I'b[i], rb[i]) <- workers2[i].conmpute(lb[i+1], rb[i-1]);
end- f or each
}

end- overl ap

Figure 4.23: Charisma Orchestration Code Example: Ov&taement on Different Objects

A different over | ap example is shown in Figufe—4}24, where the object array isstme
in the overlapping flows, it is natural to raise the questibaeterminacy. When thever| ap
modifies the program order and allows an object to invoke is$hads in arbitrary order, the
overall behavior is deterministic if and only if the objetates and messages are invariant under
all possible interleaving scenarios. In this case, we thespprogrammer to ensure that condition
for determinacy.

In this example, the user is responsible for guaranteeigigkioking the methods in all possi-

ble sequences always give the same outport values andahtdject state at the exit over | ap
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overl ap
{
foreach i in workersl
(I'b[i], rb[i]) <- workersl[i].produceBorders();
end- f or each
foreach i in workersl
wor kersl[i].conpute(lb[i+1], rb[i-1]);
end- f or each

}
{
foreach i in workersl
(I'b[i], rb[i]) <-
wor kers1[i]. conmput eAndPr oduceBorders(l b[i+1], rb[i-1]);
end- f or each
}

end- overl ap

Figure 4.24: Charisma Orchestration Code Example: Ov&tafement on Same Object

block for any element imor ker s1.

4.4.2 Limitations of Charisma

Charisma is designed as a simple language to capture theaptoung productivity need for a
subset of parallel applications. We are confident that Ghaidoes an excellent job in expressing
the global control flow in its targeted applications, whidvers a sufficiently big class of parallel
programs. With this design, we demonstrate the feasilufitysing a simple but restricted language
to capture a class of parallel problems. Therefore, theuagg is not meant to be a complete
one that handles every characteristics in parallel appica. When the control flow is data-
dependent and determined only at run time, Charisma doeeawtto efficient solutions. The
issue arises from the difficulty of performing a static captof dynamic data-driven control flow.
The following example illustrates this issue.

Consider a N-Body cosmological simulator calfeatallelGravity[d7] that utilizes the Barnes-
Hut tree method]46] to compute gravitational forces. Inttiee structure, nodes holding particles
are calledTreePiecesand they are implemented as parallel objects. The indexTokaPiece

object is a bit-vector, whose content depends on the deptHcmation of the node that object
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represents in the tree, which is in turn decided by the 8istion of the particles in the simulated

universe system.

The main difficulty arises from the fact that the dataflow iis timulation is data-dependent.
In ParallelGravity, each TreePiece object is responsinigathering information needed to com-
pute the gravity forces on the particles in that node. Acogrdo the Barnes-Hut method, it does
not need to collect all the other particles in the universstdad, approximation is used whenever
reasonable. For TreePieces that are far way, a mathemapioedximation is used for an approx-
imate particle-TreePiece force calculation. Only Tree®sethat are too close for approximation
are fetched and opened up for particle-particle force ¢aticun. Also, to avoid duplicate retrieval

of TreePieces, there is a per-processor caching mechaorgenote TreePieces patrticles.

As a consequence, it is impossible to explicitly specify diagaflow in the simulation before
hand. Only at run-time can it be decided which set of far eholrgePiece objects whose centroids
can be used for approximation, and which set of nearby TeseRibjects from which full particle
information is needed. In addition to this complexity, itgnamically determined during the tree
traversal whether the local per-processor particle calcbady has the needed particle information,

or new requests are necessary to fetch particle informatioote TreePieces.

Due to the incompatibility of such data-dependent dataflature and Charisma’s dataflow
driven method, it is hard to utilize Charisma’s facility tayl out the global control flow before
hand for this type of application. In this case, we recommigredprogrammer use lower-level
languages such as Charm++ to capture the dynamic flow in dgggn. Similarly, for algorithms
where a global view of data is essential, Multiphase Shanedys (MSA) can be used. For its
targeted class of applications, as next Chapter will shdwgriSma is a power tool to enhance

parallel programming productivity without incurring urigdwverhead.
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4.5 Related Work

Charisma is designed to allow expression of global contml,fland it is not a dataflow lan-
guage in the traditional sense. In Charisma, objects hagispent states whereas typical dataflow
languages are functional. However, Charisma uses macsadlaatto drive the progress of the
program and expose parallelism, as most dataflow languaEY In fact, there are a number

of parallel programming languages that apply similar ideas

P-COM [47] is a language with a compiler that composes paralleldisttibuted programs
from independently written componenks]48]. It proposewaphase programming method that
separates the individual component development, and tenmation and integration of compo-
nents to form a parallel program. In this sense, it sharesdahee methodology with Charisma. In
comparison, P-CORIprograms express global control flow implicitly through nenting inter-
faces of distributed components, whereas Charisma enakdisit description of global control

flow with the orchestration language notation.

Many visual parallel languages also adopt the two-stepraroging methods used by Charisma
and P-COM. Among them are two interesting examples, HeNCE [49] and E(HD]. They both
treat sequential subroutines as their primitive compa)emtd exploit the expressiveness of visual
graph in composing parallel programs. In comparison [SODE is more aggressive in its use
of dataflow. Each arc in CODE’s graph language representardatement, and the combina-
tion permits expression of various communication pattetdswever, the explicit dataflow also
increases the complexity of graphs and hence the difficditynalerstanding the program. In
HeNCE, dataflow is implicit, with the arcs representing colflow, such as invocation of the next
components. HeNCE is a better fit for expressing the flow atfastructured programs. Charisma
can be thought of combining the benefits of these two appesadh addition to its own bene-
fits of virtualization. It exposes as much parallelism oppoity as possible with dataflow driven
progress, and inserts control constructs where neededstoeenlear expression of the program

structure.
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Other visual parallel programming environments includde\JEZ], a visual programming en-
vironment based on PVM 53] that allows explicit messagssp®y representing tasks with nodes
and messages with arcs. In contrast, Charisma is basedext-a@bbjented Charm++. Its underlying
adaptive run-time system conveniently provides performeasptimizations for parallel programs
generated by Charisma.

All these visual parallel programming languages enjoy theaatage of natural expressiveness
that is easier to understand. For developers, not all wodome in forms of visual graph. There
are typically interface specifications in text, and text@tations in the graph for the nodes and

arcs. This complexity is likely to result in a steep learnougve.
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Chapter 5

Evaluation of Charisma

We evaluate Charisma by looking at two aspects: performandgroductivity. In the first part of
our experiments, we compare the performance scalabilityeisis Source Lines Of Code (SLOC)
of a few typical parallel programs written in Charisma anaf@h++. In the second part, we show

the results from our preliminary productivity study in agdeoom setting.

5.1 Performance Evaluation

Now we present three benchmark applications, each impledenith Charm++ and Charisma.
We compare the SLOC of both versions and their parallel pedoce on up to 1024 processors.
We use these results to illustrate that Charisma does nat umdlue performance overhead while
reducing SLOC significantly. The platforms used for the perfance evaluation are PSC’s Cray
XT3 MPP system with 2068 dual 2.6 GHz AMD Opteron compute soidleked by a custom-
designed interconnect, and NCSA's Tungsten Cluster wi01dual 3.2 GHz Intel Xeon nodes

and Myrinet network.

5.1.1 Stencil Calculation

Our first benchmark is a 2-D 5-point stencil calculation.sTisia multiple timestepping calculation
involving regions produced by the 2-D decomposition of a Z2aBsh. At each timestep, every

region exchanges its boundary data with its immediate teighin 4 directions and performs
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Figure 5.1: Performance of Stencil Calculation

local computation based on the neighbors’ data. This is alfied model of many applications
including fluid dynamics and heat dispersion simulatior Hrerefore it can serve the purpose of

demonstration.

Figurd.1 compares the performances of the stencil célonlaenchmark written in Charisma
and Charm++. The benchmark problem consists of a 168&%h decomposed onto 4096 objects.
The performance overhead introduced by Charisma is 2 - 6%lengerformance scales up to
1024 processors. Because this benchmark is relativelyisjiting parallel code in Charm++ forms

a significant part of the code. Therefore we see a 45% reduictiSLOC with Charisma.

The overhead can be broken down into two major categoriesnangeoverhead and control
overhead. Memory overhead includes overhead incurredtog éata copying and message buffer-
ing in the implementation of Charisma. It usually accouotssflarger portion in the total overhead
and is dependent on the memory performance of specific cangguiitform. The rest of the over-
head results from parallel control constructs added by i€ima. For example, Charisma program
imposes a global barrier at the end of loops to ensure progeterminacy. Thanks to efficient
implementation of such parallel operations in Charm’s ARI@htrol overhead has a lower impact

on the total performance. Figu® illustrates the overhead breakdown of this Jacobi example o
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Figure 5.2: Charisma Overhead Breakdownm

the Turing Cluster. The percentage is the total overhealeofdtal running time for each run.

5.1.2 3DFFT

FFTs are frequently used in engineering and scientific cdatjpuns. Since highly optimized se-
guential algorithms are available for 1-D FFTs, multi-dma®nal FFTs containing multiple 1-D
FFTs on each dimension can be parallelized using a trandyasssl approach[b4].

We now present the main body of the orchestration code foréimspose-based algorithm for
3D FFT. From this code segment, Charisma generates theposm®peration between the two
planes holding the data. Messages are created and delaereddingly.

Figure[5.% compares the performance overhead of runs wathigm size of 5120n 256 ob-
jects, on up to 128 processors. From the results, we can ae€llarisma, in this benchmark,
incurs up to 5% performance overhead, which can be attdlotadditional buffer copy for param-
eter variables. The reduction in SLOC is 37%. In this spebidicchmark, sequential components

dealing with local 1D and 2D FFT computation constitute asigant portion of the program, and
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foreach x in planesl

(pencildata[ x,*]) <- planesl[x].fftld();
end- f or each
foreach y in planes2

pl anes2[y].fft2d(pencildata[*,y]);
end- f or each

Figure 5.5: Orchestration Code for 3D FFT

therefore the reduction in the SLOC is not as significant apkdr programs. This percentage of
SLOC reduction is expected to be even smaller on larger are gmmplex programs. It must
be noted, however, that SLOC alone does not make a good méfpioductivity as it does not
reflect the actual programming effort. In fact, in more coicgiked applications, expressing paral-
lel flow of control is far more difficult than in simpler casesd tools such as Charisma can help

programmers code with less effort.

5.1.3 Wator

This program simulates a toroidal water (hence the namedtVaworld. Each cell in the wator
world has either a shark or a fish, or water. Sharks and fishaictt@ccording to a set of rules.

Simple rules describe the movements of sharks and fish anfh¢héhat sharks eat fish. More
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Figure 5.6: Screenshot of Realtime Visualization of Wator

complicated ones may involve breeding, aging and starvirstharks and fish. The program con-
structs a 2-D decomposition of the 2-D wator world, simitathat in the 2-D stencil calculation.

At each time step, objects exchange border information e charks and fish move into neigh-
boring cells across an object boundary. Wator is more carat@d than a 2-D stencil calculation

in that it contains two phases of updating the boundaries:afision and shark action.

For this experiment, we added two features to the baselmgram: automatic load balancing
and realtime visualization. Automatic load balancing isatfire provided by Charm++’s adaptive
run-time system. Once it is activated, the run-time will mointhe work load of all the processors,
and when a load balancing session is triggered, the runwtiifhenigrate objects across processors
to achieve a more equal work load distribution. Most of thgzcbmigration is done automatically
by the system and the programmer only has to provide codeaftkipg and unpacking an object’s

memory and for triggering load balancing sessions.

The second feature called LiveViz, offers realtime viszation of a parallel program (See

Figure[5.6). The GUI client is a standalone Java tool sengi&mipdic requests to the parallel
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Charismal Charm++| SLOC Reduction
Baseline 253 354 28%
Load Balance 273 383 29%
Visualization 307 407 24%
Both 327 436 25%

Table 5.1: SLOC Comparison of Wator

application and each object answers the request by prayaliouffer of color coded values. For

instance, in this experiment, different colors are use@poasent water, fish and sharks in a cell.

In Table[5.1, we list the SLOC comparison for the baselingm and scenarios with differ-
ent features added using Charisma and Charm++. A 24-29%tiedun SLOC is observed when
Charisma is used to implement these features. Indeed,stialy easier to add features to a paral-
lel program with Charisma. For example, to add load balantrthe Wator program, a Charm++
programmer needs 29 additional SLOC, while a Charisma progrer needs 20, because some of

the code is automatically generated by Charisma.

It is also worth noting that SLOC is a very linear measure. albtines of code contribute
equally to complexity. In this example as well as other ex@smwhere sequential components
make up a dominant part of the code, we would get an even lpageentage of SLOC reduction

if we separate out the sequential functions and subroutuhésh are identical in both cases.

5.2 Classroom Productivity Study

Productivity of a HPC language is understood to be more diffto measure than its performance.
In previous work [[55[ 56 57], SLOC was used as a major mefrigprogrammer productivity.
While SLOC provides valuable information about produdtivit is widely recognized to be an
incomplete means of measurement. For this reason, we cwagreliminary classroom study

[58] to further investigate the productivity of programmiim Charisma.
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(Hours) 2D Stencil Wator
Charm++| Charismal| Charm++| Charisma
Mean 16.84 11.18 24.08 20.47
Median 15.00 10.00 20.00 15.00
StdDev 11.12 6.23 12.39 12.91

Table 5.2: Number of Hours Spent on Development (Samplel€iye

5.2.1 Experiment Environment and Results

Our study involved 25 students in an introductory coursearalpel programming. The students
included 9 undergraduate students with a CS major, and Ifugta students from both CS and
non-CS majors such as Material Science, Mechanical Enginggeé”hysics and Aerospace. The
average programming experience of the students was 6.16, yaad average years of parallel
programming experience was 0.58.

During this course, various parallel algorithms and prograng languages/tools were taught
and the students were assigned a set of parallel prograntaskg, among which were 2D Stencil
and Wator, and they were asked to report the time spent (onast the time if the task was not
actually done) on each programming task with Charm++ andi§€ha.

Among the 25 students, 4 did not finish the assignments andeheere unable to provide
dependable information. There were 2 entries with numlzergarge or too small, so we excluded
them as well. The analysis is done on data from 19 studentgatRiates and 6 undergraduates.

We first looked at the number of hours spent on developing 2Dcdtand Wator programs.
The mean, median and standard deviation are listed in TaBleMhen we realized that since the
students have different levels of experience in progrargraimd different levels of familiarity with
parallel programming languages, the percentage of dewedaptime reduction is a better metric
than the absolute number of hours. Therefore, we calcuthtegercentage of time saved by using
Charisma instead of Charm++, and the mean, median and stiastelaation are given in Table™.3.

Table[5.B clearly illustrates that the standard deviatmnalll 19 students is large, pointing

to a wide distribution of results. We then tried two differeschemes of grouping the students,
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(Percentage) 2D Stencil| Wator
Mean 22.35 15.90
Median 26.67 12.13
StdDev 37.76 26.45

Table 5.3: Percentage of Development Time Reduction Usimgri®ma over Charm++ (Sample
size 19)

(Percentage Graduate (13) Undergraduate (6

2D Stencil| Wator || 2D Stencil| Wator
Mean 37.84 32.01 -4.21 -10.98
Median 38.33 40 0 -8.33
StdDev 24.38 19.13 43.41 12.56

Table 5.4: Percentage of Development Time Reduction Ushegi®€ma over Charm++ (Graduate
vs. Undergraduate)

graduate vs. undergraduate, and CS major vs. non-CS majar.rétson behind the grouping
is to differentiate between various levels of familiaritythvprogramming and with engineering
models. Graduate students usually have more experienbgvagramming in a research context
than undergraduates do and the non-CS majors typically imave real-life experience working
on scientific or engineering models and have better undetstg of the problems that needs par-
allelization. The results in Table™.4 and Tablel 5.5 confirtiee validity of the classification
schemes, with the graduate and non-CS groups having mublernayerage development time
reduction and smaller standard deviation in the resultslevthe undergrad group and CS major
group find less merit in Charisma in terms of productivitythwa larger standard deviation.

Another method of visualizing the results is through a x-§esg plot as shown in Figukeb.7.

(Percentage Non-CS (8) CS (11
2D Stencil| Wator | 2D Stencil| Wator
Mean 47.14 29.78 4.32 9.44
Median 51.47 37.50 0.00 0.00
StdDev 19.34 15.67 38.15 30.09

Table 5.5: Percentage of Development Time Reduction Usimgri®€na over Charm++ (CS vs.
Non-CS)
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Figure 5.7: Spread Plot of Development Time with Charismalsarm++

The non-CS graduate students (circles), who representddiegs target users, are consistently
below the 48 line. In contrast, data points for other students (triasge spread more widely

and on both sides of the 45ne. We discuss the possible reasons in the next section.

5.2.2 Productivity Analysis

The productivity benefit of a parallel programming languagéation is decided by a variety of
factors. Some factors such as programmer’s level of fantiliand experience, and knowledge of
problem domains, have little to do with the language its8thers are properties of the language,
like the language complexity. The language complexity W&s ftnajor components: syntactic
complexity and semantic complexify [55].

Syntactic complexity describes the difficulty of transfamgan algorithm into source code in
that language. Since most programmers are accustomed $gritex of prevalent programming
languages such as C/C++, Fortran, or even Pascal, extmsgatax beyond that in a new lan-

guage may make programs harder to write or to read with ahditisyntactic complexity. Many
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parallel programming languages and tools minimally extxidting languages to avoid syntactic
complexity. For instance, tools such as UPC and HPF havesimiyle extensions to the prevalent
languages. MPI has language bindings with C/C++ and Fqrtmad provides a set of standard
library calls to perform the communications. Charisma salesigned with a goal of reducing
syntactic complexity by limiting the number of new syntadeatures such as publish statement
and reusing keywords from existing languages in the orcaigsh code. In the sequential code, the
programmer is asked to write standard C/C++ code. As a fyiare Charisma may incorporation

language binding for Fortran too.

A less obvious but arguably more significant issue is semamimplexity of the language.
Semantic complexity decides the difficulty of transformiingm the sequential problem to the
parallel model that fits the language. It is largely indepsTiabf the syntax of the language, but
more closely connected with the programming model that dnguage provides, as well as the
level of abstraction. For example, MPI programs are writitesund the concept of processors,
and therefore the programmers are expected to take intaactee decomposition of the parallel
problem into processors, the mapping between processosudtdsk, communication optimiza-
tion, load balancing, and so forth. In contrast, Charismiauit on top of an adaptive run-time
system that supports migratable objects and automatelégbaeaource management. In addition,
Charisma allows clear description of the global view of cohin a parallel program. All these

factors contributes to a reduced semantic complexity whiegremming with Charisma.

In Section[3.R2, we pointed out that Charisma’s targetedsuas¥ domain experts with am-
ple knowledge in their specific scientific and engineerintfiebut little parallel programming
training. In our classroom study, they are represented éyntmn-CS graduate students. To these
non-CS students, Charisma and Charm++ are equally alignées to allow a fair comparison on
productivity, whereas to CS students, Charm++, being aension to C++, has some advantage
on syntactic familiarity. Furthermore, the non-CS studdwpically have some experience with
programming but not much with parallel programming. Whegyttake the course, they usually

have an actual problem in their fields of research that th@glo parallelize. To them, the key
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to the productivity of a parallel language is its semantimpétexity, or how difficult it is to trans-
form their sequential problems into the parallel model. i@&maa’s object-based model apparently
makes it easier for them to parallelize their engineerimgpj@ms. To CS students, who do not have
much opportunity to work with actual engineering probleth®, syntactical factor plays a more
important role. They may find the syntactical elements ofdtelestration code, such as publish
statement and parallel foreach, less than intuitive to aisé,are consequently reluctant to accept
Charisma.

As this is only a preliminary classroom study, certain aspean be improved. Firstly, we
can extend the set of applications to include examples framemroblem domains. Secondly, we
can explore a larger metric space. In addition to developti®e, we can look at time spent on
designing, coding, debugging and running. Since what wi&/reare is “time to solution”, scaling
performance of the resultant parallel program should aés¢éaken into account. Literature on
related research on this topic can be foundin [59/ 6D, 61]h#e plans to continue this parallel

programming productivity study in the future.

5.3 Code Comparison: MD

In this section, we show how Charisma can overcome some ah@hds difficulty of describing
global view of control with a concrete example. This examgkesimplified version of the NAMD
simulation explained in Sectidn-8.1, with only the pairwfisece calculation includedCel | s are
the objects that hold the coordinates of atoms in patchesgcahl pai r s are the objects calcu-
lating pairwise forces between tweel | s. In the following comparison, definitions for sequential
functions such agel | : : I ntegrate andCel | Pai r: : cal cFor ces are not listed, since they
access only local data and should be the same for both version

With Charisma, the MD code is listed in Figurel5.8. Firstnedmts in object arragel | s
producetheir coordinates, providing the initial data for the firgration. During each iteration,

cel | pai r s calculate forces bgonsuminghe coordinates provided by twael | s elements. In
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foreach i,j,k in cells
(coords[i,j,

end-foreach

1) <- cells[i,j,K]
for

iter

pr oduceCoor ds()
=1 to MAX_ITER
foreach i1,j1,k1,i2,j2,k2 in cellpairs
(+forces[il,j1,k1], +forces[i2,j2,k2])
- .

cellpairs[il,jl,kl1,i2,j2,k2].calcForces(

coords[i1l,j1,kl],coords[iZ2,j2,k2])

end-f oreach

foreach i,j,k in cells
(coordsJ[i,|j, k], +tenergy)

<- cells[i,j,k].
end-f or each

integrate(forces|i,]
MDMai n. updat eEner gy( ener gy)
end-f or

»KD);

Figure 5.8: MD with Charisma: Clear Expression of Globalwiaf Control

MainChare: :MainChare{ —
cell.sendCoords(),“
}
| I
MainChare: reduceEnérby(energy){
totalEnerty += energy’
if (iter++ < HMAX

ER)
cells.sendCoofHT L,\
else || h
CkExit () ;
}

all coords ready
alcForces() ;
i in 2 cells
| |1\ N cell ) .recvForces (forces) ;
1\ LI
| l'. I'. Il'u\\ —
o e B —
E] —

Cell :sendCoords () { —

for index in 26 neighbor cellpalrs

cellpalrsLlndex) r

}

Cell::

recvForces (forces) {

oords (coords) ;
totalforces += forces;

if (++force count < 26)
return;
else

// neighborhood reduc
integrate() ;

on completed
mainProxy.reduceEnergy (enerqgy) ;

Figure 5.9: MD with Charm++: Overall Control Flow Buried irb§acts’ Code

66




[+ post recvs for all possible nessages */
MPI Irecv(...,regs[0]);

MPlI lrecv(...,regs[K-1]);
/* handl e any incom ng nessage
resulting broken nmodularity */
whi | e(recei ved<K){
MPI _VWaitany(...,reqgs,...);
swit ch( GET_TYPE( buf)) {
case (FOR_ANGLE):
[+ cal cul ate angle forces */
case (FOR _PAIR LEFT):
/* cal cul ate pairw se forces */
case (FOR PAIR RIGHT):
/* cal cul ate pairw se forces */

}

Figure 5.10: MD with MPI: Additional Code Required for Perftance

the same statementel | pai r s produceforces combined via a reduction withircal | ’s neigh-
borhood. These values gebnsumedn the integration phase. The integration ajgoduces
coordinates for the next iteration and total energy via aicédn operation across alel | s. In

the Charisma code, each orchestration statement specliieb pieces of data itonsumesnd

produceswithout having to know the source and destination of thaga dems.

Figure[®.® lists corresponding Charm++ pseudo code for @hgesprogram. In three boxes
are method definitions for three clasdés nChar e, Cel | , andCel | Pai r, which are typically
separated in different C files. Note thadl | andCel | Pai r are object arrays. To organize the
global control flow, one has to dig into the files and hop amdreg. The control flows, as
represented by the arrows, are fragmented and buried irbjeetaode. Following control flow in
such a parallel program is more complicated than in secpletiject-oriented programming code
for two main reasons. Firstly, these arrows do not represgatlar function calls as in ordinary
object-oriented programs. The results of a function do etirn immediately with the exit of
that function. Instead, there is a split phase control, wltilee values are returned with a separate

message and method invocation. Secondly, due to the coitydéxhe parallel operations among
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the objects, the control transfers can take form of vari@mraunication such as point-to-point
communication, reduction, multicast and broadcast. Fstamce, collecting force data among a
cel | 's neighboringcel | pai r s through a neighborhood reduction requires non-trivialec{ubt
shown in the pseudo code here), and this kind of code is atiwatig generated in the Charisma
version.

The corresponding MPI version will be much more complicdbeh the Charm++ version. In
addition to handling the collective operations, the MPIgsesnmer has to write code for explicitly
managing various sets of subtasks, maintaining mappingnsetbetween subtasks’ identities and
their physical locations (processor number), and auyili@de such as load balancing. When the
programmer wants to achieve higher degree of overlap bete@®putation and communication,
more code is needed to handle the wildcard source and tadhnimgt@s illustrated by the code

segment in FigureE510.
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Chapter 6

Charisma Application Case Study

In this Chapter, we present two applications developed ®hilarisma. These two applications
both represent relatively new methods that become praetita recent development of parallel
computing tools. They are both complicated in structureanCPhas nearly a dozen different
parallel objects and overlapping control flows, and topglogtimization has multiple rounds of
nesting loops in its analysis process. We show the prodtyctaenefits of Charisma through
describing the development and results of such applicaitibhe performance results are obtained
on the Turing cluster with 640 dual Apple G5 nodes connectiéid Myrinet network at University

of lllinois.

6.1 LeanCP

Many important problems in material science, chemistriidsstate physics, and biophysics re-
quire a modeling approach based on fundamental quantumamieeth principles. The exquisite
detail provided by atomistic simulation permits new mecsians and processes to be easily identi-
fied and studied in a control way, and to provide novel insigtat well known phenomena that are
not understood at a basic level. For example, atom-levallsition study of enzyme structure and
reactivity (Figurd&l1) plays an important role in the adsement of science and technolo@yl[62].
Among the many variants of atomistic simulation, one imgotrmethod is molecular dynamics

(MD), solving Newton’s equations of motion of aggregateatoim and yielding both the structural
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Figure 6.1: Visualization of Human Carbonic Anhydrase. €loaid in the wire frame represents
the electron density of th&b initio atoms.

and dynamical properties of the simulated systenh [63]. MEhwlassical Newton’s equations
is a powerful tool where the physically motivated gravitatl forces are dominant. For more
complex systems undergoing reactions, however, an atorpistspective needs to be taken into
account. At this level, the atoms consist of nuclei and etest, and the system is driven by
interactions generated by electrostatic forces betweemtitlei and interactions derived from
the quantum mechanical solution of electronic energy atfixgclear position. While the nuclei
remain classical objects subject to Newton'’s laws, thedemgpon them are derived from ab
initio or first principles approach]64]. Calculations based ositidre advanceab initio approach

are more powerful and more computationally intensive.

A particular approach that has been proven to be relatiietrent and useful is Car-Parrinello
ab initio molecular dynamics (CPAIMD][65]. Parallelization of tldpproach is challenging due
to the complex dependences among various subcomputatibitd) lead to complex communica-
tion optimization and load balancing problems. In the impatation of CPAIMD with Charm++,
called LeanCR the subcomputations are implemented as different setbjetbarrays, and the

communication optimization and load balancing are handigmatically by the run-time sys-
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tem. However, the complicated flow of control is buried dgapside object code of the various
classes. Thus, it makes a perfect example where Charismaffeamigher productivity via clear
expression of global view of control while still sustainititge benefits of the adaptive run-time
system. It is worth noting that LeanCP is a Charm++ applicatieveloped in a collaboration in-
volving a team of scientists and parallel programmers. Thalooration has generated more than
20,000 lines of source code during several years of hard wisla result, LeanCP code is highly
optimized in terms of both parallel programming techniqaed scientific algorithms. Since we
cannot quite match the effort involved for this study, we atmmaking sure that we can capture

the overall structure of this application with Charisma.

6.1.1 Implementation with Charisma

In CPAIMD, the ground state electronic energy is calculd@gdinimizing a functional of the elec-
tron density following the principles of Density Functidideory[66]. The functional contains
several terms, the quantum mechanidaktic energy of non-interacting electrons, the Coulomb
interaction between electrons or tHartreeenergy, the correction of the Hartree energy to account
for the quantum nature of the electrons or é€xehange-correlatioenergy, and the interaction of
the electrons with the atoms in the system orakternalenergy. In the last term, the interaction of
the valence electrons with the atoms is treated explicitig the core electrons are mathematically
removed, resulting in what is called then-localenergy.

The CPAIMD computation consists of several steps of contfmtand communication. These
steps include (1) computation of the electron density froendlectronic states, (2) computation of
the exchange correlation and Hartree from the density amddmputation of the local electron-
particle interaction, (3) computation of the structuretdadrom the particles, (4) computation of
the non-local electron particle energy/forces from thetetamic states and the structure factor (5)
computation of the lambda-matrix from the forces and (6) potation of the S-matrix from the
states.

Figure[6:2 shows the structure of LeanCP, where 11 distimatbject arrays are created to
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execute different subtasks. The object arrays and theatifumalities are listed below.

e GSpaceandRealSpace Working together, these “State” object arrays create kbetr@nic
density in real space (R-Space) and pass it to the “Denshij¢ab arrays (Phases | and II).
They also receive force data in R-Space from Density objgelya and derive it into G-
Space force data (Phases V and VI). The communications batthe two object arrays are
transpose operations, and the communications betweeBS e and RhoR are a reduction
and a multicast. Note that in the figure, boxes representi@gaGe and RealSpace arrays

are shown twice for Phase | and Phase VI for the sake of clarity

e RhoR andRhoG: These two Density object arrays transform electron dgfreim R-Space
to G-Space (Phase lllI), and perform or prepare to performpeation of the “exchange-
correlation energy”. The exchange-correlation energyahfesv components which are de-
rived here with or without the gradient of the electronic signin R-Space (Phase V). In
addition, they copy the Fourier coefficients of the densityite “Hartree” object arrays to
compute the “Hartree and external energies”. Finally, thergies are sent back to State
object arrays with a reduction. The communications invahatude transpose operations
for 3D FFT, and point-to-point communication between thetiég objects, and multicast

and reduction with the State objects.

e RhoRHart andRhoGHart: These two Hartree object arrays calculate the Hartree &nd e
ternal energies (Phase 1V). Similar to the above Densitgaibj transpose and point-to-point

communications are used.

e Particle and RealParticle: The kinetic energy of the non-interacting electrons ana-co
puted without communication in these two “Particle” objantays (Phase IX). This flow is

independent of the computation in Phases II-VI.

e Ortho, Lambda and Pair_Calculator: After the forces have been computed, a series of

matrix multiplications are performed for regularizationdaortho-normalization, in these
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three object arrays (Phases VIl and V).

Although the Charm++ implementation could give unprecéeldscalability performanc&lil4,
[15] on this problem, it suffers from an obscure flow of contespecially at a global view. With
the overlapping flows of interactions among the objects shoviFigurd 6.2, one can imagine how
difficult it would be to follow the control flow in the objectased code at a global level. The sheer
number of object arrays and variety of communication pagtémvolved pose a great productivity
challenge to developers and readers of the program alike.

Our goal is to collect first-hand experience in terms of patigity and performance through
developing a Charisma version of LeanCP. By examining tiebastration code, we exhibit that
Charisma is able to significantly reduce the effort in prograng as well as in understanding the
flows in the program.

The following code segment is a simple example of a poirdmt communication. When
the indexes on the producing object arraiidG) and consuming object arrayH{oGHar t ) match
with the indexes of the parameter varialblRGToRGHar t , each object produces and consumes
exactly one element in the parameter, and hence the geti@@temunication is a point-to-point

operation.

foreach y in rhoG

(...,cRGIToRGHart[y]) <- rhody].Phasel V1(cRReal ToRF Y, *]);
end-f or each

foreach y in rhoGHart
(...) <- rhoGHart[y].Phasel V1(cRGIoRGHart[y]);
end- f or each

Figure 6.3: Point-to-Point Operation in LeanCP

The next code segment shows the transpose and reductioatiopsrin Phases Il and IlI.
The two object arrays are 2-[3SpacePl ane is with [n.,n,], andr eal SpacePl ane is in
[7state, n2].  Correspondingly, the parameter varialbl8GroSReal is 3-D with [nga, 7y, 1]

The wildcard “*” in the produced parameter denotes that egggacePl ane object is producing
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multiple (n., to be exact) elements 0fSGToSReal data structure, and the wildcard in the con-
sumed parameter means eaefal SpacePl ane collectsn, elements ot SGToSReal before the

method can be invoked.

foreach i,y in gSpacePl ane
(cSGToSReal [i,y,*]) <- gSpacePl ane[i,y]. Phasel();
end- f or each

foreach i,z in real SpacePl ane
(+r SReal ToRReal [ z])

<- real SpacePl ane[i, z]. Phasel | (cSGToSReal [i, *, 2] );
end- f or each

foreach z in rhoReal
(...) <- rhoReal [z].Phaselll1(r SReal ToRReal [ z]);
end- f or each

Figure 6.4: Transpose and Reduction Operations in LeanCP

Similarly, this is the orchestration code for Phases V andrwblving a multicast followed by

a transpose operation.

foreach z in rhoReal
(r SReal ToRReal [z]) <- rhoReal [z].Phasel l12(...);
end-f oreach

foreach i,z in real SpacePl ane
(cSReal ToSH i, *, z])
<- real SpacePl ane[i, z]. PhaseV(r SReal ToRReal [ z]);
end- f or each

foreach i,y in gSpacePl ane
gSpacePl ane[i, y] . PhaseVl (cSReal ToS i, vV, *]);
end- f or each

Figure 6.5: Multicast and Transpose Operations in LeanCP

6.1.2 Results

We measured the performance of our Charisma version of LRRamCthe Turing cluster, and

the results are shown in Figute®.6. It is necessary to rehaatve do not expect to match the
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Figure 6.6: Performance of Charisma Version of LeanCP om@Eluster

performance of the Charisma version with the original Chiafmmersion, because it is impossible
to repeat the significant amount of effort devoted in the @Har version within the given period
time allowed for preparing this example. Although our Chiana version is not equipped with

many optimizations, it scales smoothly up to 128 PEs.

6.2 Parallel Topology Optimization

The Topology optimization method[67] has become an intergsubject of research with recent
developments in structural optimization. Traditionalistural optimization aims to find structures
such that their size or shape is optimal in a certain sensesatigfies certain constraints. For
example, the 3D shape with minimal surface area for a givéumve is a sphere. In addition to
size and shape, topology optimization takes into accouwntdapology of the structure, including
connectivity and boundaries. It has been applied to a widgaaf structural design problems in
such fields as civil engineering. The topology optimizatioethod is extremely computationally
intensive. For this reason, even though the theoreticahoakst were proposed a long time ago,

practical use has not been widespread until recently, asiveds parallel supercomputers have
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become availablé [68, 59].

The problem to solve in this specific application is to findracure that maximizes the trans-
portation of heat from a heat source to the boundary of theydespace, given a limited amount
of conductive material. It is an interesting problem beeaih® resultant 3D structure will resem-
ble that of blood vessel and capillary system in nature. T transfer formulation is elegantly
simple, so that the complexity of the finite element analgais be reduced.

The formal description of the problem is as follows.

miné(u, p.) st K(E,)u="f (6.1)
pe
E.=/pE, (6.2)
> peve <V, (6.3)
e=1
0<p.<1l,e=1lmn (6.4)

whered is the objective function to be minimized, in this case thagerature at the heat source;
n is the number of elements in the domait); is the conductivity corresponding to intermediate
densities;¥, is the conductivity of the base materi&l £. ) is the conductivity matrix, which is a
function of the material properties,; V, is the upper bound constraint on the total volume of the

structure.

6.2.1 Development Process

The process of topology optimization is shown in the flow thafigure[&Y. It is an iterative
method. First, the initial parameters and conditions areas®l we parameterize the design prob-
lem by dividing the domain into finite elements. At each stép, tentative model goes through
finite element analysis to obtain the performance of thewewglstructure. Then sensitivity anal-
ysis is carried out to assess how the performance will charge design variables are changed.

The result from sensitivity analysis is used for an appdproptimization algorithm to update the
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Figure 6.7: Topology Optimization Process

design variables. At the end of the design process, afteg\tbkition of the structure is tested to
be converged, each point in the domain has either a pointmatterial or without material (with

density of 1 or 0). The optimized structure emerges as natpoints cluster together to form
interconnected members. The material points define thetatriin a similar way to how pixels

define a image, except that it is in 3D space.

The development team consists of 4 people, with 2 studeois & civil engineering back-
ground and 2 students from computer science with paralnramming experience. We chose
Charisma as the parallel programming tool and follow thestigyment method described in Sec-
tion[322.4. The group was divided into two teams: tleenain teamwhich includes the two civil
engineering students, is responsible for developing theailo model and preparing sequential
components. At the first group meeting, the domain team exgadathe problem to thparallel
team which includes the two computer science students. Thdlpkteam then proposed alterna-
tive approaches of partitioning and parallelizing the peab Thanks to Charisma’s higher-level

abstraction, itis easy to illustrate how the domain is parted into subtasks (parallel objects) and
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how they interact during the whole process in a global viewbsgquently, the two team discussed
the overheads and complexities of each alternative apprarad decided on a final parallelization
scheme.

Charisma separates the specification of parallelism fraqnesgtial component development,
so the two teams can focus on their respective tasks. Thégbdemm worked on creating data
structures used in the parallel data flow (parameter spagabl@s) and organizing the global
control flow with the orchestration code. The domain teamtevcmde (or transformed existing
sequential code) for local computations of the parallekoty. With no parallel context involved
in the local operations, the functions are simpler for depets on the domain team.

Then the two teams met again to integrate their code. Theaots of some local functions
were slightly adjusted to fit in, and Charisma compiler gatest the parallel code which invokes
these local computation functions. With the generatedligh@de, the domain team was able
to verify the correctness with small scale runs, while thealba team worked on optimizations
such as performance tuning and adding load balancing medoddore the program was finally

submitted for performance runs.

6.2.2 Results

In order to construct high quality 3D structures, a large hanof design variables are required,
which requires significant amount of computing capacitguFel6.8 shows the visualization of the
outputs from our application, with different number of ekamts in the model, and hence different
levels of resolution quality as well as different amountatit computation.

Our topology optimization application with 1,000,000 ektants in the mesh scales from 2 to
256 processors on Turing Cluster, as shown in Fifule 6.9stalability is less than perfect in this
case, because the communication between the objects ie@avy, including all the boundary ex-
change in neighboring faces, edges and corners. Thesesfackondependent of the programming
language used. Again, the most interesting part is the dprm@tnt process of this application and

how quickly a fairly complicated parallel program can beeleped.
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Chapter 7

Adaptivity Support for Prevalent
Languages

There are a variety of important programming languagegaiiies and tools that offer advanced
features and useful programming models. The messaginghggsaradigm represented by MPI
has established itself as the dominant programming modsttdable scientific applications, with
its explicit management of communication. A collection tftzpl address space (GAS) languages
compete and complement the message passing model by sogmoglobal view of distributed
data structures. Some of the important GAS languages iadBldbal Array (GA) [21], Unified
Parallel C (UPC)[22], and Co-Array Fortran (CAE)[23]. GAfhbuages furnish high productivity
programming abstractions to applications written in séadgrogramming languages such as C,

C++ or Fortran.

This thesis proposes providing adaptivity support for imigat existing parallel programming
paradigms, including the message passing and distribinta&eed memory models, and further
supporting existing applications developed with such nwdad languages. Specifically, we in-
vestigate research issues in adaptivity support for MesBagsing Interface (MPI) and Aggregate
Remote Memory Copy Interface (ARMCI)]I70] on the AdaptiverRTime System (ARTS). MPI
and ARMCI represent different data-exchange models, andesearch will explore how these

models can be developed on the foundation of ARTS.
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7.1 Design Goals

Based on the features available on the adaptive run-tintersysve set the following design goals
for supporting adaptivity in prevalent programming pagaas.

Adaptive overlap between communication and computation Effective overlap between
communication and computation boosts the efficiency of alfgisystem and hence is an impor-
tant performance issue in parallel programming. For exanvghen an MPI program hits a receive
operation, ideally the corresponding message should Heasdy arrived so that the process is not
blocked and can avoid wasting CPU time. To achieve this, tbgrammer tries to move sends up
and receives down, and fit some computation between sendsegides, giving time for commu-
nication to complete. This manual approach adds to the gnogring complexity, and even that is
often inadequate. Our design should allow adaptive ovetaygpmmunication and computation,
improving program efficiency without inducing this kind afggramming complexity.

Automatic load balancing: Many scientific applications have dynamically varying kload
distribution. The computing hotspots can be constantlitisgi as exemplified in the fracture
propagation simulation and adaptive mesh refinement msethbdr parallel programs load im-
balance has an especially high performance impact, bethestowest node dictates the overall
performance of the whole system. Run-time load balancimgishbe effective, adaptive to the
application as well as to the parallel platform, and be aatech so that minimal user effort is

required.

We explore our design alternatives with these goals in mild.take an over-decomposition
approach to adaptive overlapping and virtualize proceastbsparallel flows of control. Design
alternatives for parallel flows of control that we examinedude processes, kernel threads, and
user-level threads. On a wide range of platforms, we contbargous aspects including maximum
number of flows per processor, context switch overhead, agchmbility [71]. We concluded that

user-level thread is the best fit.

Load balancing requires migratability of our user-levettds as well as the capability of the
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underlying run-time system to monitor workload distrilmrtidynamically. The run-time should
also be able to observe communication patterns happenitigeisystem, so that it can advise
communication-aware load balancing strategies. The desiguld be built on top of a run-time

system with such capabilities.

7.2 Processor Virtualization Via Migratable Threads

Our approach to adaptivity support for prevalent paradigmshe ARTS is based oprocessor
virtualization[[7Z]. The basic idea is to execute parallel processes witlri@#h+ migratable ob-
jects on each process. Several of these Virtual ProcesgBg) €an be mapped onto one physical
processor. This gives the run-time system flexibility inoege management for the VPs, and

gives the programmer freedom to decompose the parallehplvay that best suits the algorithm.

7.2.1 Charm++ Facilities

Charm++ offers a set of features that facilitate processtualization for common programming
paradigms. To start with, Charm++’s abstraction of objeryss, which is a collection of objects
indexed by any general index structure, turns out to progitasic functionality needed by most
paradigms. The objects are indexed by their rank and theéimmsystem offers efficient mech-
anisms for locating objects, redirecting messages to tifeanmigration, and maintaining tables
of known locations. Moreover, Charm++’s built-in commuation functions, including broadcast
and reduction, can also be used for intrinsic communicatfonsome of the paradigms such as
MPI Bcast andMPl _Reduce.

One of the most important performance benefits of Charm+R$&\is automatic load balanc-
ing. It is based on an empirical heuristic callednciple of Persistenc/2], which simply says
that for most parallel programs expressed in terms of VRsctimputation loads and communi-
cation patterns tend to persist over time. Based on theipleof persistence, our ARTS uses a

measurement based load balancing scheme in which a loaackat@anager constantly monitors
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the work load distribution across the system and migratgsctdaccording to a given load bal-
ancing strategy to redistribute the work load. The loadi@tey module is responsible for making
decisions and migrating objects around, yet it is the objeesponsibility to ensure the integrity
of their data during migration, also called migratabilifyobjects.

Threaded Charm++, @rtCharm is a framework built on top of Charm++ that provides common
run-time support for migratable and light-weight thrﬁd‘ﬁhese threads are created and scheduled
by user-level code rather than by the operating system kerhe advantage of user-level threads
are fast context switchirﬂ control over scheduling, and control over stack allocatid@ hus,
it is feasible to run a large number of such threads on oneigdilysrocessor. TCharm threads
are scheduled non-preemptively. When another framewalsithread support, the programmer
simply “binds” the set of objects from that framework ontoed af TCharm threads. The virtual
processes then use the bound threads as needed for blockimgsuming functionalities. The

ARTS always migrates the bound objects and threads together

7.2.2 Implementing Virtual Processes

In order to take advantage of these Charm++ facilities, wesh to implement virtual processes
in prevalent paradigms as user-level threads bound tolpboblects, as illustrated in Figufe¥.1.
The rank of a VP corresponds to the index of the parallel dlgad is independent of the rank
of the physical processor it resides on. As the parallelatilgad the user-level thread are bound
together, they always migrate together, for example, duasitoad balancing session.

The threads used are TCharm threads. Because they arevigiitt user-level threads, we
are able to run thousands of threads per processbr [73] apitke context switch overhead at
microsecond level. One experiment shows the overhead $meswl/schedule/resume operation is

0.45 microsecond on a 1.8 GHz AMD AthlonXP machine.

1TCharm was created by former PPL member Orion Lawlor and t@iaied by Gengbin Zheng and other group
members.

20Overhead for a spend/schedule/resume operation is las4 tiécrosecond on a 1.8 GHz AMD AthlonXP work-
station.
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Figure 7.1: Implementation of Virtual Processors

Communication among VPs is implemented as messages anwpgrtilel objects. Although
it has been explain in Sectidn®.1, it is worth reiterating tlie sake of clarity how the ARTS
supports efficient routing and forwarding of these messagése presence of object migration.
When the destination VP migrates during the transmissicm miessage, the Charm++ message
will be delivered to the object regardless of its currentbtgl location. The ARTS provides a
scalable mechanism to determine the location of a given V&t &f all, the system maps any VP
index onto a home processor that always knows where thespameling VP can be reached. When
the VP migrates away, it updates its home processor of itectlocation. A message destined
for it will still be sent to its home processor, which in turonivards the message to its current
residing processor. Since this forwarding is inefficiehg home processor will inform the sender
of the VP’s current location, advising it to send future nagges directly to the new location. This
mechanism avoids having a central registry which consumes@us non-distributed storage and

presents a serial bottleneck or a broadcast-based mechtr@swastes bandwidth.
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7.2.3 Handling Global Variables

The use of global variables can result in a confusing progsimee the value of a global variable
can be changed by any code in any scope in the program, mdiengptle harder to understand.
It can cause potential naming problems when global varsablelifferent modules with the same
name cause naming conflict. Despite all this, the practicesaig global variables is not un-
common in existing parallel paradigms such as MPI. In owrdtrbased design, however, global
variables can pose an even larger data integrity problenguse when many threads run on one
processor, global variables in the user code become unsateh a multi-threading environment.
Indeed, while a global variable is processor-private iraditronal processor-based paradigm such
as MPI, the same “global variable” is meant to be a threadafeivariable in our thread-based
implementation. To ensure the thread safety of user glodr@hbles with minimum programmer

involvement, we have explored several alternative appresc

The first solution is calledwap-globalimplemented on run-time level. It is based on the
Executable and Linking Format (ELF) in a way similar to theaWes run-time framework[74].
Previous group member Sameer Kumar together with Gengbémg@ ktarted implementing this
scheme. ELH]75] is a common standard binary file format anvanigus Unix systems including
Linux, Solaris, and FreeBSD. In a dynamically linked ELF @xable, the set of global variables
are accessed via the Global Offset Table (GOT), which costame pointer to each global variable.
The scheme makes a copy of the GOT for each thread, and sweapesititer to the corresponding
GOT when the thread scheduler switches threads. With tipisoaph, the additional context switch

overhead is negligible, since it is only swapping a pointer.

On platforms where the GOT does not exists, a variation sfdpproach makes copies of the
global variable data items, and copies in and out the datanwhreads switch. This alternative,
calledcopy-globa) is a feasible alternative when the total size of the glolaaiables is not too

large.

The third approach is global variable removal done at codel.leThe idea is to collect all
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the global variables into a non-global data structure asd ganto each function referencing any
of the global variables. This process is mechanical and 8orae cumbersome. In some simple
cases, this task can be performed manually. More than akenyser code is too complicated
to remove global variables by hand. Fortunately, it can leraated by source-to-source trans-
lation, such a®A\MPIzer[[76] based on Polari$ [77] that privatizes global variatitesn arbitrary

MPI code in Fortran77 or Fortran90 and generates necessdeyfor moving the data across pro-
cessors. Similar tool for handling C/C++ code is also beiunilf based on the source-to-source

transformation framework Rose [18.179] by PPL group members

7.2.4 Migrating Thread Data

One of the biggest challenges in migrating threads is to atégthread data. Specifically, it is

challenging to extract the useful stack and heap data tHahge to a thread, and to update the
correct values of pointers contained in thread data, incudunction return addresses, frame
pointers and pointer variables, on the new processor aftgration. Our design includes two

different approaches: automaitsommallocand manuaPUPerfunctions.

The idea behind isomalloc is to guarantee that a data itenttokad will always have exactly
the same address on the new processor as on the old procéstothis guarantee satisfied, no
pointers need to be updated because all the referencesreatidion the new processor. This idea
was originally developed for thread migration in the PM2-time system[[80)].

As illustrated in Figuré_712, a unused range of virtual adsligpace common across all pro-
cessors, calletso-addressarea, is reserved on all processors. The iso-address dhemidivided
into P regions, each for one processor. Note that only virtual mgrsoreserved, and not any
physical memory is actually allocated. When the threadcaties data, the slot corresponding to
that thread will be used. When the thread moves to a new Bocdbe run-time system simply
copies over the iso-mallocated data in the correspondotglsiowing the same virtual addresses
are guaranteed to be valid on the destination processor.

While the isomalloc approach enables automatic threadnd@gation, it requires large virtual
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Figure 7.2: Migrating a Thread Stack Allocated with Isoroall

address space, especially when the number of threads &s [Eing second solution takes an alter-
native approach, requiring the programmer to specify iredbe data items to move at migration.
As an extension to the system’s PUP (Packing and UnPackiagpefvork, the programmer writes
a PUP’er function to iterate through the data items chosée tnoved. Compared with the isoma-
lloc approach which copies every piece of data with the thréras scheme allows the programmer
to choose data items to move along. Since the programmehé&gst knowledge of the life cycle
of the data items, only those essential for restarting thesathexecution on the new processor are
moved. Therefore, the PUPer solution has an performancanéatye at the cost of addition user

code.

7.2.5 Automatic Checkpointing

Based on migratable threads, the ARTS supports checkpestdaft mechanisms with minimal

user intervention required. Because the program compmsgstable parallel threads, the ARTS
checkpoints the program by migrating all the threads froengtocessors to stable media: either
hard disk drive or memory on peer nodes[11]. At restart phthsethreads are migrated back from
the storage, run-time system information and user dataregstand the execution is restarted from

where the checkpoint has happenéd|[9].
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It is important to note that the checkpoint/restart mecsranin the ARTS has benefits beyond
fault tolerance. It also offers the capability of adaptingat changing computing environment.
Imagine if we lose 1 node out of a 1024-node partition in thddla of a long execution. We can
immediately work around this failure and restart the cheakigd program, with the same number
of VPs, on 1023 physical processors. Moreover, this concapte extended to a shrink/expand
feature, which allows an adaptive application executecherARTS to shrink or expand the set of
physical nodes on which it runs at run-time, adapting to giveppload on workstation clusters, or

enabling more flexible job scheduling for time-shared maebi

7.3 Adaptive MPI

Adaptive MPI is our implementation of MPI on top of the ART$wlas started by Milind Bhan-
darkar [81] and other previous group members with a miniraab§ functions implemented as a
proof of concept. | continued this project by developing enptete MPI-1.1 implementation and
a partial MPI-2 implementation. Together with other groupmfers at PPL, | also carried out a
set of performance analysis and applied various performaptimizations. With my work, AMPI
has become a mature MPI implementation that are used itifealpplications.

Traditional MPI programs divide the computation ot@rocesses and typical MPIl implemen-
tations simply execute each process on one oftfpeocessors. In contrast, an AMPI programmer
divides the computation intd” virtual MPI processes (VPs). The system maps these VPs onto
P physical processors. The number of VRS, and the number of physical processafs,are
independent, allowing the programmer to design a more alaédpression of the algorithm.

For example, algorithmic considerations often restrietrtimber of processors to a power of
two or a cube number, and with AMPY, can still be a cube number even thoughs prime.
WhenV = P, the program executes the same way it would with any typidal ivhplementation,
and it enjoys only part of the benefits of AMPI, such as coiectommunication optimization.

To take full advantage of the AMPI run-time system, we h&veuch larger tharP.
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Figure 7.3: Structure of Rocket Simulation Code with TypM&I Implementation
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Figure 7.4: Structure of Rocket Simulation Code with AMRA®aptivity Support

AMPI offers an effective division of labor between the praggmer and the run-time system.
The program for each process still has the same syntax asisgaéc the MPI Standard. Further,
not being restricted by the physical processors, the progrer is able to design more flexible
partitioning that best fits the nature of the parallel prabl&he run-time system, on the other hand,
has the opportunity of adaptively mapping and re-mappimgpitogrammer’s virtual processors

onto the physical machine.

Besides the performance benefits that we are going to pras@ftaptelB, this design helps
AMPI programmers to practice good software engineeringiglisies such as high cohesion and
low coupling. High cohesion means any module in a programishze understandable as a mean-
ingful unit and components of a module should be closelytedl# one another. Low coupling
requires that different modules be understandable separatd have low interaction with one
another. With MPI's traditional processor-centric pragraing model, it is often almost inevitable
that programmers will violate these principles. With vatiged processes, on the other hand, pro-
grammers are given the freedom to partition and structuegtrallel application in accordance

with good software engineering principles.
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For a realistic example, consider a version of the rocketikitron code developed at the Cen-
ter for Simulation of Advanced Rockets (CSAR) at lllinadlis ] (See Sectioh 8.3d.1). Figures
shown here are simplified representation of the applicattarcture which consists of two mod-
ules,RocfloandRocsolid Rocflo module simulates the structure of fluid dynamics efliirning
gas in a rocket booster, and the Rocsolid module models thetste of the solid fuel inside the
booster. With typical MPI implementation, the fluid mesh @inel solid meshes are required to be
glued together on each processor, even though these tveretiffmeshes are decomposed sep-
arately by each module and have no logical connection, asrsio Figure[Z.B. With AMPI's
adaptivity support, the work-and-data units of each modhith its own set of VPs of different

sizes can be separated to allow natural expression of theithlg, as illustrated in Figule~1.4.

7.3.1 Support for Sequential Replay of an MPI Node

When we use AMPI in our petascale simulation project BigSifaRL, support for sequential re-
play of a node in a parallel MPI program is needed for highausation accuracy. BigSim[82, B3]
is an emulation/simulation system based on the adaptiviimasystem built by Gengbin Zheng,
Terry Wilmarth and other group members at PPL. Its objedtive allow one to develop, debug
and tune/scale/predict the performance of large scalacapipins for petascale supercomputers
before such machines are available, so that the applicatian be ready when the machine first
becomes operational. It also allows easier “offline” expemtation of parallel performance tuning
strategies, without using the full parallel computer. Te thachine architects, BigSim provides
a method for modeling the impact of architectural choicesctual, full-scale applications. The
BigSim system consists of an emulator and a simulator. Thdaor can take any Charm++ or
AMPI program and run it with a specified number of emulateccpssors. On the emulator, the
application can be tested and debugged with the same nurhpeyaesses as a performance run,
offering a more realistic environment. Also, the emulatan generate traces that are used for
timing predictions and performance analysis with the satarl The trace-driven parallel discrete

even simulator is capable of modeling architectural patarsef the target machine.
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For more accurate performance prediction, we run the agijpic on a vendor-supplied archi-
tectural simulator, where interesting sections of theiappbn can be simulated with instruction-
level accuracy. One obstacle is that many architecturallsitors operate under a sequential setting
only. Itis impossible to set up a parallel run of a group ofdimtors with communication among
them. Therefore, support for sequential replay of a nodepiarallel AMPI program run is needed.

Our solution is to replicate the change of MPI context on thesen processor. MPI context
includes not only the incoming and outgoing messages, bat\PI environmental variables such
as communicators and outstanding requests. Firstly, imuamication-related MPI calls, all the
incoming messages are logged so that the in-order deligrype repeated. Outgoing messages
are simply discarded since they are not used in the sequeglay anyways. In addition, in MPI
environment management calls, such as MPI communicatoipumiations, the output parameters
are saved in log files. At the sequential replay phase, thicapipn is launched as a stand-alone
program. When an MPI call is reached, the output data, su@nascoming message, is read
in from the log file, and whenever a non-communication catesched, the values of its output
parameters are retrieved from the log file. With the above@stpthe sequential replay skips the
actual MPI communication on the architectural simulatgvang it to focus on simulating the

more interesting section of the application.

7.4 Adaptive Implementation of ARMCI

Aggregate Remote Memory Copy Interface (ARMCI) is a libréoy high-performance remote
memory copy supported on multiple platforms. It providesaerface for data transfer operations
including put, get and accumulate, in both blocking and hacking modes. Thanks to its well
designed interface, wide portability and low overhead, ARMas been used in several global
address space languages and parallel distributed-almayiés and compiler run-time systems,
including Global Array[2ll] and Co-Array Fortran Compi2g].

Our effort to support adaptivity in ARMCI started with an pr@nary implementation by Chee
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Wai Lee and later on developed and maintained by me. VirtBWIE| processes are implemented
with user-level TCharm threads embedded in migratablecthj&ach VP encapsulates the state of
an ARMCI process required for operations, such as the mepuangers maintained remote copy.
As described in Sectidn 7.2.1, each VP is bound to a usertlengad so that they always migrate
together during load balancing. To support migratable Wiranory copy is implemented through
messages between objects, because messages can be fohyailtle ARTS to the destination VP
even after migration.

ARMCI provides a collective memory allocation scheme foe uwgth copy operations. The
collective call returns to every ARMCI VP an array of poirsteo the newly allocated memory
on each ARMCI VP. The user then uses these pointers to deterthe memory locations for
copy operations. In general, to support adaptivity and atign under this scheme for memory
allocation, the system would have to broadcast the newg@dimtations for each allocated memory
block of each migrated ARMCI VP to every other ARMCI VP. We Bahosen to implement this
memory allocation scheme usirgpmalloc heapwhich shares the same idea as in isomalloc stack
in SectionCZZI1. When the collective malloc function isled each VP allocates a region of
memory space in its own isomalloc slot for later memory copg. r'his ensures a remote address

would remain valid after the VP migrates.

7.4.1 Performance Evaluation

In this section we show some preliminary performance resofitadaptive implementation of
ARMCI. Because our implementation uses messages to impkememory copy, and our cur-
rent implementation does not make full use of the native RDiMéchanism available, we do not
expect to have better performance than the native impleatientnow. The short message latency
of the adaptive implementation is 28 for get and 2s for put, about 12s slower than the native
implementation. This is due to an extra ARMCI message headéd bytes) and a 2 - 4 microsec-
ond increase in thread context switch overhead as well &slsting overhead. For long messages,

data in Figure§ 715 arld 1.6 show that we pay the overhead &f mdssage copying in order to
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support migratable objects. It is important to note thapdisidy features such as adaptive overlap
and automatic load balancing are expected to enable ouemgitation to outperform in real-life

applications.

7.5 Interoperability Support

Interoperability is essential for large scale parallellagpion development, and a common adap-
tive run-time system is an ideal foundation to build the riaperability on. We will describe our

support for inter-module and inter-paradigm interopditgtin detail.

7.5.1 Inter-Module Interoperability

Large scale parallel applications are usually composedutipie modules from many disciplines.
For example, the rocket simulation application descrilne8ectior_ZI3 has modules developed by
scientists and engineers from various backgrounds, su@ihidslynamics, structural dynamics,
and combustion. The modules are developed by differentdeara collaborative way, but each
still maintains certain level of independence. In the cdsklBl, each module usually has their
own MPI _COMMMWORLD and their set of communicators. To permit inter-module camication

in this kind of application, we have implemented an extems@AMPI. Similar process can be
applied to add the extension to adaptive implementatioad tiher paradigms.

Normally, each AMPI application module runs VPs within itgsrogroup of user-level threads
distributed over the physical parallel machine. The VPsoaganized into communicators such
asMPl _COWMWORLD and they start execution from thv@l _Mai n function. When there are more
than one modules co-existing within the same executal@eg thre several things that needs to be
changed. First, atop level registration routine needs exbended to register all the modules’ main
functions. This tells the run-time system to invoke all thedules from their entrance points. Sec-
ondly, acommunicator universis added to unite all th&Pl _COMWORLDs so that inter-module

communication is possible. A communicator universe, apajed MPI _COVM UNI VERSE, is im-
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plemented as an array of communicators. For instance, motket simulation example, the call to
send a message from the Solids VP number 36 to the Fluids VBerusid looks like the following.

In the Solids module:

MPlI _Send(nSolids, 1, MPI_INT, tag, 47,

MPI _Conmm _Uni ver se( Fl ui ds_Comm) ) ;

And in the Fluids module:

MPI _Recv(nSolids, 1, MPI _INT, tag, 36,

MPI _Comm Uni verse( Sol i ds_Comn), &stat);

7.5.2 Inter-Paradigm Interoperability

Beyond inter-module interoperability within the same plagen, it is equally if not more impor-
tant to enable inter-paradigm interoperability. In our teom, it is the capability of interoperate
between a Charm++ module and an AMPI or ARMCI module on themomARTS. In fact, our
adaptivity support enables one to run legacy code in thes@fant paradigms on the adaptive run-
time system, with the VPs executed as Charm++ objects. Thiemthe interoperation between
modules across paradigms a natural and easy process. foraasin the MPI or ARMCI code,
the programmer can create Charm object arrays and invokeraethods on them. In a Charm++
or Charisma program, the user can also take advantage ofiaatydn calls in MP1 or ARMCI.

The following code segment is an example of creating a Charaiject arraymy Ar r ayl Din
an AMPI program. VP 0 initializes the object array, broadsds array ID to all VPs, where the
array elements are locally inserted.

Inter-paradigm interoperability makes library supporoas paradigms possible. We can reuse
a library developed with Charm++ in an AMPI program, and wegsa. In real life, we have
been using a Charm++ library called Multiphase Shared Ar@§SA) |24] in an AMPI-based
framework, Parallel Framework for Unstructured Meshingrf®JM) [84]. MSA provides a global

data abstraction with a migratable Charm++ object arraglihglthe data pages, and it enforces a
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MPI _Comm rank( MPI _COVM WORLD, &nyRank);
if (myRank == 0){
/larray binds to TCharm array
CkArrayOpti ons opts;
opts. bi ndTo(TCharm : get () - >get Proxy());
myArrayl D = CProxy_User Array: : ckNew opts) ;
}

[l nyArrayl D is broadcast to every node
MPI _Bcast ((void *)&mwArrayl D, sizeof (CkArrayl D),
MPI _CHAR, 0, MPI _COWM WORLD);

/[l Array elenent is locally inserted
nmyArrayl D(nyrank).insert();

Figure 7.7: Example of Creating Charm++ Objects in an AMRIgPam

disciplined multiphase access mode. The three availabtemimclude multiple-read mode, one-
write mode, and accumulate mode. Used in ParFUM, MSA is aajlofishtable to store elements
on shared edges. Partitions in the ParFUM framework can&iblements on a particular edge in

MSA's accumulate mode, and read elements on a shared edgétiplairead mode.

7.6 Related Work

Several projects have put significant efforts into prowydbenefits of adaptive overlap between
computation and communication and automatic load balgnciBecause of MPI's popularity
among parallel programmers, most of the related projectdiseeiss here are based on MPI model.

Some MPI implementations support multi-threading prograng within one processor to ex-
pose an additional degree of concurrency and exploit gueitg between communication and
computation. For instance, TMPL[85] uses a two-level mihiteaded design to optimize the
scheduling process. TMPI focuses their research for shmssdory SMP machines on minimiz-
ing CPU spinning and exploiting cache affinity. AMPI, in cast, optimizes execution for all
kinds of supercomputing platforms, even heterogeneods 86 /87].

Mobile MPI [88] shares the same over-decomposition styatsgAMPI and uses threads to
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execute MPI tasks too. It supports running MPI programssacacheterogeneous environment like
grid, but it does it through a portable checkpointing systeich requires a checkpoint/restart
process. AMPI does not have this limitation, because it Eetdeon truly migratable user-level

threads.

As an extension to MPI, hybrid programming model with the baration of MPI/OpenMP[89,
[90] approaches the problem by redistributing OpenMP tlweadong MPI processes to expose
more parallelism, but this approach entails significangpgmming complexity overhead and re-
quires rewriting existing MPI code, which can be prohilativdifficult for legacy code base.

To support automatic load balancing in traditional MPI mlodieere are two different ap-
proaches. The first is run-time process migration suppatlytefforts in migrating MPI process
include those in the CoCheck]91] and related Tool-Set ptdi@]. Since traditional MPI map
parallel tasks onto OS processes, the migration processsiexpensive overheads. In contrast,
AMPI's migratable threads minimize the load balancing bead. Additionally, because AMPI
typically maps many VPs per physical processor, load batgns more natural and effective when
VPs are moved instead of processes.

The alternative approach to dynamic load balancing is tjndibrary support. It improves
performance for a specific category of parallel applicaioRor example, Zoltari [93] is a pro-
gramming toolkit that supports dynamic load balancing,itsuinterface is incompatible with that
of MPI. Other library solutions for load balancing are ligdtto certain types of parallel appli-
cations, as exemplified by Chomlo[94] library for adaptivesimrefinement applications. The
restriction on their applications makes AMPI's integratefficient and automated load balancing

mechanism for a wide range of applications more desirable.
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Chapter 8

Evaluation of Adaptive MPI

The Message Passing Interface (MPI) has becomdeHactostandard for message passing pro-
gramming. The MPI Standard specifies interface for a set sbage passing functions. There are
several very successful implementations from academia assdPICH [95[96], LAM/MPI[97,
[98] and Open MPI[99], and almost all vendors of high perfaroeacomputing platforms have

their own native implementation of MPI.

8.1 AMPI Performance Evaluation

In this section, we present performance analysis of AMPhwidrious benchmarks and appli-
cations to demonstrate its advantages. Our main benchmgapkatforms are the Turing Cluster
with 640 dual Apple G5 nodes connected with Myrinet netwank MPICH 1.2.6 at University
of lllinois at Urbana-Champaign, NCSAs IA-64 TeraGrid Glar with 888 dual Intel Itanium 2
nodes and Myrinet network installed with MPICH 1.2.5, NCSAungsten Cluster with 1280 dual
Intel Xeon nodes and Myrinet network with MPICH 1.2.5, ané ttemieux Cluster with 750
dual Alpha nodes and Quadrics network installed with MPICB @ at Pittsburgh Supercomputer
Center.

As a competitive implementation of MPI, AMPI offers perfaante benefits and functionality
extensions to MPI applications, especially those with aadyic nature. We now take a closer

look at the comparison between AMPI and typical native MPpliementations, starting with a
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Figure 8.1: Point-to-point Performance on NCSA |A-64 Chust

guantitative breakdown of the virtualization overheada\bfPI.

8.1.1 Virtualization Overheads

Because AMPI is implemented on top on the ARTS, which is @ihycimplemented on top of
native MPI (or the lowest level communication layer acdassio us), we do not expect to have
better performance than native MPI on a ping-pong style abienchmark. Point-to-point perfor-

mance on the benchmarking platforms are listed in Fique§aR[8.2(0) anfi 8.2(c). To explain the

breakdown of the virtualization overhead in the ping-poegdhmark, AMPI has a left-shift due to
the 70+ byte AMPI message header, and a 2-4 microseconéseie time for the short message
latency due to thread context switch overhead as well asistihg overhead (See Figure 8.1(a)).
For longer messages, we pay the overhead of extra messagegoporder to support migratable
threads (See Figufe 8.1[b)). Active research work is beamged out to reduce overhead for both
situations.

In practice, the virtualization overheads are usually biddia appropriate subtask assignment.
From our experiences, the few microseconds of virtuabratverhead is negligible when the
average work driven by one message is at hundreds of mi@ondsdevel, which is achieved by

the choice of number of VPs per processor. It should be nbgdstich “good choice” has a fairly
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(a) Turing (Apple G5) Cluster (b) NCSA 1A-64 Cluster (c) Tungsten (Xeon) Cluster

Figure 8.2: Point-to-point Communication Time

#PE 19 | 27 | 33 | 64 | 80 | 105| 125 | 140 | 175 | 216 | 250 | 512
Native MPI| - |294| - |14.2| - - 1912 - - |8.07| - |552
AMPI 42.4] 30.5| 24.7| 15.6| 12.6| 10.9| 10.8| 10.6| 9.39| 8.63| 7.55| 5.46

Table 8.1: Timestep Time [ms] of 228D 7-point Stencil Calculation with AMPI vs. Native MPI
on Lemieux

#PE 19 27 33 | 64 | 80 | 105| 125| 140 | 175| 216| 250 | 512
Native MPI| - 1786 - 702| - - | 367 - - | 212 - | 917
AMPI 3633| 1782| 1367 | 697 | 711 | 705| 364 | 387 | 385| 207 | 250 | 92.1

Table 8.2: Timestep Time [ms] of 963D 7-point Stencil Calculation with AMPI v.s. Native MPI
on NCSA 1A-64 Cluster

large tolerance, since the virtualization overhead is oy \6ensitive to the number of VPs per
processor. Moreover, the cost of supporting virtualizatéind coordinating the VPs is further offset
by other benefits of virtualization. Therefore, it is safedmclude that the functionality extensions

and performance advantages of AMPI do not come at an undce iprbasic performance.

8.1.2 Flexibility to Run

AMPI supports virtual MPI processes, thus giving the pragreer the freedom to run multiple
MPI processes on one physical processor. We illustratéuthtionality extension with a more re-
alistic benchmark, a 3D stencil-type calculation. The 3&hstl calculation is a multiple timestep-
ping calculation involving a group of regions in a mesh. Atleimestep, every region exchanges

part of its data with its 6 immediate neighbors in 3D spacedres some computation based on
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the neighbors’ data. This is a simplified model of many agians, like fluid dynamics or heat
dispersion simulation, so it serves well the purpose of destration.

We show the flexibility of AMPI with a 24D3D 7-point stencil calculation. The algorithm in
this particular benchmark divides a 24flock of data intds? partitions, each of which is a smaller
cube assigned to an MPI processor. Natural expressionoathorithm requires® number of
processors to run on. This benchmark represents the typpptitations that require specific
number of processors.

On the Lemieux cluster, we first run the benchmark with nati. As described above, this
program runs only oi? processors: 27, 64, 125, 216, 512, etc. Then, with virtadliaMPI,
the program runs transparently on any given number of psacesexhibiting the flexibility that
virtualization offers. The comparison between these twtsrare listed in Tablds 8.1 ahd18.2.
Note that on some arbitrary number of processors such asd 8@&nthe native MPI program
cannot be launched, whereas AMPI runs the job with no diffycdihis flexibility has been proven
to be very useful in real application development. For insta during the development of the
CSAR code, a specific software bug occurs only on 480 procesS€onsequently, to debug it, the
developers require 480 nodes on a parallel platform to ladmeir problematic run. With AMPI,
the 480 processor run can be performed on a much smalletigrathiat is easier to get, offering

the developer a great productivity advantage.

8.1.3 Adaptive Overlapping

The performance benefit of adaptive overlapping arises fhenfiact that the actual CPU overhead
in a blocking communication operation is typically smaliean the total elapsed time. We show
this with a multi-ping benchmark. In the benchmark, prooegs sends multiple ping messages
to processor B, which responds with a short pong messageitdfigs received all of them. This
communication pattern differs from the usual ping-pongdbemark in that it fills the pipeline
on a message’s path from sender to receiver. sender CPUersBIh@, interconnect, receiver

NIC, and receiver CPU. The performance from the multi-piegdhmark represents the limiting
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K | VP=8| VP=16| VP=32| VP=64 | MPICH
128 | 25.0 | 25.8 25.8 25.8 10.6
256 | 97.7 | 96.8 91.3 90.4 100.1
512 | 744.9| 772.7 | 776.7 | 770.6 | 751.6
1024 | 7418 | 6545 | 5908 | 5894 | 7437

Table 8.3: Iteration Time [ms] of K3D 7-point Stencil Calculation on 8 PEs of NCSA 1A-64
Cluster

factor in the pipeline, namely the price for a point-to-gaiommunication. The gap between its
curve and the ping-pong benchmark’s curve is the time spaiting for the communication to
complete. Figur@ 8.2(n) shows a large gap between the twegusuggesting that much of the
time usually attributed to communication can be utilizeduseful computation. Many traditional

MPI implementations, however, cannot take advantage sigap easily.

In AMPI, several VPs can be mapped onto one physical proce3$is design naturally al-
lows adaptive overlapping of computation and communicatiithout any additional program-
ming complexity. When one VP is blocked at a communicatidh dayields the CPU so that
another VP residing on the same processor can take over itind iif as illustrated by the follow-

ing stencil calculation benchmark.
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Figure 8.4: 7-point Stencil Timeline with 1, 2 and 4 VPs Peyd@ssor

Table[8.3B shows the iteration time of 3D stencil calculaion 8 physical processors on an
NCSA |A-64 Cluster. The calculations are of different six€s and with AMPI of various VP
numbers. It can be observed that the overall performanceases when more VPs are mapped
onto one processor in the given range. The underlying ressolustrated by the projections
visualization in Figur&8l4. The solid blocks represent patation and the gaps are idle time when
CPU is waiting for communication to complete. As the numkieyBs per processor increases,
there are more opportunities for the smaller blocks (smalieces of computation on multiple

VPs) to fill in the gaps, and consequently the CPU utilizatimameases.

It can also be observed that virtualization does not alwagslt in performance improvement.
As we introduce more VPs on one processor, virtualizatieriosad might overweigh the benefit

from adaptive overlap and cause longer execution time, dsawe discussed in previous sections.

Besides adaptive overlapping, the caching effect is alswaréble influence. VPs residing on

the same processor can increase the spatial locality angdmne inter-processor communication

106



into intra-processor communication.

8.1.4 Automatic Load Balancing

Load balancing is one of the key factors for achieving higtiggenance on large parallel machines
when solving highly irregular problems. AMPI supports an#gic measurement-based dynamic
load balancing and thread migration based on the load baframework. In this section, we
present the case studies of load balancing several MPI bear&ls and a real-world application.

NAS Parallel Benchmark (NPB) is a well known parallel benahknsuite. Its Multi-Zone
version, LU-MZ, SP-MZ and BT-MZ, “solve discretized vemsgof the unsteady, compressible
Navier-Stokes equations in three spatial dimensiénsi1De multi-zone version is characterized
by partitioning of the problems on a coarse-grain level foase more parallelism and to stress the
need for balancing the computational load. Particularly8@sMZ, the partitioning of the mesh is
done such that the sizes of the zones span a significant renegéing imbalance in workload across
processors. For such a problem, the load balancing regmmesonsiderations, as suggested in
[LO7]: careful zone grouping to minimize inter-processomenunication and a multi-threading
scheme to balance the computation workload across prasesso

AMPI is naturally equipped with an automatic load balanaimgdule to take these two aspects
of a parallel program into consideration: communicati@dland computation load. The following
results illustrate AMPI’s effectiveness on load balandBigMZ.

In this benchmark, add a function call to trigger the auteelatad balancing in AMPI run-
time system. After 3 timesteps, when the run-time has catesufficient information to advise
the load balancer, the AMPI VPs are migrated from more hgdodded processors onto more
lightly loaded ones. The execution time is visualized inuFe8.5.

When the number of processor increases for the same proloigie sve can make two ob-
servations. Firstly, the execution time without load balag increases. BT-MZ creates work-
load imbalance by allocating different amounts of work amtime processors, and with a larger

number of processors, the degree of imbalance increaseseQaently, overall utilization drops.
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Figure 8.5: Load Balancing on NAS BT-MZ

Secondly, with load balancing, having more VPs per progesows the load balancing module
to work more effectively, simply because there are moresiifis¢o move around if necessary. That
is the reason that having number of VP much larger than nuoftiers recommended for the load
balancer to be effective.

This benchmark demonstrates the effect of load balancireppfications with static load im-
balance. This scenario is not uncommon. Handling uneveialimorkload distribution and mi-
grating the job away from faulty nodes are two cases that we baperienced where such load
balancing is useful. For applications with a dynamicallpyag workload, the load balancer can

be triggered periodically. The application example in 8ed8.2.2 demonstrates this use.

8.1.5 Checkpoint Overhead

To illustrate the checkpoint overhead of AMPI, we perforn experiments with two NAS bench-
marks FT and LU class B on the Turing cluster. The total amofidata to save is different: FT
class B has nearly 2GB regardless of number of processole Wbi class B has saved data size
roughly proportional to the number of processors, so thepmressor data is nearly constant.

The results are shown in Figyre 8.6(a) for FT and Fifjure §f#6¢i_-U. The x-axis is increasing
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Figure 8.6: Checkpoint Overhead of NAS Benchmark on Turihgst@r

number of processors, the y-axis is checkpoint time in sécend both axes are logarithmic. In
each figure, there are 3 curves representing 3 series of nitimsh& benchmark. The “NFS disk”
scheme saves data to NFS disk. The “Double in-memory” anditiBoin-disk” schemes save data
in peers’ memory or local disk to avoid the NFS disk bottldnand use double checkpointing to
ensure single fault tolerance.

For both benchmarks, the NFS disk scheme is the most exgeriBhanks to RAID disks, it
scales to 4 and 8 processors for FT-B, but beyond that the ME&ieck becomes the limiting
factor and the performance deteriorates as number of goremcreases. The two double check-
pointing runs utilize the fast Myrinet interconnect to tsér checkpoint data, and have similar
scaling behavior. Because writing to local hard disk is rofast as storing to peers’ memory,
we observe that the overhead of in-disk variation is alwagkér than its in-memory counterpart.
With lower overhead from the in-memory scheme, we can ch@okghe program more often, and
hence reduce the work lost since last checkpoint when adaatirs.

In some cases external factors may constrain the availdd@dekpointing options. In Fig-
ure[8.6(d) with FT class B, the double checkpoint scheme a@blento run on 4 processors, be-
cause the memory footprint for that specific benchmark ( 2iGBJ)o large for the machine. The

same problem occurs on systems with relatively small pelermemory configuration, including
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IBM’s BlueGene/L. In this scenario, the user has two potdrsolutions. First, the user can use
the in-disk variation of double checkpoint scheme. Howgewdren a local disk is unavailable,
as on BlueGenel/L, the NFS disk checkpoint can still be usedrebler, when the socket error
detection required by the double checkpoint scheme is ngstie NFS disk scheme becomes the

only choice.

8.2 Application Case Study

In this section, we discuss two parallel applications whiehefit from AMPI. These two projects
are part of our collaboration with scientific and enginegniesearchers, and the benefits are not

limited to performance gains.

8.2.1 Rocstar

The Center for Simulation of Advanced Rockets (CSAR) is aadamic research organization
funded by the Department of Energy and affiliated with thevgrsity of Illinois. The focus of
CSAR is the accurate physical simulation of solid-propell@ckets, such as the Space Shuttle’s
solid rocket boosters. CSAR consists of several dozentfaanl professional staff from a number
of different engineering and science departments. The @&AR simulation code consists of
several major components in various domains, includingid @lynamics simulation, for the hot
gas flowing through and out of the rocket; a surface burninglehéor the solid propellant; a
nonmatching but fully-coupled fluid/solid interface; anddlily a finite-element solid mechanics
simulation for the solid propellant and rocket casing. Eaok of these components - fluids,

burning, interface, and solids - began as an independeetigidped parallel MPI program.

One of the most important early benefits CSAR found in usingPAl4 the ability to run a
partitioned set of input files on a different number of vittpeocessors than physical processors.

For example, a CSAR developer was faced with an error in mettomthat only appeared when
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Figure 8.7: Titan IV Propellant Slumping Visualization

AMPI MPI
P 16 30 | 60 | 120 | 240 | 480 | 480
Time(s)| 15.33| 8.41| 5.02| 3.01| 1.66| 2.415| 2.732

Table 8.4:RocstarPerformance Comparison of 480-processor Dataset for W&RMU Rocket
Motor on Apple Cluster
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a particular problem was partitioned for 480 processonsdiRg and fixing the error was difficult,
because a job for 480 physical processors can only be runaafteg wait in the batch queue at
a supercomputer center. Using AMPI, the developer was aldelbug the problem interactively,
using 480 virtual processors distributed over 32 physioat@ssors of a local cluster, which made

resolving the error much faster and easier.

Because each of the CSAR simulation components are deelogependently, and each has
its own parallel input format, there are difficult practigabblems involved in simply preparing
input meshes that are partitioned for the correct numbehgsigal processors available. Using
AMPI, CSAR developers can simply use a fixed number of vintwatessors, which allows a wide

range of physical processors to be used without repatrititgptne problem’s input files.

To demonstrate the performance benefits of virtualizateingiAMPI, we compared the per-
formance ofRocstarusing AMPI and MPICH/GM on different numbers of processdrhe Tur-
ing Apple cluster with Myrinet interconnect at CSAR. Ourttased a 480-processor dataset of
the Titan IV SRMU Prequalification Motor #1. This motor exgéal during a static test firing on
April 1, 1991 due to excessive deformation of the aft prapellsegment just below the aft joint
slot [102]. Figurd 87 shows a cutaway view of the fluids donaaid the propellant deformation,
obtained fromRocstais 3-D simulations at nearly one second after ignition forramompressible

neoHookean material model.

We ranRocstarusing AMPI (implemented on the native GM library) on variousnbers of
physical processors ranging from 16 to 480, and ran the samgegion with MPICH/GM on 480
processors. TableB.4 shows the wall-clock times per iteral he AMPI-based run outperformed
the MPICH/GM-based by about 12% on 480 processors, denatingfthe efficiency of our AMPI
implementation directly on top of the native GM library. Mdhat even better performance was
obtained on 240 processors with two AMPI threads per phiygpicessor. This virtualization
allowed the AMPI run-time system to dynamically overlap eoumication with computation to
exploit the otherwise idle CPU cycles while reducing integessor-communication overhead for

the reduction in the number of physical processors, leadirggnet performance gain for this test.
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Figure 8.8: Fractography3D: Crack Propagatiofif Fractography3D Over Time With and With-
Visualization out Load Balancing

8.2.2 Fractography3D

Fractography3d is a dynamic 3D crack propagation simulgtrogram to simulate pressure-driven
crack propagation in structures. It was developed by Psofd3hilippe Geubelle in the Department
of Aerospace Engineering at the University of lllinois and $tudents in collaboration with our
group. The Fractography3d code is implemented on the FEMeveork [108] and AMPI.

For this experiment, the application simulates a forcesgsd crack propagating throughout a
solid material and the conversion of the material from @&dsetplastic in the zone along the crack,
as illustrated in FigurE-8.8. This crack propagation sirmoitewas run with 1000 AMPI virtual
processors on 100 processors of the Turing Cluster.

There are two factors that may contribute to the load imlan this simulation problem.
When external force is applied to the material under studynitial elastic state of the material
converts to plastic along the wave propagation, which tesalmuch heavier computation for
the plastic elements. Second, to detect a crack in the doradditional elements are inserted
between some of the existing elements depending upon thesf@xerted on the nodes. These
added elements, which have zero volume, are caltdeesive elementst each iteration of the

simulation, pressure exerted upon the plastic structunepr@pagate cracks, and therefore more
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Figure 8.10: CPU Utilization Graphs of Fractography3D As&rocessor With and Without Load
Balancing

cohesive elements may have to be inserted. Thus, the ambwotgoutation for some mesh
partitions may increase during the simulation. This resulisevere load imbalance.

The simulation without load balancing runs for 24 hours. Phejections view on CPU uti-
lization over time is shown in the bottom curve of Figlrd 8i%can be seen that at around 1000
seconds, the application CPU utilization dropped from atb85% to only about 44%. This is
due to the start of the conversion of elements from elastgldstic along the crack, leading to
load imbalance. As more elastic elements convert to plasgcCPU utilization slowly increases
until all elements have converted to plastic. The load irabed¢ can easily be seen in the CPU
utilization vs. processor graph as shown in Fidurel8.10{#)ile some of the processors have an
average CPU utilization as high as about 90%, some processbyrhave an average utilization of
about 50% for the duration of the simulation.

The top curve of Figur€_8.9 illustrates the results of auticriaad balancing of the same
crack propagation simulation in the view of overall CPUimétion over time. Load balancing is
invoked every 500 time-steps of the simulation with a grestidgtegy. The automatic load balancer
uses run-time load and communication information obtawiada few instrumentation steps to
migrate chunks from the overloaded processor to undertbadecessors, leading to improved

performance. As figure_8.9 shows, the overall CPU utilizato all processors throughout the
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entire simulation stays around 80-90%. Figlre B.10(b)hfrillustrates that load balance has
been improved over that shown in Figlire 8.10(a). It can be gest CPU utilization of at least
80% is achieved on all processors with little load variarfidee simulation with load balancing now

takes about 18.5 hours to complete, yielding approxima&g% performance improvement.
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Chapter 9

Conclusions

This thesis aims at improving parallel programming prothitgt by supporting multi-paradigm
programming on top of an adaptive run-time system. In thial f@hapter, we summarize the
aspects of our research work completed in the thesis toaethe goal, and conclude with future
directions of further investigation.

As the first component in our framework, we explored a novegprmming paradigm that
allows clear expression of global view of control. This neargdigm combines the producer-
consumer model and object-based parallel programmingaalbles more efficient collaboration
between parallel programmers and scientists/engineeyswgh to parallelize applications in their
specialty fields. It improves productivity with two primafgatures: higher-level abstraction and
separation of parallelism specification and sequentialpmmant development.

To study the effectiveness of the proposed paradigm, weydedia reference language called
Charisma. The philosophy behind Charisma is to allow ekgl&scription of the program’s global
view of control by separating it from the sequential funotaf the program. The new language
features capability of producing efficient parallel codele/ineducing programming order for its
target class of applications. It also provides facilitiesdeveloping reusable parallel libraries for
both Charm++ and Charisma programming.

We developed a parallel programming environment for Chaaisncluding a compiler that
is capable of parsing the orchestration code and integrat@uuential components to generate

an optimized Charm++ program or library module. We improtrezl efficiency of the generated
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program with various optimizations in the language implatagon. We also discovered more
cost-effective ways to coordinate message delivery andinuraite data copying between local
variables and generated messages. We conducted perfamaalaation with various benchmark
programs, and Charisma significantly cut SLOC while retggrperformance.

To measure Charisma’s productivity advantage over Charmsetcarried out a preliminary
classroom study on productivity metrics beyond SLOC. Thsellts show that to the target users,
namely science and engineering application developetrwitsignificant parallel programming
background, programming with Charisma is consistentljegdisan programming with Charm++
on two different applications. Feedback says that Charisrfraore intuitive” and takes less time
to program with. It is also easier to add various featurel sagdoad balancing with Charisma than
with Charm++.

Because parallel programming is more difficult than seqakptogramming, developing li-
brary modules and reusing code is an important way to imppogductivity. A challenging de-
sign question is how to provide interfaces for library depehent with Charisma. Parallel libraries
usually involve more complicated interactions betweenddléng main program and the library
module than their sequential counterparts. We studiednaltiees for library interface design, and
developed capabilities for library module developmentdoth Charisma and Charm++.

Beside the new paradigm represented by Charisma and thingxibject-based message-
driven paradigm represented by Charm++, we extend our stfgp@xisting prevalent paradigms.
We designed generic mechanisms to support virtualizedegemes (VP) via migratable user-level
threads embedded in communicating objects. This mechagriportable under various environ-
ments. With this mechanism, we are able to develop adaptipéementations of both MPI and
ARMCI, covering both the message passing and global addpes® paradigms.

Adaptive MPI combines the power of the ARTS and MPI prograngmnodel, enabling per-
formance improvement for a wide range of applications dmdities. The work on Adaptive MPI
was initiated with a partial implementation by previousganembers, and | have continued ex-

ploring new research directions with our implementatioignBicant research efforts have since
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been put into more features and performance optimizatibA8®1. For instance, several alterna-
tive all-to-all schemes are integrated and applied acogriti the message size. Meanwhile, AMPI
is ported to new HPC platforms to study its behavior on variarchitectures, such as IBM Blue
Gene machines. With our work, AMPI has become a mature angettime MPI implementation
that delivers good performance for MPI programs with a dyicarature. Adaptive ARMCI is a re-
cent effort to integrate more paradigms, especially gladdress space languages, into the ARTS.
We have implemented a functionally critical portion of théerface and conducted a preliminary

performance study.

Charisma, AMPI and adaptive ARMCI are included as part ofltihest release of Charm++
framework, together with a collection of stand-alone aggilons and library modules developed
with Charisma and AMPI to demonstrate the effectivenessiobpproach. User manuals are also
prepared for Charisma and AMPI. We are confident that these vaill benefit future users with

improved parallel programming productivity.

This thesis has an ambitious goal to inspire future reseagbs. With the design and imple-
mentation of our infrastructure for our high level languate foundation has been laid for further
investigations on improving parallel productivity. Foragmple, current infrastructure for data de-
pendence and control dependence analysis can be usefybantant features such as out-of-core

execution[[104], critical path analys[s105], and othetimjzations.

Looking forward, the future exploration based on the dataftoncept used by Charisma can
include the following aspects. First, the same technigbhasdre used in orchestrate overall con-
trol flow in a parallel program can be applied to other fields.ah example, if a streaming-based
dataflow applications such as the one describeinl [106]as theveloped with Charisma, streams
of data can flow into nodes with inports and outports suchahatodules can be pipelined and par-
allelization would be much easier. Secondly, during thecséamalysis, cost estimation at each node
can be added to aid appropriate flow adjustmentl[107] to opéiraverall performance. Thirdly,
new generation performance analysis tools such as PrajecfLO8] can take advantage of the

information available in the orchestration code, sincéhalparallel flows are explicitly described.
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Lastly, one can explore the future direction of evolving @$raa into a visual programming lan-
guage[[45] that looks more straightforward to programmers.

Future research directions also include supporting a wadey of global address space lan-
guages and their applications on the common run-time sysigme ultimate goal for such im-
plementations is porting various scientific and engingggpplications and frameworks on top
of the ARTS. We expect future research will demonstrate thaiatage of the ARTS support by
port existing benchmarks, libraries and applications, simawv the performance gains from our

implementations.
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Appendix A

Charisma Manual

This manual describes Charisma, an orchestration langoagegratable parallel objects.

A.1 Charisma Syntax

A Charisma program is composed of two parts: the orchestratde in a .or file, and sequential

user code in C/C++ form.

A.1.1 Orchestration Code

The orchestration code in the .or file can be divided into teud.pr he header part contains informa-
tion about the program, included external files, defines,daataration of parallel constructs used
in the code. The orchestration section is made up of statesntiest forms a global control flow

of the parallel program. In the orchestration code, Chaaismploys a macro dataflow approach;
the statements produce and consume values, from which tliiotiows can be organized, and

messages and method invocations generated.

Header Section

The very first line should give the name of the Charisma progsath thepr ogr amkeyword.

| program j acobi |
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Thepr ogr amkeyword can be replaced wittbdul e, which means that the output program is going

to be a library module instead of a stand-alone program.sBlesfer to SectionAl3 for more details.

Next, the programmer can include external code files in timeigeed code with keywordncl ude
with the filename without extension. For example, the foitayvstatement tells the Charisma compiler to
look for header file “particles.h” to be included in the geated header file “jacobi.h” and to look for C/C++

code file “particles.[C/cc/cpp/cxx/c]” to be included iretgenerated C++ code file “jacobi.C”.

i ncl ude particles;

It is useful when there are source code that must precedeetieraged parallel code, such as basic data

structure declaration.

After thei ncl ude section is thedef i ne section, where environmental variables can be defined for
Charisma. For example, to tell Charisma to generate additicode to enable the load balancing module,

the programmer needs to define “Idb” in the orchestratiorec@ease refer to SectibnA.6 for details.

Declaration Section

Next comes the declaration section, where classes, olgadtparameters are declared. A Charisma pro-
gram is composed of multiple sets of parallel objects whighaaganized by the orchestration code. Dif-

ferent sets of objects can be instantiated from differesdctypes. Therefore, we have to specify the class
types and object instantiation. Also we need to specify themeters (See Sectibn All.1) to use in the

orchestration statements.

A Charisma program or module has one “MainChare” class, tashwkis not require explicit instantiation

since it is a singleton. The statement to declare MainCluarksllike this:

| cl ass Jacobi Mai n : Mi nChar e; |

For object arrays, we first need to declare the class typesiiat from 1D object array, 2D object array,
etc, and then instantiate from the class types. The dimealp information of the object array is given in

a pair of brackets with each dimension size separated by aneom

122



cl ass Jacobi Worker : ChareArraylD,
obj workers : Jacobi Worker[N];

class Cell : ChareArray3D;

obj cells : CelI[MMM;

Note that key word “class” is for class type derivation, andj" is for parallel object or object array
instantiation. The above code segment declares a new glasgacobiWorker which is a 1D object array,
(and the programmer is supposed to supply sequential codeifofiles “JacobiWorker.h” and “Jacobi-
Worker.C” (See Section AJl.2 for more details on sequectalke). Object array “workers” is instantiated
from “JacobiWorker” and has 16 elements.

The last part is orchestration parameter declaration. & hasameters are used only in the orchestration
code to connect input and output of orchestration statesnand their data type and size is declared here.

More explanation of these parameters can be found in SE&IDMA.
paramlb : doubl e[ N;

paramrb : doubl e[ N;

With this, “Ib” and “rb” are declared as parameters of that be “connected” with local variables of

double array with size of 512.

Orchestration Section

In the main body of orchestration code, the programmer desithe behavior and interaction of the ele-
ments of the object arrays using orchestration statements.

e Foreach Statement

The most common kind of parallelism is the invocation of alodtacross all elements in an object
array. Charisma providesfareachstatement for specifying such parallelism. The keywdrdseach and
end- f or each forms an enclosure within which the parallel invocationésfprmed. The following code

segment invokes the entry methodnput e on all the elements of arrayyWor ker s.
foreach i in workers

wor kers[i].conpute();

end-f oreach
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e Publish Statement and Produced/Consumed Parameters
In the orchestration code, an object method invocation e@ae imput and output (consumed and pro-
duced) parameters. Here is an orchestration statemengxbatplifies the input and output of this object

methodsaor ker s. pr oduceBor der s andwor ker s. conput e.
foreach i in workers

(I'b[i], rb[i]) <- workers[i].produceBorders();
wor kers[i].conmpute(lb[i+1], rb[i-1]);

(+error) <- workers[i].reduceData();

end-f oreach

Here, the entry methodor ker s[i]. produceBor der s produces (calleghublishedin Charisma)
valuesofl b[i], rb[i],enclosedina pair of parentheses before the publishimy'sig”. In the second
statement, functiomor ker s[ i ] . conmput e consumes values bfb[ i +1], rb[i-1],]justlike normal
function parameters. If a reduction operation is needetrdduced parameter is marked with+d before
it, like theer r or in the third statement.

A entry method can have arbitrary number of published (predwand reduced) values and consumed
values. In addition to basic data types, each of these valalesalso be an object of arbitrary type. The
values published byA[ i ] must have the indek, whereas values consumed can have the irefdx) ,
which is an index expression in the formiof-c wherec is a constant. Although we have used different
symbols p andq) for the input and the output variables, they are allowedveriap.

The parameters are produced and consumed in the program dtdmely, a parameter produced in
an early statement will be consumed by the next consumingnsent, but will no longer be visible to any
consuming statement after that. Special rules involvirgpoare discussed later with loop statement.

e Overlap Statement

Complicated parallel programs usually have concurrentslofvcontrol. To explicitly express this,
Charisma provides aver | ap keyword, whereby the programmer can fire multiple overlagpiontrol
flows. These flows may contain different number of steps destants, and their execution should be
independent of one another so that their progress caneaterlwith arbitrary order and always return

correct results.
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overl ap
{
foreach i in workersl
(I'b[i], rb[i]) <- workersl[i].produceBorders();
end- f or each
foreach i in workersl
wor kersl[i].conpute(l b[i+1], rb[i-1]);
end- f or each
}
{
foreach i in workers2
(I'b[i], rb[i]) <- workers2[i].conpute(lb[i+1], rb[i-1]);
end- f or each
}
end-overl ap

This example shows avver | ap statement where two blocks in curly brackets are executpdriallel.

Their execution join back to one at the end marlkeofi- over | ap.
e Loop Statement

Loops are supported withor statement andhi | e statement. Here are two examples.

for iter = 0 to MAX I TER
wor ker s. doWbr k() ;

end-f or

while (err > epsilon)
(+err) <- workers.doWrk();
Mai nChar e. updat eError(err);
end-whi |l e

The loop condition irf or statement is independent from the main program; It simply tiee program

to repeat the block for so many times. The loop conditiomri | e statement is actually updated in the

MainChare. In the above exampk,r andepsi | on are both member variables of clagsi nChar e,
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and can be updated as the example shows. The programmettivaerttae “autoScalar” feature by including
a“defi ne aut oScal ar; " statement in the orchestration code. When autoScalarabled, Charisma
will find all the scalars in the or file, and create a local copy in tidai nChar e. Then every time the
scalar is published by a statement, an update statemerdwtdmatically be inserted after that statement.

The only thing that the programmer needs to do is to initattze local scalar with a proper value.

Rules of connecting produced and consumed parametersrootgdéoops are natural. The first con-
suming statement will look for values produced by the lasdpcing statement before the loop, for the
first iteration. The last producing statement within thepldimdy, for the following iterations. At the last
iteration, the last produced values will be disseminatatieacode segment following the loop body. Within

the loop body, program order holds.

for iter =1 to MAX ITER
foreach i in workers
(I'b[i], rb[i]) <- workers[i].conpute(lb[i+1], rb[i-1]);

end- f or each

end-f or

One special case is when one statement’s produced paraametaronsumed parameter overlaps. It
must be noted that there is no dependency within the §ameach statement. In the above code segment,
the values consumddb[i], rb[i] byworker[i] will not come from its neighbors in this iteration.
The rule is that the consumed values always originate froemipusf or each statements of or each
statements from a previous loop iteration, and the puldistadues are visible only to followinfor each

statements dror each statements in following loop iterations.

e Scatter and Gather Operation

A collection of values produced by one object may be split eodsumed by multiple object array
elements for a scatter operation. Conversely, a colleciomlues from different objects can be gathered to

be consumed by one object.
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foreach i in A

(points[i,*]) <- A[i].f(...);
end-f or each
foreach k,j in B

(...) < Blk,j].g(points[k,j]);

end-f or each

A wildcard dimension “*” inA[ i ] . f () 's outputpoi nt s specifies that it will publish multiple data
items. At the consuming side, eaBhk, j ] consumes only one point in the data, and therefore a scatter
communication will be generated frofto B. For instanceA[ 1] will publish datapoi nt s[ 1, 0. . N- 1]

to be consumed by multiple array obje&sl1, 0. . N- 1] .

foreach i,j in A

(points[i,j]) < Ai,jl.f(...);
end-f or each
foreach k in B

(...) <- B[k].g(points[=*,Kk]);

end-f oreach

Similar to the scatter example, if a wildcard dimension “§"ih the consumed parameter and the cor-
responding published parameter does not have a wildcardndiion, there is a gather operation generated
from the publishing statement to the consuming statementhd following code segment, eaéhi , j ]
publishes a data point, then data points frAf0. . N- 1, j ] are combined together to for the data to be

consumed b[j ] .

Many communication patterns can be expressed with combinaf orchestration statements. For more

details, please refer to PPL technical report 06-18, “Glnaai: Orchestrating Migratable Parallel Objects”.

Last but not least, all the orchestration statements in threfile together form the dependency graph.
According to this dependency graph, the messages are dr@adethe parallel program progresses. There-
fore, the user is advised to put only parallel construct$ éna driven by the data dependency into the

orchestration code. Other elements such as local depgndboald be coded in the sequential code.
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A.1.2 Sequential Code
Sequential Files

The programmer supplies the sequential code for each dasscassary. The files should be named in the
form of class name with appropriate file extension. The heéfildeis not really an ANSI C header file.
Instead, it is the sequential portion of the class’s detiama Charisma will generate the class declaration
from the orchestration code, and incorporate the sequguatition in the final header file. For example, if a

molecular dynamics simulation has the following classesdglared in the orchestration code):
cl ass NMDWMmin : Mai nChare;

class Cell : ChareArray3D;

class Cell Pair : ChareArray6D,

The user is supposed to prepare the following sequentialffilethe classes: MDMain.h, MDMain.C,
Cell.h, Cell.C, CellPair.h and CellPair.C, unless a clamsdot need sequential declaration and/or definition
code. Please refer to the example in the Appendix.

For each class, a member function “void initialize(voidgncbe defined and the generated constructor

will automatically call it. This saves the trouble of exjitlig call initialization code for each array object.

Producing and Consuming Functions

The C/C++ source code is nothing different than ordinaryusatjal source code, except for the produc-
ing/consuming part. For consumed parameters, a functéa them just like normal parameters passed in.
To handle produced parameters, the sequential code nega$io special things. First, the function should
have extra parameter for output parameters. The paranypeis keywordout port , and the parameter
name is the same as appeared in the orchestration code.dSécdme body of the function, the keyword
pr oduce is used to connect the orchestration parameter and thevadables whose value will be sent

out, in a format of a function call, as follows.

produce( produced_paraneter, |local _variable[, size of _array]); ‘

When the parameter represents a data array, we need thesadit ze _of _ar r ay to specify the size
of the data array.

The dimensionality of an orchestration parameter is divige¢o two parts: its dimension in the orches-
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tration code, which is implied by the dimensionality of tHgjext arrays the parameter is associated, and
the local dimensionality, which is declared in the declarasection. The orchestration dimension is not
explicitly declared anywhere, but it is derived from theeamttjarrays. For instance, in the 1D Jacobi worker
example, “Ib” and “rb” has the same orchestration dimeralignof workers, namely 1D of size [16]. The
local dimensionality is used when the parameter is assatiaith local variables in sequential code. Since
“Ib” and “rb” are declared to have the local type and dimengib“double [512]", the producing statement

should connect it with a local variable of “double [512]".

voi d Jacobi Wor ker : : produceBorders(outport | b, outport rb){

produce(l b, | ocal LB, 512);

produce(rb, | ocal RB, 512);

Special cases of the produced/consumed parameters irscatter/gather operations. In scatter opera-
tion, since an additional dimension is implied in the pragtliparameter, we tHeocal _vari abl e should
have additional dimension equal to the dimension over wttiehscatter is performed. Similarly, the input
parameter in gather operation will have an additional disinthe same size of the dimension of the gather

operation.

For reduction, one additional parameter of type char[] deabto specify the reduction operation. Built-
in reduction operations are “+” (sum), “*” (product)<” (minimum), “>" (maximum) for basic data types.

For instance the following statements takes the sum of edlllealue ofr esul t and for output irsum

| reduce(sum result, ‘‘+"); |

If the data type is a user-defined class, then you might uséutieion or operator defined to do the
reduction. For example, assume we have a class called “Fame we have an “add” function (or a “+”

operator) defined.

| For ce& Force: : add(const Force& f): |

In the reduction to sum all the local forces, we can use

reduce( sunforces, |ocal Force, "add");
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Miscellaneous Issues

In sequential code, the user can access the object’s indexkeyword “thisindex”. The index of 1-D to

6-D object arrays are:
1D: thi sl ndex

2D: thislndex. {x,y}
3D: thislndex. {x,Yy, z}
4D:; thislndex.{w, x,vVy, z}

5D: thislndex.{v,wX,y, z}

6D: thislndex.{x1,y1,z1,x2,y2,z2}

A.2 Building and Running a Charisma Program

There are two steps to build a Charisma program: generativagn@++ program from orchestration code,
and building the Charm++ program.

1) Charisma compiler, currently namedchc, is used to compile the orchestration code (.or file) and
integrate sequential code to generate a Charm++ prograenteBaltant Charm++ program usually consists
of the following code files: Charm++ Interface file ((modudene].ci), header file ((modulename].h) and

C++ source code file ((modulename].C). The command for tiis i as follows.

| > orchc [nodul enane]. or |

2) Charm++ compiler, charmc, is used to parse the Charm-etfaae (.ci) file, compile C/C++ code,

and link and build the executable. The typical commands are:
> charnt [ nodul enane]. ci

> charnt [ nodul enane].C -c¢

> charnt [ nodul enane].o -0 pgm -1l anguage char m++

Running the Charisma program is the same as running a Chapregram, using Charm++’s job
launcherchar nr un. (On some platforms like CSE’s Turing Cluster, use the augted job launcherj g

orrj.)

| > charnrun pgm +p4

Please refer to Charm++'s manual and tutorial for more Betdibuilding and running a Charm++
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program.

A.3 Support for Library Module

Charisma is capable of producing library code for reuse waithther Charisma program. We explain this

feature in the following section.

A.4 Writing Module Library

The programmer uses the keywarddul e instead ofpr ogr amin the header section of the orchestration
code to tell the compiler that it is a library module. Follogikeywordnodul e is the module name, then
followed by a set of configuration variables in a pair paress. The configuration variables are used in
creating instances of the library, for such info as probléra.s

Following the first line, the library’s input and output pareters are posted with keywordspar am

andout par am
modul e FFT3D(CHUNK, M N);

i nparam i ndat a;

out par am out dat al, out dat a2;

The body of the library is not very different from that of a n@l program. It takes input parameters

and produces out parameters, as posted in the header section

A.5 Using Module Library

To use a Charisma module library, the programmer first needsetite an instance of the library. There are

two steps: including the module and creating an instance.
use FFT3D,

library f1 : FFT3D(CHUNK=10, M=10, N=100) ;

library f2 : FFT3D( CHUNK=8, ME8, N=64) ;

The keywordus e and the module name includes the module in the program, aricftword i br ary

creates an instance with the instance name, followed by tithule name with value assignment of config-

131



uration variables. These statements must appear in thardgch section before the library instance can be
used in the main program’s orchestration code.

Invoking the library is like calling a publish statementgtmput and output parameters are the same,
and the object name and function name are replaced withidrayiinstance name and the keywaral |

connected with a colon.

\ (f1 outdata[*]) <- fl:call(fl_indata[*]);

Multiple instances can be created out of the same module.ir Ekecution can interleave without

interfering with one another.

A.6 Using Load Balancing Module

A.6.1 Coding

To activate load balancing module and prepare objects fgration, there are 3 things that needs to be
added in Charisma code.

First, the programmer needs to inform Charisma about the b@dancing with a defi ne | db;”
statement in the header section of the orchestration cduswill make Charisma generates extra Charm++
code to do load balancing suchRSP methods.

Second, the user has to providePdaP function for each class with sequential data that needs to be
moved when the object migrates. When choosing which datasite pup, the user has the flexibility to
leave the dead data behind to save on communication ovei@aidration. The syntax for the sequential
PUP is similar to that in a Charm++ program. Please refer to thd lmalancing section in Charm++ manual

for more information orPUP functions. A typical example would look like this in userisggiential. Cfile:
voi d Jacobi Wor ker: : sequenti al Pup(PUP: : er & p) {

p| myLeft; p[nyRight; p|nyUpper; p|nyLower;
p| mylter;
PUParray(p, (doubl e *) | ocal Dat a, 1000) ;

}

Thirdly, the user will make the call to invoke load balancs®ssion in the orchestration code. The call
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is At Sync(); anditis invoked on all elements in an object array. The Wil example shows how to

invoke load balancing session every 4th iteration in adopl
for iter =1 to 100

/1 work work
if(iter %4 == 0) then
foreach i in workers
wor kers[i]. AtSync();
end- f or each
end-if

end-f or

If a while-loop is used instead of for-loop, then the testdition in thei f statement is a local variable
in the program’s MainChare. In the sequential code, the ceemmaintain a local variable calléd er in

MainChare and increment it every iteration.

A.6.2 Compiling and Running

Unless linked with load balancer modules, a Charisma progvdl not perform actual load balancing. The
way to link in a load balancer module is addingodul e Ever yLBas a link-time option.

At run-time, the load balancer is specified in command linerdhe+bal ancer option. If the balancer
name is incorrect, the job launcher will automatically poat all available load balancers. For instance, the

following command useRot at eLB.

\ > ./charnrun ./pgm +pl6 +bal ancer Rot atelLB

A.7 Handling Sparse Object Arrays

In Charisma, when we declare an object array, by default aedarray is created with all the elements
populated. For instance, when we have the following detitardn the orchestration code, an array of

NxNxN is created.
class Cell : ChareArray3D;

obj cells : Cell[N,N, N ;
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There are certain occasions when the programmer may negsksgaect arrays, in which not all ele-
ments are created. An example is neighborhood force céilmulan molecular dynamics application. We
have a 3D array of Cell objects to hold the atom coordinated, aa6D array of CellPair objects to per-
form pairwise force calculation between neighboring cells this case, not all elements in the 6D array
of CellPair are necessary in the program. Only those whiphesent two immediately neighboring cells
are needed for the force calculation. In this case, Charjameédes flexibility of declaring a sparse object

array, with aspar se keyword following the object array declaration, as follows
class Cell Pair : ChareArray6D;

obj cellpairs : CellPair[N,N,N,N, N, N, sparse;

Then the programmer is expected to supply a sequentialifumeith the nameget | ndex ARRAYNANME
to generate a list of selected indices of the elements tdecrda an example, the following function essen-

tially tells the system to generate all the NXNxXNXxNxNxN etsits for the 6D array.
voi d getl ndex_cel |l pairs(CkVec<CkArrayl ndex6D>& vec) {

int i,j,k,l,mn;
for(i=0;i<N;i++)
for(j=0;j<Nj++)
for (k=0; k<N; k++)
for(l=0;1<N;I|++)
for (Mm=0; MeN; m++)
for (n=0; n<N; n++)

vec. push_back( CkArrayl ndex6D(i,j,k,l,mn));
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Appendix B

LeanCP Orchestration Code

In this Appendix we show the orchestration code for Charigaeraion of LeanCP. The code is accompanied
with 19 sequential C++ code files, which are not shown here drbhestration code is composed of three
sections, which are listed here with brief explanationan8code segments are omitted to keep the layout

clear.

B.1 Header Section

In the first section, the name of the Charisma program is gafar thepr ogr amkeyword. For library

modules, the keywordodul e is used instead.

Immediately following that, the programmer can includeeenél files in the generated code with the
keywordi ncl ude and the filename to be included. Unlike in C/C++#)cl ude goes beyond including
header files. It can also be used to include Charm++’s irdertefinition file in. ci format. For example,
statementi‘ncl ude FFTG oup” integratesFFTG oup. h, FFTG oup. ci andFFTG oup. Cin the
generated files for cladsFTGr oup, which defines a per-processor object array that optimizesony

performance for FFT operations.

program | eanCP

i ncl ude parans;
i ncl ude FFTG oup;
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B.2 Declaration Section

Next in the orchestration code is declaration section, @liee classes, objects and object arrays, and pa-
rameter variables are declared. For each class, the proggamses thel ass keyword to specify its
inheritance from the base class such as generic 1D objext. aBimilarly, the keywordbj is used to
instantiate objects and object arrays from the class tygedamensionality information. The third compo-
nents in this section declares parameter variables thaserve as produced/consumed parameters in the

orchestration statements.

cl ass | eanCPMai n : Mai nChar e;

class State GSpacePl ane : ChareArray2D;

cl ass State_ Real SpacePl ane : ChareArray2D;
cl ass Rho_Real SpacePl ane : ChareArraylD,
cl ass Rho_GSpacePl ane : ChareArraylD;

obj main : | eanCPMai n;

obj gSpacePl ane : State GSpacePl ane [nStates, sizeY];

obj real SpacePl ane : State_Real SpacePl ane [nStates, sizeZ];
obj rhoReal : Rho_Real SpacePl ane [si zeZ];

obj rhoG: Rho_GSpacePl ane [sizeY];

param cSGToSReal : conpl ex[si zeX];

par am cSReal ToSG : conpl ex[ si zeX];

param r SReal ToRReal : doubl e[ si zeX*si zeY];
param r RReal ToSReal : doubl e[ si zeXxsi zeY];
param i RReal ToRRHart : int;

par am cRReal ToRG : conpl ex[ si zeX];

param cRGToRReal : conpl ex[si zeX];

param cRGToRReal di v : conpl ex[ 3xsi zeX];

B.3 Orchestration Section

Orchestration section is the core of an orchestration pragas it comprises all the orchestration statements
that describe the behavior of and interactions among ttedlpbobjects in the program. This section begins

with abegi n keyword and ends with aend keyword.
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begi n
/1 initialization
| eanCPMai n.init();
for iter =1 to MAXI TER
foreach i,y in gSpacePl ane
(cSGToSReal [i,Yy, *], cSGIoGPP[i,VY])
<- gSpacePl ane[i,y]. Phasel ();
end-f oreach
overl ap
{ /1 density cal cul ation
foreach i,z in real SpacePl ane
(+r SReal ToRReal [ z])
<- real SpacePl ane[i, z] . Phasel | (cSGToSReal [i, *, 2] );
end- f or each
foreach z in rhoRea
(cRReal ToR(d *, z], +i RReal ToRRHart)
<- rhoReal [ z] . Phasel I | 1(r SReal ToRReal [ z]);
end- f or each
foreach y in rhoG
(cRGToRReal di v[y, *], cRGTORGHart[ y] )
<- rho{dy].Phasel V1(cRReal ToRJ vy, *]);
end- f or each

}
{ /1 Non-Local energy

foreach i,y in particlePl ane
(cGPPTORPP[ i, YV, *])
<- particlePlane[i,y].Phasel X1(cSGToGPP[i,VY]);
end- f or each
foreach i,z in real Particl ePl ane
(cRPPTOGPP[ i, *, 2] )
<- real Particl ePl ane[i, z] . Phasel X(cGPPToRPP[ i, *, z]);
end- f or each
foreach i,y in particlePl ane
(cGPPTOSH i, Y])
<- particlePlane[i,y].Phasel X2(cRPPToGPP[i,V, *]);
end- f or each

}

end- overl ap

/1l integration
foreach i,y in gSpacePl ane
gSpacePl ane[i,y].PhaseVl (cSReal ToSH i, vy, *], cGPPToSH i, VY] );
end-f oreach
end-f or
| eanCPMai n. final ();
end
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Appendix C
AMPI Extension API

Beyond what is specified in the MPI Standard, AMPI defines @&exktensions, including an extra option
for running with virtual processes, and several additiarals for various extension functionalities. The
extension functions’ names start witMPI_ instead of the usudIPI_, and their syntax and behavior are

explained as follows.

C.1 Running with Virtual Processes

When the user run an AMPI program the usual way with e P option, the program is launched on
P processors, with one virtual process on each processocehsgithout any adaptivity support. AMPI

provides atvp VP option to specify to total number of virtual processes tooartheP processors.

e ampirun -np P pgmlaunch progranpgmon P processors, with one virtual process on each processor.

(P =VP)

e ampirun -np P pgm +vp VHaunch progranpgmon P processors, witlP virtual processes.

C.2 Automatic Load Balancing Interface

AMPI provides three load balancing function calls as extamsf the MPI Standard.

e void AMPLMigrate(void) collective call that signals possible load balancing poifhis call sus-
pends the execution of the virtual processes, even thoegdctimal migration may or may not happen,

depending on the LB Manager’s decision.
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e void AMPLAsyncMigrate(void) collective call that starts load balancing session wHIteiang the
application to continue, such that load balancing oveneiiscomputation. When the load balancing

decision is available, the threads could be migrated asgnolsly.

e void AMPLSetmigratable(int comm, int miggollective call that enables or disables load balancing

in a communicator according to the valuenoig.

e void AMPLMigrateto(int destPE)local call to force migration of the calling VP westPEwithout

being directed by the LB Manager.

C.3 Automatic Checkpointing Interface
AMPI extension for checkpointing on disk and in peers’ systeaemory includes two function calls.

e void AMPLCheckpoint(char *dname)ollective call that initiates on-disk checkpointing bgtcur-

rent program into directory given lmname

e void AMPLMemCheckpoint()collective call that initiates in-memory checkpointingjhe peers on

which the thread’s data is saved are chosen by the run-tisteray

C.4 Asynchronous Collective Communication Interface

Collective calls involves many or all MPI processes and mne-tconsuming. AMPI offers the flexibility of
making non-blocking collective communication calls sushreduction and all-to-all. These calls help the
user exploit the large gap between the elapsed time and @Rati collective operations. This features is
especially helpful in the context of our adaptive implenagion. When virtual processes in a communicator
are blocked on a collective operation, the CPUs they residean be used by other virtual processes on the
same physical processors.

The function interface is very much like the blocking couptat, with an extraMP1_Request* request

parameter returning the request handler.

e void AMPLIreduce(..., MPIRequest* request)
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e void AMPLIallreduce(..., MPIRequest* request)

e void AMPLIalltoall(..., MPI_Request* request)

e void AMPLIallgather(..., MPLRequest* request)
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