
Engineering With Computers manuscript No.
(will be inserted by the editor)

Parallel Adaptive Simulations of Dynamic Fracture Events

Sandhya Mangala1, Terry Wilmarth3, Sayantan Chakravorty2, Nilesh Choudhury2, Laxmikant V.
Kalé2 and Philippe H. Geubelle1

1 Department of Aerospace Engineering
2 Department of Computer Science
3 Center for Simulation of Advanced Rockets

University of Illinois at Urbana-Champaign
{mangala, wilmarth, schkrvrt, nchoudh2, kale, geubelle}@uiuc.edu

The date of receipt and acceptance will be inserted by the editor

Abstract Finite element simulations of dynamic frac-
ture problems usually require very fine discretizations
in the vicinity of the propagating stress waves and ad-
vancing crack fronts, while coarser meshes can be used
in the remainder of the domain. This need for a con-
stantly evolving discretization poses several challenges,
especially when the simulation is performed on a parallel
computing platform. To address this issue, we present
a parallel computational framework developed specifi-
cally for unstructured meshes. This framework allows
dynamic adaptive refinement and coarsening of finite el-
ement meshes and also performs load balancing between
processors. We demonstrate the capability of this frame-
work, called ParFUM, using two-dimensional structural
dynamic problems involving the propagation of elasto-
dynamic waves and the spontaneous initiation and prop-
agation of cracks through a domain discretized with tri-
angular finite elements.

1 Introduction

Explicit finite element schemes are often the method of
choice to model dynamic fracture events. Examples in-
clude the virtual internal bond method [1,2], the cohe-
sive finite element scheme [3–5] and dynamic damage
modeling [6]. All these methods involve a set of compu-
tational issues associated with a rapidly changing geom-
etry, high stress concentrations and singularities due to
wave fronts and propagating cracks, the need for large
domains to avoid interactions of waves emanating from
the boundary, and a requirement for a very fine mesh
around the crack tip to capture the failure process ac-
curately. Since the use of a very fine grid in the entire
computational domain is often prohibitively expensive,
one needs to adapt the mesh constantly to account for
the rapidly moving wave fronts and dynamically propa-
gating crack tips.

In rapidly evolving problems such as dynamic frac-
ture events, mesh modification poses a set of challenges
with regard to the choice of the mesh adaptivity crite-
rion and parallel implementation. The first step in mesh
adaptivity is to identify automatically the critical re-
gions of the mesh to be adapted using indicators based
on mesh quality measures, error indicators or sharp gra-
dients in the solution. Two classes of mesh adaptivity in-
dicators, one based on an interpolation error [7] and the
other based on a posteriori error estimates [8] have been
proposed. The key idea of adaptivity criteria is to dis-
tribute the error indicator measure equally over the en-
tire mesh. Wherever this measure is high, the mesh is re-
fined to capture the spatial variation of the quantity un-
derlying the error indicator more accurately; where the
measure is low, the mesh is coarsened. By this process,
an optimal mesh discretization is attained. In this work,
we adopt the method based on the equi-distribution of
the variation of the velocity field [7,9,10].

The second and undoubtedly more challenging issue
is associated with the parallel implementation of the
finite element solver. Parallel computing not only re-
duces wall-clock time but also allows us to solve very
large problems which otherwise could not be simulated
on a single processor. However, parallel programming
presents additional issues of communication and data
organization across multiple processors. These issues be-
come particularly more complex in problems involving
frequent adaptive remeshing as the nature of the dis-
cretization and its associated data structures change re-
peatedly over time. This in turn affects the per-processor
computational load.

A parallel framework has been developed to facilitate
the parallel implementation of large unstructured finite
element or finite volume simulations. ParFUM [11] is a
Parallel Framework for Unstructured Meshes developed
in Charm++ [12]. It enables the relatively straightfor-
ward parallelization of existing serial applications and
provides a simple environment in which to develop par-



2 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

allel unstructured mesh codes with minimal knowledge
of parallel programming. A primary advantage to the
use of ParFUM is the ability to perform automatic dy-
namic load balancing with minimal effort on the part of
the programmer.

This article summarizes a recent study of 2D adap-
tive parallel finite element simulations of wave prop-
agation and dynamic fracture problems implemented
with ParFUM. We begin in Section 2 with a descrip-
tion of ParFUM and the mesh adaptivity strategy used
by this framework. We then discuss the adaptivity cri-
terion adopted in this work to refine and coarsen the
mesh in Section 3. In Sections 4 and 5 we present two
sets of elastodynamic and dynamic fracture applications
and discuss the associated precision and computational
efficiency issues. Finally, in Section 6, we present per-
formance studies with the dynamic fracture application,
highlighting the use of load balancing in ParFUM.

2 Adaptive Mesh Modification with ParFUM

ParFUM embodies a unique approach to parallelization
of unstructured meshes and the applications that make
use of them that leverages the support of the Charm++

run-time system and its associated features. Other sup-
port frameworks exist for unstructured meshing. One
such notable approach is the SIERRA [13] framework
from Sandia National Laboratories. SIERRA supports a
large feature set and is designed to execute large-scale
simulation applications on the latest supercomputers,
but is not currently publicly available. On a related note,
the TSTT Project [14] aims to provide interoperability
amongst simulation tools by providing standardized in-
terfaces.

2.1 The Charm++ Run-time system

ParFUM, as mentioned earlier, is based on the
Charm++ run-time system and AMPI [15]. Therefore
ParFUM inherits the many capabilities provided by the
Charm++ run-time system such as processor virtualiza-
tion, adaptive overlap of communication and computa-
tion, dynamic load balancing and portability to a mul-
titude of parallel and distributed computing platforms.

Processor virtualization [16] is at the heart of the
design of the Charm++ run-time system. Virtualiza-
tion involves the decomposition of a computation into a
large number of interacting entities or virtual processors
(VPs) with little concern for the actual number of physi-
cal processors. As shown in Figure 1, the Charm++ run-
time system maps VPs to physical processors and allows
the VPs to interact via asynchronous method invoca-
tions. Charm++ users develop applications without con-
cern for the creation of good mappings based on problem
size and the number of physical processors. Charm++

Fig. 1 The Charm++ run-time system maps virtual pro-
cessors to physical processors. In ParFUM, each virtual pro-
cessor is associated with one partition of the mesh.

and AMPI provide flexible strategies for setting up ini-
tial mappings, along with reasonable default mappings.
Further, the Charm++ run-time system can modify the
mapping of VPs to physical processors automatically
at execution time by migrating VPs between physical
processors. This allows the run-time system to perform
measurement-based dynamic load balancing. Charm++

supports a variety of load balancing strategies suitable
for different load patterns. Load balancing is discussed
in further detail in Section 6.2. Processor virtualization
also allows for the adaptive overlap of computation and
communication. When one VP is waiting for a communi-
cation to take place, another VP on the same processor
can perform computations. This reduces the amount of
time that a processor would spend idle awaiting commu-
nication. Virtualization benefits are further illustrated in
Section 6.1.

Adaptive MPI (AMPI) [15,17] is an implementation
of the Message Passing Interface (MPI) in Charm++.
An MPI process consists of a user-level thread bound
to a Charm++ VP. AMPI allows existing MPI appli-
cations to make use of Charm++’s capabilities, such as
load balancing and adaptive overlap, with minimal mod-
ification. The base ParFUM implementation is in AMPI,
allowing for rapid porting of existing MPI simulations to
ParFUM.

2.2 ParFUM

ParFUM provides parallel support for unstructured
mesh applications. As such, it supports parallel mesh
partitioning, access to remote entities or ghosts along
partition boundaries, updates of ghost data and reduc-
tions on shared partition boundary nodes, topological
adjacencies and mesh adaptivity.

A ParFUM application has two subroutines: init and
driver. The init subroutine executes only on VP 0 and
reads the input mesh and data and registers it with the
framework. The framework then partitions the mesh into
the requested number of mesh regions, using a memory
efficient parallel partitioner based on ParMetis [18]. Al-
ternatively, a pre-partitioned mesh may be read in par-



Parallel Adaptive Simulations of Dynamic Fracture Events 3

allel in the driver routine. Each partition belongs to a
single Charm++ virtual processor and vice versa. The
driver routine is executed on each VP and computes the
solution over the partition for that virtual processor.

A typical solution loop performs calculations over
each node or element and requires data from the neigh-
boring nodes or elements. Nodes and elements are col-
lectively referred to as entities. Thus entities on a par-
tition boundary may need data from entities on other
partitions. ParFUM provides functionality for adding lo-
cal read-only copies of remote entities to the partition
boundary. These read-only entities are called ghosts. A
single collective call to ParFUM updates all ghost enti-
ties with data from the original entities on neighboring
partitions. As the definition of “neighboring” varies from
one application to another, ParFUM provides a flexi-
ble mechanism for generating ghost layers. For example,
an application might consider two tetrahedra that share
a face as neighbors. In another application, tetrahedra
that share nodes might be considered neighbors. Par-
FUM users can specify the type of ghost layer required
by defining the “neighboring” relationship in the init
routine and adding multiple layers of ghosts according
to the neighboring relationship. The definition of “neigh-
boring” can vary for the different layers. User-specified
ghost layers are automatically added during the parti-
tioning of the input mesh. ParFUM also updates the
connectivity and adjacency information of a partition’s
entities to reflect the additional layers of ghosts.

ParFUM further simplifies application development
by providing the user with topological information. From
the input mesh connectivity, ParFUM derives node-to-
element, node-to-node and element-to-element adjacen-
cies. These adjacencies are calculated only if the user
requests them, avoiding the overhead of calculating and
storing this data when it is not required.

ParFUM has additional capabilities such as load bal-
ancing and mesh adaptivity. Load balancing involves
moving VPs (mesh partitions) from one physical pro-
cessor to another. User data for a partition must be
packed, transported and unpacked, a process that is au-
tomated in ParFUM. The user writes a single data struc-
ture traversal routine which is used for both packing and
unpacking the data to be migrated. We discuss the load
balancing of ParFUM applications in greater detail in
Section 6.2.

2.3 Mesh Adaptivity in ParFUM

Mesh modification is accomplished in ParFUM in a
manner that differs from other approaches. At the low-
est level of detail, the framework provides low-level
mesh modification primitives for edge bisect, edge flip
and edge contract operations. These operations are self-
contained parallel primitives that leave the mesh in a
consistent state, updating all adjacencies and ghost lay-
ers as required. The primitives lock mesh entities so

that multiple primitives can simultaneously operate on
adjacent areas of the mesh. Higher-level meshing algo-
rithms can be developed using these primitives with lim-
ited knowledge of parallel programming. ParFUM pro-
vides several such higher-level refinement and coarsen-
ing operations that are capable of modifying the mesh
to the user’s sizing specification. These operations in-
clude quality measures to improve element quality dur-
ing refinement and coarsening. The current methods in-
volve selecting elements to refine or coarsen based on
edge lengths and element quality. Refinement incorpo-
rates the longest edge bisection strategies [19] of Ri-
vara while coarsening involves shortest edge contrac-
tions. Other parallel approaches [20] to mesh adaptivity
also incorporate strategies similar to Rivara’s. In longest
edge bisection, the longest edge of an element is identi-
fied for bisection. If the neighboring element along the
longest edge considers that edge to be its longest edge as
well, a point is inserted on the edge, typically at the mid-
point, and new elements are created by bisecting the two
adjacent elements at that point. We have two approaches
to longest edge bisection algorithms that modify regions
of the mesh. The first approach involves sorting the ele-
ments by the lengths of their longest edges and applying
the primitive edge-bisect operation in that order. In par-
allel, this is implemented by sorting over the elements of
each separate mesh partition. This approach is the pri-
mary approach used in the applications discussed subse-
quently. ParFUM also implements a second approach to
longest edge bisection. In this approach, the longest edge
bisection propagates through the mesh when the neigh-
boring element does not share its longest edge with the
initiating element. A combination of edge-flip and edge-
bisect operations propagate through the mesh until an
edge satisfying that relationship is reached.

In addition to leaving the mesh consistent after a
primitive operation, ParFUM provides solution transfer
capabilities for these operations. It provides some basic
techniques for linear interpolation or volume-weighted
solution transfer, but makes it possible for the user to
override these approaches with specific techniques.

The simulation of dynamic fracture problems based
on the finite element formulation described in Sections
4 and 5 constitutes an excellent testbed for ParFUM’s
parallel mesh adaptivity, solution transfer and load bal-
ancing capabilities.

3 Finite element formulation and mesh
adaptivity criterion

The finite element formulation used in this work starts
from the principle of virtual work over the deformable
solid Ω:∫

Ω

S : δE d Ω +
∫

Ω

ρoü.δu d Ω =
∫

Γex

Tex.δu d Γ , (1)



4 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

where S and E respectively denote second Piola-Kirchoff
stress and the Lagrangian strain tensors, u is the dis-
placement vector field, a superposed dot denotes differ-
entiation with time, Tex is the traction applied along
the boundary Γex, and ρo is the material density. The
corresponding semi-discrete finite element formulation is

M a = −Rin + Rex, (2)

where M is the lumped mass matrix, a is the nodal accel-
eration vector, Rin and Rex respectively denote the in-
ternal and external force vectors. The numerical scheme
is completed by a second-order explicit (central differ-
ence) timestepping scheme. For more details, see [5].

To reduce the incidence of the numerical oscillations
inherent in explicit time integration scheme, we adopt
the artificial viscous damping method proposed by Lew
et al. [21], which introduces a viscous second Piola-
Kirchoff stress tensor Sν given by

Sν = JF−1σνF−T , (3)

where J is the Jacobian of deformation, F is the defor-
mation gradient tensor and

σν = 2 ∆η dev(symḞF−1). (4)

Here sym and dev respectively denote the symmetric
and deviatoric components of a tensor and ∆η is the
artificial viscosity coefficient defined by

∆η =

{
max(0,−3

4
hρ(c1∆v − c2a)) ∆v < 0,

0 ∆v ≥ 0,
(5)

where h is the measure of the element size defined by
h = (Jd!|K|)1/d, d is the dimension of the space, |K| is
the volume of the element in its reference configuration,
c1 and c2 are artificial viscosity coefficients, a is the char-
acteristic sound speed of the material and is equal to the
dilatational wave speed and ρ = ρ0/J is the mass den-
sity per unit deformed volume. ∆v is the velocity jump
across the element given by

∆v = h
∂logJ

∂t
, (6)

where t is time. The coefficients of artificial viscosity c1

and c2 are calibrated depending on the strength of the
shock. Benson [22] discussed the procedures for deter-
mining these coefficients. It was proposed in [21] that
the value of c2 is typically in the range of 0.1 to 1 and
the value of c1 may be expected to remain close to 1 for
strong shocks.

As mentioned earlier, we adopt in this work a mesh
adaptivity criterion based on the scheme proposed by
Diaz et al. [7], who used the error associated with the
interpolation of the true solution using discrete finite
element functions to identify the critical regions of the
mesh. They also showed that, by distributing the inter-
polation error equally over the given mesh, the finite ele-
ment solution can be made more accurate. An extension

Fig. 2 Adaptive simulation of 1D wave propagation per-
formed on 8 processors for three values of the cut-off param-
eter ε and for ∆tadaptive/tramp = 0.25. The adapted mesh is
shown at time t = 0.627L/Cd. The left figure also shows the
boundary conditions and the inter-processor boundary. The
two horizontal arrows on the left denote the location of the
leading and trailing edges of the wave front. The right-most
figure shows the static fine mesh used for comparison in the
present study.

of this method was proposed by Ortiz and Quigley [9],
in which the variation of the velocity field was used as
the error indicator in identifying the critical regions. The
authors also proved that the equi-distribution of varia-
tion strategy minimizes the interpolation error. This ap-
proach was also used by Camacho and Ortiz [10] who
defined a refinement indicator Im based on the velocity
gradient tensor, ∇v:

Im = ||∇v||m, (7)

where || ||m indicates the L2-norm over the element m.
The total interpolation error over the entire domain is
then

I =
nel∑

m=1

Im, (8)

where nel is the total number of elements in the domain.
As mentioned earlier, minimizing I is achieved by equi-
distributing Im equally over the entire domain. In other
words, introducing the average error measure

Iaver =
1

nel

nel∑
m=1

Im =
I

nel
, (9)



Parallel Adaptive Simulations of Dynamic Fracture Events 5

we define the global normalized indicator on an element
m as

βm =
Im

Iaver
. (10)

Any element for which βm > 1 is refined. Those with
βm < 1 are coarsened. Based on our experience, we
have however adopted a more conservative approach
to adaptive mesh modification, for which the refine-
ment/coarsening limit for βm is set at 1 − ε, where ε
is a user-specified cut-off parameter (0 ≤ ε < 1). As
shown in the next section, the choice of ε affects both
the precision and computational cost of the numerical
solution.

4 1D wave propagation

As a first assessment of the proposed parallel mesh adap-
tivity scheme, we study in this section the simple 1D
wave propagation problem shown in Figure 2. The time-
dependent y-velocity Vy(t) applied along the top edge
of the rectangular domain increases linearly with time t
to its maximum value V0 for 0 ≤ t ≤ tramp and is then
kept constant, leading to the propagation of a planar
dilatational stress wave traveling at a speed

Cd =

√
E(1− ν)

ρo(1 + ν)(1− 2ν)
, (11)

where E, ν and ρo denote the material stiffness, Poisson’s
ratio and density, respectively.

The problem constitutes a good testbed for the mesh
adaptivity scheme since it involves the rapid propagation
of a relatively narrow region with high stress gradient
(requiring a fine discretization) surrounded by regions of
uniform stress distribution (where a coarse mesh can be
used). In a traditional, non-adaptive approach, the accu-
racy of the solution could only be improved by increasing
the density of the entire mesh, resulting in a large num-
ber of nodal degrees of freedom. In a dynamic adaptive
setup, the critical region associated with the wave front
is identified and the mesh can be selectively adapted. In
adaptive simulations involving refinement and coarsen-
ing operations, the number of degrees of freedom remains
lower than that of a uniformly fine mesh while achieving
similar accuracy. The effect of the level and frequency of
mesh adaptivity on the trade-off between accuracy and
computational cost is the primary focus of this study.

In the numerical simulations presented in this sec-
tion, the normalized velocity gradient β defined in the
previous section is used to identify the critical regions.
The variable parameters are the cut-off parameter ε and
the frequency of mesh modification, i.e., the time inter-
val ∆tadaptive at which refinement and coarsening opera-
tions are conducted. The timestep size ∆t is always kept
below the value required by CFL stability condition [23].
The ramp time tramp is chosen as Cdtramp/L = 0.125,

Fig. 3 Vertical velocity distribution along x = 0 at
Cdt/L = 0.3135 obtained analytically (solid curve) and nu-
merically (symbols) for the 1D wave problem shown in Fig-
ure 2. The mesh adaptivity parameters are ε = 0.75 and
∆tadaptive/tramp = 0.25

Fig. 4 Comparison between the numerical error on the y-
velocity field associated with the adaptive and static sim-
ulations for the 1D wave propagation problem shown in
Figure 2: effect of the mesh adaptivity parameters ε and
∆tadaptive/tramp. The error defined by (12) is computed at
Cdt/L = 0.314.

where L denotes the domain length. To allow for a direct
comparison between adaptive and non-adaptive simula-
tions, the minimum element size used in the refinement
studies is chosen equal to the average element size of the
fine uniform mesh, while the maximum element size used
in the coarsening process is set to the average element
size of the initial coarse mesh.

Figure 2 shows adaptive meshes obtained for three
values of ε (ε = 0, 0.5, 0.75) at Cdt/L = 0.627. The left-
most figure also illustrates the inter-processor bound-
ary although no attempt was made to achieve dynamic
load balancing in this case. The 8-processor run was
simply conducted here to illustrate the ability of Par-
FUM to refine and coarsen the mesh adaptively across
processor boundaries. The frequency of mesh modifica-
tion was chosen as ∆tadaptive/tramp = 0.25. As apparent



6 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

Fig. 5 Effect of the mesh adaptivity parameters ε and
∆tadaptive/tramp on the computational cost of the adaptive
simulations for the total time (solid curves) and the CPU
time dedicated to the mesh refinement and coarsening oper-
ations (dashed curves) for the 1D wave propagation problem
shown in Figure 2. The CPU times are normalized by the
total CPU time associated with the fine static mesh simula-
tion.

in Figure 2, a smaller value of the cut-off parameter ε
leads to a sharper mesh refinement in the vicinity of
the wave front, whose leading and trailing edges are in-
dicated by horizontal arrows. The ability of the adap-
tive solution to capture the traveling wave front is il-
lustrated in Figure 3, which presents a snapshot of the
vertical velocity component along the edge x = 0 at
Cdt/L = 0.314 obtained analytically (solid curve) and
numerically with the adaptive (open symbols) and fine
static (closed symbols) meshes. For this particular adap-
tive simulation, the parameters for mesh adaptivity were
chosen as ∆tadaptive/tramp = 0.25 and ε = 0.75. Overall,
the y-velocity profile associated with the adaptive mesh
is in close agreement with the numerical solution asso-
ciated with the fine static mesh and with the analytical
solution. However, the adaptive finite element does not
fully capture the steep rise in the wave front due to the
viscous smoothing taking place during mesh modifica-
tion.

To quantify the effect of the mesh adaptivity param-
eters on the accuracy of the adaptive finite element so-
lutions, we introduce the following time-dependent error
measure in the y-velocity field:

Error =

∫ L

0
|(vy(adaptive) − vy(analytical))| dy∫ L

0
|(vy(fine) − vy(analytical))| dy

, (12)

where vy(adaptive), vy(fine) and vy(analytical) respectively
denote the y-velocity distribution corresponding to the
adaptive mesh, fine static mesh and analytical solu-
tions along the edge x = 0. The combined effect of the
frequency in mesh modification (presented in terms of
∆tadaptive/tramp) and the cut-off parameter ε is shown
in Figure 4 at time Cdt/L = 0.314. As apparent there,

Fig. 6 Initial mesh, boundary conditions and inter-processor
boundaries for the parallel adaptive finite element simula-
tions of a dynamic fracture event. The initial crack length
a0 = 0.005m.

a larger value of ε leads to a smaller error ratio, as a
larger refinement zone is introduced in the vicinity of
the traveling wave front. Another key observation de-
rived from Figure 4 is that there appears to be an opti-
mum value of the mesh modification frequency for which
the relative error is minimized for all values of ε. The
more frequently the mesh repair process is introduced,
the better the fine adaptive mesh is able to track the
moving shock front. However, below the optimum value
frequency of mesh modification, ∆tadaptive/tramp ' 0.25
in this case, the precision of the adaptive numerical so-
lution starts to degrade due to the additional viscous
damping introduced to smooth out the numerical oscil-
lations associated with the rapidly changing mesh. This
spurious numerical damping had been alluded to in the
discussion pertaining to Figure 3.

Figure 5 addresses the issue of computational cost
and presents the effect of the mesh adaptivity param-
eters on the CPU time associated with the entire sim-
ulation (solid curves) and with the mesh modification
operations (dashed curves). The CPU times have been
normalized by the total time associated with the fine
static mesh simulation performed on the right-most
mesh in Figure 2. As expected, the computational cost
increases with the frequency of mesh modification (i.e.,
as ∆tadaptive/tramp decreases) due to the increased cost
of mesh refinement and coarsening. However, a devia-
tion from this trend is observed for very low frequencies
of mesh modification, where the quantity of elements in
the adapted mesh and the corresponding total computa-



Parallel Adaptive Simulations of Dynamic Fracture Events 7

Fig. 7 Stress-strain curve under uniaxial state of strain ob-
tained for p1 = 10, p2 = 0.8, Yin = 6000J/m3 and for various
strain rates ε̇.

tional cost increase due to the infrequent mesh modifica-
tions. The results presented in Figures 4 and 5 indicate
that, for ε = 0.75 and ∆tadaptive/tramp = 0.25, we can
achieve a precision comparable to that obtained with the
static fine mesh (with a relative error ratio of about 1.03)
for about one fifth of the total computational cost. The
efficiency of the adaptive scheme is expected to increase
further for larger problems, such as the dynamic failure
problem in the next section.

5 Dynamic failure

5.1 Problem description

To assess the ability of the parallel adaptive scheme to
capture dynamic fracture problems, we now turn our
attention to the structural problem shown in Figure 6.
An initially quiescent pre-notched compact tension spec-
imen, with length L = 0.04m, width W = 0.045m and
an initial crack length a0 = 5mm, is subjected to an
imposed vertical velocity V ∗(t) applied along its upper
edge. The imposed velocity history is similar to that used
in the previous section: V ∗ increases linearly with time
up to a value V0 = 2.5m/s attained at Cdtramp/L =
0.01, and is then kept constant. The lower boundary is
held fixed, while the left and right edges and the crack
faces are traction free. These loading conditions lead to
the downward propagation of a 1D elastic wave which is
diffracted by the crack and creates a region of high stress
concentrations in the vicinity of the crack tip. The am-
plitude of the stress wave (σ0 = ρoCdV0) is chosen such
that the material initially behaves in an elastic fashion,
with its response defined by the stiffness E = 3.45GPa,
Poisson’s ratio ν = 0.35 and density ρo = 1190kg/m3.
The analysis being conducted under plane strain condi-
tions, the associated dilatational wave speed Cd, defined
by (11), is equal to 2090.4m/s.

Fig. 8 Normalized vertical velocity Vy/V0 distribution at
times (a) t = 0.783L/Cd, (b) t = 2.613L/Cd and (c) t =
4.180L/Cd.

To capture the initiation and dynamic growth of the
crack, we use in the present study a simple isotropic rate-
dependent damage model inspired from Ju [24], which
is based on the following expression of the free energy
function Ψ :

Ψ(εe, ω) ≡ (1− ω)Ψ0(εe), (13)

where ω denotes the scalar damage parameter, and Ψ0

is the undamaged free energy, a function of the elastic



8 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

strain tensor εe. The Clausius-Duhem inequality leads
to the following expression of the stress:

σ =
∂Ψ(εe, ω)

∂εe
= (1− ω)

∂Ψ0

∂εe
, (14)

where, for a linearly elastic solid,

Ψ0 =
1
2
εe : C : εe. (15)

In equation (15), C is the fourth-order elastic stiffness
tensor. Denoting ξ ≡ Ψ(εe, ω) for convenience, we intro-
duce the damage criteria

g(ξ, κt) = G(ξ)− κt 6 0, t ∈ <+, (16)

where the damage function G(ξ) is given by the Weibull
distribution

G(ξ) = 1− exp

[
−

(
ξ − Yin

p1Yin

)p2
]

, (17)

and κt denotes the damage threshold at time t. In (17),
the initial threshold Yin and the quantities p1 and p2 are
material parameters. The damage model is completed by
the Kuhn-Tucker relations that define consistent loading
and unloading conditions as:

κ̇t ≥ 0, g(ξ; κt) ≤ 0, κ̇tg(ξ, κt) = 0. (18)

Figure 7 presents the associated uni-axial stress-
strain curve obtained with p1 = 10, p2 = 0.8 and
Yin = 6000J/m3 and for three values of the strain rate
ε̇. As apparent there, after an undamaged linearly elas-
tic response, the material exhibits a strongly nonlinear
softening behavior, which is rate dependent for strain
rates exceeding 104/s. This softening response leads to
a strain localization which in this work is attributed to
the propagation of a crack.

5.2 Adaptive simulation

In the numerical simulation of the fracture event,
we fix the cut-off parameter ε introduced in Section
3 at 0.25, and the frequency of mesh modification
∆tadaptive/tramp = 10, which corresponds to a mesh
modification operation every 2000 timesteps. The initial
mesh, shown in Figure 6, is composed of 50, 000 3-node
elements and is partitioned among 16 processors, each
with 10 virtual processors. The initial size of each vir-
tual processor is thus approximately 300 elements.

Snapshots of the y-velocity distribution are presented
in Figure 8. In Figure 8(a), for which t = 0.783L/Cd,
the downward traveling plane wave is clearly visible,
together with the diffracted wave emanating from the
crack tip. The strain localization originating from the
crack tip is seen in Figure 8(b), for which t = 2.613L/Cd.
This leads to a sharp velocity gradient across the crack
resulting in positive and negative velocities above and

Fig. 9 Damage parameter ω distribution for the dynamic
fracture problem shown in Figure 6 at (a) t = 2.613L/Cd

and (b) t = 4.180L/Cd.

below the crack, respectively. The last figure (Figure 8(c)
obtained at t = 4.180L/Cd) shows the crack branching
towards the upper edge of the specimen, with the sharp
discontinuity in the velocity field now in the vicinity of
the upper right corner of the domain.

The initial straight propagation and subsequent
branching of the crack are further illustrated in Figure
9, which shows the evolution of the distribution of the
damage parameter ω introduced in (13). In Figure 9(a),
which corresponds to t = 2.613L/Cd, we observe the
widening of the damage zone as the crack propagates
faster ahead of the initial notch tip [6]. Figure 9(b), for
which t = 4.180L/Cd, clearly shows the branching of
the crack towards the upper right-hand corner of the do-
main, which leads to the slow-down and eventual arrest
of the straight branch of the crack.

To capture this complex failure process accurately
and efficiently, the finite element mesh is adaptively re-
fined and coarsened, as illustrated in Figure 10, which
presents snapshots of the dynamically adapted mesh at
times Cdt/L = (a) 0.783, (b) 2.613 and (c) 4.180. The



Parallel Adaptive Simulations of Dynamic Fracture Events 9

(a)

(b)

(c)

Fig. 10 Adaptive mesh for the dynamic failure problem
shown in Figures 8 and 9 at (a) t = 0.783L/Cd, (b) t =
2.613L/Cd and (c) t = 4.180L/Cd. The inset figure shows
details of the refined mesh in (b) in the vicinity of the notch
tip.

inset of Figure 10(b) shows a detail of the mesh in the
vicinity of the initial notch tip. In this study, the ratio of
the coarse to fine mesh was chosen to be approximately
10. The ability of the parallel adaptive framework to cap-
ture the diffraction of the planar wave (Figure 10(a)),
the stress concentration associated with the propagat-
ing crack tip (Figure 10(b)) and the crack tip branching
process (Figure 10(c)) is clearly observed.

6 ParFUM Performance

We have shown in Figures 4 and 5 that, in dynamic
simulations, the use of ParFUM’s adaptivity allows us
to achieve considerable simulation accuracy in less time
than when using a static fine mesh. In this section, we
discuss the performance of ParFUM with adaptivity on
the dynamic failure problem. We illustrate how virtual-
ization affects performance and show how the problem
scales relative to our best single processor time. We show
the results of experimenting with Charm++’s built-in
automatic load balancing to improve the performance
and scaling of this simulation.

6.1 Benefits of Processor Virtualization

As discussed in Section 2, the concept of processor virtu-
alization in Charm++ provides several benefits to Par-
FUM applications. The first of these benefits is that
virtualization allows for more flexible decomposition of
problems into more partitions than there are physical
processors. Each partition of the mesh is associated with
a user level AMPI thread. Low context switch time
and low memory overheads for user level threads [25]
mean that multiple partitions on a single processor can
be maintained without paying a significant performance
penalty. This ability to decompose a mesh into more
partitions than there are physical processors makes it
possible to achieve an overlap of computation and com-
munication as discussed earlier.

However, there is of course some additional cost to
this flexibility. Table 1 shows the overhead of adding
additional virtual processors for single processor execu-
tions of the dynamic failure application. As the prob-
lem domain is broken up into more chunks, more and
more messages need to be exchanged in each iteration of
the computation. Although these messages are not inter-
processor messages they do add some overhead. Since
there can be no adaptive overlap between computation
and communication in a single processor run, we see very
little benefit from virtualization. Thus, single processor
runs give us an idea of the cost of virtualization.

VPs Time (103 s) % Increase

1 7.9 -
4 8.4 6.3
8 9.2 16.5
10 9.7 22.8
16 10.7 35.4
24 11.7 48.1
32 12.0 51.8

Table 1 Execution times (in 1000 seconds) and percentage
increase over single VP time for the dynamic failure appli-
cation on a single processor for varying numbers of virtual
processors.



10 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

The execution times shown in Table 1 make it ap-
parent that the cost of virtualization is not insignificant.
However, the same application run in parallel shows that
the benefits of increasing virtualization far outweigh the
costs. For the same application, we start to see improve-
ments in run-time with more virtualization using just 4
physical processors. With 16 physical processors, these
improvements are quite dramatic. Table 2 shows the
same application running on 16 physical processors with
varying number of virtual processors per processor. The
improvement in performance with increased number of
virtual processors is due to a better load balance among
physical processors and adaptive overlap between com-
munication and computation. As the number of virtual
processors increases, the size of each virtual processor
decreases to the point where most or all of it fits into
the cache. This also can be an important factor in im-
proving performance with more virtual processors.

VPs per processor Time % Decrease

1 1328 -
4 934 29.7
8 835 37.1
10 857 35.5
16 807 39.2
24 769 42.1
32 770 42.0

Table 2 Execution times (in seconds) and percentage de-
crease from single VP per processor time for dynamic failure
application on 16 processors for varying numbers of virtual
processors.

In our experiments with this application, it was un-
clear if a “sweet spot” was reached for virtualization on
16 processors because the time kept improving with the
addition of VPs. However, many applications do exhibit
a degree of virtualization at which they achieve optimal
performance, and increasing the number of VPs beyond
that only adds overhead.

The performance gains obtained when using virtu-
alization depend on how this flexible decomposition is
used to our advantage. In particular, the method used
to initially map the partitions to the physical proces-
sors plays a large part in maximizing the potential for
communication/computation overlap.

Our experiments with virtualization, initial map-
pings and load balancing were performed on a range
of physical processors with varying degrees of virtual-
ization. For this discussion, we focus on the case of 16
physical processors with 10 VPs initially placed on each
processor. The mesh partitioning for this case is shown in
Figure 11. The black lines indicate the partition bound-
aries, while each partition is shaded according to the pro-
cessor it is on. Solution-directed mesh adaptivity is per-
formed after every 2000 computational timesteps. This

involves both refinement in the region of interest, and
coarsening in areas no longer of interest. These regions
change over time.

Our initial experiments made use of a block mapping
of VPs to processors. This mapping, shown in Figure
12, is designed for minimal communication cost across
processor boundaries. The dynamic failure problem has
two phases of operation: the computation phase and the
adaptivity phase. The computation phase is not com-
munication intensive, so the block mapping does not
benefit it greatly. To complicate matters, the adaptivity
phase alters the loads dramatically on a subset of the
partitions causing load imbalance. In a block mapping,
these heavily loaded partitions are likely to be adjacent
to each other, further exacerbating the load imbalance
problem. This imbalance is demonstrated in Figure 13
which shows the utilization of each processor during the
computation phase. The majority of the processors are
underloaded achieving only about 55% utilization, while
a few processors have higher utilization between 75 and
100%.

Fig. 11 The adapted mesh used in the dynamic fracture
problem is divided among 160 virtual processors. The dark
lines indicate partition boundaries. The region of higher mesh
density indicates the location of the stress wave.

To make better use of the flexible mesh decompo-
sition made possible via virtualization, we first choose
a mapping that breaks the partitions up such that
those that are adapted and thereby more heavily loaded
are better distributed amongst the physical processors.
Block mapping of VPs is the default behavior for AMPI,
but several other mapping choices are available. In this
case, the round-robin mapping was used. Round-robin
mapping provides an initial placement for this mesh as
shown in Figure 14. In the figure, each partition’s adja-



Parallel Adaptive Simulations of Dynamic Fracture Events 11

Fig. 12 Finite element mesh after 10,000 timesteps of the
dynamic fracture problem. There are 160 virtual proces-
sors mapped to 16 processors using block mapping. Different
shades indicate different processors.

Fig. 13 Processor utilization in the computation phase of
the dynamic fracture problem on 16 processors while using
block mapping

cent partitions typically have a different shade, indicat-
ing that the partitions are on different physical proces-
sors. The execution times in Table 2 were obtained using
the round-robin initial mapping.

Using the round-robin mapping improves the perfor-
mance of the parallel application significantly by reduc-
ing the chances that several refined mesh partitions fall
on the same physical processor. This improvement can

Fig. 14 Mesh after 10,000 timesteps with 160 virtual proces-
sors mapped onto 16 processors using round-robin mapping.

be seen in the utilization graph of Figure 15 but there is
clearly still a significant load imbalance.

Fig. 15 Processor utilization in the computation phase of
the dynamic fracture problem on 16 processors with round-
robin mapping.

To handle the load imbalance caused by regional
mesh refinement properly, we make use of another fea-
ture of Charm++/AMPI made possible by virtualiza-
tion: automatic load balancing.



12 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

6.2 Load Balancing in ParFUM

ParFUM leverages the load balancing framework in
Charm++ [26,27] to support automatic measurement-
based dynamic load balancing. Our approach relies on
the principle of persistence [16] that holds for most
physical simulations where the computational load and
communication structure of (even dynamic) applications
tends to persist over time. This principle means that we
can use the recent performance of an application to pre-
dict its performance in the near future. The load bal-
ancing framework instruments the run time system to
automatically measure the computation load of each ob-
ject and the pattern of communication between different
objects. This information is stored in a load balancing
database. After this information has been collected for
some time, a load balancing step is initiated. At a load
balancing step, this database is then used to determine if
there is a load imbalance. If there is a load imbalance, the
load balancing framework comes up with a new mapping
of virtual processors to processors. The load balancing
framework uses a spectrum of sophisticated load balanc-
ing strategies to decide on such a mapping. After it has
decided on a mapping, the load balancing framework
informs various processors about the virtual processors
that they need to migrate away to other processors. Once
all virtual processors have migrated to their new loca-
tions, the load balancing step is finished and the user
code can resume.

When a partition migrates between processors, it
must move all associated data, including those on its
stack and heap. This is automatically achieved in the
load balancing framework with isomalloc stacks and
heaps [15] in a manner similar to that of PM2 [28]. It
is portable on most platforms except for those where
the mmap system call is unavailable. Isomalloc allocates
data with a globally unique virtual address, reserving the
same virtual space on all processors. With this mecha-
nism, isomalloced data can be moved to a new processor
without changing the address. This provides a clean way
to move a thread’s stack and heap data to a new machine
automatically. In this case, migration is transparent to
the user code. As mentioned earlier, the user can alter-
natively write a function to both pack and unpack the
heap data during a migration. This allows the applica-
tion programmer to use application-specific knowledge
to reduce the amount of data that needs to be packed
during migration. The user can decide that some vari-
ables are not live during that stage of the application and
do not need to be packed. It is especially helpful deal-
ing with large meshes or meshes with a large amount of
data. We use the approach of user-directed packing and
unpacking in this application.

The next subsection shows how the load balancing
framework was utilized to dramatically improve the per-
formance of the dynamic fracture problem. It also de-
scribes the load balancing strategy that was used.

6.3 Handling Load Imbalance for the Dynamic Failure
Problem

The dynamic failure problem presents us with unique
load balancing challenges. The computation phase of
the problem is almost trivially parallel for this prob-
lem because per-entity computation remains uniform
throughout. However, due to the adaptivity, the number
of entities per partition varies. Furthermore, with each
new mesh adaptivity phase, the load on the partitions
changes as the region of interest for solution accuracy
changes over time. Thus, a new region or set of par-
titions will be refined at each adaptivity phase, and a
previous region of interest will be coarsened.

We optimize via load balancing to improve the dom-
inant computation phase of the simulation. Immediately
after the completion of mesh adaptation, the Charm++

load measurement is started and used to instrument sev-
eral timesteps of the computation phase to determine
computational load and communication behavior. Then,
a load balancing strategy is invoked which migrates par-
titions in such a way as to distribute the computational
load evenly over the physical processors. Timestepping
of the computation phase then continues with a map-
ping that produces a much better utilization of proces-
sors and thus performs superior to the initial round-robin
mapping. Figure 16 shows how the mesh partitions are
mapped after a load balancing step. It is not apparent
from this view alone how this new mapping is better than
the round-robin mapping, but Figure 17 shows that the
mapping enables excellent processor utilization for the
following computation phase. When the mesh is adapted
again 2000 timesteps later, this mapping will be inade-
quate again. Thus load balancing is performed after ev-
ery mesh adaptation.

As mentioned in Section 6.2, the Charm++ load bal-
ancing framework provides a number of sophisticated
strategies to produce a mapping of virtual processors
to physical processors that balances the load across all
processors. Different strategies are suitable for different
applications. For the dynamic fracture problem of inter-
est here, we adopted the greedy load balancing strategy,
which is a centralized load balancing strategy that col-
lects the load balancing databases from different proces-
sors on one processor. While this approach might seem
to incur a high overhead, it only amounts to sending few
bytes per VP to one processor. Moreover, the cost of
migrating VPs from one processor to another is much
higher than the cost of collecting the database on one
processor. The greedy strategy sorts all VPs in decreas-
ing order of computation load. The strategy selects the
first unassigned VP and assigns it to the least loaded
processor. It repeats this step for each VP until every
one has been assigned to a processor. The strategy uses
a heap to find the least loaded processor at any given
step. The overall computational complexity of the strat-
egy can be calculated by looking at the different parts



Parallel Adaptive Simulations of Dynamic Fracture Events 13

of the strategy. Since the strategy uses heapsort to sort
the VPs the complexity for the sort is O(n log n) where
n is the number of objects. Building the heap of proces-
sors is O(p log p), where p is the number of processors.
Selecting the least loaded processor every iteration and
maintaining the heap is O(log p). So for n VPs the com-
plexity is O(n log p). Since in a Charm++ application
with load balancing the number of virtual processors is
frequently much higher than the number of processors
(n >> p), the computational complexity of the strategy
is O(n log n). This means that even for a large number
of VPs, the computation time of the strategy is small.

Fig. 16 Adapted mesh after 10,000 timesteps with 160 vir-
tual processors mapped onto 16 processors. The greedy strat-
egy was used to perform load balancing after the mesh modi-
fication phase. Different shades indicate different processors.

For this particular simulation, the refined regions
move about in the mesh as seen in Section 5. The num-
ber of mesh entities also fluctuates over time. Figure 18
compares the performance of the various approaches as
these variations occur over the first 20,000 timesteps of
the simulation. We used a greedy strategy for our load
balancing case, but also gathered results for a random
load balancing strategy as a control. While the work re-
quired of the computation phase increases over time due
to a steady increase in the number of mesh entities, the
greedy load balancing strategy does the best job of keep-
ing fluctuations in the mesh discretization from affecting
the performance of the computation phase.

6.4 Scaling the Dynamic Failure Problem

In Figure 19, four scaling results are shown for the
dynamic failure simulation run for 20,000 computa-
tional steps with mesh adaptation applied every 2000

Fig. 17 Processor utilization in the computation phase of
the dynamic failure problem on 16 processors after load bal-
ancing.

Fig. 18 Execution time for each computation phase of the
dynamic fracture problem for block mapping, round-robin
mapping, random load balancer and greedy load balancer.
Each computation phase lasts for 2000 timesteps and is fol-
lowed by a mesh modification phase. The data is shown for
a run with 160 virtual processors on 16 processors.

timesteps. First, we show the results for the traditional
approach of a single partition per processor. For the sin-
gle processor run, a single VP exhibits minimal overhead
over having additional VPs per processor, so this best
single processor time is used as the sequential time that
the other speedup curves are plotted against. The sec-
ond set of results is for the round-robin initial mapping
of partitions to physical processors. For these runs, the
number of VPs per processor used was between 8 and 24.
The third set of results is with the greedy load balancing



14 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

strategy, and the final set of results shows greedy load
balancing coupled with pre-balancing for the adaptivity
phase. The initial number of VPs per processor used for
these experiments ranged from 4 to 24. We allow parti-
tions per VP to vary because for larger numbers of phys-
ical processors, the total number of partitions becomes
less manageable if we try to maintain the same num-
ber per processor as was used in runs on fewer physical
processors.

Fig. 19 Scaling results vs. best single processor execution
time.

As can be seen from the figure, our best speedup ob-
tained is 69 on 128 physical processors using the greedy
load balancing strategy.

6.5 Load Balancing for Adaptivity

So far, we have discussed our techniques for improving
the performance of the dominant computation phases
of the simulation. We have seen how the load balance of
these phases is adversely affected by adaptivity, and have
corrected it using Charm++’s automatic load balanc-
ing. At this point, an adaptivity phase takes on average
about 25% of the time of a 2000-timestep load-balanced
computation plus adaptivity phase, as shown in Table 3.
Since we ran the simulation for 20000 timesteps, there
is no adaptivity phase after the last computation phase
lasting from 18000 to 20000 timesteps.

As is apparent in Table 3, adaptivity consumes a sig-
nificant portion of the total application execution time.
The process of solution-directed mesh adaptivity starts
by setting the mesh sizing according to current physi-
cal attributes on the mesh. Some regions of the mesh

Timesteps Compute Adapt Total % Adapt

1-2000 17.047 12.967 30.014 43.203
2001-4000 32.873 9.837 42.710 23.032
4001-6000 36.484 17.073 53.557 31.878
6001-8000 41.186 15.756 56.942 27.670
8001-10000 46.644 14.886 61.530 24.193
10001-12000 50.831 17.302 68.133 25.394
12001-14000 59.155 21.215 80.370 26.396
14001-16000 68.703 25.102 93.805 26.759
16001-18000 76.503 19.897 96.400 20.640
18001-20000 81.763 NA 81.763 NA

Table 3 Execution times (in seconds) of computation and
adaptivity phases for the dynamic failure application on 16
processors with 10 VPs per processor.

require refinement, some regions require coarsening, and
some areas are unchanged. Thus, the activity in the mesh
partitions is load imbalanced, such that the mesh par-
titions that require refinement or coarsening are heavily
loaded and those that do not are completely idle. Fur-
ther, the loading of the busy partitions depends on how
much change is taking place. We also see considerable
behavior differences from refinement and coarsening be-
haviors with respect to VP load. Finally, the obvious
change is in the number of entities on a partition which
dynamically changes throughout the process. All of these
factors combine to create an extremely challenging load
balancing problem.

We discovered that there is a significant load imbal-
ance among processors during refinement. Figure 20 il-
lustrates processor utilization on 16 processors during
the refinement portion of the adaptive phase after 10000
timesteps of the dynamic fracture problem. We can see
that utilization varies from 7% on processor 6 to 88%
on processor 4. Figure 21 shows how average processor
utilization of all 16 processors varies with time during
the same refinement phase as shown in Figure 20. We
can see that processor utilization falls drastically with
time as more and more, but not all, processors run out
of refinement operations to perform. This happens be-
cause most of the refinement operations are performed
by a small number of virtual processors concentrated on
a few physical processors. This imbalance provides us
with an opportunity to significantly improve the perfor-
mance of the refinement portion of the adaptive phase by
distributing the load more equitably among processors.

Because of the rapid change in processor load over
time and the relative shortness of the adaptivity phase,
instrumentation of the phase is not useful. We instead
adopted a new, highly experimental scheme of pre-
balancing according to application-specific instrumenta-
tion. As mentioned in Section 2.3, the user provides a de-
sired mesh sizing to ParFUM before adapting the mesh
based on properties of the physical solution. This siz-
ing is used to determine the likely average load on each
partition during the refinement portion of the adaptiv-



Parallel Adaptive Simulations of Dynamic Fracture Events 15

Fig. 20 Processor utilization during mesh refinement in the
adaptive phase of the dynamic failure problem solved on 16
processors.

Fig. 21 Time evolution of processor utilization during mesh
refinement in the adaptive phase of the dynamic failure prob-
lem solved on 16 processors.

ity phase. This load information is then passed to the
Charm++ load balancing framework, and the greedy
strategy is once again used to migrate the partitions.
Once migration is completed, the adaptivity phase is
started with a better mapping that exhibits better load
balance than before. Figure 22 shows the improved uti-
lization per processor due to pre-balancing for the refine-
ment part of an adaptive phase. Although the utilization

is not the same across all processors it is still much more
uniform than in Figure 20. The effect of this more uni-
form load balance can be seen in Figure 23, which shows
that after pre-balancing processor utilization during re-
finement does not demonstrate the dramatic decrease
with time seen in Figure 21. During refinement, the av-
erage processor utilization over all 16 processors still de-
creases with time, but the drop is not as early or as
fast as it is without pre-balancing. The benefit of the
higher processor utilization obtained by pre-balancing
can be seen in Table 4, which compares the time for
refinement in each adaptivity phase with and without
pre-balancing. It shows that pre-balancing improves the
performance of refinement significantly in many adap-
tive phases. In some phases, pre-balancing nearly halves
the time for refinement. Pre-balancing helps the perfor-
mance of refinement when there is load imbalance caused
by the fact that refinement occurs only on a small frac-
tion of virtual processors. The benefit of pre-balancing is
not as marked in phases where refinement happens on a
larger fraction of virtual processors and is already more
or less load balanced.

Fig. 22 Processor utilization during refinement in the adap-
tive phase on 16 processors after pre-balancing.

Although pre-balancing always reduces the time
spent in the refinement portion of the adaptivity phase,
we find that it does not always improve the total appli-
cation runtime. In particular, Table 5 shows us that we
achieve better performance improvements on fewer num-
bers of processors. Breaking down the execution times of
the various components of the program before and after
pre-balancing indicates the source of the problem. In Ta-
ble 6, we discover that the mapping that works best for
the refinement phase is detrimental to the coarsening



16 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

Fig. 23 Processor utilization over time during refinement
in the adaptive phase of the dynamic failure problem on 16
processors after pre-balancing.

Adaptive Time without Time with
phase pre-balancing pre-balancing

1 8.468 3.232
2 7.757 3.924
3 5.700 4.210
4 6.233 4.124
5 6.113 4.276
6 8.160 6.142
7 8.830 8.299
8 9.701 7.841
9 9.658 9.009

Table 4 Time taken (in seconds) by the refinement portion
of the different adaptivity phases of the dynamic fracture
problem on 16 processors. The simulation was run for 20000
timesteps.

Without With
P Pre-balancing Pre-balancing

8 1319.573 1288.868
16 675.680 660.762
32 356.113 353.749
64 197.829 221.339

Table 5 Total runtime in seconds for 20000 timesteps of the
dynamic fracture simulation with and without pre-balancing
for varying number of processors P .

phase. This is to be expected because the regions of the
mesh that were to be refined differ completely from those
that were to be coarsened.

We are currently studying methods for pre-balancing
the coarsening phase of mesh adaptivity. In future work,
we will be exploring a technique for simultaneously re-

W/o Pre-balancing With Pre-balancing

P Refine Coarsen Refine Coarsen Cost

8 118.237 128.561 110.876 129.387 7.342
16 76.773 83.670 58.096 89.225 5.226
32 43.623 45.084 30.586 49.840 3.815
64 32.123 27.126 22.730 52.507 3.385

Table 6 Time spent in seconds on refinement and coars-
ening phases of adaptivity without and with pre-balancing
during 20000 timesteps of the dynamic fracture simulation
for varying number of processors P .

fining and coarsening during the adaptive phase to avoid
the idle time that results from the two phase approach.
We will also explore techniques for pre-balancing over-
lapped mesh refinement and coarsening.

7 Conclusions

ParFUM, a Parallel Framework for Unstructured Meshes
based on the Charm++ parallel run-time system, was
enhanced for adaptive 2D finite element simulations of
dynamic fracture events. The framework allows for the
dynamic refinement and coarsening of the finite element
mesh to capture rapidly propagating wave and crack
fronts. Dynamic fine grained decomposition is achieved
through encapsulating mesh partitions in virtual proces-
sors. Load balancing is accomplished by mapping those
virtual processors to actual processors intelligently.

Two dynamic applications have been studied with
this framework. The first of these was dedicated to the
solution of 1D wave propagation. It aimed at assessing
the effect of the mesh refinement parameters, such as
mesh refinement frequency, on the precision and com-
putational cost of the finite element simulation. The
second application involved the use of a rate-dependent
isotropic damage model for the simulation of the initia-
tion and propagation of a crack in a pre-notched fracture
specimen. This application demonstrated the ability of
the parallel framework to modify the finite element mesh
adaptively to capture the rapidly propagating crack.

We studied the benefits of processor virtualization
and load balancing in the context of this second appli-
cation. It was found that even without load balancing,
processor virtualization improved the performance of the
damage model simulation 30 to 40 percent on average.
However, there was still significant imbalance among dif-
ferent processors during the computation phase of the
simulation. We instrumented a few steps of computation
after each adaptive phase and used the collected infor-
mation to perform load balancing. This greatly improved
the performance of the simulation and allowed us to scale
a relatively small problem to a large number of proces-
sors. We achieved a speedup of 69 on 128 processors with
greedy load balancing compared with a speedup of only
43 for a simple round robin initial mapping. We also



Parallel Adaptive Simulations of Dynamic Fracture Events 17

found severe load imbalance during mesh refinement in
the adaptivity phases. Due to the short duration and
rapidly changing load scenario of the mesh refinement
phase, the “principle of persistence” is violated for this
computation, making the use of measurement-based load
balancing inappropriate. We developed an approach for
prebalancing load, in which we used the estimated the
cost of the refinement phase on each partition to redis-
tribute the virtual processors among the physical pro-
cessors before the start of the refinement phase. This
significantly reduced the time spent in refinement and
improved the overall application performance for a range
of processors. However, for larger numbers of processors
it degraded the performance of mesh coarsening.

We are currently studying the application of the pre-
balancing approach for coarsening. In the future, we will
perform refinement and coarsening simultaneously to en-
able the overlap of idle times of one phase with the com-
putation of the other. We will also investigate prebalanc-
ing in the context of this overlapped approach to adap-
tivity.

8 Acknowledgements

The authors gratefully acknowledge the support of NSF
through grant EIA 01-03645 and of the Center for the
Simulation of Advanced Rockets under contract number
B341494 by the U.S Department of Energy.

References

1. Gao H, Klein P (1998) Numerical simulation of crack
growth in an isotropic solid with randomized internal
cohesive bonds. J. of the Mechanics and Physics of Solids
46:187–218.

2. Klein P, Gao H (1998) Crack nucleation and growth as
strain localization in a virtual-bond continuum. Engi-
neering Fracture Mechanics 61:21–48.

3. Camacho G T, Ortiz M (1996) Computational modelling
of impact damage in brittle materials. Int’l J. of Solids
and Structures 33:2899–2938.

4. Needleman A (1997) Numerical modeling of crack growth
under dynamic loading conditions. Computational Me-
chanics 19:463–469.

5. Geubelle P H, Baylor J S (1998) Impact-induced delam-
ination of composites: a 2D simulation. Composites Part
B 29B:589–602.

6. Johnson E (1992) Process regions changes for rapidly
propagating cracks. Int’l J. of Fracture 55:47–63.

7. Diaz A R, Kicuchi N, Taylor J E (1983) A method of
grid optimization for finite element methods. Computer
Methods in Applied Mechanics and Engineering 41:29–
45.

8. Zienkiewicz O C, Zhu J Z (1987) A simple error esti-
mator and adaptive procedure for practical engineering
analysis. Int’l J. for Numerical Methods in Engineering
24:333–357.

9. Ortiz M, Quigley IV J J (1991) Adaptive mesh refine-
ment in strain localization problems. Computer Methods
in Applied Mechanics and Engineering 90:781–804.

10. Camacho G T, Ortiz M (1997) Adaptive Lagrangian
modelling of ballistic penetration of metallic targets.
Computer Methods in Applied Mechanics and Engineer-
ing 142:269–301.

11. Lawlor O, Chakravorty S, Wilmarth T, Choudhury N,
Dooley I, Zheng G, Kalé L (2006) Parfum: A parallel
framework for unstructured meshes for scalable dynamic
physics applications. Engineering with Computers .

12. Kalé L V, Krishnan S (1996) Charm++: Parallel Pro-
gramming with Message-Driven Objects. In G V Wil-
son, P Lu (eds.) Parallel Programming using C++, MIT
Press, pp. 175–213.

13. Edwards H C, Stewart J R (2001) Sierra, a software en-
vironment for developing complex multiphysics applica-
tions. In K J Bathe (ed.) Computational Fluid and Solid
Mechanics. Proc. First MIT Conf., Oxford, UK: Elsevier,
Cambridge, MA, pp. 1147–1150.

14. Ollivier-Gooch C, Chand K, Dahlgren T, Diachin L F,
Fix B, Kraftcheck J, Li X, Seol E S, Shephard M, Taut-
ges T, Trease H (2006) The tstt mesh interface. In 44th
AIAA Aerospace Sciences Meeting and Exhibit, vol. 529.

15. Huang C, Lawlor O, Kalé L V (2003) Adaptive MPI.
In Proc. of the 16th Int’l Workshop on Languages and
Compilers for Parallel Computing (LCPC 03), College
Station, Texas, pp. 306–322.

16. Kalé L V (2002) The virtualization model of parallel pro-
gramming : Runtime optimizations and the state of art.
In LACSI 2002, Albuquerque.

17. Huang C, Zheng G, Kumar S, Kalé L V (2005) Perfor-
mance evaluation of adaptive MPI. In PPL Technical
Report 05-04.

18. Karypis G, Kumar V (1997) A coarse-grain parallel for-
mulation of multilevel k-way graph partitioning algo-
rithm. In Proc. of the 8th SIAM conference on Parallel
Processing for Scientific Computing.

19. Rivara M C (1997) New longest-edge algorithms for the
refinement and/or improvement of unstructured trian-
gulations. Int’l J. for Numerical Methods in Engineering
40:3313–3324.

20. DeCougny H L, Shephard M S (1999) Parallel refinement
and coarsening of tetrahedral meshes. International Jour-
nal for Numerical Methods in Engineering 46 7:1101–
1125.

21. Lew A, Radovitzky R, Ortiz M (2001) An artificial-
viscosity method for the Lagrangian analysis of shocks
in solids with strength on unstructured, arbitrary-order
tetrahedral meshes. J. of Computer-Aided Materials De-
sign 8:213–231.

22. Benson D J (1992) Computational methods in La-
grangian and eulerian hydrocodes. Computer Methods
in Applied Mechanics and Engineering 99:235–394.

23. Cook R D, Malkus D S, Plesha M E (1989) Concepts and
Applications of Finite Element Analysis. John Wiley &
Sons, fifth edn.

24. Ju J W (1989) On energy-based coupled elastoplastic
damage theories: Constitutive modeling and computa-
tional aspects. Int’l J. of Solids and Structures 25:803–
833.



18 S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kalé and P. Geubelle

25. Zheng G, Lawlor O S, Kalé L V (2006) Multiple flows of
control in migratable parallel programs. In 2006 Interna-
tional Conference on Parallel Processing Workshops (IC
PPW’06), IEEE Computer Society, Columbus, Ohio, pp.
435–444.

26. Zheng G (2005) Achieving High Performance on Ex-
tremely Large Parallel Machines: Performance Predic-
tion and Load Balancing. Ph.D. thesis, Department
of Computer Science, University of Illinois at Urbana-
Champaign.

27. Bhandarkar M, Kale L V, de Sturler E, Hoeflinger J
(2001) Object-Based Adaptive Load Balancing for MPI
Programs. In Proc. of the Int’l Conf. on Computational
Science, San Francisco, CA, LNCS 2074, pp. 108–117.

28. Antoniu G, Bouge L, Namyst R (1999) An efficient and
transparent thread migration scheme in the PM2 run-
time system. In Proc. 3rd Workshop on Runtime Systems
for Parallel Programming (RTSPP) San Juan, Puerto
Rico. Lecture Notes in Computer Science 1586, Springer-
Verlag, pp. 496–510.


