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ABSTRACT
Traditional full-featured operating systems are known to
have properties that limit the scalability of distributed mem-
ory parallel programs, the most common programming para-
digm utilized in high end computing. Furthermore, as pro-
cessor counts increase with the most capable systems, the
necessary activity to manage the system becomes more of
a burden. To make a general purpose operating system
scale to such levels, new technology is required for parallel
resource management and global system management (in-
cluding fault management). In this paper, we describe the
shortcomings of full-featured operating systems and runtime
systems and discuss an approach to scale such systems to one
hundred thousand processors with both scalable parallel ap-
plication performance and efficient system management.

1. INTRODUCTION
The HPC-Colony project, a collaboration between Lawrence
Livermore National Laboratory, the University of Illinois
and IBM, funded by the Department of Energy’s Office of
Science under the FastOS program, is focused on services
and interfaces for systems with 100,000+ processors. While
the trend towards larger processor counts benefits appli-
cation developers through more processing power, it also
challenges application developers to harness ever-increasing
numbers of processors for productive work. Much of the bur-
den falls to operating systems (OS) and runtime systems
that were originally designed for much smaller processor
counts. Under the HPC-Colony project, we are researching
and developing system software to enable general purpose
operating and runtime systems for hundreds of thousands
of processors. Our strategy to redress these issues relies on
new technology from the areas of parallel resource manage-
ment, fault tolerance and global system management.

Parallel resource management is focused on assisting appli-
cation developers on very large numbers of processors. Diffi-
culties in achieving a balanced partitioning and dynamically
scheduling workloads can limit scaling for complex problems
on large machines. Scientific simulations that span compo-
nents of large machines require common operating system
services, such as process scheduling, event notification, and
job management to scale to large machines. Today, applica-
tion programmers must explicitly manage these resources.
We address scaling issues and porting issues by delegating
resource management tasks to a sophisticated parallel OS.

Our definition of “managing resource” includes balancing
CPU time, network utilization and memory usage across
the entire machine.

Reliability and fault tolerance become major concerns in
systems with thousands of processors because the overall
reliability of those systems decreases with a growing num-
ber of system components. Hence, large systems are more
likely to incur a failure during execution of a long-running
application. Traditional checkpoint/restart techniques re-
main valid solutions for this problem, but in some cases the
overheads associated with restarting an application may be
excessive: if one has to restart execution from a previous
checkpoint on a large processor set due to the failure in
just one processor, there is a severe waste of the available
computing capability. We are developing alternative tech-
niques that allow tolerating faults while imposing minimal
overhead, and investigating the effectiveness of proactive ap-
proaches to fault handling.

Global system management is focused on assisting those
who administer machines that consist of very large numbers
of processors. We are enhancing operating system support
for parallel execution by providing coordinated scheduling
and improved management services for very large machines.
Moreover, we believe machines with tens of thousands of
processors place additional requirements on system services
and interfaces related to efficiencies in system administra-
tion. This paper also reports our initial investigations re-
garding those operating system features that are critical in
supporting large scale parallelism.

To investigate those issues, we are implementing our strate-
gies on IBM Blue Gene type architectures. To our knowl-
edge, Blue Gene/L machines are the machines with the
largest node count currently utilized by the HPC community
(e.g. 128,000+ processors). Our environment differs from
other Blue Gene/L environments in that we will demon-
strate a fully functional Linux on Blue Gene/L compute
nodes.

2. RESOURCE MANAGEMENT ISSUES
Resource management is a major function of a sequential
OS; for a parallel machine, its OS must manage resources
such as processors, memories and communication infrastruc-
ture. A major challenge in scaling applications to ultrascale



machines is efficient resource management. Today, appli-
cation developers carefully specify the data to be housed
on each processor, and which parts of the computation to
perform on each processor in each phase of the application.
However, with ever larger processor counts and ever more
complex applications, programmers are finding it increas-
ingly difficult to manually balance resource usage. By dele-
gating these low-level resource management tasks to sophis-
ticated OS/runtime software, parallel programs can be made
to run more efficiently, as resource usage is better balanced.
In addition, we believe this will allow programs to be created
more efficiently. Such an automated balancing process re-
quires minimal manual work, thereby reducing programmer
time and effort. In the HPC-Colony project, we are develop-
ing infrastructure and strategies for automated management
of parallel resources such as CPU time, network utilization
and memory use.

OS processes are too coarse-grained to allow accurate load
balancing. Our approach for automating resource manage-
ment decomposes the parallel application into sub-process
migratable work units such as user-level threads and paral-
lel objects. For example, in Adaptive MPI (AMPI - our MPI
implementation based on Charm++) [1], regular MPI appli-
cations are run using several user-level threads per physical
processor. These threads, or parallel objects, can be mi-
grated between physical processors. The parallel OS/runtime
measure the CPU load and communication patterns of each
object, and the obtained measurements are used by an ap-
plication independent load balancer. The load balancer then
decides when and where to redistribute work by migrating
objects. We have used this approach to efficiently scale
high-performance applications to several thousand proces-
sors (e.g. [2]).

Our previous work has shown that automated load balancers
can provide significant performance improvement by reas-
signing parallel objects to physical processors based on mea-
sured load and communication patterns [2, 3]. When the
load varies slowly, it is possible to use a centralized scheme,
in which all measured performance data is brought to one
processor, where a heuristic strategy decides a new reas-
signment. However, this centralized scheme does not scale
to very large processor count machines. Not only will cen-
tralized data collection and decision making be too slow, but
also a single processor may not have the memory to accom-
modate all the measured data. We are exploring fully dis-
tributed strategies, such as neighborhood averaging [4], and
extending them to support machines with a large number
of processors. Distributed balancers rely on load informa-
tion from“neighboring” processors, where the neighborhood
relationship may be defined by a virtual topology.

We are also exploring the impact of physical topology on
such distributed balancers. On very large machines, com-
munication between nearby processors creates less network
congestion than communication between distant processors.
A dense virtual topology (such as a hypercube, or even more
dense graphs) leads to quicker convergence to a balanced
state. However, if the physical topology is a 3D grid (as
it is likely on extremely large machines), a dense virtual
topology may cause communicating objects to migrate to
physically distant processors, leading to network congestion.

Figure 1: 2D Jacobi performance on Blue Gene/L.

The trade-off between agility, congestion, and communica-
tion overhead are all targets of our current analysis and of
strategies we are designing to simultaneously optimize both
metrics. Under this study, we recently created a new load
balancing strategy that considers the number of network
hops to be traversed by each communicated byte, and tries
to balance the load across processors by distributing objects
so that the computational load is balanced and the commu-
nication traffic is minimized [5]. Our new topology-based
load balancers minimize network congestion by intelligently
and adaptively mapping objects to processors during execu-
tion of an application.

Figure 1 illustrates the use of topology-based load balancing
with execution of a 2D-Jacobi operation on Blue Gene/L. In
this example, the application’s 2D-mesh structure is mapped
into Blue Gene/L’s 3D torus interconnect. TopoLB1 and
TopoLB2 are task mapping strategies that are applied af-
ter the load across processors is balanced. The two map-
ping schemes are derived according to an analytical model.
TopoLB1 uses a first order approximation to the model solu-
tion, while TopoLB2 employs a more precise approximation.
Both schemes achieve significantly better performance than
what would have been achieved by a random mapping strat-
egy, in special for large machine configurations.

We also plan to leverage and extend ongoing work at Illi-
nois on strategies that combine the benefits of centralized
and distributed schemes. In these hierarchical, multilevel
schemes, a small amount of aggregated information is ini-
tially exchanged between all processors. More detailed infor-
mation is then exchanged within a smaller set of processors.
This pattern goes on until detailed per-object information
is exchanged only with a processor’s immediate neighbors.
Compared to most typical fully distributed neighbor-based
load balancing strategies, the exchange of global informa-
tion should allow much better responsiveness and overall
balance.

Another resource management aspect that is critical to our
migration capability, and consequently to load balancers
in general, is memory allocation. We need a consistent
support for memory reservation and allocation, in a global
form across the processors of a given system, such that



threads can migrate with minimal cost. Charm++ has im-
plemented such support with a scheme named “isomalloc”,
but such scheme cannot be installed on certain systems (e.g.
Blue- Gene/L), where alternative schemes have been cre-
ated. Thus, we plan to develop a new scheme that would
be both efficient and portable. We have been interacting
with other members of the FastOS community, looking for
a permanent solution to this issue.

3. FAULT TOLERANCE
As systems increase in complexity, fault tolerance becomes
an increasingly important aspect of system design. Even
for today’s large machines, the hardware and software fault
rates are high enough to impact system utilization. Applica-
tions are slowed down by the overhead of periodic checkpoint-
restart. Current environments (particularly MPI) frequently
lose work in the presence of faults. We started our work
on fault tolerance techniques in this project by integrating
our previous developments of checkpoint/restart and disk-
less checkpointing for Charm++ and AMPI codes [6, 7].
Our checkpointing approach leverages the migration capa-
bilities of Charm++, and implements checkpointing as a
migration into disk. As an optimization step, we have im-
plemented memory-based checkpointing [7], which is much
faster because all the saved state is kept in memory, not in
disk. This memory-based scheme may be useful for applica-
tions that do not have a large memory footprint.

We are extending our investigation to more ambitious message-
logging schemes to tolerate system faults [8]. The major
goals of this approach are (a) to provide a fast recovery
from faults, without wasting computation done by proces-
sors that have not faulted, and (b) to impose low overhead
on the forward path (i.e. when there are no failures). In
one of the schemes of our investigation, a sender processor
keeps a log of all messages that are sent, until the execu-
tion reaches a checkpoint where it is safe to discard those
messages. If a failure occurs and one of the processors has
to be replaced before that checkpoint, all messages sent to
the failing processor must be replayed by the senders. We
created a prototype version of Charm++ that contains this
scheme. Important issues of our current research in this area
are the extra communication overhead imposed by maintain-
ing message logs, the checkpointing frequency, optimization
opportunities arising from processor virtualization, and oth-
ers.

Based on the hypothesis that, on current systems, some
faults can be predicted, we developed a new technique to
proactively handle system faults. By leveraging the migra-
tion capabilities of Charm++, we migrate objects from a
processor where faults are imminent. To be effective, this
approach requires that faults be predictable. Processor man-
ufacturers, such as Intel, are building infrastructure to de-
tect transient errors inside processor chips and notify the
OS [9]. Furthermore, recent studies have demonstrated the
feasibility of predicting the occurrence of faults in large-scale
systems [10] and of using these predictions in system man-
agement strategies [11]. Hence, it is possible, under current
technology, to act appropriately before a system fault be-
comes catastrophic to an application. For faults that are
not predictable we can revert back to traditional fault re-
covery schemes, like checkpointing and message logging.

Figure 2: Time per iteration for a 1503 Sweep3d
problem on 32 Xeon processors

Our preliminary tests with this evacuation technique were
very encouraging. Based on our initial results, the time to
evacuate all objects from a processor depends only on the
local dataset size and on the speed of the interconnection
network. The scheme scales well with the number of pro-
cessors, and, in contrast to other techniques, it imposes no
overhead when there are no faults. In our tests, we executed
real applications, such as the Sweep3d code, on large config-
urations of a Linux cluster, and simulated faults by sending
external signals to tasks running on one or more processors.

One critical issue in our evacuation scheme is the need to
apply some form of load balancing after a processor is evacu-
ated, since the surviving processors may become unbalanced
due to the migration of load from the failing processor. For
some applications, any generic load balancer may be suffi-
cient in this phase; for others, where communication locality
is a sensitive issue, we developed a special form of load bal-
ancer which preserves the proximity between objects that
communicate frequently. As an example of this technique,
Figure 2 shows the iteration times for Sweep3d with a fault
in one of the processors. In one of the executions, load bal-
ance is applied after the evacuation. After load balance is
applied, the loss in performance becomes proportional to the
loss in computational power due to the failure.

4. GLOBAL SYSTEM MANAGEMENT
The problem of OS interference has recently received con-
siderable interest from the HPC community. Studies have
concluded that asynchronous events within the operating
system such as timer decrement interrupts or daemon activ-
ity can have a cascading negative impact on parallel applica-
tion performance [12, 2, 13]. We address this problem with
parallel aware scheduling. In our solution, we went a step
further in synchronizing the various Linux images running
in a Blue Gene/L machine. We leverage the fast hardware
barrier network of Blue Gene/L, to synchronize an entire
64-rack system to within less than 1 microsecond. We note
that we synchronize the internal operations of the various
Linux images to within 1 microsecond, so that they all pro-
gram their timer interrupts at the same time and take them



Figure 3: Parallel Aware Scheduling

at the same time (within 1 microsecond). So far, we can
only synchronize Linux images running on I/O nodes (be-
cause compute nodes do no yet run Linux). That has been
enough to verify the validity of the approach. Using the fast
hardware barrier network, we mitigate the impact of ran-
dom short-lived interruptions (such as timer decrement pro-
cessing and periodic daemon activity) by a parallel aware
scheduling designed to globally coordinate large processor
count SPMD bulk-synchronous programming styles.

Our studies for this parallel aware scheduling scheme indi-
cate improved performance of fine-grained synchronous col-
lective activities such as barriers and reductions. This is
accomplished by cycling the process priority of the tasks
between a favored and unfavored value at periodic intervals
across the entire program’s working set of processors. The
actual priorities, favored priority duty cycle, and adjustment
period are obtained at job launch. Setting a process priority
to a fixed favored priority value causes the operating system
to assign a processor to this process (assuming there are no
higher priority processes already running), and hence the
operating system puts the application task into a running
state. Similarly, setting a process priority to a fixed unfa-
vored priority causes the operating system to assign some
other process to the processor if there are processes with
more favored priority waiting to be run.

Figure 3 depicts two schedulings of the same eight-way par-
allel application. In the lower depiction, co-scheduling in-
creases the efficiency of the parallel application as indicated
by the larger amount of time periods where progress can be
made across the entire 8-task parallel application. [14]

Parallel aware scheduling techniques have demonstrated im-
pressive performance improvements for full featured OS. Mea-
surements with the Miranda parallel instability code [15] in-
dicate that parallel aware scheduling across the machine can
dramatically improve variability in runtimes (standard de-
viation decreased from 108.45 seconds to 5.45 seconds) and
total wallclock runtime (mean decreased from 452.52 sec-
onds to 254.45 seconds). These results were obtained on an
AIX Power5 based system with an IBM HPS interconnect.

Figure 4: Linpack execution time on Blue Gene/L
with different page sizes. The performance with
static TLB (leftmost bar) can be recovered with
large enough page sizes.

5. OPERATING SYSTEM OPTIONS
In this section, we discuss two issues that have a signifi-
cant impact on the scalability of operating systems for large
parallel machines: memory management and file systems.

Modern processors perform memory management through
translation lookaside buffers (TLBs). The entries in the
TLBs are controlled by the operating system. TLB misses
during execution of a program can be a source of severe
application performance degradation.

To allow data sharing both within an application and across
applications in a large parallel system, it is common to have
all compute nodes in a machine sharing the same file sys-
tem. Current parallel file systems have been demonstrated
to scale to a few thousand compute nodes. It is yet un-
known how they behave, or even if they work, at the next
level of scalability, from ten thousand to a hundred thousand
compute nodes.

In the Blue Gene/L supercomputer, these issues were ad-
dressed through a custom lightweight kernel for the com-
pute nodes [16]. Familiar programming interfaces are pro-
vided through GNU glibc runtime support and basic file
I/O support. The compute nodes implement much of the
POSIX standards but are not fully POSIX compliant. While
the compute node kernel provides an environment similar to
that of many other operating systems, it is different in some
key areas.

The compute node kernel simplifies memory management
by providing a simple, flat, fixed-size address space without
paging. Since there are no virtual addresses there is no
address translation to impact the computational workload.
Memory is statically mapped through the TLB to avoid any
misses that would steal CPU cycles from the computational
workload.

Figure 4 illustrates the impact of TLB management on the
execution of the Linpack benchmark on 512 nodes of Blue
Gene/L. The left most bar shows the performance when the
compute node kernel with static TLB is used. The other
bars show the performance of dynamic TLB management
with different page sizes. We see that (1) the page size of



4 KB used in most Linux systems today causes severe per-
formance degradation and (2) performance can be recovered
using large page sizes of 64 or 256 KB. However, benchmarks
with truly random memory access (NAS IS or HPCC Ran-
domAccesss) see significant performance impact even with
large page sizes.

The Blue Gene/L compute node kernel provides a set of
system calls that deliver basic file I/O functionality. These
I/O operations are not executed by the compute nodes di-
rectly. The I/O requests are shipped to the I/O node asso-
ciated to that compute node for execution. The results are
shipped back to the compute nodes. Since the I/O nodes run
Linux, Blue Gene’s compute nodes can rely on Linux’s I/O
infrastructure to correctly handle the I/O requests. There
are many compute nodes associated with a single I/O node.
This multiplexing of I/O reduces scaling issues. The largest
Blue Gene/L system today has 64K compute nodes redirect-
ing I/O via only 1024 I/O nodes.

Despite its disadvantages for scalability, there are reasons to
run a full operating system (i.e., Linux) on compute nodes.
The lightweight kernel of Blue Gene/L lacks key function-
ality that is increasingly important to a growing number
of HPC applications, including general process and thread
creation, full server sockets, shared memory segments, and
memory mapped files.

Our goal in the HPC-Colony project is to address the scaling
issues discussed here (memory management and file system),
and others, so that we can run a full Linux operating system
in machines with hundreds of thousands of processors, like
Blue Gene/L.

6. RELATED WORK
Most of the dynamic load balancing strategies can be classi-
fied as centralized [17, 18] or fully distributed methods [19,
20]. In centralized strategies, a dedicated “central” pro-
cessor gathers global information about the state of the
entire machine and uses it to make global load balancing
decisions. On the other hand, in a fully distributed strat-
egy, each processor exchanges state information with other
processors in its neighborhood. Fully distributed strategies
have been proposed typically in the context of non-iterative
tasks. These include the neighborhood averaging scheme
(ACWN) [21], and a set of strategies proposed in [22].
In [22], several distributed and hierarchical load balanc-
ing strategies are studied, such as Sender/Receiver Initi-
ated Diffusion (SID/RID), Gradient Model (GM), Dimen-
sion Exchange Method (DEM) and a Hierarchical Balancing
Method (HBM).

The load balancing strategies cited above are applicable for
problems with continuous creation of tasks, such as space-
state searching and branch-and-bound problems. They are
less suited for scientific applications with an iterative scheme.
Such iterative applications require load balancing that moves
data and tasks during the computation based on the most
recent load. Examples of this scheme include DRAMA [23],
Zoltan [24] and Chombo [25].

Various strategies for balancing the load on specific topolo-
gies and/or specific task graphs have been studied. Ercal

et al [26] provide a divide and conquer solution in the con-
text of a hypercube topology called Allocation by Recursive
Mincut or ARM. Bianchini and Shen [27] consider mesh net-
work topology. Fang, Li and Ni [28] study the problem of
2-D convolution on mesh, hypercube and shuffle exchange
topologies only.

The techniques for fault tolerance in message-passing envi-
ronments can be broadly divided in two classes: checkpoint-
ing schemes and message-logging schemes. In checkpoint-
based techniques, the application status is periodically saved
to stable storage, and recovered when a failure occurs. Rep-
resentative examples of this class are CoCheck [29], Starfish [30]
and Clip [31]. Meanwhile, in message-logging techniques,
the central idea is to retransmit one or more messages when
a system failure is detected. Message-logging can be opti-
mistic [32], pessimistic [33, 34, 35, 36] or causal [37]. In all
of these proposed fault-tolerant solutions, some corrective
action is taken in reaction to a detected failure. In contrast,
with our proactive approach [38], fault handling consists in
migrating a task from a processor where failures are immi-
nent. Thus, no recovery is needed.

The scheduling of processes onto processors of a parallel ma-
chine has been and continues to be an important and chal-
lenging area of research. Previous research activities [39,
40] have not resulted in capabilities available to production
super-computing facilities in which a single job consisting
of thousands of cooperating processes occupies a dedicated
portion of the computing complex. Since the machines are
typically SMP nodes, a node is assigned as many processes
as there are processors on the node, and each process acts as
if it has exclusive use of the processor. In this environment,
fair share CPU scheduling and demand-based co-scheduling
required for networks of workstations (NOWs) are not nec-
essary. Other work has focused on communication schedul-
ing strategies, or the elimination of daemon processes [41].
Our work focuses on collaborative scheduling of the job pro-
cesses both within a node and across nodes, so that fine
grain synchronization activities can proceed without having
to experience the overhead of making scheduling requests.

7. CONCLUSION, STATUS AND PLANS
Traditional operating systems have severe limitations when
applied to large scale machines with many thousands of pro-
cessors. In our HPC-Colony project, described in this arti-
cle, we are addressing some of those limitations to provide
new features and capabilities to operating and runtime sys-
tems for that class of machines. In particular, we have been
working in the areas of resource management, fault tolerance
and global system management. We are using Blue Gene/L
as a test platform, and are developing new strategies both
at the system and at the application level.

In resource management, we have extended our Charm++
infrastructure with additional load balancing schemes. Our
recent results have shown that the topological information
can be efficiently explored for load balancing. Meanwhile,
in fault tolerance, our preliminary results with the use of a
proactive migration approach have indicated that this tech-
nique can enable the application to tolerate failures while
avoiding the overhead of extra computation due to those
failures.



Further demonstrations of the mitigating effect of large mem-
ory page size on TLB miss are planned for the Blue Gene/L
system. Preliminary tests with Linpack have shown encour-
aging results. Investigation of parallel I/O strategies on Blue
Gene/L is also under consideration.

During the upcoming year, we plan to demonstrate booting
a Linux kernel on Blue Gene/L compute nodes, and to con-
tinue our integration of our fault tolerance work based on
message logging, so that it becomes a regular component in
the Charm++ distribution. In addition, we intend to drive
our fault evacuation mechanism with decisions based on real
fault indicators that will be available with the upcoming
PAPI-4 toolkit [42]. In the resource management area, we
will continue to develop and deploy the hybrid schemes for
load balancing. We will expand our studies of parallel aware
scheduling to include Blue Gene/L compute nodes. We will
also continue to pursue a permanent solution to the memory
reservation and allocation issue.
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