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Abstract

In designing software for Parallel Discrete Event
Simulation (PDES), detailed performance analysis has
proved essential to address the challenges of minimizing
overhead, maximizing parallelism and achieving scal-
ability. This paper describes Projections[12], a perfor-
mance visualization and analysis tool for parallel ap-
plications in CHARM++, and its usage in the analysis
of PDES applications. We discuss PDES analysis from
three points of view: PDES tool design, PDES simu-
lation design and PDES model analysis. We describe
enhancements to Projections that make PDES-specific
performance visualizations possible. We also develop
generic analysis capabilities that can be used by other
PDES engines. We demonstrate the utility of these fea-
tures withPOSE[21, 22] applications.1

1. Introduction

Optimistically synchronized Parallel Discrete Event
Simulation (PDES) is notoriously difficult to scale to
many processors, particularly when the granularity of
events is fine[8]. The cost of executing such fine-grained
events is often far outweighed by the overhead of check-
pointing, rollback, cancellation, fossil collection and
global virtual time (GVT) estimation. Strategies for all
of these activities, including optimistic synchronization,
must be efficient, scalable and should combine together
well.

Analysis of each of these components in parallel can
be quite challenging. While simply timing each compo-

1 This work was supported in part by the National Institutes of
Health (PHS 5 P41 RR05969-04) and the Department of Energy
(B341494).

nent can give insight into the efficiency of the particu-
lar algorithms used, it may not reveal the bigger picture
of how the components behave and interact in combina-
tion. Tools such asgprof[9] and its relatives which pro-
vide similar timing information as well as quantities of
invocations and dependencies, may provide further in-
sight, but do not capture the parallel interactions.

Thus, detailed performance analysis of parallel appli-
cations is a minimum requirement for analysis of PDES.
Discrete event simulation is, however, straightforward
enough to be amenable to a variety of analysis tech-
niques.

We would like to analyze parallel discrete event simu-
lations from three perspectives: thePDES tool designer,
the simulation developer and themodel designer. To
clarify the relationship between these perspectives, the
PDES tool designer would like to develop software for
PDES that is scalable and handles fine-grained events
elegantly. She would like an analysis tool to capture as
much information as possible about all the components
of the optimistic synchronization mechanism and clearly
illustrate how these components interact in a parallel en-
vironment.

The simulation developer is faced with the signifi-
cant challenge of translating a discrete model of concur-
rent interacting entities into code that is both efficient
and accurate to the model. He is concerned with paral-
lelism, utilization, load balancing and of course correct-
ness. The simulation developer and the model designer
are often the same person.

The model designer wishes to study or cre-
ate some complex real-world system. He develops a
discrete model of this system as best as he can and re-
quires simulation to set the works in motion. He may
have some specific desires with regard to the sys-
tem, and may alter the model to meet his needs. Some
aspects of the utility of a model can be captured and vi-



sualized in a general fashion for certain types of
process-oriented systems. For example, we should be
able to capture the peak operating efficiency of a fac-
tory assembly line and display it so that a factory
designer can be satisfied with his design, or can sub-
sequently improve upon it. Alternatively, in simulat-
ing an interconnection network designed for a very
large parallel machine, we may discover that a tenta-
tive network model performs poorly for the particular
traffic patterns of the applications the machine is be-
ing designed to handle, and thus choose to modify that
model.

This paper begins by describing Projections, a
post-mortem, trace-based performance visualization
and analysis framework for parallel CHARM++ appli-
cations. We discuss our experiences using Projections
to tune the performance of POSE, a CHARM++-based
PDES tool. We describe the addition of performance
data collection to POSE to visualize critical path paral-
lelism for the analysis of simulation performance and
behavior from the perspectives of simulation develop-
ers and model designers. Finally, we present enhance-
ments to Projections that allow us to study PDES and
model performance using this technique.

2. The Projections Performance Tool

Projections is a post-mortem, trace-based perfor-
mance visualization and analysis framework for parallel
CHARM++ applications.

The Projections user can control the amount of trace
data generated at application runtime by selectively turn-
ing tracing on and off at key points. The user can also
choose to generate cumulative summary information in-
stead of full log data.

The visualization component of the Projections
framework is implemented in Java and has the ad-
vantage of being generally portable across many plat-
forms. The trace logs generated by the instrumentation
modules in the CHARM++ run-time are platform neu-
tral.

A key strength of Projections as a performance visu-
alization tool is its ability to manage large volumes of
data at various levels. Many application classes, includ-
ing PDES, can generate copious quantities of informa-
tion.

2.1. Overview of Projections Visualization Ca-
pabilities

A thorough description of basic Projections vi-
sualization capabilities is provided by(name elided)
et al[12] which also describes optimizations to
NAMD[ 18], a molecular dynamics simulation appli-
cation, that were inspired by Projections visualiza-
tions of the performance data. We now present several
views we feel to be particularly useful for optimiz-
ing PDES performance.

Figure 1: Overview: A summary of overall paral-
lel structure[ 5]

The overviewplot of Figure1 can show the dom-
inant activity within fixed time intervals along the
horizontal-axis over each processor along the vertical-
axis. It presents a good summary of the overall parallel
structure of the application.

Figure 2: Time Profile: Activity execution time
summed across all processors

The time profileview of Figure2 displays, for each



application time interval, the total time spent by vari-
ous activities summed across all processors. Moving the
mouse pointer over a bar brings up a small window pro-
viding more information about that time interval. In Fig-
ure2, we see the PDES activitysetGVT (which encap-
sulates many other PDES activities) ran for 877µs at
around the 270 ms mark of the application. This view
offers a good way of summarizing the changing nature
of the PDES application as it executes.

Figure 3: Usage Profile: Processor utilization of
various activities

Theusage profileview of Figure3 displays, for each
processor, the utilization percentage of all activities over
a user-selected range of the application’s execution time.
This includes the percentage of idle time, when no use-
ful work occurs. The left-most bar presents data aver-
aged across all processors. This view is particularly use-
ful for identifying the presence of load imbalance in the
application, as well as its overall efficiency.

Figure 4: Histogram of activity grainsizes

Thehistogramview in Figure4 counts the frequency
of each instance of an activity binned by the time taken
for each call. This shows the effective distribution of
activity grainsize over the user-selected time range of
study.

Finally, thetimelineview in Figure5 presents to the
user a detailed look at the interactions between appli-
cation activity and communication between processors.
The horizontal time-axis marks the passage of time in
the application while the vertical axis represents proces-
sors. Moving the mouse pointer over an activity pops
up a small window with specific information about var-
ious performance properties of that activity (eg. number
of messages sent).

2.2. Related work

There are many performance tools available. These
tools vary greatly in their scope and goals, which
can be divided into four subdomains: instrumen-
tation, data generation, visualization and analysis.
The scope of many tools span more than one subdo-
main. Mooreet al[16] give a good review of recent
available tools.

Vampir[17, 3], Jumpshot[24] and Paradyn[15] all
provide support for detailed instrumentation and visual-
ization of performance data.

TAU (Tuning and Analysis Utilities)[14, 13] is a flex-
ible framework for performance analysis with bindings
for various languages and parallel programming models.
It generates trace logs that can be used or converted into
other open formats. These logs can then be processed
by visualization tools likeParaProf[2] and Vampir or
passed to trace analysis tools.

TheSvPablo[7] performance tool is similar in nature
to TAU in its emphasis on portability, extensibility and
scalability for dealing with performance data.SvPablo
is a component of the more generalPablo[19] perfor-
mance analysis environment.

PVaniM-GTW[4] extends the more generic PVM vi-
sualization toolPVaniM[20] in order to expose PDES-
related performance details of the GTW (Georgia Tech
Time Warp) system[6].

Balakrishnanet al[1] describe a framework which
uses a Workload Specification Language to express the
performance attributes of PDES applications which can
then be generated for further study and visualization.

Projections is designed along the lines ofTAU and
SvPabloin that it provides support for the performance
analysis process from instrumentation to visualization.
It is tightly coupled to the CHARM++ run-time and par-



allel applications. CHARM++ is, however, supported on
many platforms and machines. Adaptive MPI [10] is an
MPI implementation on top of CHARM++ which allows
many MPI applications to also make use of the perfor-
mance analysis support provided by Projections.

3. PDES Performance Analysis

In this section, we describe our experiences using
and enhancing the functionality of Projections for vi-
sualizing and analyzing performance of PDES applica-
tions. As mentioned earlier, Projections was designed
for performance visualization of parallel CHARM++ ap-
plications. As POSE is implemented in CHARM++, we
can make full use of Projections’ capabilities by using
POSE for our demonstration. However, any PDES sys-
tem could in theory produce output of the expected for-
mat and make use of much of the functionality described
herein. In particular, the extended data formats for ana-
lyzing real- and virtual-time critical paths are orthogonal
to the standard logs and unburdened by any CHARM++
run-time semantics.

3.1. Visualizing Performance of PDES Tools

Our first objective in the use of Projections with POSE

was to improve POSE’s performance as a PDES tool.
As POSE is implemented in CHARM++, Projections au-
tomatically provides a display of all CHARM++ en-
try methods(asynchronous remote method invocations)
and their interactions. More precisely, CHARM++ entry
methods can be considered to be theunit of visualiza-
tion of Projections.

While this certainly provides a clearer picture of the
behavior of POSE than tools likegprof alone, it has
severe limitations for displaying the key activities that
occur in optimistic PDES, namely, forward execution
of events, rollbacks, cancellations, fossil collection, etc.
Since the only clearly denoted activities are those that
involve CHARM++ entry methods, we are limited in
our visualization capabilities. For example, Projections
clearly displays POSE’s GVT behavior because it is gov-
erned by exchanges of CHARM++ entry methods. It also
displays event methodarrivals, which are also imple-
mented as entry methods. However, in throttled opti-
mistic PDES, event arrival does not necessarily corre-
spond to event execution. Thus, most of the activities of
interest to us are hidden within the execution of a few
entry methods.

For example, when a new GVT is calculated, an entry
methodsetGVT is broadcast to all processors. Within

Figure 5: Projections timeline of POSEactivity

the context of this entry method, each processor per-
forms fossil collection and executes any events that were
enabled by the new GVT estimate.

Figure 6: Projections timeline of POSE activity
with user events

To obtain more information about what was occur-
ring within these entry methods, we enhanced POSE

with special trace function calls to theuser events API
of Projections. Theuser events API allows a Charm++
application developer to demarcate the start and end of
arbitrary activities of interest, and have those displayed
above the regular Projections timeline. For POSE, we
specified user events for forward execution, fossil col-
lection, rollbacks, spawning cancellations, handling can-
cellations, and optimistic synchronization. This made it
possible to visualize what was happening with these im-
portant PDES events along the Projections timeline.

Figure 6 shows a Projections timeline with POSE-
specific instrumentation visualized. These events are
rendered as colored bars or ticks above the regular time-
line bars. Note the richer information available when
compared with the timeline Figure5. Detailed informa-
tion about these user events can also be obtained via
a control button on the timeline window. This is pre-
sented in the form of a column-sortable table as shown
in Figure7. For each processor, the table shows the user



Figure 7: Table of User Events

events colored as they are on the Projections timeline,
and shows start time, end time and elapsed time for each
user event. The timeline of Figure6 is particularly in-
teresting as it exhibits the typical behavior of a PDES
application with fine-grained events. The short, nearly-
synchronized sections of events that repeat on that time-
line are cycles of GVT calculation followed by forward
executionsteps and finally follwed by reductions to be
used for the next GVT calculation. A close-up of the
user events above the timeline bar is shown in Figure
8. This zoomed-in section shows the processors receiv-
ing new GVT estimates at the start of one cycle. User
events above the bars show work that was enabled by
the new GVT being executed, along with fossil collec-
tion.

One performance improvement that resulted from the
use of Projections was in how the GVT estimation was
triggered. BigNetSim[5], a large-scale interconnection
network simulation with very fine-grained events and
dramatically varying load, displayed a lot of idle time
as some processors ran out of events to handle, triggered
GVT estimation, and had to wait for other, more loaded
processors for the GVT estimation to complete and en-
able more events. This behavior is illustrated by a Pro-
jections overview shown in Figure9. As mentioned ear-
lier, the Projections overview shows time on thex-axis
and processors on they-axis. Here, we see stripes of
work (colors) that start at roughly the same times, but
minute imbalances cause some processors to run out of
work before others and go idle (black).

We solved the problem by allowing GVT-triggering
processors to interrupt event processing on busy pro-
cessors so that they could report required information
for the GVT estimation. This was achieved by insert-

Figure 8: Close-up of User Events

Figure 9: GVT-imposed idle time on
processors[ 5]

ing high priority entry methods on the processors that
would be handled before additional events. This resulted
in a dramatic improvement in processor utilization and
run-time, in spite of an increase in the number of times
the GVT estimation was performed. This improvement
was easily visualized in the Projections overview of Fig-
ure 10, which shows much less idle time. In fact, we
had to zoom in to this overview to see the idle time. The
method is not perfect however, as processors cannot be
interrupted in the midst of an individual event method
execution. One long-running event can cause the occa-
sional period of idle time on the other processors.

Thus the basic functionality of Projections and the
addition of special user events to POSE make it possi-
ble to dissect performance of POSE from a PDES tool



Figure 10: GVT triggering immediate update[ 5]

developer’s perspective.

3.2. Critical Path Visualization

The same techniques that were used in the previ-
ous section can, of course, be used to analyze the ac-
tual PDES application itself. Information about both
the model and its implementation can be gleaned from
the available tools as they are. However, sometimes the
quantity of information in a simulation with fine-grained
events is too overwhelming for the level of detail pro-
vided by the Projections timeline tool. The Projections
overview could be used for very general diagnoses of
load imbalance and poor utilization, but could not ex-
pose problems that might be inherent in the model im-
plementation or in the model itself. In particular, our
BigNetSim[5] application was suffering from problems
of poor utilization that we had no way to diagnose. It be-
came clear that we needed some means to analyze how
muchparallelismis present in a simulation implementa-
tion or model.

3.2.1. Visualizing Real-time Critical Paths of PDES
Applications Given an application, we have added code
to trace the critical forward execution paths through
the simulation, and output this information for post-
processing. We plot the information in the form of the
number of parallel objects processing events versus real
time. This plot gives us an idea of how parallel the
implementation actually is, and indicates trouble spots
where we might expect low utilization. It can also give
us an idea of the maximum number of processors we
could expect the simulation to scale to, as well as a max-
imum number of processors beyond which no improve-

ment in run-time could be achieved. In short, it provides
clear and concise information about the performance of
a simulation to a simulation developer.

To achieve this, we implemented a simple system of
critical path tracing in POSE. This tracing keeps track of
event start and end times along the critical path, exclud-
ing any time for optimistic PDES overheads and com-
munication. Thus a critical path indicates constant ac-
tivity, with almost no inactive periods, from start to fin-
ish. The only cause for a delay is when the different crit-
ical paths try to engage the samelogical processor (LP)
at the same time. Other critical paths may branch off at
any point.

We illustrate an example of a possible critical path
tree in Figure11. We have drawn green real-time inter-
vals to represent event execution, and red arrows to con-
nect them in critical paths. There are four initial events
with no incoming red arrows. These four critical paths
branch out, performing work on all twelve LPs, however
there are fourteen branches in the entire space shown. Of
these, there are a maximum of nine that are active at a
single point in time.

Figure 11: Real-time Critical Paths

We would like to visualize the critical path in terms of
the number of active events at a given point in time. This
will give us an idea of how much parallelism the simula-
tion is capable of. To do this, we need to take the critical
path tree and plot its length along thex-axis and plot si-
multaneous events along they-axis. This involves trans-
lating real time into microseconds for thex-axis. Thus,
an event that is active fromt1 µs to t2 µs contributes a
value of one to the plot for all timest1 throught2-1. In
the special case thatt1 = t2 we allow the event to con-
tribute one to thet1 time. Figure12 shows a handmade
graph for the real-time critical paths of Figure11. It re-
flects the higher density of the critical path tree at the
earlier times and the sparser activity at the later times. It
also illustrates that the maximum amount of parallelism
realized by the twelve LPs is only nine, and on average
the parallelism is much worse.



Figure 12: Real-time Active LPs

An early version of real-time critical path visualiza-
tion for a real simulation is shown in Figure13. This
type of visualization has recently been integrated into
Projections as an additional PDES-specific tool. The vi-
sualization shown is for an early version of a simu-
lation of large-scale interconnection networks[11, 23].
We experienced poor utilization for this simulation in
which ordinary Projections tools illustrated many com-
ponents were simply waiting for work to do. This did not
make sense since the network was supposed to be con-
tinuously and heavily loaded. The real-time critical path
plot for this program did expose some mysterious time-
periods during which the maximum parallelism was very
low. This indicated that something about the implemen-
tation was poorly designed.

Figure 13: Real-time Active LPs for Network
Simulation

We initially surmised that the routing algorithm was
possibly in error, and was routing all messages through
a single switch in the network. This would indicate
that the model was not merely poorly implemented, but
rather incorrectly implemented. However, we also exam-
ined the virtual-time critical path (discussed in the next
section), which correctly indicated that the entire net-
work was very busy with work that gradually tapered
off, as shown in Figure15. Thus the routing algorithm
was behaving as expected.

We then surmised that certain individual simulation
entities (calledposers in POSE) had been designed to
correctly simulate parallel activities in the model. While
this is permitted in POSE, posers are meant to model se-
quential entities, and thus using a single poser to model
parallel activities places unnecessary limits on the max-
imum possible parallelism of the simulation. A closer
examination of the code revealed that this was indeed
the case. Aswitch object was found to have a variety
of complex behaviors. While it could model the paral-
lel receiving, routing and sending of simultaneous pack-
ets, it did so serially, one event at a time. A redesign of
the switch object, namely decomposing it into smaller
posers, resulted in more predictable critical path behav-
ior and significantly improved utilization[5]. In Figure
14, we show the latest version of the critical path tool
as implemented in Projections. This example is for a
smaller simulation, but the upper blue line shows that
we now get much more consistent parallelism (and con-
sequently utilization) from the network simulation ap-
plication. The lower green line indicates the number of
events making forward progress in virtual time, a feature
we are currently experimenting with. Thus the real-time
critical path visualization has proved useful from a sim-
ulation developer’s perspective.

Figure 14: Real-time Active LPs for Latest Net-
work Simulation (upper blue line)

3.2.2. Visualizing Virtual-time Critical Paths of
PDES Models We present another view that can aid
the model designer in the verification and optimiza-
tion of their discrete models. This technique is particu-
larly useful for models that are designed with produc-
tivity optimization in mind. Whatever the simulation
domain, if the desired result is to maximize through-
put, or minimize time, this view makes it possible to



locate and diagnose bottlenecks in the system and to de-
termine where more production components are best
placed to improve the outcome.

Virtual-time critical paths are similar to real-time crit-
ical paths, only we pay attention to what is overlapping
in the model, i.e. in virtual time, rather than what is over-
lapping when we run the simulation on a parallel com-
puter. We plot active LPs versus virtual time to obtain
a similar visualization. In Figure15, we show the early
version of the virtual-time visualization for the intercon-
nection network simulation. The network was populated
by having each processor send a fixed number of mes-
sages, and then letting all the packets be delivered before
the simulation was terminated. Had the virtual-time vi-
sualization displayed a more erratic behavior than the
smooth curve shown, we would have been alerted to
problems in the way we were modeling the network.

Figure 15: Virtual-time Active LPs for Network
Simulation

3.2.3. Critical Path Visualization in Projections We
have recently implemented both critical path visualiza-
tions as Projections PDES-specific tools. Because the
number of data points to plot will become unwieldy as
the size of a simulation increases, Projections built-in
capabilities to handle large data sets are indispensable.
Projections is capable of selecting time ranges to exam-
ine, and condensing times into intervals, displaying av-
erages for intervals. A condensed view can be displayed
at first, and then specific areas of interest selected for
closer examination. Figure16 shows virtual-time over-
lap averaged over intervals of size 50 (µs). Larger in-
tervals smooth out some of the details of the peaks and
troughs as the overlaps are averaged over each interval.
They do, however, provide a quick glimpse into how
much average and maximum parallelism a simulation
has coded into it. Figure17 shows the same data, but
with maximum detail at an interval size of 1 (µs).

Figure 16: Larger interval sizes smooth out
some detail

Figure 17: Smallest interval size shows most
detail

4. Conclusions and Future Work

We have described the performance visualization and
analysis tools provided by Projections and extended the
functionality to support PDES-specific visualizations.
These tools have proved extremely useful in develop-
ing and improving the PDES environment POSE, and in
improving simulations and models.

We are currently working on an enhanced version of
the critical path tool which will display stacked color
bars, where each color corresponds to an event type.
This should be very helpful in pinpointing any problem
areas in both simulation implementations and model de-
signs.

We also plan to look into visualizing event timelines,
both in real and virtual time. For real time, one could
view the critical path timeline, colored by event type, or
one could view the actual timeline for the program run,
again colored by event type, with PDES activities de-



emphasized. For such a display, it would be nice to be
able to visualize event dependencies. Projections already
has this ability for the entry methods of CHARM++ pro-
grams, so we should be able to create traces of a similar
format from POSEsimulations.
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