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Abstract
Processor virtualization via migratable objects is a powerful
technique that enables the runtime system to carry out intel-
ligent adaptive optimizations like dynamic resource manage-
ment. CHARM++ is an early language/system that supports
migratable objects. This paper describesAdaptive MPI(or
AMPI), an MPI implementation and extension, that supports
processor virtualization. AMPI implements virtual MPI pro-
cesses (VPs), several of which may be mapped to a single
physical processor. AMPI includes a powerful runtime sup-
port system that takes advantage of the degree of freedom
afforded by allowing it to assign VPs onto processors. With
this runtime system, AMPI supports such features as au-
tomatic adaptive overlapping of communication and com-
putation, automatic load balancing, flexibility of running
on arbitrary number of processors, and checkpoint/restart
support. It also inherits communication optimization from
CHARM++ framework. This paper describes AMPI, illus-
trates its performance benefits through a series of bench-
marks, and shows that AMPI is a portable and mature MPI
implementation that offers various performance benefits to
dynamic applications.

Categories and Subject DescriptorsD.1.3 [Concurrent
Programming]: Parallel programming

General Terms Performance, Experimentation, Languages

Keywords MPI, Adaptivity, Processor Virtualization, Load
Balancing, Communication Optimization
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1. Introduction
The new generation of parallel applications are complex, in-
volve simulation of dynamically varying systems, and use
adaptive techniques such as multiple timestepping and adap-
tive refinements. Typical implementations of the MPI do not
support the dynamic nature of these applications well. As
a result, programming productivity and parallel efficiency
suffer. In this paper we present performance evaluation of
Adaptive MPI (AMPI), an adaptive implementation of MPI.
Through analysis of the results from a series of benchmarks,
we illustrate that AMPI, while still retaining the familiar pro-
gramming model of MPI, is better suited for such new gen-
eration applications, and does not penalize performance of
those applications without the dynamic nature.

The key concept behind AMPI is processor virtualiza-
tion. Standard MPI programs divide the computation onto
P processes, and typical MPI implementations simply exe-
cute each process on one of theP processors. In contrast,
an AMPI programmer divides the computation into a num-
berV of virtual processors (VPs), and AMPI runtime system
maps these VPs ontoP physical processors. In other words,
AMPI provides an effective division of labor between the
programmer and the system. The programmer still programs
each process with the same syntax as specified in the MPI
Standard. Further, not being restricted by the physical pro-
cessors, he/she is able to design more flexible partitioning
that best fits the nature of the parallel problem. The runtime
system, on the other hand, has the opportunity of adaptively
mapping and re-mapping the programmer’s virtual proces-
sors onto the physical machine.

In AMPI, the MPI processes are implemented by user
level threads embedded in migratable parallel objects, many
of which can be mapped onto one physical processor. The
number of virtual processorsV and the number of physical
processorsP are independent, allowing the programmer to
design more natural expression of the algorithm. For exam-
ple, algorithmic considerations often restrict the number of
processors to a power of 2, or a cube, and with AMPI,V can
still be a cube even thoughP is prime. WhenV = P , the
program executes the same way it would with other MPI im-



plementation, and it enjoys only part of the benefit of AMPI,
such as collective communication optimization. To take full
advantage of the AMPI runtime system, typically we have
V significantly larger thanP . Before describing the details
for design and implementation of AMPI and the underly-
ing CHARM++ Framework, we first motivate AMPI by ex-
plaining the benefits of using multiple virtual processors per
physical processor.

1.1 Benefits of Virtualization

In [1], the authors have discussed in detail the benefits
of processor virtualization in parallel programming. The
CHARM++ system has indeed taken full advantage of these
productivity benefits. AMPI inherits most of the merits from
CHARM++, while furnishing the common MPI program-
ming environment. The following is a list of the benefits that
we will demonstrate in this paper. We will show that AMPI,
with these benefits, effectively improves the performance of
complex and dynamic parallel programs with virtualization,
and incurs very little overhead for applications without the
dynamic nature.

Adaptive overlapping of communication and com-
putation: If one of the virtual processors is blocked on
a receive, another virtual processor on the same physical
processor can run. This largely eliminates the need for
the programmer to manually specify some static compu-
tation/communication overlapping, as is often required in
MPI.

Automatic load balancing: If some of the physical pro-
cessors become overloaded, the runtime system can migrate
a few of their virtual processors to relatively underloaded
physical processors. Our runtime system can make such load
balancing decision based on automatic instrumentation.

Flexibility to run on arbitrary number of processors:
Since more than one VPs can be executed on one physical
processor, AMPI is capable of running MPI programs on
any arbitrary number of processors. This feature proves to
be useful in application development and debugging phases.

Optimized communication library support: Beside
the communication optimization inherited from CHARM++,
AMPI supports asynchronous, or non-blocking, interfaces to
collective communication operations. This allows the over-
lapping between time-consuming collective operations with
other useful computation.

Better cache performance:A virtual processor handles
a smaller set of data than a physical processor, so a virtual
processor will have better memory locality. This blocking
effect is the same method manyserial cache optimizations
employ, and AMPI programs get this benefit automatically.

Other features and benefits have been explained in a pre-
vious workshop paper [2].

1.2 Related Work

The virtualization concept embodied by AMPI is very old,
and Fox et al. [3] made a convincing case for virtualizing

parallel programs. Unlike Fox’s work, AMPI virtualizes at
the runtime layer rather than manually at the user level,
and AMPI can use adaptive load balancers. Virtualization
is also supported in DRMS [4] for data-parallel array based
applications. Charm++ is an early processor-virtualization
system implemented on parallel machines[5]. AMPI builds
on top of Charm++, and shares the run-time system with it.

There are several excellent, complete, publicly available
non-virtualized implementations of MPI, such as MPICH
[6], MPI/LAM [7], and MVAPICH [8]. A more recent joint
effort for open source high performance computing, Open
MPI [9], has also attracted much attention in HPC circle.
Many machine vendors also provide their own native im-
plementation of MPI. Many MPI implementations support
multi-thread programming within one processor to allow one
more degree of concurrency and exploit more parallelism in
the program. CHARM++ differs from these efforts in that it
provides full object-level virtualization. With the migratable
parallel objects, CHARM++/AMPI lets the runtime system
change the assignment of VPs to physical processors at run-
time, thereby enabling a broad set of optimizations.

In this paper we aim at using a series of benchmarks to
illustrate the series of benefits of AMPI and to show that they
do not come with undue overheads. Many technical details
about what these benefits are and how they are achieved can
be found in earlier papers, and thus will not be the focus of
this paper.

Next section describes the design and implementation of
AMPI. In Section 3 we go through the features of AMPI and
analyze its performance with various benchmarks. Through
the performance evaluation, we illustrate the performance
benefits listed in Section 1.1, as well as the low overhead of
virtualization. We will summarize our experience in using
AMPI in several large applications before concluding the
paper.

2. Design and Implementation
AMPI is built on CHARM++, shares its runtime system, and
inherits its features. We begin with a brief introduction to
CHARM++.

2.1 CHARM ++

CHARM++ is an object-based, message-driven parallel pro-
gramming framework that embodies the concept of proces-
sor virtualization. In CHARM++, virtual processors are im-
plemented with migratable parallel objects. The execution
of the object is invoked by message sent from other objects
through the recipient’s “entry point”, or a specially regis-
tered function for remote invocation. Note that the remote in-
vocation is asynchronous: it returns immediately after send-
ing out the message, without blocking or waiting for the re-
sponse. This mechanism allows for adaptive overlapping be-
tween computation and communication, a major feature that



Figure 1. Virtualization in Charm++

helps CHARM++ and AMPI to utilize both CPU and net-
work resources efficiently.

A group of VPs performing one parallel task can be
organized into an indexed group called achare array. A
CHARM++ program typically consists of one or more chare
arrays. In the programmer’s point of view, one or more
groups of virtual processors execute the tasks in parallel, and
the runtime system maps these VPs onto physical processors
adaptively and migrates them as load balancing requires (See
Figure 2.1)1). Section 3.2 has detailed description of the load
balancing module.

2.2 AMPI Design and Implementation

AMPI implements its MPI processes as CHARM++ user-
level threads bound to CHARM++ communicating objects
(See Figure 2). The threads used by AMPI are light-weight
user-level threads; they are created and scheduled by user-
level code rather than by the operating system kernel. The
advantages of user-level threads are fast context switching2,
control over scheduling, and control over stack allocation.
Thus, it is feasible to run thousands of such threads on
one physical processor. CHARM++’s user-level threads are
scheduled non-preemptively.

Message passing between AMPI virtual processors is
implemented as communication among these CHARM++
objects, and the underlying messages are handled by the
CHARM++ runtime system. Even with object migration,
CHARM++ supports efficient routing and forwarding of the
messages.

CHARM++ supports the migration of objects via effi-
cient data migration and any necessary message forward-
ing. Migration presents interesting problems for basic and
collective communication which are effectively solved by
the CHARM++ runtime system[10]. Migration can be used
by the built-in measurement-based load balancing [11, 12],
adapting to changing load on workstation clusters, and even
shrinking/expanding jobs for timeshared machines.

Naturally inherited from CHARM++ are more features
including communication optimizationand fault tolerance.

1 Figure taken from [1]
2 On a 1.8 GHz AMD AthlonXP, overhead for a suspend/schedule/resume
operation is 0.45 microsecond.

Figure 2. Implementation of AMPI virtual processors

Comlib is a module of CHARM++ framework that boosts
performance of collective calls as well as point-to-point
communications. It furnishes optimized strategies for com-
munications in a parallel system and leverages the power
of communication co-processors in modern networks. The
effectiveness ofComlib has been illustrated in [13, 14].
Fault tolerance is a component that is being actively in-
vestigated. We started from a synchronous on-disk check-
point/restart mechanism[15] and scalable in-memory check-
point scheme[16], and further designed automatic fault-
tolerant protocol for massively parallel systems like CHARM++
and AMPI[17]. AMPI has integrated CHARM++’s Comlib
and fault-tolerance modules. A proactive fault avoidance
scheme that responds to hardware generated warnings of
impending fault [18] is also under development.

3. Performance Evaluation
In this section we present the results from a collection of
benchmarks, analyze the performance of AMPI, and demon-
strate its advantages on various aspects. We cover four ma-
jor aspects in the following subsections. Our earlier work-
shop paper [2] describes several additional features. Our
main benchmarking platforms are the Turing Cluster with
640 dual Apple G5 nodes connected with Myrinet network
at University of Illinois of Urbana-Champaign, NCSA’s IA-
64 TeraGrid Cluster with 888 dual Intel Itanium 2 nodes and
Myrinet network, NCSA’s Tungsten Cluster with 1280 dual
Intel Xeon nodes and Myrinet network, and the Lemieux
Cluster with 750 quad Alpha nodes and Quadrics network
at Pittsburgh Supercomputer Center.

3.1 Adaptive Overlapping

In MPI programming, having to block the CPU and wait for
communication to complete can result in inefficiency. This
is especially true in the context of modern supercomput-
ing platforms equipped with powerful communication co-
processors. The co-processors have the capability of offload-
ing the CPUs by taking over the communication related pro-
cessing. thus the CPU is not invovled in a large fraction of
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Figure 3. Completion time and CPU overhead (s) of ping-
pong program on Turing (Apple G5) Cluster

the overall point-to-point communication time, and therefore
it is important for the CPUs not to be blocked.

Figures 3 illustrates the relation between the total com-
pletion time and the actual CPU time spent on typical MPI
function call with a simple two-way ping-pong benchmark.
While the completion time increases with the message size,
the true CPU overhead remains low and rises very slowly
at message size up to about 200KB. (Beyond that point,
the CPU is possibly involved in memory allocation, pinning
pages and copying data due to limited system buffer size, de-
pending on machine architecture and run-time system.) This
benchmark captures the typical compute-communicate pat-
tern of many MPI applications and suggests that much of the
time usually attributed to communication can be utilized for
useful computation.

Non-blocking point-to-point calls likeMPI Irecv may
help in this situation by allowing some other computation to
be done while CPU is waiting for communication to finish,
but the programs do not always have “other computation”
to do within the very same process. Also, the increase in
efficiency comes at the price of additional programming
complexity.

In AMPI, several virtual processors (VPs) can be mapped
onto one physical processor, and the message passing among
VPs is done through communication between these objects.
This object-based message-driven paradigm naturally allows
adaptive overlapping of computation and communication
without any additional programming complexity. When one
VP is blocked at a communication call, it yields the CPU so
that another VP residing on the same processor can take over
and utilize it.

A more realistic benchmark we have is a 3D stencil-type
calculation. It is a multiple timestepping calculation involv-
ing a group of objects in a mesh. At each timestep, every
object exchanges part of its data with its 6 immediate neigh-
bors in 3D space and does some computation based on the
neighbors’ data. This is a simplified model of many applica-

K AMPI-1 AMPI-2 AMPI-8
32 0.21 0.31 0.42
64 0.63 0.61 0.54
128 2.66 2.18 2.01
256 30.82 32.03 25.98

Table 1. Execution time [ms] of one iteration of a K3 3D
7-point stencil calculation with AMPI of different virtual-
ization ratios on 8 PEs of NCSA IA-64 Cluster

tions, like fluid dynamics or heat dispersion simulation, so it
serves well the purpose of demonstration.

Table 1 shows the execution time of 3D stencil calcula-
tions on 8 physical processors on the TeraGrid IA64 Cluster.
The calculations are of different sizes K3, and with AMPI
of different degrees of virtualization (the number of AMPI
threads on each processor). It can be observed that the over-
all performance increases with the degree of virtualization.
The underlying reason is illustrated in Figure 4, the out-
put from our visualization toolProjections. The solid blocks
represent computation and the gaps are idle time when CPU
is waiting for communication to complete. As the degree of
virtualization increases, there are more opportunities for the
smaller blocks (smaller pieces of computation on multiple
VPs) to fill in the gaps and consequently the CPU utilization
increases.

Besides adaptive overlapping, the caching effect is also
a favorable influence. VPs residing on the same proces-
sor can increase the spatial locality and turn some inter-
processor communication into intra-processor communica-
tion. This effect is expectedly felt on unstructured grid com-
putations.

It can also be observed that virtualization does not al-
ways result in performance improvement. For example,
whenK=32, the amount of adaptive overlap is limited due
to the small problem scale, therefore as we introduce more
VPs on one processor, virtualization overhead appears to be
the dominant factor. In Section3.4, we will discuss in detail
when the virtualization overhead will be offset and how.

3.2 Automatic Load Balancing

Load balancing is one of the key factors for achieving high
performance on large parallel machines when solving highly
irregular problems. Built with CHARM++ load balancing
framework, AMPI supports automatic measurement-based
dynamic load balancing and thread migration.

During the execution of an AMPI program, the load bal-
ancing framework collects workload information and object-
communication pattern on each physical processor in the
background, and at load balancing time, load balancer uses
this information to redistribute the workload, migrating the
AMPI threads from overloaded processors to underloaded
ones. Thread migration in AMPI can be done either automat-
ically or with user’s help in transferring thread’s stack and



Figure 4. 7-point stencil timeline with 1, 2 and 4 VPs per processor

heap allocated data.Isomalloc stacks and heaps[2] (when
supported on a platform) provide a clean way of moving
thread’s stack and heap data to a new machine by preserv-
ing the same address of data across processors. For isoma-
lloc heaps, user’s heap data is given globally unique virtual
address, so that it can be moved to a new machine without
changing its address. Isomalloc stacks that AMPI threads
run on are allocated from isomalloc heap. Thus migration
is transparent to the user code. Alternatively, users can write
their own helper functions to pack and unpack heap data on
both processors of a migration. This is useful when appli-
cation developers wish to reduce the data volume by using
application-specific knowledge and/or by packing only vari-
ables that are live at the time of migration.

In this section, we present the case studies of load balanc-
ing several MPI benchmarks and a real-world application.

3.2.1 NAS Benchmark BT-MZ

NAS Parallel Benchmark is a well known parallel bench-
mark suite. Its Multi-Zone version, LU-MZ, SP-MZ and BT-
MZ, “solve discretized versions of the unsteady, compress-
ible Navier-Stokes equations in three spatial dimensions”[19].
The multi-zone version is characterized with partitioning of
the problems on a coarse-grain level to expose more paral-
lelism and to stress the need for balancing the computation
load. Especially, in BT-MZ, the partitioning of the mesh is
done such that the sizes of the zones span a significant range,
therefore creating imbalance in workload across processors.
For such a benchmark or the category of parallel applica-
tions represented by this benchmark, the load balancing re-

quires two considerations, as suggested in [20]: careful zone
grouping to minimize inter-processor communication and a
multi-threading scheme to balance the computation work-
load across processors.

AMPI is naturally equipped with automatic load balanc-
ing module to take into consideration these two aspects of
a parallel program: communication load and computation
load. The following results illustrate AMPI’s effectiveness
on load balancing BT-MZ.

In this benchmark, we run the BT-MZ benchmark on both
native MPI and AMPI. ThroughProjectionswe confirmed
there is a load imbalance across processors. Then we insert
the function call to trigger the automatic load balancing in
AMPI runtime system. After 3 timesteps, when the runtime
has collected sufficient information to advise the load bal-
ancer, the AMPI VPs are migrated from heavier-loaded pro-
cessors onto lighter-loaded ones. The execution time is visu-
alized in Figure 5.

When the number of processor increases for the same
problem scale, we can make two observations. Firstly, the
execution time without load balancing increases. BT-MZ
creates workload imbalance by allocating different amounts
of work among the processors, and with larger number of
processors, the degree of imbalance increases to a broader
range. Consequently, the overall utilization drops. Secondly,
with load balancing, higher degree of virtualization allows
the load balancing module to work more effectively, simply
because there are more objects to move around if necessary.
That is the reason that having number of VP much larger



Figure 5. Load Balancing on NAS BT-MZ

than number of P is recommended for the load balancer to
be effective.

This benchmark demonstrates the effect of load balanc-
ing on applications with static load imbalance. This scenario
is not uncommon. Handling uneven initial workload distri-
bution and migrating the job away from faulty nodes are two
examples that we have observed where such load balancing
is useful. For the other type of applications, with dynami-
cally varying workload, load balancer can be triggered peri-
odically. Next section exemplifies this use.

3.2.2 Fractography3D

Fractography3d is a dynamic 3D crack propagation simula-
tion program to simulate pressure-driven crack propagation
in structures. It was developed by Prof. Philippe Guebelle3

and his students and collaboration with our group. Frac-
tography3d code is implemented on Charm++ FEM frame-
work [21] and AMPI.

The test problem we run simulates a crack propagation
with a force and the process of elastic turning into plastic
zone along the crack. The crack propagation simulation was
run with 1000 AMPI virtual processors on 100 processors of
the Turing Apple cluster at UIUC.

There are two factors that may contribute to the load im-
balance in this simulation problem. When external force ap-
plies to the material in study, the initial elastic state of the
material may change into plastic along the wave propaga-
tion, which results in much heavier computation. Second, to
detect a crack in the domain, more elements are inserted be-
tween some elements depending upon the forces exerted on
the nodes. These added elements, which have zero volume,
are calledcohesive elements[22]. At each iteration of the
simulation, pressure exerted upon the plastic structure may
propagate cracks, and therefore more cohesive elements may
have to be inserted. Thus, the amount of computation for
some chunks may increase during the simulation. This re-
sults in severe load imbalance.

3 Prof. Philippe Guebelle is a professor of Dept. of Aerospace Engineering
at University of Illinois at Urbana-Champaign

Figure 6. CPU utilizationProjectionsgraph of Fractogra-
phy3D over time without vs. with load balancing

The simulation without load balancing runs for 24 hours.
TheProjectionsview on CPU utilization over time is shown
in the bottom curve of Figure 6. It can be seen that at
time around 1000 seconds, the application CPU utilization
dropped from around 85% to only about 44%. This is due
to the start of the process of elastic turning into plastic
zone along the crack, leading to load imbalance. As more
elastic part turns into plastic, the CPU utilization slowly
increases until all turn into plastic. The load imbalance can
be easily seen in the CPU utilization graph over processor
as shown in the upper part of Figure 7. While some of the
processors have the CPU utilization as high as about 90%,
some processors only have about 50% of the CPU utilization
during the whole execution time.

The top curve of Figure 6 illustrates results of automatic
load balancing of the same crack propagation simulation in
the view of overall CPU utilization over the time. the load
balancing is invoked every 500 time-step of the simulation.
with a greedy-based algorithm. The automatic load balancer
uses the runtime load and communication information in-
strumented by the Charm++ runtime to migrate chunks from
the overloaded processor to underloaded processors, lead-
ing to improved performance. As figure 6 shows, the over-
all CPU utilization on all processors throughout the entire
simulation stays around 80-90%. The lower half of Figure 7
further illustrates that load balance has been improved from
the upper part in the view of the CPU utilization over pro-
cessors. It can be seen that CPU utilization of at least 80% is
achieved on all processors with little load variance. The sim-
ulation with load balancing now takes about 18.5 hours to
complete, yielding about 23% of performance improvement
with load balancing. It is important to note that this improve-
ment is attained without any additional programming effort
beyond the original MPI program.



Figure 7. CPU utilization graphs of Fractography3D across
processor without vs. with load balancing

3.3 Communication Optimization

AMPI has a run-time system capable of observing the
communication patterns, which gives us the ability to op-
timize communication performance by substituting differ-
ent communication algorithms automatically. For this pur-
pose, AMPI inherits the communication optimization library
(Comlib) from CHARM++ framework.Comlib works by
delegating communications in CHARM++/AMPI and ap-
plying suitable optimization strategies dynamically and in-
telligently. This sections includes two examples: streaming
point-to-point communication and multiple all-to-all com-
munication optimization strategies.

3.3.1 Streaming

Many short messages in a parallel system can be combined
and sent in fewer batches to reduce the per-message over-
head. This is the basic idea of Streaming strategy for point-
to-point communication. The following benchmark is based
on a multi-ping program. In AMPI Multi-Ping, processor
A sends several messages to processor B, which responds
with a short message after it has received all. This commu-
nication pattern is able to fill the pipeline on a message’s
path from sender to receiver: sender CPU, sender NIC, in-
terconnect, receiver NIC, and receiver CPU. The time ob-
tain through multi-ping represents the limiting factor in this
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Figure 8. Streaming strategy for point-to-point communi-
cation on NCSA IA-64 Cluster

Figure 9. All-to-all completion time on 1024 processors on
Lemieux

pipeline, namely the due price for a point-to-point commu-
nication. Figure 8 shows how Streaming strategy can bring
the multi-ping point-to-point overhead even lower for mes-
sages shorter than 1000 bytes. This benefit is enhanced by
processor virtualization, since messages from multiple VPs
on the same processor can all be grouped in the same batch.

3.3.2 Asynchronous Collectives

Collective calls involves many or all processors and are time-
consuming.Comlibimplements a variety strategies to tackle
this issue. In early work, we described in [13, 14] the series
of efforts to improve performance of collective operations
including broadcast, multicast, and all-to-all. We take all-to-
all as an example. In Figure 9, 10(Figure taken from [13]),
completion time of All-to-all operation is compared between
native MPI and AMPI with Mesh strategy. According to the
figure, Mesh strategy helps AMPI to do better than MPI
for messages smaller than 400 bytes. For larger messages
and different network topology, probably other strategy is



#PE 19 27 33 64 80 105 125 140 175 216 250 512
Native MPI - 29.44 - 14.16 - - 9.12 - - 8.07 - 5.52
AMPI 42.41 30.53 24.65 15.64 12.62 10.94 10.78 10.62 9.39 8.63 7.55 5.46

Table 2. Timestep time [ms] of 2403 3D 7-point stencil calculation with AMPI vs. native MPI on Lemieux

#PE 19 27 33 64 80 105 125 140 175 216 250 512
Native MPI - 127.7 - 31.9 - - 8.87 - - 3.62 - 1.34
AMPI 128.15 125.60 36.03 33.42 10.18 10.14 8.34 4.57 4.19 3.67 3.16 1.17

Table 3. Timestep time [ms] of 2403 3D 7-point stencil calculation with AMPI v.s. native MPI on Turing (Apple G5) Cluster

Figure 10. All-to-all CPU time on 1024 processors on
Lemieux

Figure 11. Performance for point-to-point communication
(short messages) on NCSA IA-64 Cluster

Figure 12. Performance for point-to-point communication
(long messages) on NCSA IA-64 Cluster

a better choice. ThereforeComlib developers are trying to
make it “smart”, able to dynamically learn and switch to the
most suitable strategy. Moreover, AMPI exploits the large
gap between elapsed time and CPU time of these collective
operations by providing asynchronous versions of them.

3.4 Flexibility and Overhead

In this section we demonstrate the flexibility virtualization
provides, as well as the overhead virtualization incurs. Be-
cause AMPI is implemented on top of Charm++, which is
typically implemented on top of native MPI (or the lowest
level communication layer accessible to us), we do not ex-
pect to have better performance than native MPI on a ping-
pong style microbenchmark. Figure 11 illustrates that AMPI
has a left-shift due to the 70+ byte AMPI message header,
and a 2-4 microsecond increase in time for the short mes-
sage latency due to thread context switch overhead as well as
scheduling overhead. For longer messages, we pay the over-
head of extra message copying in order to support migratable
objects. Active research work is being carried out to reduce
overhead for both situations, and more importantly, AMPI is
expected to outperform native MPI when its features such as



automatic adaptive overlap and dynamic load balancing are
utilized in the real application.

In the next benchmark of 2403 3D 7-point stencil calcu-
lation, we show the flexibility of AMPI. The algorithm of
this particular benchmark divides a 2403 block of data into
k-cube partitions, each of which is a smaller cube assigned
to an MPI process. Natural expression of this algorithm re-
quiresk-cube number of processors to run on. This bench-
mark represents the type of applications that require specific
number of processors.

We first run the benchmark with native MPI. As described
above, this program runs only onk-cube processors: 27, 64,
125, 216, 512, etc. Then, with AMPI powered with virtual-
ization, the program runs transparently on any given number
of processors, exhibiting the flexibility that virtualization of-
fers. The comparison between these two runs are listed in
Tables 2 and 3. Note that on some arbitrary number of pro-
cessors such as 19 and 80, the native MPI program cannot be
launched, whereas AMPI runs the job with no difficulty. This
flexibility has been proven to be very useful in real applica-
tion development experiences, including that of the CSAR
described in Section 4.

For the data points where native MPI is able to run too
(K-cube processors), the AMPI version is run with 1 VP
per processor, without compounding with benefit of overlap,
so there is some AMPI overhead entailed by virtualization.
From our experiences, however, the few microseconds of
virtualization overhead is negligible when the average work
driven by one message is at hundreds of microseconds level,
which is achieved by appropriate choice of virtualization de-
gree. Moreover, the cost of supporting virtualization and co-
ordinating the VPs is further offset by other benefits of virtu-
alization. Therefore, it is safe to conclude that the flexibility
and load balancing advantages of AMPI do not come at an
undue price in basic performance.

4. Conclusions
AMPI, which began as a proof-of-principle project to demon-
strate message-passing can be effectively supported in a
migratable-objects system such as CHARM++, is now a full-
fledged MPI implementation. We expect to continue to im-
prove AMPI further, as outlined below; but in its current
state it is already a mature system that can be used in ap-
plications, especially if they can benefit from its adaptive
features.

AMPI is being used in multiple parallel applications and
frameworks, such as the FEM framework described in Sec-
tion 3.2. Another important application of AMPI is in the
collaboration with the Center for Simulation of Advanced
Rockets (CSAR), an academic research organization funded
by the Department of Energy and affiliated with the Univer-
sity of Illinois. The focus of CSAR is the accurate physi-
cal simulation of solid-propellant rockets, such as the space
shuttle’s solid rocket boosters. The main CSAR simulation

code consists of four major components, and each one of
these components - fluids, burning, interface, and solids -
began as an independently developed parallel MPI program.
One of the most important benefits CSAR found in using
AMPI is the ability to run on a different number of virtual
processors than physical processors. For example, a CSAR
developer was faced with an error in mesh motion that only
appeared when a particular problem was partitioned for 480
processors. Finding and fixing the error was difficult, be-
cause a job for 480 physical processors can only be run after
a long wait in the batch queue at a supercomputer center. Us-
ing AMPI, the developer was able to debug the problem in-
teractively, using 480 virtual processors distributed over any
arbitrary number of physical processors on a local cluster,
which made resolving the error much faster and easier.

We presented AMPI, an adaptive implementation of MPI
on top of CHARM++. AMPI implements migratable virtual
and light-weight MPI processes. It assigns several virtual
processors on each physical processor. This efficient virtu-
alization provides a number of benefits, such as the abil-
ity to automatically load balance arbitrary computations, au-
tomatically overlap computation and communication, emu-
late large machines on small ones, and respond to a chang-
ing physical machine. AMPI has been ported to a variety
of modern supercomputing platforms, including Apple G5
Cluster, NCSA’s IA-64 Cluster, Xeon Cluster, IBM SP Sys-
tem, PSC’s Alpha Cluster and IBM Blue Gene. We demon-
strated, via simple performance studies, that the overhead of
AMPI is small and tolerable for most application. Thus, the
benefits of adaptivity it provides come at only a small cost.

As illustrated in this paper, AMPI is a mature and portable
system which fully supports the dynamic nature of new gen-
eration parallel applications with its performance and fea-
tures. Moreover, AMPI is also an active research project;
much future work is planned. AMPI already supports most
MPI-2 features, and we expect to achieve full MPI-2 stan-
dards conformance soon. We are rapidly improving the per-
formance of AMPI, bringing out more benefits for dynamic
applications and further reducing the already small overhead
for non-dynamic ones. The CHARM++ performance analy-
sis tools are being updated to provide more direct support for
AMPI programs. Another potential future direction is to use
compiler analysis to identify live variables at migration time
to reduce communication volume. Finally, we plan to extend
our suite of automatic load balancing strategies to provide
machine-topology specific strategies, useful for modern ma-
chines such as BlueGene.
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Explicit FEM. In M. Valero, V. K. Prasanna, and S. Vajpeyam,
editors,Proceedings of the International Conference on High
Performance Computing (HiPC 2000), Lecture Notes in
Computer Science, volume 1970, pages 385–395. Springer
Verlag, December 2000.

[22] Philippe H. Geubelle and Jeffrey S. Baylor. Impact-induced
delamination of composites: a 2d simulation.Composites
Part B: Engineering, 29(5):589–602, 1998.


