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PQSE Outline of Talk

«Background
~Discrete Event Simulation (DES)
>Parallel Discrete Event Simulation (PDES)

«Parallel Object-oriented Simulation Environment (POSE)
> Objectives
>Object-oriented DES
>Mixing sychronization protocols & global virtual time
~Current performance
-Load Balancing in POSE
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PQSE Discrete Event Simulation

*Discrete Event Simulation (DES): simulation of complex
systems in which state changes or events occur at discrete
points in simulated time, typically at irregular time intervals

* Data structures for sequential DES:

o State variables describe the state of the system
°The event queue contains pending scheduled events
°The global clock keeps track of simulation progress

«Each event has a timestamp and typically changes or accesses
the state variables in some way

* An event can also schedule new events for the simulated
future

* Always select event with minimum timestamp from event
gueue to avoid causality errors
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PQSE Parallel Discrete Event Simulation

How can we parallelize DES?
> Distribute the events across processors, shared memory

P1 P2 Simulated
Time
al 10

*Need sequencing constraints to ensure correctness
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PQ&‘E Parallel Discrete Event Simulation

> Distribute the state variables across processors as well

> Still must handle event causality errors
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PQSE Parallel Discrete Event Simulation

* Physical processes in the system being modeled are mapped
onto logical processes (LPs), each containing a portion of the
state and a local clock. LPs interact via timestamped event
messages.

*To ensure no shared-state causality errors, LPs process events
In nondecreasing timestamp order, i.e. they adhere to the
local causality constraint

* Preventing event causality errors is more difficult --
seguencing constraints are complex and highly
data-dependent

Two broad categories of mechanisms for handling sequencing
restraints: conservative and optimistic
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PQSE PDES Mechanisms

« Conservative Mechanisms
>Avoid the possibility of the occurrence of causality errors
>Rely on the ability to determine when it is safe to process an
event

e Optimistic Mechanisms

>Detect and recovery: detect causality errors and rollback the
computation to recover from them
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PQSE PDES Mechanisms

* Optimistic mechanisms speculate that a causality error will
not occur, i.e. they perform speculative computations

* An event arriving with a timestamp earlier than events that
were executed speculatively, or a straggler event, causes a
rollback.

* A rollback involves undo-ing executed events: the local state
must be restored (possibly from checkpointed state data), and
any caused events must be cancelled.

*We still monitor safety, via the global virtual time (GVT): the
smallest timestamp among all unprocessed event messages

* Actions performed with timestamp prior to GVT can be
committed: allows for reclaimation of checkpoint space and
committing irrevocable operations (such as 1/O)
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PQSE POSE Objectives

* A usable language: focus on modeling the system, hide the
parallelism, hide much of the simulation engine
*POSE is a C++-like subset of Charm++

* Good performance: scalable to large numbers of processors
-Base implementation of POSE scales well to 16, to 32 on
larger problems, and to 64 on the largest problems
>Develop load balancers that take into account the special
iIrregularities of PDES system models
>Explore hierarchical approaches to modeling for PDES
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PQSE Object-Oriented DES

* The object-oriented programming paradigm offers a natural
approach to modeling both data and processes

*LPs and state variables translate directly into objects

* Event messages correspond to timestamped method
Invocations

- Data encapsulation will make load balancing straightforward
later on

«Charm++ provides much support for PDES (without ever
meaning to!)

* LPs and state variables are easily distributed via chares with
event messages provided as chare entry points

 Prioritized messages and the scheduler act to presort
timestamped events before delivery
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PQSE Synchronization Protocols and the GVT

*« POSE allows for both conservative and optimistic methods in
the same simulation; two simple versions are provided

*GVT algorithm drives the very simple conservative mechanism
that uses no lookahead or deadlock detection

« Optimistic mechanism uses checkpointing and has a "flexible
leash" to control its speculativeness
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PQSE Current Performance

« Speedups beyond 16 are difficult
°Load balancing could answer this problem

*Fine-grained simulations are the hardest to scale up
°More time is spent on communication
>Could load balance based on object interactions to reduce
communication overhead
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PQS Speedup: Medium-grained Traffic Simulation

Speedup; Hedium=-grain Traffic Simulation, 26x28 grid
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PQSE Speedup: Medium-grained Traffic Simulation

Speedup; Hedium=-grain Traffic Simulation, 56x58 grid
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PQSE Speedup: Fine-grained Traffic Simulation

Speedup; Fine=grain Traffic Simulation, 28x28 grid
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PQSE Speedup: Fine-grained Traffic Simulation

Speedup; Fine=grain Traffic Simulation, 58x508 grid
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PQS Speedup: Coarse-grained Traffic Simulation

Speedup; Coarse=-grain Traffic Simulation, 26x28 grid Speedup; Coarse=-grain Traffic Simulation, 36x38 grid
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Speedup: Hedium=-grain Traffic Simulation, 58x58 grid
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PQSE Load Balancing

«Ordinary LB strategies insufficient: cannot balance to
minimize idle time!

* Should take into account type of load: forward execution,
speculative computation, or rollbacks

e Simulation priority load balancing: determines execution
priorities for simulation objects and balances to even out the
priority load

« Execution priority has four determiners: object virtual time,
execution forecast, speculative forecast, and rollback overhead

* Given execution priorities for each object, find Ai, the average
execution priority on processor i. Priority load Pi on processor
1 1S (0i + w)/Ai. oiis the number of objects on Pi, and wis a
weight.
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PQSE Load Balancing

« Given priority loads for all processors, how should we design
our LB strategy?

A strategy can even out the priority loads on all processors,
and/or it can strive for mix quality on all processors
*What does it mean to be priority balanced?

*What migrates?
*How thorough should the strategy be?
°When should the load balancer be invoked?
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PQSE Load Balancing

* Two target strategies:

-"Perfect" Load Balancing Strategy (PLBS) : attempts to
achieve nearly identical Pi on all processors and good mix
guality; migrates whatever is necessary to improve the load;
execution priority update is constant; changes trigger
Imbalance check; rebalance performed whenever slight
Imbalance is detected

°"Quick" Load Balancing Strategy (QLBS): prepares for future
balance by moving medium and low priority objects;
iInvoked periodically; requests priority updates from objects;
checks for imbalance above a generous threshold; moves
lightweight objects to get imbalance below threshold
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