Parallel Object-oriented Simulation Environment

An Overview

Terry Wilmarth
Parallel Programming Laboratory
University of Illinois at Urbana-Champaign
September 1, 2001



PQSE Outline of Talk

«Background
~Discrete Event Simulation (DES)
>Parallel Discrete Event Simulation (PDES)

«Parallel Object-oriented Simulation Environment (POSE)
> Objectives
>Object-oriented DES
>Mixing sychronization protocols & global virtual time
~Current performance
-Load Balancing in POSE

POSE: An Overview Terry Wilmarth



4
PQSE Discrete Event Simulation

*Discrete Event Simulation (DES): simulation of complex
systems in which state changes or events occur at discrete
points in simulated time, typically at irregular time intervals

* Data structures for sequential DES:

o State variables describe the state of the system
°The event queue contains pending scheduled events
°The global clock keeps track of simulation progress

«Each event has a timestamp and typically changes or accesses
the state variables in some way

* An event can also schedule new events for the simulated
future

* Always select event with minimum timestamp from event
gueue to avoid causality errors

POSE: An Overview Terry Wilmarth



POSE

POSE: An Overview

Event Queue

Discrete Event Simulation

—

e

10

ah

27

ed
34

eb

48

aT

a1

a3

B3

ad
&7

S

Global Clock =10

State
VYarables

D

Terry Wilmarth



PQSE Parallel Discrete Event Simulation

How can we parallelize DES?
> Distribute the events across processors, shared memory

P1 P2 Simulated
Time
al 10

*Need sequencing constraints to ensure correctness

POSE: An Overview Terry Wilmarth



PQ&‘E Parallel Discrete Event Simulation

> Distribute the state variables across processors as well

> Still must handle event causality errors

POSE: An Overview Terry Wilmarth



4
PQSE Parallel Discrete Event Simulation

* Physical processes in the system being modeled are mapped
onto logical processes (LPs), each containing a portion of the
state and a local clock. LPs interact via timestamped event
messages.

*To ensure no shared-state causality errors, LPs process events
In nondecreasing timestamp order, i.e. they adhere to the
local causality constraint

* Preventing event causality errors is more difficult --
seguencing constraints are complex and highly
data-dependent

Two broad categories of mechanisms for handling sequencing
restraints: conservative and optimistic

POSE: An Overview Terry Wilmarth



PQSE PDES Mechanisms

« Conservative Mechanisms
>Avoid the possibility of the occurrence of causality errors
>Rely on the ability to determine when it is safe to process an
event

e Optimistic Mechanisms

>Detect and recovery: detect causality errors and rollback the
computation to recover from them

POSE: An Overview Terry Wilmarth



PQSE PDES Mechanisms

* Optimistic mechanisms speculate that a causality error will
not occur, i.e. they perform speculative computations

* An event arriving with a timestamp earlier than events that
were executed speculatively, or a straggler event, causes a
rollback.

* A rollback involves undo-ing executed events: the local state
must be restored (possibly from checkpointed state data), and
any caused events must be cancelled.

*We still monitor safety, via the global virtual time (GVT): the
smallest timestamp among all unprocessed event messages

* Actions performed with timestamp prior to GVT can be
committed: allows for reclaimation of checkpoint space and
committing irrevocable operations (such as 1/O)

POSE: An Overview Terry Wilmarth



PQSE POSE Objectives

* A usable language: focus on modeling the system, hide the
parallelism, hide much of the simulation engine
*POSE is a C++-like subset of Charm++

* Good performance: scalable to large numbers of processors
-Base implementation of POSE scales well to 16, to 32 on
larger problems, and to 64 on the largest problems
>Develop load balancers that take into account the special
iIrregularities of PDES system models
>Explore hierarchical approaches to modeling for PDES

POSE: An Overview Terry Wilmarth



PQSE Object-Oriented DES

* The object-oriented programming paradigm offers a natural
approach to modeling both data and processes

*LPs and state variables translate directly into objects

* Event messages correspond to timestamped method
Invocations

- Data encapsulation will make load balancing straightforward
later on

«Charm++ provides much support for PDES (without ever
meaning to!)

* LPs and state variables are easily distributed via chares with
event messages provided as chare entry points

 Prioritized messages and the scheduler act to presort
timestamped events before delivery

POSE: An Overview Terry Wilmarth



4
PQSE Synchronization Protocols and the GVT

*« POSE allows for both conservative and optimistic methods in
the same simulation; two simple versions are provided

*GVT algorithm drives the very simple conservative mechanism
that uses no lookahead or deadlock detection

« Optimistic mechanism uses checkpointing and has a "flexible
leash" to control its speculativeness

POSE: An Overview Terry Wilmarth



4
PQSE Current Performance

« Speedups beyond 16 are difficult
°Load balancing could answer this problem

*Fine-grained simulations are the hardest to scale up
°More time is spent on communication
>Could load balance based on object interactions to reduce
communication overhead

POSE: An Overview Terry Wilmarth



PQS Speedup: Medium-grained Traffic Simulation

Speedup; Hedium=-grain Traffic Simulation, 26x28 grid

84 Linear
 20x20:20
T 20x20:100
T 2020500
T
- 32
-
16 —
5
4 —
T T I T I
124 & 1a 32 64
Frocessors

Tine

fid

32

16

g

Speedup; Hedium=-grain Traffic Simulation, 36x38 grid
7] Linear
T 303030
T F0wE0 100

T 3030500

T 1 I I I
124 & 16 3z 64

Frocessors

POSE: An Overview

Terry Wilmarth



PQSE Speedup: Medium-grained Traffic Simulation

Speedup; Hedium=-grain Traffic Simulation, 56x58 grid

84 Linear
= BoxG0:50
T GoxG0rio0
— GoxG0 500
T
- 32
-
16 —
5
4 —
T T I T
124 & 1a 32
Frocessors

Tine

Speedup; Hedium=-grain Traffic Simulation, 168x168 grid
64 —

Linear
T 100100100

32—
16 —
&
4 —

TTT I I I T

124 & 18 a2 ad

Frocessors

POSE: An Overview

Terry Wilmarth



PQSE Speedup: Fine-grained Traffic Simulation

Speedup; Fine=grain Traffic Simulation, 28x28 grid

84 Linear
T 202020
T 2x20ilo
T 20x20i500
£
- 32
fills
16
5 -

T T I T
124 & 1a 32
Frocessors

Tine

Speedup; Fine=-grain Traffic Simulation, 36x38 grid

&4 Linear
T 3030030
T 30301100
T 3030 h00
32 4
16 —
& -
4 -
ITT I I I I
124 & 16 32 ad

Frocessors

POSE: An Overview

Terry Wilmarth



PQSE Speedup: Fine-grained Traffic Simulation

Speedup; Fine=grain Traffic Simulation, 58x508 grid

64 —

Linear
= BoxG0:50
T GoxGoiion
T GoxG0i500

T
- 32
-
16 —
5
4_
T T I T I
124 & 1a 32 64
Frocessors

Tine

Speedup; Fine=-grain Traffic Simulation, 186x168 grid
g4

Linear
T 100100100

32—
16 —
&
4 —

TTT I I I T

124 & 18 a2 ad

Frocessors

POSE: An Overview

Terry Wilmarth



PQS Speedup: Coarse-grained Traffic Simulation

Speedup; Coarse=-grain Traffic Simulation, 26x28 grid Speedup; Coarse=-grain Traffic Simulation, 36x38 grid
84 Linear &4 Linear
T 202020 T 3030030
T 20x20ilo T 30301100
T 20x20500 T 3030 h00
£ £
32 o 32
- -
16 16 —
g g
4 - 4 -
TT 1 I I I I ITT I I I I
124 & 16 32 &d 124 & 16 32 ad
Frocessors Frocessors

POSE: An Overview Terry Wilmarth



Speedup: Hedium=-grain Traffic Simulation, 58x58 grid
d

Linear
T B0xB0:E0
— G0x50:100
— G0xG0:500
z
o 32
[l
16 —
g -
4 p—
T I I I I
124 8 16 32 fd
Processors

POSE: An Overview Terry Wilmarth



PQSE Load Balancing

«Ordinary LB strategies insufficient: cannot balance to
minimize idle time!

* Should take into account type of load: forward execution,
speculative computation, or rollbacks

e Simulation priority load balancing: determines execution
priorities for simulation objects and balances to even out the
priority load

« Execution priority has four determiners: object virtual time,
execution forecast, speculative forecast, and rollback overhead

* Given execution priorities for each object, find Ai, the average
execution priority on processor i. Priority load Pi on processor
1 1S (0i + w)/Ai. oiis the number of objects on Pi, and wis a
weight.

POSE: An Overview Terry Wilmarth



PQSE Load Balancing

« Given priority loads for all processors, how should we design
our LB strategy?

A strategy can even out the priority loads on all processors,
and/or it can strive for mix quality on all processors
*What does it mean to be priority balanced?

*What migrates?
*How thorough should the strategy be?
°When should the load balancer be invoked?

POSE: An Overview Terry Wilmarth



PQSE Load Balancing

* Two target strategies:

-"Perfect" Load Balancing Strategy (PLBS) : attempts to
achieve nearly identical Pi on all processors and good mix
guality; migrates whatever is necessary to improve the load;
execution priority update is constant; changes trigger
Imbalance check; rebalance performed whenever slight
Imbalance is detected

°"Quick" Load Balancing Strategy (QLBS): prepares for future
balance by moving medium and low priority objects;
iInvoked periodically; requests priority updates from objects;
checks for imbalance above a generous threshold; moves
lightweight objects to get imbalance below threshold

POSE: An Overview Terry Wilmarth



