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Injection Bandwidth vs CPU speeds
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Motivation

• Trend: 
• Deeper nodes

• Thinner pipes

• Accelerators (e.g. GPUs)

• Increased Programmer effort

Year Machine Linpack
(FLOPs)

FLOPs/
Local

FLOPs/
Remote

1988 Cray 
YMP

2.1 Giga 0.52 0.52

1997 ASCI Red 1.6 Tera 8.3 20

2011 Road-
runner

1.0 Peta 6.7 170

2012 Sequoia 17 Peta 32 160

2013 Titan 18 Peta 29 490

2018 Summit 122 Peta 37 1060

2011 K-Comp 11 Peta 15 95

2013 Tianhe-2 34 Peta 22 1500

2016 Sunway 93 Peta 130 1500

2021 TBD 1.0 Exa 80 3200

2021 TBD 1.0 Exa 300 10000
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Fat Nodes

First law of holes:
• If you find yourself in a hole, stop digging!
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1 TF

40 TF

We are digging ourselves 
deeper into a node



Main Idea: Spreading Work Across Cores

• Speed up individual calculations via OpenMP

• FLOPs are cheap, need to inject early

• Better communication, computation overlap
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Motivation

New Axes of Optimization

• Problem Size Decomposition (Grain Size)

• Resources Assigned to a Task (Spreading)
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Experimental Setup

• Charm Build
• Separate processes (Non-SMP mode)
• –O3 –with-production
• PAMI-LRTS communication layer

• Five Runs
• OpenMP Threads (Spreading) = 1, 2, etc
• Grid Size = 1788482 doubles (~90%)
• Block Size = 7452, various
• Chares (Objects) = 242

• Iterations = 10-100
• Nodes = 4
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OpenMP Pragmas

• Schedule - Static

• Chunk Size (Iterations)
• Default (Block / Cores)

• 1

• 16

• 512

• Collapse
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Machines

Bridges (PSC)

• 2 x 14-core Haswell E5-2695

• 128 GB DDR4

Summit (ORNL)

• 2 x 22-core IBM Power9

• 512 GB DDR4
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Bridges
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Summit – Block Size
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Summit
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Summit – Scaling
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What happens when we 
eliminate communication?
i.e. are effects just from improved caching?
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Summit – No Send
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Lets look at communication 
performance…
using projections.
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OpenMP Baseline
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Charm++ Baseline
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Spreading Technique
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Runtime Integration
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Automating teams configuration

• Broader Agenda
• Automate decisions -> easier for user

• “Spread”: How many teams, i.e how many masters and how many drones?

• Other runtime decisions:

• How many ppn, i.e cores per process?

• How many processes per node?

• How many cores to turn off (memory bottleneck)?

• Enable SMT or not?



Automating teams configuration

• Use OpenMP to create master thread on all cores

• Integrate with load balancing framework to change master thread 
count

• Use OpenMP nested parallelism to set/change number of drone 
threads within the application
• Use pthread affinities instead of OpenMP affinity to update configurations at 

runtime

• Runtime selects the best performing configuration after testing with 
different configurations (one per LB step)



Using OpenMP with nested parallelism (static)
Bridges - single-node integrated OpenMP runs for SMP and Non-SMP builds



Using OpenMP with nested parallelism (static)

Stampede2 - Skylake 4-node run integrated OpenMP



OpenMP Implementation
machine-smp.C jacobi2d.C

Dynamic configuration:
pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

Static configuration:



OpenMP implementation with pthread
affinity
• Similar performance with process-

based and OpenMP 
implementations 
• Some NUMA effects

• OpenMP Limitations:
• Nested parallelism configurations 

cannot be dynamically changed
• Affinities are set at the initialization 

and cannot be changed

• With Charm++ we are able to 
dynamically change OpenMP 
configurations and with pthread
affinity we set affinities for each 
new configuration

Select best
configuration



Next steps

• Integrate the LB framework to fully automate configuration selection
• Current implementation is able to dynamically set different configurations at 

runtime based on user input

• Benefit over static OpenMP configuration – configurations and affinities can 
be changed at runtime

• Compare with CkLoop implementation in Charm++



Questions
Michael Robson michael.robson@villanova.edu

Kavitha Chandrasekar kchndrs2@illinois.edu
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Summary

• Spreading offers new optimization parameter

• Increases performance 20-30% in prototype application

• Spread factor is controllable at runtime

• Current integration into Charm++ ongoing
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