
Flexible Hierarchical Execution of
Parallel Task Loops

Michael Robson, Villanova University

Kavitha Chandrasekar, University of Illinois Urbana-Champaign

Injection Bandwidth vs CPU speeds

Kale (Salishan 2018) 2

Motivation

• Trend:
• Deeper nodes

• Thinner pipes

• Accelerators (e.g. GPUs)

• Increased Programmer effort

Year Machine Linpack
(FLOPs)

FLOPs/
Local

FLOPs/
Remote

1988 Cray
YMP

2.1 Giga 0.52 0.52

1997 ASCI Red 1.6 Tera 8.3 20

2011 Road-
runner

1.0 Peta 6.7 170

2012 Sequoia 17 Peta 32 160

2013 Titan 18 Peta 29 490

2018 Summit 122 Peta 37 1060

2011 K-Comp 11 Peta 15 95

2013 Tianhe-2 34 Peta 22 1500

2016 Sunway 93 Peta 130 1500

2021 TBD 1.0 Exa 80 3200

2021 TBD 1.0 Exa 300 10000

3S. Plimpton (Charm ‘19)

Fat Nodes

First law of holes:
• If you find yourself in a hole, stop digging!

Kale (Salishan 2018) 4

1 TF

40 TF

We are digging ourselves
deeper into a node

Main Idea: Spreading Work Across Cores

• Speed up individual calculations via OpenMP

• FLOPs are cheap, need to inject early

• Better communication, computation overlap

5

Time

C
o

re
s

0

 1

 2

 3

Time

C
o

re
s

0

 1

 2

 3

Time

C
o

re
s

0

 1

 2

 3

Time

C
o

re
s

0

 1

 2

 3

Time

C
o

re
s

0

 1

 2

 3

Time

C
o

re
s

0

 1

 2

 3

Time

C
o

re
s

0

 1

2

 3

Overdecomposition 0 1 2

Spreading

4

2

1

OpenMP

Charm++MPI

6

Motivation

New Axes of Optimization

• Problem Size Decomposition (Grain Size)

• Resources Assigned to a Task (Spreading)

7

Experimental Setup

• Charm Build
• Separate processes (Non-SMP mode)
• –O3 –with-production
• PAMI-LRTS communication layer

• Five Runs
• OpenMP Threads (Spreading) = 1, 2, etc
• Grid Size = 1788482 doubles (~90%)
• Block Size = 7452, various
• Chares (Objects) = 242

• Iterations = 10-100
• Nodes = 4

8

OpenMP Pragmas

• Schedule - Static

• Chunk Size (Iterations)
• Default (Block / Cores)

• 1

• 16

• 512

• Collapse

9

Machines

Bridges (PSC)

• 2 x 14-core Haswell E5-2695

• 128 GB DDR4

Summit (ORNL)

• 2 x 22-core IBM Power9

• 512 GB DDR4

10

Bridges

11

Summit – Block Size

12

Summit

13

Summit – Scaling

14

What happens when we
eliminate communication?
i.e. are effects just from improved caching?

15

Summit – No Send

16

Lets look at communication
performance…
using projections.

17

OpenMP Baseline

18

Time (s)

R
ec

ei
ve

d
 b

yt
e

s
p

e
r

se
co

n
d

320K

240K

160K

80K

0
17.5 21.9 35.126.3 30.7

Charm++ Baseline

19

Time (s)

R
ec

ei
ve

d
 b

yt
e

s
p

e
r

se
co

n
d

320K

240K

160K

80K

0
6.8 11.2 24.415.6 20.0

Spreading Technique

20

Time (s)

R
ec

ei
ve

d
 b

yt
e

s
p

e
r

se
co

n
d

320K

240K

160K

80K

0
22.4 26.8 40.031.2 35.6

21

Time (s)

R
ec

ei
ve

d
 b

yt
e

s
p

e
r

se
co

n
d

320K

240K

160K

80K

0
6.8 11.2 24.415.6 20.0

Runtime Integration

22

Automating teams configuration

• Broader Agenda
• Automate decisions -> easier for user

• “Spread”: How many teams, i.e how many masters and how many drones?

• Other runtime decisions:

• How many ppn, i.e cores per process?

• How many processes per node?

• How many cores to turn off (memory bottleneck)?

• Enable SMT or not?

Automating teams configuration

• Use OpenMP to create master thread on all cores

• Integrate with load balancing framework to change master thread
count

• Use OpenMP nested parallelism to set/change number of drone
threads within the application
• Use pthread affinities instead of OpenMP affinity to update configurations at

runtime

• Runtime selects the best performing configuration after testing with
different configurations (one per LB step)

Using OpenMP with nested parallelism (static)
Bridges - single-node integrated OpenMP runs for SMP and Non-SMP builds

Using OpenMP with nested parallelism (static)

Stampede2 - Skylake 4-node run integrated OpenMP

OpenMP Implementation
machine-smp.C jacobi2d.C

Dynamic configuration:
pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

Static configuration:

OpenMP implementation with pthread
affinity
• Similar performance with process-

based and OpenMP
implementations
• Some NUMA effects

• OpenMP Limitations:
• Nested parallelism configurations

cannot be dynamically changed
• Affinities are set at the initialization

and cannot be changed

• With Charm++ we are able to
dynamically change OpenMP
configurations and with pthread
affinity we set affinities for each
new configuration

Select best
configuration

Next steps

• Integrate the LB framework to fully automate configuration selection
• Current implementation is able to dynamically set different configurations at

runtime based on user input

• Benefit over static OpenMP configuration – configurations and affinities can
be changed at runtime

• Compare with CkLoop implementation in Charm++

Questions
Michael Robson michael.robson@villanova.edu

Kavitha Chandrasekar kchndrs2@illinois.edu

30

Summary

• Spreading offers new optimization parameter

• Increases performance 20-30% in prototype application

• Spread factor is controllable at runtime

• Current integration into Charm++ ongoing

mailto:michael.robson@villanova.edu
mailto:kchndrs2@illinois.edu

