Flexible Computational Science Infrastructure (FleCSI)

17th Annual Workshop on Charm++ and Its Applications

Li-Ta Lo for the FleCSI Team

May 1, 2019
Ristra Big Picture
Advanced Technology Development & Mitigation (ATDM)
What is FleCSI?

FleCSI is a C++ programming system for developing multi-physics simulation codes

- **Runtime abstraction layer**
 - High-level user interface, mid-level static specialization, low-level building blocks, tasking and fine-grained threading back-ends

- **Programming model**
 - Data, execution, and control models

- **Useful data structure support**
 - Mesh, N-Tree (N=3 → Octree), and Set topologies
The FleCSI programming structure is designed to encourage separation of concerns...

<table>
<thead>
<tr>
<th>What</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Development</td>
<td>Physicists & Applied Mathematicians</td>
</tr>
<tr>
<td>FleCSI Specialization Development</td>
<td>Computational Scientists</td>
</tr>
<tr>
<td>FleCSI Core</td>
<td>Computer Scientists</td>
</tr>
</tbody>
</table>
Ristra Big Picture
Advanced Technology Development & Mitigation (ATDM)

Future mission ← Future physics ← Future computers
Ristra Big Picture
Advanced Technology Development & Mitigation (ATDM)

Application

Specialization

Core

Future mission ↔ Future physics ↔ Future computers
Data Model
FleCSI Topology Data Structures

- **flecsi::topology::mesh_topology**
 - Support for unstructured meshes with user-defined mesh entity types, and user-defined adjacency storage

- **flecsi::topology::tree_topology**
 - Support for hashed trees with user-defined node types, and user-defined relational functions, e.g., “who are my neighbors?”

- **flecsi::topology::set_topology**
 - Support for sets of user-defined entities, e.g., non-interacting particles, and user-defined rules for entity migration, coloring, and binning
FleCSI Topology Data Structures

- `flecsi::topology::mesh_topology__`
 - Hydrodynamics (Eulerian, Lagrangian, ALE, Re-ALE, DG), Radiation/Heat Conductivity

- `flecsi::topology::tree_topology__`
 - N-Body, Smoothed-Particle Hydrodynamics

- `flecsi::topology::set_topology__`
 - Particle-in-Cell (PIC), Material-Point Method (MPM), Charged/Neutral Particle Transport
What does Topology do for you?

- FleCSI automatically generates iterators for each entity type, connectivity, and binding, or node

```cpp
foreach(auto c: mesh.cells()) {
    foreach(auto v: mesh.vertices(c)) {
        // for
    } // for
} // for
```
What does Topology do for you?

• Topological entities define index spaces where data can be attached to the mesh

```cpp
flecsi_register_data(mesh, hydro, temperature, double, dense, cells);
flecsi_register_data(mesh, hydro, avg_temperature, double, dense, cells);

foreach(auto c: mesh.cells()) {
    foreach(auto v: mesh.vertices(c)) {
        avg_temp(c) += temp(v);
    } // for
    avg_temp(c) /= mesh.vertices(c).size();
} // for
```
Execution Model
What does Execution do for you?

• Launch task via backends

```c++
for ( size_t num_steps = 0; num_steps < max_steps; ++num_steps ) {
    flecsi_execute_task( evaluate_fluxes, apps::hydro, index, mesh,
                         d, v, e, p, T, a, F );
}
```


What does Execution do for you?

• Maintain the illusion of single address space

```cpp
for ( size_t num_steps = 0; num_steps < max_steps; ++num_steps ) {
    // ghost copy within execute_task, happens before/after calling
    // evaluate_fluxes()
    flecs::execute_task( evaluate_fluxes, apps::hydro, index, mesh,
                        d, v, e, p, T, a, F );
} // for
```
FleCSALE Application
Fully unstructured 2D and 3D mesh specializations developed on top of FleCSI

Mesh is templated on dimension:
2D: `burton_mesh_t<2> mesh;`
3D: `burton_mesh_t<3> mesh;`

Application code doesn’t change (code works in 2D and 3D):
```cpp
for ( auto f : mesh.faces() )
    auto n = f->normal();
    // do some work
```

Mesh has wedges and corner data structures in addition to vertex, edge, face, and cell primitives:
```cpp
for ( auto cn : mesh.corners() )
    for ( auto wg : mesh.wedges(cn) )
        auto n = wg->facet_normal();
        // do some other work
```
Sedov blast wave predictions computed with the 3D cell-centered Lagrange method
FleCSPH Application
FleCSI : Tree Data Structures

• Tree topology
 • Support n-tree (also hashed n-tree)
 • Constant-time neighbor look-up
 • Morton ordering
 • Refinement and coarsening
• Applications: SPH, N-body, AMR, Complex Flows, Monte Carlo, Molecular Dynamics
Head on Collision of two neutron stars
3D water cube drop
Thanks for your attention!