
End-to-end Performance Modeling of Distributed GPU
Applications

Jaemin Choi
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois

jchoi157@illinois.edu

David F. Richards
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, California
richards12@llnl.gov

Laxmikant V. Kale
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois
kale@illinois.edu

Abhinav Bhatele
Department of Computer Science

University of Maryland
College Park, Maryland
bhatele@cs.umd.edu

ABSTRACT
With the growing number of GPU-based supercomputing platforms
and GPU-enabled applications, the ability to accurately model the
performance of such applications is becoming increasingly impor-
tant. Most current performance models for GPU-enabled appli-
cations are limited to single node performance. In this work, we
propose a methodology for end-to-end performance modeling of
distributed GPU applications. Our work strives to create perfor-
mance models that are both accurate and easily applicable to any
distributed GPU application. We combine trace-driven simulation
of MPI communication using the TraceR-CODES framework with a
profiling-based roofline model for GPU kernels. We make substan-
tial modifications to these models to capture the complex effects
of both on-node and off-node networks in today’s multi-GPU su-
percomputers. We validate our model against empirical data from
GPU platforms and also vary tunable parameters of our model to
observe how they might affect application performance.

CCS CONCEPTS
• General and reference → Performance; • Networks → Net-
work performance evaluation.

KEYWORDS
Performance modeling, communication, GPU computing, trace-
driven simulation

ACM Reference Format:
Jaemin Choi, David F. Richards, Laxmikant V. Kale, and Abhinav Bhatele.
2020. End-to-end Performance Modeling of Distributed GPU Applications.
In 2020 International Conference on Supercomputing (ICS ’20), June 29–July
2, 2020, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3392717.3392737

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICS ’20, June 29–July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392737

1 INTRODUCTION
Achieving high performance is critical to make the most efficient
use of supercomputing platforms and deliver scientific simulation
output faster. However, parallel performance is a complex func-
tion of many related factors including the parallel algorithm, its
implementation, system software, and on-node and off-node net-
work hardware. Modeling the performance of high performance
computing (HPC) applications on current and future platforms can
help application developers and end users identify opportunities
for performance improvement and make decisions to prepare for
upcoming HPC systems.

An increasing number of HPC platforms are augmenting multi-
core nodes with at least one GPU accelerator. As of November
2019, six out of the ten fastest machines on the TOP500 list [26]
are equipped with GPUs. As we move toward these distributed
multiple-GPUs-on-a-node environments, the overall performance
of an application becomes dependent not only on the CPU and
GPU behavior but also on data movement between the host and
device memory, and across nodes on the network. There exist sev-
eral performance models for applications running on GPUs of a
single node or on CPU-based clusters. However, there is a lack of
performance models for distributed GPU applications running on
GPU-based clusters.

In this work, we propose a profiling-based approach to model
the end-to-end performance of a distributed GPU application that
is both accurate and applicable to a wide array of applications. We
extract MPI communication traces and GPU kernel properties of
the parallel application by profiling it on a source system, and then
use these to predict performance on other systems (with different
network and GPU hardware configurations). As a profiling-based
approach, minimal preparation and analysis of the application code
is required.

We combine trace-driven simulation of MPI communication
using the TraceR-CODES framework [1, 24] with profiling-based
performance prediction of GPU kernels via the quantitative roofline
model [19]. We implement two new models in the TraceR-CODES
framework to more accurately reflect the current multi-GPU archi-
tectures, first of which is the max-rate model [14] that incorporates
the effects of concurrently communicating processes on the same

https://doi.org/10.1145/3392717.3392737
https://doi.org/10.1145/3392717.3392737
https://doi.org/10.1145/3392717.3392737

ICS ’20, June 29–July 2, 2020, Barcelona, Spain Choi, et al.

node. The second, the K-model, is a model that we develop from
the max-rate model to more precisely model application-dependent
behavior. In addition to these models, we enable detailed model-
ing of intra-node communication by distinguishing intra-socket,
inter-socket and inter-node communication. These improvements
allow us to accurately model the complex effects of both on-node
and off-node networks prevalent in the latest supercomputers.

We test and validate our approach in the context of proxy appli-
cations on GPU-based supercomputers. We also use our validated
model to predict the performance of distributed GPU codes in these
what-if scenarios: varying number of GPUs per node (with the same
total number of GPUs) and changing GPU hardware performance
metrics such as flop/s and memory bandwidth. This demonstrates
the ability of our model to estimate application performance on
various platforms, including future and even hypothetical systems.

It is worth noting that this work focuses on modeling weak
scaling performance; strong scaling changes the amount of work
per process, necessitating a more complex modeling of GPU kernels,
data transfers between the host and GPU memory, as well as the
CPU behavior.

The primary contributions of this work are summarized below:
• a general methodology to create end-to-end performance
models for distributed GPU applications and its validation.

• integration of on-node topology and node-aware analytical
models into simulation-based MPI communication modeling.

• development of a new K-model that improves upon the max-
rate model with simple application-dependent parameters.

• prediction of application performance in the face of varying
platform and hardware parameters.

2 BACKGROUND AND RELATEDWORK
Below, we present previous approaches and related work on mod-
eling communication on the network and computation on GPUs.

2.1 Analytical Models for Communication
Analytical models are widely used to model communication per-
formance due to their simplicity and relatively high accuracy. The
postal model [4] is one example that defines communication cost
simply as the sum of the start-up time α and the per-byte cost β
multiplied by the message size n:

T = α + β · n (1)

Separate sets of parameters may be used for short, eager and ren-
dezvous protocols. The parameters are obtained by fitting a (piece-
wise) linear function to the results of a ping-pong benchmark. Later
models attempt to incorporate more details associated with the
communication cost: LogP [8] differentiates network latency L and
software overhead o in the start-up cost α , and LogGP [2] extends
LogP by adding an additional parameterG for large messages. Oth-
ers also seek to capture network hop counts and contention, adding
complexity to the model.

What these models fail to capture, however, is the effect of mul-
tiple processes within a node utilizing the network. The max-rate
model [14] accounts for the limits of bandwidth coming in and out
of an SMP node by considering the impact of multiple processes
using the network hardware simultaneously. For example, in an

environment with 16 cores per node, up to 16 process pairs (a total
of 32 processes mapped to two nodes) could exchange messages
simultaneously with their peers placed on the other node.

In this paper, we use a simplified version of the extended max-
rate model, which is defined as

T = α +
k · n

RCb + (k − 1) · RCi
(2)

where k is the number of processes per node utilizing the network,
n is the message size, RCb is the base bandwidth sustained by a
single process, and RCi is the bandwidth attainable by additional
processes. This version of the model recognizes the fact that RCb is
often greater than RCi . We simplifymin(RN ,RCb + (k − 1) · RCi)
in the original paper (RN is the injection bandwidth) to RCb +
(k − 1) · RCi , as we observe that in practice this term is always
smaller than and eventually converges to RN . The parameters of
the model (α , RCb , RCi) can be empirically determined by fitting
multi-process ping-pong benchmark results using a non-linear least
squares method1. The negative parameters that can be observed
with the short message protocol are treated as an artifact, where
the model is further reduced to the following two-parameter model:

T = α + k · n · β (3)

Therefore, we use the two-parameter (α , β) model for the short
message protocol, and the three-parameter (α , RCb , RCi) model for
eager and rendezvous protocols.

The max-rate model ensures that we capture performance de-
viations caused by multiple processes within a node engaging in
communication. This is not only important for traditional SMP
nodes, but also for multi-GPU environments where one or more
processes are mapped to each GPU and distributed-memory com-
munication is performed through MPI.

2.2 Trace-based Simulation for Modeling
Communication

Discrete-event simulation can be used to model network activity
by explicitly modeling each communication event in an application.
In the case of MPI applications, messages passing through the
interconnect are modeled as events. These events are typically
captured from an execution trace of the application being modeled.
The TraceR-CODES framework [1, 24] is one example of a trace-
driven simulator. It performs simulations at the packet level and
has models for many popular HPC interconnect topologies (e.g.
fat-tree, dragonfly, torus).

TraceR-CODES also supports the use of analytical models such as
the postal model and LogGP, instead of a detailed network model. In
this case, the chosen analytical model is used to calculate how long a
message takes to traverse the network, instead of simulating how it
travels through switches in the actual network topology. We adopt
this method and implement support for the max-rate model and
K-model to more accurately model communication performance
on multi-GPU systems.

1We use a Python library function, curve_fit from scipy.optimize.

End-to-end Performance Modeling of Distributed GPU Applications ICS ’20, June 29–July 2, 2020, Barcelona, Spain

2.3 Modeling GPU Computation
Due to the increasing popularity of GPUs in parallel computation,
there has been extensive research on modeling the performance
of GPU kernels. Many analytical approaches [3, 17, 20] have been
proposed but most require manual analysis based on a deep un-
derstanding of the kernel code. On the other hand, empirical ap-
proaches such as the quantitative roofline model [19], which is the
model employed in this paper, can be applied to a wide range of
kernels without a priori knowledge. It is a profiling-based approach
that gathers performance metrics at runtime to create a perfor-
mance model. The target kernel is executed once on any available
GPU to obtain its key performance metrics, which is used to predict
performance on other GPUs whose hardware properties have been
determined via a simple micro-benchmark. Our modifications to
the model and its usage are described in detail in Section 3.3.

2.4 Other Related Work
There has been considerable work on modeling the performance
of CPU-based MPI applications, either with analytical models [5,
10, 12, 18], simulation [1, 16, 24, 28], or machine learning based
methods [21]. Performance models for hybrid MPI-OpenMP ap-
plications have been studied in [13, 27]. However, there has been
little work in modeling the performance of MPI applications that
utilize GPUs [11]. Our work intends to fill this gap and provide a
performance modeling methodology for such applications.

3 END-TO-END PERFORMANCE MODEL
We now describe our methodology to developing an end-to-end
performance model for distributed GPU applications. We first intro-
duce the K-model, which improves upon the max-rate model. These
analytical models are implemented in our node-aware communica-
tionmodeling framework, NACoM, which builds on TraceR-CODES
to predict MPI communication performance. We then discuss the
quantitative roofline model that estimates the performance of ap-
plication kernels on different GPU hardware, and finally describe
the method of predicting end-to-end performance by combining
the individual modeling components.

3.1 The K-model
We introduced the max-rate model in Section 2.1. While this model
improves upon the postal model when multiple processes are simul-
taneously utilizing network resources, we observed that it tends to
overestimate communication time as all messages are assumed to
be inter-node.

For example, in a two-dimensional (2D) halo exchange (List-
ing 1), each process communicates with its four neighbors at each
iteration. The max-rate model assumes all the halo exchanges are
inter-node; however, a significant number of them are in fact intra-
node. This ratio depends on how the physical domain is mapped to
MPI processes (which depends on the application) as well as how
these processes are assigned to the hardware (nodes and sockets).

Let us consider an example where this code is executed on eight
nodes of Summit, a GPU-based supercomputer at Oak Ridge Na-
tional Laboratory, which has six GPUs per node. With one process
per GPU, there will be a total of 48 processes decomposed into a 6
× 8 grid, as in Figure 1. Ranks 0-5 in the first column are mapped

to the first node, ranks 6-11 in the second column to the second
node, and so on. With this mapping, a process not on the boundary
sends only two out of four messages to other nodes whereas the
other two messages are sent to processes on the same node. The
max-rate model, assuming all messages are sent inter-node, will
over-penalize the traversal time of each message.

for (int i = 0; i < num_iters; i++) {
// Each process has 4 neighbors
for (int j = 0; j < 4; j++) MPI_Irecv (...);
for (int j = 0; j < 4; j++) MPI_Isend (...);
MPI_Waitall (...);

}

Listing 1: Pseudocode for 2D halo exchange

Figure 1: MPI process grid for 2D halo exchange between 48
processes on Summit. Six processes in each column are on
the same physical node. The highlighted process (dark blue)
sends two intra-nodemessages (up and down) and two inter-
node messages (left and right).

To address this issue, we propose an improvement to the max-
rate model, called the K-model. Let us denote the original value
of k in the max-rate model (Equation 3) as k ′, the number of pro-
cesses engaged in communication on each node. In the K-model,
we redefine,

k =
Kinter
Ktotal

· k ′ (4)

where Kinter is the maximum number of inter-node messages sent
by any node (sum over all processes on a node) in the program,
and Ktotal is the maximum number of total messages (counting
both intra-node and inter-node messages) sent by any node in
the program. We take the maximum across all participating nodes
because the node with the largest number of messages determines
the duration of the communication phase. Kinter/Ktotal denotes the
fraction of messages originating from a node that are sent over the
network. We multiply this fraction with k ′ to calculate a new k for
our model. Substituting k in Equation 3, we get

T = α +
Kinter
Ktotal

· k ′ · n · β (5)

Kinter can either be calculated analytically or measured empir-
ically by inserting a small piece of code in the application where
(1) each process counts the total of number of messages that it sends
to remote nodes, (2) a summation of the count is performed among
processes on the same node, and (3) the maximum value of this
per-node summation is computed across all nodes to compute the

ICS ’20, June 29–July 2, 2020, Barcelona, Spain Choi, et al.

Figure 2: Using the quantitative roofline model (QRoof) in a three-step process to generate performance predictions of appli-
cation kernels on various GPU hardware.

final value. It should be noted that the K-model adds application-
dependent parameters (Kinter and Ktotal) to the max-rate model.

In the halo exchange example in Figure 1 with 48 processes,
k ′ = 6, Kinter = 2 × 6 = 12 and Ktotal = 4 × 6 = 24, so the
new k is computed as (12/24) × 6 = 3. This assumes periodic
boundary conditions. The K-model essentially scales down k to
account for the fact that not all messages are sent across nodes
within a communication phase. The validation of this model is
performed in Section 5.

3.2 Node-aware Communication Model
Many HPC clusters have multi-socket nodes with each socket hav-
ing a multi-core processor and optionally, accelerators. For example,
a Summit node has two sockets with one processor and three GPUs
on each socket for a total of six GPUs. What is often overlooked
is that there can be a significant performance differential between
intra-socket and inter-socket communication, in addition to inter-
node communication. Onmulti-GPU systems, it is common practice
to map one MPI process per GPU, and a process may perform three
types of communication: intra-socket, inter-socket, and/or inter-
node. All should be accounted for in a performance model for it
to be accurate. Furthermore, multiple processes on the same node
simultaneously utilizing the network may greatly affect commu-
nication performance, creating the need for models such as the
max-rate model and K-model.

Our node-aware communication modeling (NACoM) framework
implements node-awareness in TraceR-CODES, through modifi-
cations to the MPI-replay module and model-net layer as shown
in Figure 3. The user can now provide intra-node topology infor-
mation, including the number of MPI processes per socket, and
separate model parameters for intra-socket, inter-socket and inter-
node communication. The model-net layer calculates the traversal
time of amessage using this information. TheMPImessaging events
are processed in parallel by the underlying parallel discrete event
simulation (PDES) framework, ROSS [6].

We use DUMPI [9] parallel execution traces as input in NACoM
to build a performance model. These traces contain all the MPI rou-
tines called by the program in consideration (with dependencies),
and are used by the MPI-replay module to replay the communica-
tion primitives. Message traversals are simulated in the model-net
layer with user-provided network configuration and model param-
eters. In this work, the postal, max-rate, and K-models are used
as the underlying analytical models to compute message traversal
times during the simulation.

Figure 3: The NACoM framework implements node-
awareness in TraceR-CODES by modifying the MPI-replay
module and model-net layer.

At the end of the simulation, the framework outputs the pre-
dicted communication times in detail, such as the time spent in
sending/receiving messages and waiting for requests to complete.
This information is used to predict the communication performance
of the application, and the same process can be repeated with differ-
ent model parameters to generate predictions for other platforms.

3.3 Quantitative Roofline Model for GPUs
To model the performance of GPU kernels in the application under
consideration, we adopt the quantitative roofline model (hereafter
abbreviated as QRoof) briefly described in Section 2.3. We choose
this model over others because (1) GPU kernels can be profiled
in the same run as MPI trace generation, and (2) any number of
kernels can be easily modeled without code inspection. As outlined
in Figure 2, this is a three-step process:

(1) Generate GPU parameter files for different types of GPUs
by executing a micro-benchmark. Each file contains perfor-
mance metrics such as single-precision and double-precision
flop/s, DRAM access bandwidth, and number of shared mem-
ory operations per second.

(2) Generate a kernel parameter file with a profiling run of the
application. NVIDIA’s nvprof [25] tool is invoked internally
to obtain performance metrics such as number of compute
operations, size of used DRAM and L2 cache, mix ratio of
compute and other operations for the GPU kernels.

End-to-end Performance Modeling of Distributed GPU Applications ICS ’20, June 29–July 2, 2020, Barcelona, Spain

Table 1: Architectural details of the evaluation platforms

Platform No. of nodes CPU NVIDIA GPU GPUs/node GPUs/socket Network MPI

Summit 4,608 IBM Power9 Tesla V100 6 3 Mellanox EDR IBM Spectrum MPI
Lassen 792 IBM Power9 Tesla V100 4 2 Mellanox EDR tapered IBM Spectrum MPI
Bridges 32 Xeon-E5 2683 v4 Tesla P100 2 1 Intel Omni-Path Intel MPI

(3) Combine the kernel parameter file with a GPU parameter file
to perform analysis with the quantitative roofline model and
obtain performance predictions of the application kernels
on that GPU.

If the user wants to predict performance on future GPU hard-
ware or GPUs that they do not have access to, the parameter file can
be manually specified with properties such as maximum attainable
flop/s and memory bandwidth from the hardware specifications.
More details regarding the roofline analysis and validation of ker-
nels on various GPUs can be found in [19].

We have made a number of modifications to the original QRoof
implementation to minimize profiling time. The number of profiling
runs are now reduced to two: (1) a minimal-overhead profiling step
to determine kernel execution times and (2) a metric profiling step
to obtain performance characteristics of each kernel. The first step
is required for selective profiling, where only the kernels with
the most impact on overall performance are chosen to proceed to
the metric profiling step. This is done to minimize the number of
kernels whose metrics are profiled. We start with the kernel with
the longest execution time and addmore kernels until the sum of the
kernel execution times reaches some threshold, which is currently
set to 99% of the total time. We also exclude the CUDA API calls
from the profiling set, and restrict the profiling scope to the critical
sections of the application. These modifications significantly reduce
profiling time in all proxy applications, e.g. from more than 2 hours
to 30 minutes in the case of MiniFE.

3.4 Building the End-to-end Model
The individual models discussed above are brought together to cre-
ate a performance model that accurately predicts the performance
of a distributed GPU application. Figure 4 summarizes this method.

Figure 4: Modeling the end-to-end performance of a dis-
tributed GPU application

To estimate the end-to-end runtime, predictions for communica-
tion times from NACoM and computation times from QRoof are
added together with the overhead, which is measured from the
trace generation run at the smallest scale. The measured overhead
includes the time for CPU-GPU data transfers and CPU utilization
for computation and data structure management. For weak scaling,
the modeled performance of GPU kernels and measured overhead
can be assumed constant, whereas communication performance is
estimated from the simulation results.

To model the same application on a different HPC platform, the
platform-dependent parameters in NACoM and QRoof i.e. network
and GPU hardware parameters should be obtained with the proce-
dures described in Sections 3.2 and 3.3. The platform-dependent
parameters can be reused to create performance models for other
applications on the same platform. However, MPI trace files and
GPU kernel parameters need to be obtained separately for each
new application that needs to be modeled.

4 EXPERIMENTAL SETUP
Next, we describe the set of platforms and proxy applications used to
demonstrate and validate our methodology of creating performance
models. All applications utilize GPUs to accelerate computation
and MPI for distributed memory communication.

4.1 Platforms Used for Validation
We validate the generality and accuracy of our approach by model-
ing proxy applications on three different supercomputing platforms:
Summit at Oak Ridge National Laboratory, Lassen at Lawrence Liv-
ermore National Laboratory, and Bridges at Pittsburgh Supercom-
puting Center. Architectural details of these machines are presented
in Table 1. Note that Bridges has an allocation limit of four nodes
(eight GPUs) per job, and Lassen has a limit of 256 nodes (1,024
GPUs) in the regular batch queue. All platforms have many more
CPU cores than the number of GPUs, and each MPI process mapped
to a GPU is executed on a CPU core on the same socket.

The postal model and max-rate model parameters are obtained
on all machines via a multi-process ping-pong benchmark, which
are provided in Tables 2, 3, and 4. We did not obtain parameters for
the intra-socket case on Bridges because only one MPI process is
mapped on each socket. Similarly, since only one pair of processes
can be mapped to a single socket on Lassen and single node on
Bridges, the max-rate model is not applicable for intra-socket on
Lassen and inter-socket on Bridges. We use the two-parameter max-
rate model (Equation 3) for short messages, and the three-parameter
max-rate model (Equation 2) for eager and rendezvous messages.

ICS ’20, June 29–July 2, 2020, Barcelona, Spain Choi, et al.

Table 2: Postal model parameters (α , β)

Mode Protocol Summit Lassen Bridges
α β α β α β

Intra-socket
Short 4.79E−7 2.99E−10 3.61E−7 1.16E−10
Eager 5.96E−7 1.12E−10 5.21E−7 6.44E−11 N/A (1 process/socket)
Rendezvous 2.18E−6 5.37E−11 2.92E−6 3.49E−11

Inter-socket
Short 8.52E−7 3.33E−10 8.24E−7 1.05E−9 6.02E−7 1.46E−9
Eager 1.03E−6 2.27E−10 1.11E−6 2.16E−10 7.68E−7 2.05E−10
Rendezvous 4.60E−6 1.18E−10 2.54E−6 1.24E−10 8.76E−7 1.81E−10

Inter-node
Short 1.24E−6 1.01E−9 1.21E−6 1.19E−9 1.36E−6 3.55E−9
Eager 2.86E−6 1.55E−10 2.86E−6 1.52E−10 2.98E−6 4.20E−10
Rendezvous 7.59E−6 8.70E−11 8.81E−6 7.18E−11 2.94E−5 1.59E−10

Table 3: Max-rate model parameters for the MPI short protocol (α , β)

Mode Summit Lassen Bridges
α β α β α β

Intra-socket 6.29E−7 6.21E−10 N/A (Apply postal model) N/A (1 process/socket)
Inter-socket 1.02E−6 1.45E−9 1.08E−6 1.45E−9 N/A (Apply postal model)
Inter-node 1.51E−6 6.32E−10 1.55E−6 8.84E−10 1.39E−6 5.51E−9

Table 4: Max-rate model parameters for the MPI eager and rendezvous protocols (α , RCb , RCi)

Mode Protocol Summit Lassen Bridges
α RCb RCi α RCb RCi α RCb RCi

Intra-socket
Eager 7.65E−7 9.07E9 4.32E9

N/A (Apply postal model) N/A (1 process/socket)
Rendezvous 3.59E−6 1.80E10 1.53E10

Inter-socket
Eager 1.33E−6 5.29E9 2.69E9 1.53E−6 4.70E9 3.84E9

N/A (Apply postal model)
Rendezvous 4.04E−6 8.28E9 7.08E9 3.41E−6 8.41E9 7.09E9

Inter-node
Eager 2.39E−6 6.68E9 1.27E9 2.36E−6 4.92E9 2.31E9 2.16E−6 2.20E9 1.35E9
Rendezvous 9.33E−6 1.23E10 2.58E7 1.06E−5 1.79E10 2.22E9 3.26E−5 6.35E9 2.08E8

4.2 Proxy Applications
Jacobi2D: Jacobi2D is a simple proxy application that implements
a 2D Jacobi iteration using GPUs, and exchanges halo regions be-
tween neighboring processes. Each MPI process is responsible for a
16,384 × 16,384 block of cells stored on the GPU, with host-side send
and receive buffers to temporarily store halo data. An end-to-end
run performs 100 iterations, where each iteration consists of the
following phases:

(1) Packing halo data (PACK): Halo data in non-contiguous mem-
ory regions aremoved to temporary contiguous device buffers
to prepare for data transfer to the host.

(2) Device-to-host transfer of halo regions.
(3) Halo communication between neighboring processes, imple-

mented with non-blocking MPI as in Listing 1.
(4) Host-to-device transfer of received halo data.
(5) Unpacking halo data (UNPACK): Halo data is moved from

temporary device buffers to the original blocks.
(6) Stencil computation (STENCIL, Equation 6).

(7) A sum reduction of all cells in the block (REDUCE).
(8) Host-to-device transfer of sum.
(9) Allreduce to compute the global sum.

The following stencil computation is performed on the GPU:

Ai , j =
1
2
×

(
Ai , j +

Ai−1, j +Ai+1, j +Ai , j−1 +Ai , j+1
4

)
(6)

where Ai , j is the cell located at position (i, j) of the grid.
The phases of interest are the halo communication (phase 3)

and execution of GPU kernels. We refer to the GPU kernels used
in phases 1, 5, 6, and 7 as PACK, UNPACK, STENCIL, and REDUCE,
respectively. Because we only model weak scaling, CPU-GPU data
transfers in phases 2, 4 and 8 are regarded as overhead. Phase 9 is
also not included in the model as it involves only one double value
and has a negligible effect on iteration time.

We gathered MPI traces for Jacobi2D by weak scaling it up to
1,536 processes (256 nodes) on Summit. The GPU kernels were
profiled and overhead times were measured in the two-process
execution while collecting MPI traces. We also gathered execution

End-to-end Performance Modeling of Distributed GPU Applications ICS ’20, June 29–July 2, 2020, Barcelona, Spain

Table 5: K-model parameters

Summit (k ′ = 6) Lassen (k ′ = 4) Bridges (k ′ = 2)
Kinter Ktotal k Kinter Ktotal k Kinter Ktotal k

Jacobi2D 14 24 3.50 10 16 2.50 4 8 1.00
MiniFE 135 156 5.19 92 104 3.54 50 52 1.92
MiniMD 28 36 4.67 18 24 3.00 10 12 1.67

times on Lassen and Bridges for validation, up to 768 processes (192
nodes) and six processes (three nodes), respectively.

MiniFE: MiniFE [22] is a proxy application for unstructured im-
plicit finite-element codes included in the Mantevo suite [15]. The
three-dimensional (3D) global grid is partitioned into boxes using
a recursive bisection method, each of which is mapped to an MPI
process for parallel execution. The core conjugate gradient (CG)
solve loop performs the following sequence of operations: dot →

waxpby → matvec → dot → waxpby → waxpby. This sequence is
repeated for 200 iterations.

The dot operation consists of the following phases:
(1) Vector dot product kernel (DOT)
(2) Reduction kernel
(3) Device-to-host data transfer
(4) Allreduce of one double value

The reduction kernel is not included in the 99% threshold and only
the DOT kernel (phase 1) is modeled using QRoof. The rest are
considered overhead. The waxpby operation consists of a single
GPU kernel invocation (WAXPBY) that computesw = ax +by, which
is modeled using QRoof. The matvec operation consists of the
following phases:

(1) Packing kernel
(2) Device-to-host data transfer
(3) Halo communication
(4) Matrix-vector multiplication kernel (MATVEC)

Halo communication (phase 3) ismodeled usingNACoMand MATVEC
(phase 4) using QRoof, and the rest are considered as overhead.

For weak scaling, each MPI process is configured to store a 200
× 200 × 200 box of double values and exchanges halo data with
neighbors in all three dimensions, with a maximum of 26 neighbors.
The size of the halo data exchanged can vary greatly depending
on the neighbor’s relative position: only one double is sent to a
neighbor touching at a corner, whereas 40,000 doubles are sent to
one sharing a face.

We generated MPI traces for MiniFE by executing it on up to
256 processes (64 nodes) on Lassen. Similarly to Jacobi2D, GPU
kernel parameters and overheads were obtained from the two-
process execution. We gathered execution times on Summit and
Bridges also for validation, up to 256 processes (43 nodes) and eight
processes (four nodes), respectively.

MiniMD:MiniMD [23] is a proxy application that performs molec-
ular dynamics simulations of a Lennard-Jones or EAM system, and
is also part of the Mantevo suite. Kokkos [7] is used as the per-
formance portability layer, which translates regular C++ functors
and lambda functions to kernels that can be executed on the GPU.

The 3D domain is spatially decomposed into boxes, each of which
is mapped to an MPI process. Each iteration of the core loop in
MiniMD performs the following:

(1) Initial integration (INIT)
(2) Exchange of atom information (when re-neighboring is off)
(a) Packing kernel (PACK)
(b) Device-to-host data transfer
(c) Halo communication
(d) Host-to-device data transfer
(e) Unpacking kernel (UNPACK)

(3) Lennard-Jones force calculation (FORCE)
(4) Reverse communication (same sub-phases as phase 2)
(5) Final integration (FIN)

Phases 1 and 5 each consists of a single kernel invocation (INIT
and FIN, respectively), whereas phases 2 and 4 contain non-blocking
MPI communication with at most six neighboring processes. These
communication calls are surrounded by packing and unpacking
kernels (PACK/UNPACK). To separate the host-device data transfers
(which are not modeled and regarded as overhead) and network
communication time, we modify the code to not use CUDA-aware
MPI. Phase 3 executes the core force calculation kernel, FORCE. For
the purposes of this work, we use a Lennard-Jones system defined
in the in.lj.miniMD file and simulate it for 100 iterations without
re-neighboring.

Each MPI process is responsible for a subdomain of 64 × 64 × 64
that contains one million atoms. We weak scaled MiniMD up to
1,024 processes (256 nodes) on Lassen to gather MPI traces and GPU
kernel parameters. On Summit and Bridges, we gathered execution
times by scaling it up to 1,024 processes (171 nodes) and eight
processes (four nodes), respectively.

Finally, we calculate the values of k for the K-model empirically
for each application as described in Section 3.1. These values are
calculated for eachmachine separately because the different number
of GPUs per node changes the relative number of intra-node and
inter-node messages. The K-model parameters obtained for each
proxy application are provided in Table 5.

5 MODEL VALIDATION
We now validate our performance model using the various proxy
applications and computing platforms. For each application, MPI
communication time, GPU kernel time, and end-to-end runtime is
measured on all processes. The process with the longest end-to-
end runtime is chosen as the representative (since the end-to-end
runtime depends on the slowest process), and its timemeasurements
are recorded. These measurements are obtained for three separate

ICS ’20, June 29–July 2, 2020, Barcelona, Spain Choi, et al.

 0

 50

 100

 150

 200

 250

2 4 6 12 24 48 96 192 384 768 1536

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(µ

s)

Number of processes

Measured Postal Max-rate K-model

(a) Summit

 0

 20

 40

 60

 80

 100

 120

2 4 6 12 24 48 96 192 384 768 1536

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(µ

s)

Number of processes

Measured Postal Max-rate K-model

(b) Lassen

 0

 50

 100

 150

 200

 250

 300

2 4 6 12 24 48 96 192 384 768 1536

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(µ

s)

Number of processes

Measured Postal Max-rate K-model

(c) Bridges

Figure 5: Predictions of the MPI communication time in Jacobi2D using different models.

executions, which are then averaged and compared to the prediction
of the performance model to validate its accuracy.

5.1 Jacobi2D
MPI Communication: Using the MPI traces obtained from Sum-
mit, we predict the communication performance of Jacobi2D with
NACoM and compare the results with the measured baseline perfor-
mance, as shown in Figure 5. Only up to 256 nodes (1,024 processes)
on Lassen and four nodes (eight processes) on Bridges may be al-
located, thus jobs requiring larger allocations are only simulated
with NACoM.

We first experimented with the postal and max-rate models on
Jacobi2D but found neither to come close to the measured times,
which motivated us to develop the K-model. The postal model
grossly under-predicts the communication time, as it does not take
into account the effect of multiple processes simultaneously utiliz-
ing network resources. The max-rate model, while addressing this
issue, assumes that all communication is inter-node, resulting in
overestimated times. By factoring in intra-node communication,
the K-model is able to generate more accurate predictions espe-
cially onmachines with a relatively large number of communicating
processes per node, including multi-GPU machines such as Summit.

On 1,536 processes running on 256 nodes of Summit, the postal
and max-rate models yield prediction errors of 59% and 31%, re-
spectively, while the K-model results in the lowest error of 15%.
The error rates are lower on Lassen for 768 processes on 192 nodes,
with 27% and 15% for the postal and max-rate models and 5% for
the K-model. This is because with a smaller number of processes
per node (four on Lassen versus six on Summit), the prediction
accuracy is not as affected by the negligence of the inter-node band-
width limit (postal model) or the assumption that all messages are
inter-node (max-rate model). On Bridges with six processes, with
an even smaller number of processes per node of two, the error
rates are 7% and 16% for the postal and max-rate models, and 2%
for the K-model.

GPU Kernels: We obtain predictions for the GPU kernels of Ja-
cobi2D on the two different GPUs (Tesla V100 on Summit and
Lassen, and Tesla P100 on Bridges) using QRoof and compare them
with the measured times, as in Figure 6. As Tesla V100 is a newer
hardware, we see better performance for all kernels. The predictions
are relatively accurate except for PACK and UNPACK on Tesla V100,

 0

 2

 4

 6

 8

 10

 12

PACK
(V100)

PACK
(P100)

UNPACK
(V100)

UNPACK
(P100)

STENCIL
(V100)

STENCIL
(P100)

REDUCE
(V100)

REDUCE
(P100)

 0

 25

 50

 75

 100

T
im
e

 (
m
s
)

R
e
la
tiv
e

 e
rr
o
r
(%
)

Kernel

Measured Predicted Error

Figure 6: Predictions of the GPU kernel time in Jacobi2D.

with a prediction error of 59%. We believe PACK and UNPACK times
were significantly underestimated because the kernels utilize only a
small percentage of threads to move the halo data and the memory
accesses are strided. Although the source GPU (where kernel pa-
rameters were obtained) and the target GPU (where performance is
predicted) are the same Tesla V100, predictions are not guaranteed
to be accurate since only a small number of performance metrics
are used in the QRoof model.

Per Iteration Time: The end-to-end runtime of Jacobi2D is cal-
culated as the product of the number of iterations and time per
iteration. We predict the iteration time as the sum of MPI commu-
nication time, GPU kernel time, and overhead: the output of the
K-model is used for MPI communication time, and QRoof predic-
tions for GPU kernel time. The overhead is measured to be 200 µs
from the two-process run on Summit (which also generates MPI
traces and GPU kernel parameter files). The same overhead is used
in predictions for all scales of execution on all platforms, as we
expect it to stay constant with scaling and not change drastically
on different platforms. Figure 8 depicts the measured and predicted
iteration times for Jacobi2D on the three systems. Due to the node
count limit per job on Lassen and Bridges, we only have predictions
for configurations with 1,536 processes on 384 nodes of Lassen and
12 or more processes on six or more nodes of Bridges. Because the

End-to-end Performance Modeling of Distributed GPU Applications ICS ’20, June 29–July 2, 2020, Barcelona, Spain

 0

 200

 400

 600

 800

 1000

2 4 8 16 32 64 128 256

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(µ

s)

Number of processes

Measured Postal Max-rate K-model

(a) Summit

 0

 100

 200

 300

 400

2 4 8 16 32 64 128 256

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(µ

s)

Number of processes

Measured Postal Max-rate K-model

(b) Lassen

 0

 200

 400

 600

 800

2 4 8 16 32 64 128 256

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(µ

s)

Number of processes

Measured Postal Max-rate K-model

(c) Bridges

Figure 7: Predictions of the MPI communication time in MiniFE using different models.

GPU kernel time is much larger in scale compared to the commu-
nication time and overhead, it largely determines the prediction
accuracy for iteration time.

 0

 5

 10

 15

 20

 25

2 4 6 12 24 48 96 192 384 768 1536

It
er

at
io

n
 t

im
e

(m
s)

Number of processes

Summit Measured
Summit Predicted

Lassen Measured
Lassen Predicted

Bridges Measured
Bridges Predicted

Figure 8: Predictions of the per iteration time in Jacobi2D on
different platforms.

5.2 MiniFE
MPI Communication: MPI traces obtained from Lassen are used
to simulate the communication time of MiniFE with the three mod-
els in NACoM. These predictions are validated against the measured
communication time, as shown in Figure 7. The same allocation lim-
its on Lassen and Bridges are applied. We observe that the K-model
yields the most accurate predictions on all platforms.

Because of the three-dimensional simulation space in MiniFE,
there is a high probability that some neighboring processes in the
MPI Cartesian grid are placed on distant nodes at larger node counts.
This increases the effect of network congestion and number of hops
on communication performance (which is not modeled), causing
the actual communication time to increase beyond 64 processes in
contrast to the model predictions.

The K-model estimates are more similar to the max-rate model
in MiniFE than Jacobi2D as the k values are closer to the original
values, as described in Table 5. This demonstrates that the level of
discrepancy between the K-model and the max-rate model depends
on the application.

 0

 1

 2

 3

 4

 5

 6

DOT
(V100)

DOT
(P100)

WAXPBY
(V100)

WAXPBY
(P100)

MATVEC
(V100)

MATVEC
(P100)

 0

 25

 50

 75

 100

T
im
e

 (
m
s
)

R
e
la
tiv
e

 e
rr
o
r
(%
)

Kernel

Measured Predicted Error

Figure 9: Predictions of the GPU kernel time in MiniFE.

GPU Kernels: As shown in Figure 9, predictions for the kernels
in MiniFE are highly accurate for both devices as they are com-
putationally intensive and fit well into the roofline model. The
prediction errors range from 2-10%.

Per Iteration Time: As the CG solve step of MiniFE is iterative,
its execution time can be estimated as the product of the number
of iterations and time per iteration. Iteration time is predicted as
the sum of MPI communication time, GPU kernel time and over-
head. The overhead is measured to be 165 µs from the two-process
profiling run on Lassen, which is used for MiniFE predictions on
all process counts and platforms. The measured and predicted it-
eration times are compared in Figure 11. Due to the node count
limit, configurations with more than four nodes (eight processes)
on Bridges are only predicted through our performance model. The
GPU kernel times constitute most of the iteration time, and as their
accuracy is high on both GPU hardware, the resulting predictions
for iteration time yield low prediction errors: 6% and 4% at 256 pro-
cesses on 43 nodes of Summit and 64 nodes of Lassen, respectively,
and 0.5% at eight processes on four nodes of Bridges.

5.3 MiniMD
MPI Communication:MiniMD performs two phases of commu-
nication in each iteration, once in step 2 and another in step 4. Using
the MPI traces obtained on Lassen, the aggregated communication

ICS ’20, June 29–July 2, 2020, Barcelona, Spain Choi, et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 8 16 32 64 128 256 512 1024

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(m

s)

Number of processes

Measured Postal Max-rate K-model

(a) Summit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16 32 64 128 256 512 1024

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(m

s)

Number of processes

Measured Postal Max-rate K-model

(b) Lassen

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 8 16 32 64 128 256 512 1024

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(m

s)

Number of processes

Measured Postal Max-rate K-model

(c) Bridges

Figure 10: Predictions of the MPI communication time in MiniMD using different models.

 0

 2

 4

 6

 8

 10

2 4 8 16 32 64 128 256

It
er

at
io

n
 t

im
e

(m
s)

Number of processes

Summit Measured
Summit Predicted

Lassen Measured
Lassen Predicted

Bridges Measured
Bridges Predicted

Figure 11: Predictions of the per iteration time inMiniFE on
different platforms.

time per iteration is predicted with the three models in NACoM and
compared with the measured times on all platforms. The results are
shown in Figure 10. Again, communication time is only simulated
for configurations with more than four nodes (eight processes) on
Bridges. Other factors such as network congestion and hop count
negatively affect performance at larger node counts, but with less
impact compared to MiniFE due to the smaller communication
volume (maximum of six versus 26 neighbors).

GPU Kernels: The integration kernels (INIT, FIN), pack/unpack
kernels (PACK, UNPACK), and force calculation kernel (FORCE) are
included in the 99% execution time threshold and modeled through
QRoof. The relative errors for the performance predictions range
between 10% and 19%, as shown in Figure 12. In favor of space, we
combine PACK and UNPACK as one since the measured and predicted
times are very similar.

Per Iteration Time: The end-to-end runtime of MiniMD can be
computed as the product of the number of iterations and itera-
tion time. The measured overhead is 148 µs with two processes
on Lassen, which is used to predict the iteration time along with
the K-model predictions for MPI communication and QRoof pre-
dictions for GPU kernels, as shown in Figure 13. Executions with
more than four nodes on Bridges are only predicted through the
performance model. Since communication is a more significant

 0

 1

 2

 3

 4

 5

INIT
(V100)

INIT
(P100)

FIN
(V100)

FIN
(P100)

(UN)PACK
(V100)

(UN)PACK
(P100)

FORCE
(V100)

FORCE
(P100)

 0

 20

 40

 60

 80

 100

T
im
e

 (
m
s
)

R
e
la
tiv
e

 e
rr
o
r
(%
)

Kernel

Measured Predicted Error

Figure 12: Predictions of the GPU kernel time in MiniMD.

factor of iteration time in MiniMD compared to the other proxy
applications, the usage of the K-model over the postal and max-
rate models significantly improves prediction accuracy of iteration
time. The prediction errors are 15% and 11% with 1,024 processes
on 171 nodes of Summit and on 256 nodes of Lassen, respectively,
and 9% with eight processes on four nodes of Bridges. Note that
using a simulation-based approach allows us to quickly predict
performance at larger scales than limited by the physical machine,
as illustrated by the predictions for Bridges.

6 PREDICTIONS USING THE MODEL
We take a step further with our validated model and study some
what-if scenarios by tuning the parameters in our performance
model. Using MiniFE as the target application with MPI traces at
256 processes and kernel parameters obtained on Lassen, we ob-
serve how changes in the model parameters affect its performance.
Note that the same process can be applied to any distributed GPU
application with MPI traces and kernel parameters. Some of the
tunable parameters in our performance model are:

• number of GPUs per node
• GPU flop/s and memory bandwidth
• network latency and bandwidth (intra- and inter-node)

We tune the first two parameters and observe how they affect
performance, as the results from tuning the third are self-evident
(decrease/increase in communication time).

End-to-end Performance Modeling of Distributed GPU Applications ICS ’20, June 29–July 2, 2020, Barcelona, Spain

 0

 2

 4

 6

 8

 10

2 4 8 16 32 64 128 256 512 1024

It
er

at
io

n
 t

im
e

(m
s)

Number of processes

Summit Measured
Summit Predicted

Lassen Measured
Lassen Predicted

Bridges Measured
Bridges Predicted

Figure 13: Predictions of the per iteration time in MiniMD
on different platforms.

6.1 Number of GPUs per Node
We modify an architectural parameter, number of GPUs per node,
and observe how our model predicts application performance. The
total number of GPUs in the system is kept the same. The number
of GPUs per node is increased from one to 16, with the total number
of nodes decreasing from 256 to 16. This mimics compute nodes
becoming "fatter", with a decreasing number of nodes in the system.
GPUs on a node are evenly divided into two sockets, and the max-
rate model with parameters from Lassen is used as the underlying
communication model. This allows us to simply set k equal to the
number of MPI processes (GPUs) per node.

Figure 14 depicts the prediction results. The postal model predicts
that communication times will decrease as each node contains
more GPUs (and processes), as more intra-node communication
occurs in place of inter-node communication. However, the max-
rate model predictions suggest that despite the increase in intra-
node communication, communication performance degrades due to
multiple processes simultaneously utilizing the network. Iteration
time is not significantly affected by communication, as GPU kernels
account for the majority of the execution time.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1 2 4 8 16
 0

 1

 2

 3

 4

 5

 6

 7

 8

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(m

s)

It
er

at
io

n
 t

im
e

(m
s)

GPUs/Node

Postal (Comm)
Max-rate (Comm)

Postal (Iteration)
Max-rate (Iteration)

Figure 14: Predicted communication and per iteration time
of MiniFE with varying number of GPUs per node.

6.2 GPU Flop/s and Memory Bandwidth
We modify the GPU parameter file for Tesla V100 to study which
parameters affect kernel performance and how it affects the end-to-
end runtime. The resulting hypothetical devices are named A, B, C,
D: A has twice the flop/s of Tesla V100, B has half the flop/s, C has
double the memory bandwidth, and D has half the bandwidth. As
can be seen from Figure 15, the kernel times are only affected by
the change in memory bandwidth as QRoof classifies all kernels as
memory-bound. The change in MATVEC time has the most impact on
iteration time due to its relative scale. This demonstrates the ability
of the performance model to predict application performance in
the face of changes in GPU hardware.

 0

 2

 4

 6

 8

Tesla V100 A B C D
 0

 2

 4

 6

 8

 10

 12

K
er

n
el

 t
im

e
(m

s)

It
er

at
io

n
 t

im
e

(m
s)

GPU

DOT WAXPBY MATVEC Iteration

Figure 15: Predicted kernel and per iteration time of MiniFE
with different GPU parameters.

7 CONCLUSION
We have developed a general methodology to create end-to-end
performance models for distributed GPU applications that com-
bines modeling of MPI communication and GPU computation. To
model communication without a priori knowledge of the commu-
nication pattern, we adopt a simulation-based approach using the
TraceR-CODES framework. We improve upon the max-rate model
with simple application-dependent parameters and introduce the
K-model, which is used as the underlying analytical method to com-
pute message traversal times during simulation. The GPU quantita-
tive roofline model is used to generate predictions for different GPU
hardware, with improvements to reduce profiling time and thus
enhance its usability. Weak scaling behavior of an application can
then be predicted by combining the outputs of the communication
and GPU performance models with the measured overhead.

Our approach is validated with a set of proxy applications on
several multi-GPU platforms with varying network capabilities and
GPU hardware. The created performance model allows quick and
accurate predictions of application performance, and we demon-
strate this by tuning different model parameters and comparing
the results. There are applications with irregular workloads and/or
computation-communication overlap that are not covered by our
work. The challenge in predicting performance for such applica-
tions lies in determining the communication pattern and amount
of overlap, and is left as future work.

ICS ’20, June 29–July 2, 2020, Barcelona, Spain Choi, et al.

In the future, we plan to integrate models for CPU-GPU data
transfers, GPU kernels with varying input data sizes, and compu-
tation on CPU cores. This would allow us to model strong scaling
performance in addition to weak scaling and improve the versatility
of our approach. We also plan to support recent technologies for
data movement such as CUDA-aware MPI and NVLink. Emulation-
based extrapolation techniques will be also explored to obviate the
need to obtain MPI traces at all scales of execution.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy (DOE) by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-CONF-809401). This
research was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. DOE Office of Science and
the National Nuclear Security Administration. This work was sup-
ported by funding provided by the University of Maryland College
Park Foundation.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. DOE under Contract
No. DE-AC05-00OR22725. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number ACI-1548562. Specif-
ically, it used the Bridges system, which is supported by NSF award
number ACI-1445606, at the Pittsburgh Supercomputing Center.

REFERENCES
[1] Bilge Acun, Nikhil Jain, Abhinav Bhatele, Misbah Mubarak, Christopher D.

Carothers, and Laxmikant V. Kale. 2015. Preliminary Evaluation of a Paral-
lel Trace Replay Tool for HPC Network Simulations. In Euro-Par 2015: Parallel
Processing Workshops. Springer International Publishing, Cham, 417–429.

[2] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
1997. LogGP: Incorporating Long Messages into the LogP Model for Parallel
Computation. J. Parallel and Distrib. Comput. 44, 1 (1997), 71 – 79. https:
//doi.org/10.1006/jpdc.1997.1346

[3] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and
Wen-mei W. Hwu. 2010. An Adaptive Performance Modeling Tool for GPU
Architectures. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Bangalore, India) (PPoPP ’10). ACM, New
York, NY, USA, 105–114. https://doi.org/10.1145/1693453.1693470

[4] Amotz Bar-Noy and Shlomo Kipnis. 1992. Designing Broadcasting Algorithms
in the Postal Model for Message-passing Systems. In Proceedings of the Fourth
Annual ACM Symposium on Parallel Algorithms and Architectures (San Diego,
California, USA) (SPAA ’92). ACM, New York, NY, USA, 13–22. https://doi.org/
10.1145/140901.140903

[5] Abhinav Bhatele, Pritish Jetley, Hormozd Gahvari, LukaszWesolowski,WilliamD.
Gropp, and Laxmikant Kale. 2011. Architectural Constraints to Attain 1 Exaflop/s
for Three Scientific Application Classes. In Proceedings of the 2011 IEEE Interna-
tional Parallel & Distributed Processing Symposium (IPDPS ’11). IEEE Computer
Society, Washington, DC, USA, 80–91. https://doi.org/10.1109/IPDPS.2011.18

[6] C. D. Carothers, D. Bauer, and S. Pearce. 2000. ROSS: a high-performance, low
memory, modular time warp system. In Proceedings Fourteenth Workshop on
Parallel and Distributed Simulation. 53–60. https://doi.org/10.1109/PADS.2000.
847144

[7] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos. J.
Parallel Distrib. Comput. 74, 12 (Dec. 2014), 3202–3216. https://doi.org/10.1016/j.
jpdc.2014.07.003

[8] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. 1993. LogP:
Towards a Realistic Model of Parallel Computation. In Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(San Diego, California, USA) (PPOPP ’93). ACM, New York, NY, USA, 1–12. https:

//doi.org/10.1145/155332.155333
[9] DUMPI 2020. SST DUMPI Trace Library. Retrieved April 28, 2020 from https:

//github.com/sstsimulator/sst-dumpi
[10] Paul R. Eller, Torsten Hoefler, and William Gropp. 2019. Using Performance

Models to Understand Scalable Krylov Solver Performance at Scale for Structured
Grid Problems. In Proceedings of the ACM International Conference on Super-
computing (Phoenix, Arizona) (ICS ’19). ACM, New York, NY, USA, 138–149.
https://doi.org/10.1145/3330345.3330358

[11] Christian Feichtinger, Johannes Habich, Harald Köstler, Ulrich Rüde, and
Takayuki Aoki. 2015. Performance modeling and analysis of heterogeneous
lattice Boltzmann simulations on CPU–GPU clusters. Parallel Comput. 46 (2015),
1 – 13. https://doi.org/10.1016/j.parco.2014.12.003

[12] H. Gahvari and W. Gropp. 2010. An introductory exascale feasibility study for
FFTs and multigrid. In 2010 IEEE International Symposium on Parallel Distributed
Processing (IPDPS). 1–9. https://doi.org/10.1109/IPDPS.2010.5470417

[13] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang. 2012. Modeling
the Performance of an Algebraic Multigrid Cycle Using Hybrid MPI/OpenMP.
In 2012 41st International Conference on Parallel Processing. 128–137. https:
//doi.org/10.1109/ICPP.2012.41

[14] William Gropp, Luke N. Olson, and Philipp Samfass. 2016. Modeling MPI
Communication Performance on SMP Nodes: Is It Time to Retire the Ping
Pong Test. In Proceedings of the 23rd European MPI Users’ Group Meeting (Ed-
inburgh, United Kingdom) (EuroMPI 2016). ACM, New York, NY, USA, 41–50.
https://doi.org/10.1145/2966884.2966919

[15] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[16] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. LogGOPSim:
Simulating Large-scale Applications in the LogGOPS Model. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing
(Chicago, Illinois) (HPDC ’10). ACM, New York, NY, USA, 597–604. https://doi.
org/10.1145/1851476.1851564

[17] Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a GPU Ar-
chitecture with Memory-level and Thread-level Parallelism Awareness. In Pro-
ceedings of the 36th Annual International Symposium on Computer Architecture
(Austin, TX, USA) (ISCA ’09). ACM, New York, NY, USA, 152–163. https:
//doi.org/10.1145/1555754.1555775

[18] Darren J. Kerbyson and Philip W. Jones. 2005. A Performance Model of the
Parallel Ocean Program. Int. J. High Perform. Comput. Appl. 19, 3 (Aug. 2005),
261–276. https://doi.org/10.1177/1094342005056114

[19] Elias Konstantinidis and Yiannis Cotronis. 2017. A quantitative roofline model
for GPU kernel performance estimation using micro-benchmarks and hardware
metric profiling. J. Parallel and Distrib. Comput. 107 (2017), 37 – 56. https:
//doi.org/10.1016/j.jpdc.2017.04.002

[20] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan, and K.
Srinathan. 2009. A performance prediction model for the CUDA GPGPU platform.
In 2009 International Conference on High Performance Computing (HiPC). 463–472.
https://doi.org/10.1109/HIPC.2009.5433179

[21] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran. 2018.
Benchmarking Machine Learning Methods for Performance Modeling of Sci-
entific Applications. In 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS). 33–44. https:
//doi.org/10.1109/PMBS.2018.8641686

[22] MiniFE 2020. Mantevo/MiniFE. Retrieved April 28, 2020 from https://github.com/
Mantevo/miniFE

[23] MiniMD 2020. Mantevo/MiniMD. Retrieved April 28, 2020 from https://github.
com/Mantevo/miniMD

[24] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. 2017. Enabling Parallel
Simulation of Large-Scale HPC Network Systems. IEEE Transactions on Parallel
and Distributed Systems 28, 1 (Jan 2017), 87–100. https://doi.org/10.1109/TPDS.
2016.2543725

[25] nvprof 2019. Profiler :: CUDA Toolkit Documentation. Retrieved April 28, 2020
from https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[26] Top500 2019. November 2019 | TOP500 Supercomputer Sites. Retrieved April 28,
2020 from https://www.top500.org/lists/2019/11/

[27] Xingfu Wu and Valerie Taylor. 2013. Performance Modeling of Hybrid
MPI/OpenMP Scientific Applications on Large-scale Multicore Supercomputers.
J. Comput. Syst. Sci. 79, 8 (Dec. 2013), 1256–1268. https://doi.org/10.1016/j.jcss.
2013.02.005

[28] G. Zheng, Gunavardhan Kakulapati, and L. V. Kale. 2004. BigSim: a parallel
simulator for performance prediction of extremely large parallel machines. In
18th International Parallel and Distributed Processing Symposium, 2004. Proceedings.
78–. https://doi.org/10.1109/IPDPS.2004.1303013

https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1145/1693453.1693470
https://doi.org/10.1145/140901.140903
https://doi.org/10.1145/140901.140903
https://doi.org/10.1109/IPDPS.2011.18
https://doi.org/10.1109/PADS.2000.847144
https://doi.org/10.1109/PADS.2000.847144
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1145/155332.155333
https://doi.org/10.1145/155332.155333
https://github.com/sstsimulator/sst-dumpi
https://github.com/sstsimulator/sst-dumpi
https://doi.org/10.1145/3330345.3330358
https://doi.org/10.1016/j.parco.2014.12.003
https://doi.org/10.1109/IPDPS.2010.5470417
https://doi.org/10.1109/ICPP.2012.41
https://doi.org/10.1109/ICPP.2012.41
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1177/1094342005056114
https://doi.org/10.1016/j.jpdc.2017.04.002
https://doi.org/10.1016/j.jpdc.2017.04.002
https://doi.org/10.1109/HIPC.2009.5433179
https://doi.org/10.1109/PMBS.2018.8641686
https://doi.org/10.1109/PMBS.2018.8641686
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniMD
https://github.com/Mantevo/miniMD
https://doi.org/10.1109/TPDS.2016.2543725
https://doi.org/10.1109/TPDS.2016.2543725
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.top500.org/lists/2019/11/
https://doi.org/10.1016/j.jcss.2013.02.005
https://doi.org/10.1016/j.jcss.2013.02.005
https://doi.org/10.1109/IPDPS.2004.1303013

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Analytical Models for Communication
	2.2 Trace-based Simulation for Modeling Communication
	2.3 Modeling GPU Computation
	2.4 Other Related Work

	3 End-to-end Performance Model
	3.1 The K-model
	3.2 Node-aware Communication Model
	3.3 Quantitative Roofline Model for GPUs
	3.4 Building the End-to-end Model

	4 Experimental Setup
	4.1 Platforms Used for Validation
	4.2 Proxy Applications

	5 Model Validation
	5.1 Jacobi2D
	5.2 MiniFE
	5.3 MiniMD

	6 Predictions Using the Model
	6.1 Number of GPUs per Node
	6.2 GPU Flop/s and Memory Bandwidth

	7 Conclusion
	Acknowledgments
	References

