
Contents

1 Introduction 1
1.1 Broad Approach . 2

2 Foundational Concepts 4
2.1 Execution Model and Cost Model . 4
2.2 Message-driven Execution . 5
2.3 WUDUs empower Runtime Systems . 6
2.4 The Principle Of Persistence . 6

3 XARTS: Exascale Mechanisms 6
3.1 Managing Collections of WUDUs . 7
3.2 Intra-Node Parallelism . 7

3.2.1 Mechanisms for handling Heterogeneity/Accelerators: 8
3.3 Continuous Introspection Framework . 9

4 XARTS: Exascale Adaptive Strategies 9
4.1 Scalable Dynamic Load balancing . 9
4.2 Energy Efficiency . 11

4.2.1 Adapting to Thermal Variations . 11
4.2.2 Minimizing Energy, Power, and Execution time 11

4.3 Fault Tolerance Schemes . 12
4.3.1 Local or In-Memory Checkpointing . 13
4.3.2 Message Logging with WUDUs . 13

4.4 Communication Optimizers . 14
4.5 Auto-tuning Based on Control Points . 14
4.6 Scalable Debugging and Analysis Tools . 15

5 XCharJ: MultiParadigm Programming with compiler support 15
5.1 Deterministic Access to Global Data . 16
5.2 Global Extensible Arrays with Transactions and Atomicity 17
5.3 Static Data Flow . 17
5.4 Divide-and-Conquer . 18
5.5 Tree-Based Algorithms . 19
5.6 Compiler support through the ROSE framework . 19
5.7 Example: Molecular Dynamics . 20

6 Transition Paths 21
6.1 Converting MPI codes to use XARTS . 21
6.2 Interoperability with MPI . 21

7 Application Demonstrations 22

8 Management Plan 23

1

XCharj: An Exascale Language with a Scalable Adaptive Runtime System

Applicant/University: Laxmikant V. Kalé, University of Illinois at Urbana-Champaign.
Street Address/City/State/Zip: 201 North Goodwin Avenue, Urbana, IL, 61801-2302
Principal Investigator: Laxmikant V. Kalé.
Postal Address: 201 North Goodwin Avenue, Urbana, IL, 61801-2302
Telephone Number: (217) 244-0094
Email: kale@illinois.edu
Funding Opportunity Announcement Number: DE-FOA-0000619.
DOE/Office of Science Program Office: Office of Advanced Scientific Computing Research (ASCR).
DOE/Office of Science Program Office Technical Contact: Dr. Sonia R. Sachs.

2012 X-Stack Year 1 Year 2 Year 3 Total
Laxmikant Kale, UIUC $400,000 $400,000 $400,000 $1,200,000

Collaborating Institutions Total
Daniel Quinlan, LLNL $250,000 $257,500 $265,225 $772,725
Robert Harrison, ORNL $200,000 $200,000 $200,000 $600,000

Totals $850,000 $857,500 $865,225 $2,572,725k

Table 1: Budget Allocation

Project Objectives
The transition to exascale is expected to be much more challenging than that to petascale, in part because

of a much larger increase in concurrency, heterogeneity in the form of accelerators and process variation, and
increased importance of power/energy considerations. It is compounded further by increasing sophistication
of CSE applications, and the need for strong scaling.

The proposed research aims at addressing these challenges by developing adaptive runtime techniques
and higher level abstractions supported by static analysis, and by evaluating these with DOE-relevant mini-
apps.

The first objective is to develop a highly scalable, introspection-driven adaptive runtime system to com-
bat the variability of the exascale environment. Specifically, we plan to develop an execution model based on
over-decomposition into logical work and data units, and an introspection system that continually monitors
execution and triggers corrective strategies. We will develop several classes of adaptive strategies including
(a) scalable strategies for dynamic load balancing, dealing with interconnection topology, handling intra-
node processor hierarchy and utilizing diverse accelerator hardware, (b) energy and temperature control
strategies, and (c) fault tolerance strategies.

Raising the level of abstraction for application developers is another major objective of the proposed
work. Our novel idea is to develop abstractions based on observed patterns of interaction between parallel
entities. By narrowing focus to a particular class of interactions, we can create a programming dialect that
is simpler, more analyzable, and less error-prone. We will develop multiple dialects, specialized to these
patterns, and a general-purpose analyzable language that embeds them. Interoperability between them will
be supported by virtue of our execution model.

A major objective is also to ensure that applications can transition to our stack easily, by a combination
of supported conversion of MPI programs, and interoperability with MPI modules.

The project will draw upon application development expertise of the investigators to evaluate the tech-
niques and abstractions developed, using mini-apps based on DOE applications.

2

Contents

3

1 Introduction
High-performance parallel computing has demonstrated the potential to engender breakthroughs in sci-

ence and engineering in areas of national importance such energy, national security, and biomedicine. Al-
though programming a large number of processors to solve a single problem faster has been a challenging
task, scientists and engineers have persevered and delivered high-performing simulation codes for many ap-
plication domains on machines with hundreds of teraFLOP/s (and in some cases, petaFLOP/s) performance.

However, it is now well accepted that the transition to the next level of performance, namely exaFLOP/s,
would be substantially different and difficult. The evolution of semiconductor technology is at a point where
clock speeds cannot be increased much further, and thermal considerations limit progress of processor design
in significant ways. On the other hand, Moore’s law regime is likely to continue for a decade, taking feature
sizes down to 5-9 nm, and the number of transistors per chip over 50 billion. One can use these transistors
to put hundreds of cores on each chip.

The first teraFLOP/s machine on the top 500 was Sandia’s ASCI Red in 1997. It had 7,264 cores running
at 200 MHz. The current top machine, Kei computer, is 10,000 times faster (10+PF), but has only 100 times
more cores (705,024 cores in 88,128 chips). The remaining factor of 100 performance increase came from
each core becoming faster. From here on, the per-core performance is likely to be fixed (or go lower, because
of thermal considerations). This means a huge increase in degree of parallelism – with hundreds of millions
(possibly billions) of hardware cores/threads – will be required to obtain exaFLOP/s performance.

Further, the cores will likely be heterogeneous: each node will likely consists of chips containing accel-
erator style processor cores as well as traditional processor cores optimized for single thread performance.
The sheer number of components, as well as the semiconductor process technologies involved, will make
it likely that the mean-time to component failure could be in minutes. Data movement will become the
most expensive operation, both in terms of the execution time and the energy consumed. Total memory in
the system is also expected to grow much slower than the compute power. So, memory per core (and per
FLOP/s) will decrease considerably.

The nature of exascale applications also leads to new challenges:
• Strong scaling will be required at exascale for most applications, in part due to the memory size.

Also, the problems of interest in many domains do not get much larger, but are required to be solved
faster.
• Applications will get more sophisticated: For example, instead of using finer resolution every-

where when a larger machine becomes available, they will use dynamic and adaptive refinements.
Also, strong scaling requirements lower the time per iteration/step, which increases the impact of
load imbalances, which may be persistent or transient.
• Applications will tend to be multi-module and multi-physics in nature. There will be a need to cast

expensive parallel software into modular yet efficient parallel libraries.

So, in spite of increasingly complex machine structures, we need to make development of CSE applica-
tions easier than it is now. This proposal addresses this challenge in a two-pronged manner:

1. XARTS: Exascale Adaptive Runtime System We first build upon an execution model based on the
concepts of over-decomposition, message-driven execution, and macro-data-flow [1–3]. The ontology
of this model naturally leads to empowering an adaptive runtime system that can continuously monitor
execution — including machine variations and application evolution — at a granularity that allows it
to intervene to optimize performance. XARTS will provide dynamic resource management, fault tol-
erance, communication optimizations, thermal/power management, and heterogeneity management,
freeing the programmer and higher level languages from having to deal with these issues.

1

2. XCharJ: The API provided by XARTS components, with thin layers of support libraries, can be
used to code applications directly. However, a compiler-supported higher level language can raise
the level of abstractions further, increasing performance and producivity. One way to accomplish this
is to provide support, including specialized syntax (dialect) and static analysis, for a few dominant
interaction patterns. Compiler support will be aimed at basic optimizations [4, 5] targeted at these
specialized notations,, rather than auto-parallelization or other complex strategies that have proved
inadequate in the past.

Application Orientation: One of the guiding principle in our design is that all abstractions and features
must be motivated by CSE applications, and they must be validated by use in multiple applications. While
we develop and present our abstractions in a bottom-up manner, to ensure pragmatic implementability at
each layer, this application orientation ensures that we develop concepts that will make an impact on the
state of art of parallel programming for CSE. The PIs are exemplars of this approach to the science of
parallel programming. The lead PIs’ 1994 position paper explicitly elaborated this principle [6]. Harrison’s
development of abstraction in the MADNESS framework [7], Quinlan’s ROSE framework [8], and Kale’s
Charm++/AMPI [1] were all driven by CSE applications, and have been used and validated in their use.

1.1 Broad Approach

The ideas in the proposal build upon much past work. Although exascale provides a qualitatively different
challenge, the fundamental issues in parallelism still exist, albeit in a different mix. This makes it imperative
that we build upon existing work, while seeking radical changes in programming models.

The work of lead PI (Kale) on Charm++ [1] (funded by DOE in part), and its adaptive runtime system
is designed for dynamic and irregular context, and the concepts developed within it are highly relevant for
exascale. It is by relying on these concepts (and in some cases, software modules) that we will be able
to deliver research (and software) on an almost complete exascale software stack, with a relatively modest
budget. However, the proposed work will need significantly more functionality than that is provided by
Charm++, especially in scalable strategies, and in its higher level language.

The overall approach we take is shown in perspective in Figure 1. We now describe this broad approach
and place it in the context of existing state-of-art work. We start with the lower levels, and build upwards.

A low level runtime system (LRTS) is needed at exascale to provide basic startup, communication and
essential (minimal) OS services with a uniform API. We expect to leverage existing work in Charm++ RTS,
and possibly that from the Unistack project, for this purpose. Work done on layers such as GASNET [9],
ARMCI [10], MPICH [11], MVAPICH [12], and OpenMPI [13] is relevant for this purpose, and we hope
to ally with those groups in an attempt to standardize this layer, and build upon it. The main attributes we
need from this layer are efficient and flexible communication, and ability to withstand component failures.
Although the ability to recover is not needed at this level, we want to make sure that the communication
layer will survive broken connections. Currently, layers like PAMI [14] and uGNI [15] are able to withstand
faults in this sense, and this capability will be reflected by the LRTS.

Moving upwards, the next layer provides a data-driven scheduler in user-space, which can work from
a prioritized queue when needed. It also provides user-level light-weight threads. Such threads are used in
Charm++ [1], Adaptive MPI [16], Sandia’s Qthreads project [17] and HPX [18].

The next layer provides the key mechanism that makes our approach possible: it supports our execution
model based on a large number of migratable entities (WUDUs: see §2.1). The layer provides naming
and partitioning schemes for these entities, and supports scalable location services, as well as migratable
threads. Relevant previous work includes Chare Arrays in Charm++, isomalloc [19, 20], Qthreads [17],
ParalleX [18], and work on scalable communicators in MPI [21, 22].

2

Load balancers:
intra-node, inter-node
Power-aware, Thermal-

aware, Topo-aware

Data-driven scheduler, user-
level threads, priority queues

WUDUs: Indexed collection,
Migratable threads,

Scalable sections (sub-communicators),
Location services

Application Module Application ModuleApplication Module

C
ontinuous Introspection Fram

ew
ork

XCharJ: Higher Level Language, based on interaction patterns
Static Dataflow

DAGs
Embedded

sub-languages
Deterministic
Global Arrays TreesDivConAtomic Extensible

Arrays

Communication Libs
(Colletives/persistence)

Communication Libs
(Colletives/persistence)

Communication Libs
(Colletives/persistence)

Specialized Higher level Languages and Frameworks
Interoperable or embedded DSLs (Meshes, AMR, Particles, Trees, Solvers, ..)

LRTS: m/c specific implementations:
(start-up, communication, virtual mem. management)

XARTS

Scalable Tools
Analysis, Debugging

Fault tolerance protocolsFault tolerance protocolsFault tolerance protocols

MPI

AMPI

Legacy
Application

Module

Legacy
Application

Module

AMPIzer

Figure 1: Proposed Work on the Exascale Stack in Perspective

We will develop a continuous monitoring framework (§3.3) to provide introspective capabilities XARTS
needs to execute its adaptive strategies. There is relatively little existing work in this area, except for perfor-
mance visualization [23–25].

A set of highly scalable adaptive strategies constitute a major portion of the proposed effort. Adaptive
load balancers have been studied in projects such as Trilinos [26], Charm++ [1], and in more domain-specific
ways in AMR frameworks such as Paramesh [27] and Chombo [28]. Our point of departure from many of
them is that we will be deciding on migrating chunks (WUDUs) rather than the “elements” across processors,
and we will do it in a generic application-domain-independent way, typically based on introspection.

Fault tolerance strategies have received significant attention in HPC recently [29, 30]. Our objectives
here is to ensure low overhead, high scalability, and high rate of progress in presence of component fail-
ures. We will build upon several ideas in existing literature, and especially in ways that leverage the over-
decomposition of our execution model.

Extensive research has been done on optimization and selection of communication algorithms as they
are critical in obtaining good performance [31,32]. We propose a selection scheme that will use the observed
persistent communication pattern, including the context of the communication operation, across iterations.
Thus, if the pattern persists, it is equivalent to taking a decision in present while knowing the future.

Various tools, some of which have recently shown scalability to 200, 000 processors, exist for parallel
debugging and analysis, including TotalView [33], DDT [34], Eclipse [35], TAU [36], Vampir [37], Jump-
shot [38], Cray Apprentice [39] and HPCToolkits [40]. In our previous work, we have developed scalable
techniques for debugging and analyzing message-driven parallel applications [41, 42]. Using our execution

3

model, which allows integrating data collection with application communication, we will demonstrate the
utility of our approach to implement scalable tools.

Recognizing that the abstraction level provided by MPI (or MPI+OpenMP) is inadequate, several re-
search efforts have focused on developing new higher level languages, some of which are compiler sup-
ported. PGAS models support notions of globally shared data or arrays. Global Arrays [43] is a library
based approach, whereas UPC [44] extends the C model of memory (including pointer arithmetic) to a dis-
tributed environment. CAF [4] provides a shmem like access to remote processors’ data with a convenient
notation, while its compiler optimizes it, e.g by doing aggregation. Languages developed by IBM (X10 [45])
and Cray (Chapel [46]) support PGAS, other asynchronous abstractions and compiler optimizations.

Our approach is different from the above mentioned: we think interaction patterns between parallel
entities can be specialized to provide simpler, and in some cases, deterministic-by-design parallel languages,
each of which is inadequate by itself for all parallel programs, but together provide a rich toolbox (§5).
Domain-specific (and data-structure-specific) frameworks can be built on top of such a toolbox. Conscious
support of interoperability, which requires careful design of features in the runtime, ensures that these tools
form a synergistic ecosystem.

We begin by describing our execution model (§2.1). Our execution model, which is essentially same as
that of Charm++ and HPX [47], is simultaneously a radical departure from the status quo represented by MPI
(and MPI+ OpenMP), while having been tested on well established parallel applications (e.g. NAMD [48],
OpenAtom [49], Cosmology [50]) for several years.

2 Foundational Concepts

We next describe the execution model and the tenets underlying our approach to exascale programming.
Migratable, overdecomposed WUDUs form the basis of our execution model (§2.1), which empowers the
adaptive runtime system (§2.3). We rely on the principle of persistence (§2.4), which is the basis of many
adaptive strategies described later (§4).

2.1 Execution Model and Cost Model

The computation in our execution model consists of a large number of units. Each unit may be a work unit
(WU), a data unit (DU), or more typically, an amalgam of the two (WUDU). An example of a pure work
unit is a pure function that is given an input and produces an output without a side effect. A pure data unit
is a slice of data that can be read or written as a unit from outside. Common examples of amalgams of the
two include a thread with its own stack, or an object with encapsulated data and some methods to operate
on. Since both extremes can be thought of as a special case of an amalgamated work unit/data unit, we refer
to them all as WUDUs. In addition to the WUDUs, our ontology includes the notion of a trigger. A simple
example of a trigger is an MPI-style message; but a trigger may also be a method invocation, a continuation,
or a “kick” devoid of any data that is supposed to trigger some computation when it is received at a WUDU.

Each work unit is further broken down into dependent execution blocks (DEBs), each of which depends
on one or more pieces of data that is not local to the work unit concerned. In addition, optionally, it may also
depend on a condition local to the work unit, typically indicating the readiness of the work unit to undertake
the computation of the DEB. A DEB’s dependencies are satisfied when all its dependent data is locally
available (though not necessarily in cache), and its conditions are satisfied. A DEB whose dependencies
are satisfied is called a ready DEB. A DEB’s execution is atomic, in the sense that it is not paused awaiting
additional data (since there are no additional dependencies beyond the initial ones), nor is another DEB
associated with the same WUDU allowed to execute before it completes.

Although not a part of the execution model, we also define the notion of a sequential execution block

4

Scheduler

Execution Queue

Trigger

Trigger

Trigger

DEB1

DEB2

DAG

DEB

WUDU1 WUDU2

DAG

Figure 2: Execution within a processor

(SEB), for completeness. An SEB is a section of a DEB that is separated for analysis because of its cohesion.
This could be a loop nest or a function call, or just an interval between two points in the execution of a DEB.
Thus, a WUDU is a unit of migration, a DEB is a unit of scheduling, and an SEB is the smallest unit of
analysis/introspection.

Execution proceeds by selecting an independent set of ready DEBs, and executing an arbitrary subset
of them. Two DEBs of the same WUDU are considered dependent, and are not executed simultaneously.
Execution of a DEB may lead to a change in the state of the WUDU that owns it, and to creation of new
triggers, thereby adding to the set of ready DEBs. Execution continues in this fashion until one of the
DEBs calls for termination of the program. The quiescent condition, when there are no ready DEBs, is not
necessarily a ground for termination. It is possible to specify that a trigger be created when quiescence is
attained, thereby starting the next phase of the computation.

An efficient way of ensuring independence and atomicity properties mentioned above is to anchor each
WUDU to a single core, at a time. This is the default strategy we adopt. But we can relax it when needed,
as long as these properties are upheld.
The Cost Model for the application developer, or for the higher level languages that translate to the level of
WUDUs is as follows. Creation of each trigger has a cost depending on the size of the payload data on it,
via a standard α+nβ form, where α and β are expressed in (say) cycles. Accessing data within a WUDU is
relatively cheap, whereas accessing data via triggers is expensive. Accessing data in other WUDUs directly
is not allowed. (exceptions: §3.2).

This execution model is similar to that used in Charm++ for many years, as well as in models such as
HPX. Its utility, which was relatively small at terascale for most applications, is much higher at exascale,
because of its flexibility, and the increased need for an adaptive runtime system.

2.2 Message-driven Execution

The execution model is message-driven: since there are multiple WUDUs on each core, a user-level sched-
uler must schedule DEBs based on availability of a trigger. This confers performance and modularity ben-
efits to the application: if one DEB is waiting for some remote data, another ready DEB is scheduled for
execution. This generates an adaptive and automatic overlap of communication and computation. Further, it
spreads communication over the iteration, unlike the current MPI compute-communicate paradigm, which
leads to the network being used for only a small fraction of the time. As a result, one can avoid the need for
aggressively engineered (and power-inefficient) networks.

5

Compositionality: Since executions of distinct modules can interleave in a message-driven manner on a
single core, parallel composition of parallel modules is well-supported by this model [51].

2.3 WUDUs empower Runtime Systems

In our scheme, the programmer (at least at the base level) is still responsible for the grainsize decisions;
but the grainsize decision can be made without reference to the total number of processors. For good per-
formance the computation of a DEB should be large enough to amortize the cost of its trigger. Another
consideration in deciding the grainsize is that of the memory overhead. However, none of these quantities
depend on the number of processors. Further, application developers (or compilers) may produce parame-
terized code which makes it easy to change the grainsize (See §4.5).

As a consequence, this methodology produces an abundance of parallelism: the number of WUDUs
(and dynamically, the number of ready DEBs) can be much larger than the number of processors. This over-
decomposition fundamentally empowers the runtime system to optimize the execution in multiple ways (§4),
without intervention from the application developer.

2.4 The Principle Of Persistence

At exascale, hardware will exhibit static heterogeneity (e.g. accelerators) as well as dynamic heterogeneity
(e.g. failures and chip temperatures). In addition, applications will exhibit dynamically changing behavior.
In this shifting landscape, our main friend is the principle of persistence, albeit only a partly reliable one.
This heuristic principle states that, in most CSE applications, once the computation is expressed in terms
of the natural objects (WUDUs), the computational loads of individual WUDUs and their communication
patterns tend to persist over time. Note that this is only a heuristic principle, which arises from the fact
that most CSE applications tend to be iterative in nature. Even when the situation changes dynamically,
in most cases it changes slowly (as when atoms migrate across boxes in molecular dynamics simulations)
or abruptly but infrequently (as in periodic dynamic refinements). Of course, there exist some applications
for which the principle of persistence applies weakly. However, as a heuristic it is extremely useful for
optimizing performance in a running program, for an adaptive runtime system. The analogy here is that of
a cache hierarchy: although the principle of locality is only a heuristic, the microprocessor industry built
several generations of architectural design around the idea of cache hierarchy based on this principle. Our
stack will have complementary strategies that can be used when this principle does not apply. To utilize
it when it does apply, we will develop the ability (§3.3) to keep track of application and machine behavior
dynamically.

3 XARTS: Exascale Mechanisms

We next describe the capabilities we propose to build in our exascale adaptive runtime system (XARTS). As
will become clear, it is an ambitious design. We will point out where we intend to build/extend on previously
developed ideas, and where previous work can be used (mostly) as it is.

The base of XARTS will be low-level runtime system (LRTS), which provides a portable interface for
the most essential communication functions. LRTS provides a portable API for basic communication and
machine-specific functions, such as scalable job startup, efficient one-sided, two-sided and active-message
style communication, and virtual memory management. We will use existing software, from the Unistack
project or the existing LRTS of Charm++, with a few extensions, for the purpose of research proposed here.
Similarly, we will reuse the data-driven scheduler, and instantiations of user-level threads that can migrate
across nodes, from the Charm++ RTS.

6

3.1 Managing Collections of WUDUs

Since WUDUs are specified by the programmer without any reference to which processor they live on,
XARTS must decide the location of each WUDU. Also, to deliver triggers to WUDUs, XARTS must keep
track of the locations of WUDUs, in an efficient and scalable manner. The first component of XARTS
supports basic implementation of WUDUs and scalable adaptive location services that help deliver data to
them efficiently, in spite of migrations.
Planned Research: A naming and representation scheme that supports creation of new WUDU collections,
and insertions of new WUDUs in existing collections will first be developed. The challenge here is a
compact (say 64 bit) representation which is also efficient for translating between language-level names and
their binary representations. For location services, a distributed hash table (or a distributed “directory”),
with a selective caching of locations, with “home” processors that almost always know the location of an
object, is effective (As described in [52]).

At exascale, we will need to extend these ideas for efficiency, utilizing (a) multiple replicas of the
directory for reliability and efficiency and (b) leveraging the large number of cores on a node to provide
a more responsive service. We also plan to research methods for proactively populating caches especially
after load balancing, and good cache replacement mechanisms.

This layer also supports scalable creation and operations on “sections” (which are analogous to sub-
communicators of MPI, but apply to collections of virtual WUDUs). Existing runtime systems, such as
Charm++, provide an inspiration for this layer, but the proposed work goes beyond them in providing algo-
rithms for these operations that scale to multi-billion WUDUs spread over a billion cores. Proposed work
includes implementation of scalable distributed creation of sections, with multiple topology-aware adaptive
spanning structures, and specialized collective operations. Our experience suggests that sections that only
need support for reductions are created often. Formation of such unranked sections can be done with simpler
algorithms, which we will develop. For ranked sections, one challenge is to support it without requiring stor-
age proportional to the size of the section on any one processor, and especially not on all processors, which
is the norm (admittedly sustainable on current machines, but barely so) for many MPI implementations
today.

Efficient implementation of collectives over sections is another challenging problem. A good algorithm-
selection strategy must take into account not just message size and number of processes but also the location
of section members within the physical topology of the network and distance between adjacent members.
Further adaptive optimizations are described later §4.4.

Since XARTS strategies will depend on migratability of WUDUs, various mechanisms are needed to
make them migratable. For pure data units, and objects, this is straightforward. But for WUDUs that include
a user-level thread, this is a major challenge. Current methods include a technique that exploits large virtual
memory space to implicitly “reserve” (but not allocate) specific portions of address space on each node of
the system [19, 53]. We expect this scheme to be challenged at exascale, in part due to relatively crowded
virtual address space. Newer schemes, some compiler assisted, and others solely within the runtime will be
developed for this purpose.

3.2 Intra-Node Parallelism

A node can be defined, for our purpose here, as the domain of a single OS image (process). Physical
infrastructure defines a limit for the number of cores on a node, but one can split it into smaller domains for
convenience. Current machine support up to 12-32 cores per node, and this number is likely to increase to
several hundred at exascale. The prevalent programming method is to use raw pthreads or OpenMP within
a node, and MPI across nodes. This method allows one to exploit shared memory (in contrast to putting
an MPI process on every core), but complicates programming by requiring use of two different models.

7

Further, efficiency is compromised, at least in the current implementations, since OpenMP does not accord
adequate importance to locality.

We believe that an object (WUDU) decomposition can utilize multicore nodes effectively, with a few
extensions. First, the WUDUs enforce locality of reference. Note that each WUDU is allocated to only one
core at a time, and a work-unit is allowed by default to access only its own data, except via explicit remote
access constructs. Further, our base model allows access to data declared as readonly (which is replicated
on every node). An extension of this idea is to allow passing pointers to memory owned by a single WUDU
to others, but under very specific access contracts: a write-exclusive contract, where the sender promises
not to read the data nor pass it to other WUDUs until the write is completed, and a read-only contract
where the sender promises not to modify it until the read is completed. In a library setting, these contracts
are harder (but not impossible) to enforce, but we also plan to provide language/compiler support for them
(§5.1). Enforcing such contracts defines a semantic analysis of the use of the XCharJ programming model
(specifically the library’s API). Some dynamic analysis is possible and may be effective; but fundamentally
a library cannot see how it is used within an application. However, the compiler can see both how the
library is used, and especially important, the surrounding and even global context. This compiler support
is an effective way of enforcing such contracts. More precisely, specialized analysis passes can be written
to support such semantic analysis on the library API; such analysis passes can be either structural, or be
defined using the data flow framework within ROSE. This approach supports raising the level of the API
defined as a library API to that of a language API with full compiler support [54].

We also think there is scope for innovation in how memory is allocated and how data is laid out; e.g.
a chunked allocation, rather than a linear allocation, might be beneficial, especially if accesses are linear.
Another idea for chunking arrays was shown to be useful in [55] (which won a best paper award). This
paper also demonstrates the performance benefits of our execution model: KD tree construction was shown
to be on par or faster than a well-optimized versions based TBB.
Planned Research: We will develop and study application-triggered use-cases for within-node parallelism.
We will then develop a set of mechanisms and APIs to cater to them; these will include extensions of
the chunked-array abstraction, including multi-dimensional arrays (some concepts from HTA [56] will be
relevant for this work). Layout innovations will include runtime changes in the layout, esp. for multi-
dimensional arrays and arrays-of-structs, based on access patterns.

3.2.1 Mechanisms for handling Heterogeneity/Accelerators:

Several aspects of our programming model are advantageous in the presence of heterogeneous clusters and
accelerators technologies. Recall that the application is broken down into a collection of WUDUs and DEBs
that operate on the WUDUs (§2.1. Since the ready DEBs can be executed concurrently (i.e. no data depen-
dencies between them), the runtime system is free to peek-ahead in the queue of DEBs, schedule the DEBs
to accelerators (when possible), and preemptively move data as required before the DEBs execution (overlap
of data movement with execution). This type of optimization could be advantageous for architectures such
as the Cell processor, which was designed with a streaming execution model in mind. An initial effort to
apply this type of programming model, specifically in the context of CHARM++, has already demonstrated
that such an approach is feasible [57, 58]. Further, many DEBs will likely be executing the same code (i.e.
same DEB executing on a different WUDU), which will allow for other optimizations, such as agglomer-
ation and single instruction multiple data (SIMD) execution on a subset of the ready-to-execute DEBs, to
take place. Such optimizations are applicable in the context of general purpose graphical processing units
(GPGPUs), which use a single instruction multiple data (SIMD) execution model at the hardware level. We
propose the development of such optimizations within the XARTS, which will allow a programmer to focus
on expressing concurrency in their application using WUDUs and DEBs. The key aspect of the model is to
express the concurrency in a flexible manner, so that execution of the application can conform to a variety

8

of hardware architectures, including accelerators and heterogeneous clusters. The XARTS will dynamically
distribute, load balance, and otherwise manipulate the application across a heterogeneous set of cores based
on runtime information. We also propose supporting yet to be released accelerator architectures, such as the
many integrated core (MIC) design developed by Intel.

3.3 Continuous Introspection Framework

To exploit the benefits of the principle of persistence, we will develop a continuous introspection framework,
which will efficiently maintain a database of recent behavior of the WUDUs and their individual code-
blocks, using hardware counters, sensors and timers. Modern microprocessors provide extremely cheap
(fast) access to such counters, which we plan to leverage; e.g. the cost of a timer call on the Sandy Bridge
machine is 25 nanoseconds. It is feasible to maintain such a database effectively because all the events
required to monitor the activity are accessible to XARTS. The placement of WUDUS on processors is done
by XARTS, communication between WUDUs is mediated by XARTS and execution of individual DEBs on
physical resources is also scheduled by XARTS. The WUDUs are relatively coarse-grained (as a guide to
intuition, readers may assume tens of the WUDUs on a core; although in some some applications one may
use thousands of them per core); so, the memory overhead of this database is modest on each core. Of
course, at exascale it will not be feasible to copy this database on one processor, but that is an issue that the
strategies will be able to deal with.

4 XARTS: Exascale Adaptive Strategies

The heart of XARTS, and a major thrust of the proposed work, will be a set of exascale adaptive strate-
gies, which carry out various optimizations using mechanisms such as: migration of WUDUs, controlling
frequency/voltage of chips, intercepting and optimizing communication etc. The strategies to be devel-
oped include: (a) scalable dynamic load balancing to handle load imbalances, whether application induced,
hardware-induced, persistent or transient, (b) temperature-control to reduce cooling expense while protect-
ing hardware, (c) power and energy management, (d) a suite of fault tolerance protocols, and (e) communi-
cation optimizers that learn at runtime. These will build upon our previous work on adaptive runtime, while
overcoming the scaling limitations in them. We next describe the motivation, techniques, existing/prelimi-
nary work and proposed research on each of the topics.

4.1 Scalable Dynamic Load balancing

Our execution model encourages development of a two-level load-balancing scheme: the work is decom-
posed into WUDUs by the programmer, and the WUDU’s are assigned to processors by the runtime system.
For extreme situations, one may need schemes to split and merge WUDUs (See §4.5). But in general, the
runtime system needs to concern itself with WUDUs. Even on a 100 million core system, one expects
typically only a few billion WUDUs at the most, which is a manageable number for a parallel runtime
system.

Charm++ has demonstrated the utility of such a two-level scheme on machines with tens of thousands to
over one hundred thousand cores. Object computational loads and their communication is recorded on each
core. On smaller machines (up to several thousand cores) this graph is collected on a single processor, and
the selected load-balancing strategy can use this graph to produce a new assignment of objects to processors.
Charm++ also provides hierarchical load balancers that partition processors into groups, and send only
aggregate information to a root processor. The root decides the aggregate movement of work from groups to
groups and informs the group managers of this decision. The group managers send some appropriate pieces

9

of work (WUDUs) to the other group managers, and then do a detailed, accurate load balancing over their
own set of objects.
Planned Research: In this project, we propose work on the following tasks:

Scalability of load balancer: In our previous work, we have successfully developed a general central-
ized load balancing framework, which improves parallel program performance in many real applications.
This centralized load balancing framework is not feasible for exascale because the time cost to make the load
balancing decision will be too high and the database of computation/communication tracing will not fit into
memory on one node. We plan to add refinement strategies and further improve the multiple-level hierarchy
load balancing framework to overcome this limitation. In addition, we plan to extend existing centralized
strategies that take advantage of state of art graph partitioners such as Metis [59] and Scotch [60], to make
use of parallel scalable graph partitioners provided in Par-Metis [61], PT-Scotch and Zoltan [62].

New Strategies for irregular applications: Previous work in Charm++ and other systems has focused
on partitioning objects or blocks with communication graphs onto processors. These strategies work well
with the scientific applications, which have clear iterative phases, with each phase having similar communi-
cation/computation patterns. We expect many exascale applications to exhibit a multi-phase behavior. Each
iteration in such applications might have multiple phases, where each phase has disparate computation and
communication patterns. An example is multi-stepping simulation of gravity in cosmology [63]. These
require new strategies for achieving good performance. Further, some applications (with small iteration
times) are significantly affected by transient load imbalances. We will develop new techniques to handle
load balancing in these applications more accurately. We will also work on a load balancing strategy which
examines the dependency graph of application (w.r.t WUDUs) and load balances based on critical paths and
WUDU dependencies.

Topology-aware Dynamic Load Balancers Interconnection topology has become important on very
large scale machines. If interacting entities are placed on faraway processors, the communication occu-
pies a larger fraction of the bandwidth, leading to increased contention in the network. This is in spite
of wormhole routing which makes no-load latencies almost impervious to the number of hops. It has been
demonstrated, by us and others, that topology-aware mapping of objects to processors significantly improves
performance [64–66]

Charm++ currently provides APIs that are used by application writers to discover the topology of ma-
chines. We propose to augment the centralized as well as the hierarchical balancers with the information
provided by the API. To this end, we seek to develop new strategies for topology aware mapping that are
both scalable and conducive to network characteristic of exascale machines. We also propose implementa-
tion of relevant schemes available in literature [67, 68]. In addition, as mentioned above, we plan to extend
existing load balancer with topology aware features of graph partitioners such as Metis [59] and Scotch [60].

Meta Load Balancer: Another key task is development of a meta load balancer. It has been observed
that load balancing can be very effective if certain key decisions are taken in accordance to application
behavior. Examples of such decisions are frequency at which load redistribution is done, which metric to
focus on during load balancing- computation and/or communication, and whether to perform a topology
aware load redistribution. Taking advantage of the database maintained by Charm++ RTS, we propose
a meta load balancer which will relieve application writers of such key decision making related to load
balancing. This balancer will be capable of analyzing application’s run time statistics and making optimal
decisions (or giving suggestions if so desired by application writers). We believe automation of these key
decision making will do away with any inefficiency that is introduced by usage of static conditions that are
currently used for making these decisions.

Heterogeneous Load Balancer: In the context of heterogeneous systems, which may or may not in-
clude accelerator technologies, the runtime system will need to account for differences in the various pro-
cessing elements. Given a set of subtasks that need to be executed, some tasks may be well suited for some
subset of the processing elements. In such cases, a load balancing strategy should map those tasks to the

10

most appropriate type of processing element. However, none of the processing elements should be idle,
even if they are not the ideal choice for any of the current tasks. Simply leaving the non-ideal processing
elements idle wastes some of the computational resources and may result in non-optimal performance.

We propose the development of load balancing strategies that consider imbalances (e.g. in peak flop
rates) between processing elements when distributing (or redistributing) a heterogeneous set of tasks. Fur-
ther, we plan to develop load balancing techniques which distribute homogeneous set of tasks across a
heterogeneous set of cores, so that all of the compute resources are taken advantage of, even if a subset of
those resources are not ideal for the currently executing computation.

4.2 Energy Efficiency

4.2.1 Adapting to Thermal Variations

It has been estimated that 40% of the total energy spent by data centers is spent on cooling [69–71]. For
exascale, where power and energy are major constraints, this will pose a challenge. Is it possible to save
cooling energy? The reason machine rooms are kept cool is to avoid overheating cores, which will cause
them to “burn out”. Hot spots will develop in machine rooms because of room dynamics (which can be
avoided by liquid cooling to some extent) but also from process variations i.e. some chips will overheat
while others are operating within their safe range.

Modern microprocessors have temperature sensors that can be accessed via software. They also support
DVFS features that allow the software to change frequency and voltage with low overhead. So, the runtime
system can monitor the temperature periodically, and slow down the chips that are getting hot and speed
them up when they cool down. Unfortunately, in a tightly coupled parallel program, such a technique will
tend to slow all processors down, because of dependencies.

WUDUs help solve this problem: the runtime can migrate them away from the slowed down processors
under the control of a more sophisticated load balancer. In fact, we demonstrated such potential in an exper-
imental implementation using Charm++ [72] on a dedicated cluster where the cooling could be controlled.
The scheme was able to demonstrate a 31% (on average) decrease in cooling energy. Without the load bal-
ancer, the cooling energy was reduced by 26 % (on average), because the program needed to run for a much
longer time. However, the total energy, including the machine energy, increased by a considerable margin
without load balancing, for the same reason.

This demonstration was done on a small cluster with 40 nodes. Also, the underlying application was
chosen so it had no dynamic load imbalances. Further, exascale brings out new issues for temperature-aware
load balancing, because of increased process variation in chips, and also because of the prospect of dark
silicon. We plan to explore balancers that deal with application-induced load imbalances along with thermal
variations. Utilizing turbo-mode (or its variants) also presents new challenges that must be addressed.

4.2.2 Minimizing Energy, Power, and Execution time

Leaving aside the issue of chips overheating, are there other ways to reduce energy usage in HPC applica-
tions at exascale? The fact that we can control frequencies, and the known cubic relationship of dynamic
power to frequency has led to some research that exploits careful reduction in frequency as a way to re-
duce energy [73–75]. Of course, reducing frequency increases execution time, but the non-linear (cubic)
reduction in power is expected to lead to overall energy savings.

However, the static power is a significant component of the overall power. This has led to folklore
that “the best way to save energy is to run as fast as you can, and then switch off the machine”. This was
close to true on somewhat older (pre-Nehalem Intel processors, e.g.). In our experiments, even on Intel
i7 (Nehalem) (see Figure 3(a)) the minimum energy is not at the lowest frequency. However, the trend is

11

0.70	

0.80	

0.90	

1.00	

1.10	

1.20	

1.20	 1.60	 2.00	 2.40	 2.80	 3.20	 3.60	

N
o
rm

al
iz
ed

	 E
n
er
gy
	

Frequency	 (Ghz)	

Intel	 Xeon	 E5520	

Intel	 i7	 (Nehalem)	

Intel	 i7	 (Sandy	 Bridge)	

(a) Energy on different architectures

0.95	

1.15	

1.35	

1.55	

1.75	

1.95	

2.15	

2.35	

1.60	 1.80	 2.00	 2.20	 2.40	 2.60	 2.80	 3.00	

N
o
rm

al
iz
ed

	 T
im

e	

Frequency	

SEB	 2	

SEB	 3	

SEB	 1	

(b) SEB Execution Time

0.70	

0.75	

0.80	

0.85	

0.90	

0.95	

1.00	

1.00	 1.05	 1.10	 1.15	 1.20	 1.25	 1.30	 1.35	 1.40	

N
o
rm

a
li
ze
d
	 E
n
e
rg
y
	

Normalized	 Time	

Naive	 DVFS	
SEB	 DVFS	

(c) Time Energy Tradeoffs

Figure 3: Performance of NPB-FT

towards reducing static energy, and the most recent Intel i7 (Sandy Bridge) shows energy minima close to
the lowest frequency.

Further, if we consider different sections of code (SEBs) separately, a more nuanced and interesting pic-
ture emerges. Figure 3(b) shows response of 3 different segments of NPB-FT to frequency change. We can
see that some segment’s execution time is impervious to frequency change, while others are highly affected
by it. Thus, by selectively changing frequency/voltage for different SEBs, we can achieve a significant
energy reduction, with little timing penalty (Figure 3(c)), in spite of the overhead of repeated frequency
changes.
Planned Research: We first plan to develop mechanisms for runtime study of user-identified SEBs (code
segments) to generate frequency-impact profiles for them. We will also develop schemes for automatically
(perhaps with help from the compiler) demarcating SEB boundaries, so that each SEB is cohesive and
homogeneous as far as power profile is concerned. We plan to develop strategies that utilize this ability of
XARTS to monitor SEB behavior, and also the ability to balance load if needed, to provide a flexible tradeoff
between energy, power and execution time. One can specify one (or two) of these as a constraint, and ask
XARTS to minimize the other metric. We expect that future processors will provide increasingly flexible
capabilities for this purpose. For example, instead of the current requirement to change the frequency for
a chip as a whole, they may allow subgroups (tiles) of cores to be controlled separately (such as Intel’s SC
chip [76]). Such constraints make it a complex challenge for XARTS, for example by requiring coordinate
scheduling of work on multiple cores. But certainly, XARTS is much better equipped to handle it, rather
than the application programmer.

4.3 Fault Tolerance Schemes

It is expected that component failures will be more frequent in exascale computers [77], possibly one every
few tens of minutes [78]. Soft errors, which do not halt a node, but cause results to be wrong, are also
likely to increase. In the proposed work we will spend major efforts on dealing with failstop failures, and a
smaller effort on soft errors. One reason for this emphasis is the scope of effort that is feasible within our
project. The other reason is that a lot more can be done about failstop faults, and failstop errors will be a
significant problem that must be dealt with. Many soft errors can be either contained locally (see §4.3.2) or
be translated into failstop errors. Other work such as algorithmic fault tolerance [29] will complement our
work.

Our execution model bestows two benefits for supporting fault tolerance. First, since it must support
migration of WUDUs, it can use the same mechanisms to checkpoint a WUDU without requiring any addi-
tional programming from the user. Second, it is possible to restart or continue the computation on a different
number of processors. We propose to work on two frontiers for dealing with failstop faults. The first, local

12

checkpointing, has adequate existing work to make it production-worthy within the first year. The second
based on message-logging has the potential to tolerate a higher frequency of faults, while saving energy and
maintaining higher progress rate, but requires a larger research effort.

4.3.1 Local or In-Memory Checkpointing

System level checkpointing to the file system is clearly impractical at exascale. Application-level check-
pointing reduces memory footprint, but is still challenging at best from a performance standpoint. We
explored, instead, the idea of checkpointing within the parallel machine itself, leveraging its communication
network and storage capacity. The storage can be the local memory (DRAM) on nodes, for some appli-
cations, while for others one may utilize FLASH-style memories that are likely to be available locally on
nodes of future machines.

The basic idea is to periodically create two checkpoints for each WUDU. One is stored in local storage
(on the node) and the other is stored in the local storage of a buddy node. On failure, every node except
the failed one restores their WUDUs from their local checkpoints, whereas the failed nodes WUDUs are
restored (either on a spare processor or one of the existing processors) using checkpoints stored at a buddy.
The two checkpoints constitute a memory overhead for this scheme, but (somewhat surprisingly) this is
tolerable for a large class of applications: those that have a smaller memory footprint at checkpoint. These
include molecular dynamics, N-body codes, certain quantum chemistry (namnomaterials code), etc. for
others, the scheme relies on future local storage (or of course, a global file system as a fall back).

 3

 3.5

 4

 4.5

 5

2K 4K 8K 16K 32K

Ti
m

e
(m

s)

#cores

125000 atoms
1 million atoms

Figure 4: Checkpoint Time - Intrepid(leanMD)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

2K 4K 8K 16K 32K

Ti
m

e
(s

)

#cores

125000 atoms
1 million atoms

Figure 5: Restart Time - Intrepid(leanMD)

The idea has been explored in our previous work [79], and recently shown to be highly efficient. Figures
4 and 5 present the checkpoint time and restart time, respectively, for a molecular dynamics simulation [80].
Planned Research: Although the above results are very good, they are somewhat preliminary and can be
further improved upon. We will incorporate the techniques into XARTS stack. The “pause” during check-
pointing can be reduced by overlapping it with computation. However, the checkpointing (to buddy) traffic
can interfere with normal computation in some applications. Also, faults occuring during such checkpointing
are problematic (unlike the base scheme). We will develop new techniques based on interleaved streaming
and selective duplication to eliminate these obstacles and reduce checkpoint overhead.

4.3.2 Message Logging with WUDUs

The motivation for this technique is to avoid sending all the nodes to their checkpoints when only one node
has failed. It requires only the failed node to redo the work. But other nodes must resend it the messages
they sent it since the last checkpoint, which requires all the messages to be logged, in addition to storing
the checkpoints at the buddy node. Of course, since the failed node has to reexecute lost computation, it

13

takes roughly the same time as a checkpoint-based scheme to restart, except for the significant but second
order effects created by the fact that the communication network is not congested. Also, energy use can be
lowered during recovery. Further, computations that don’t depend on the failed node may continue.

The main benefit of our model for this protocol is the potential for parallel restart: the WUDUs from
the failed node can be scattered to other processors to recover in parallel. For example, we demonstrated
recovery in 6 seconds for a job that failed 28 seconds after its last checkpoint. This technique allows
applications to make progress in spite of a checkpoint period larger than MTTI.
Planned Research: The main challenge for this techniques is to reduce the time and memory overhead in
fault-free execution. Also, it forms a complementary technique to in-memory checkpointing, and which is
better depends on the ratio of memory in checkpointing vs messages, etc. We plan a sophisticated method-
ology that chooses the protocol on a per-WUDU basis to create an optimum protocol. Learning/auto-tuning
techniques, and opportunistic compression (to trade off time vs storage) will also be pursued. By exploring
a similar idea to send-determinism [81], we plan to use a language extension that minimizes the amount of
additional information the protocol must keep, thus reducing the latency penalty. We will also explore op-
portunities to reduce the amount of memory required to store messages, particularly in the case of collective
communication operations. Finally, we will develop compiler support for reducing the size of checkpoints,
and team-based schemes that allow a flexible tradeoff between restart time and memory overhead.

4.4 Communication Optimizers

Logical communication operations are expressed at the level of WUDUs, but they are implemented at the
level of nodes (i.e. it is the physical entities, the nodes, that send and receive data). This separation between
logical and physical aspects can be exploited to optimize costs by interposing an introspection-driven layer
between them.

For collective operations, such a layer can decide which algorithm to use for a given operation; e.g. a
reduction could use a simple spanning tree algorithm or pipelined operation, or a reduce-scatter followed
by gather. A selection based on certain parameters such as message size, system topology, system load,
etc. provides substantial performance gains as shown in [31, 32, 82–85]. However, the optimal choice
should depend not just on parameters, which are static or depends only on current state of system, as is
done currently, but also on whether there are overlapping operations, and whether the operation is on a
critical path. Alternative algorithms also provide a tradeoff between CPU overhead and communication
latencies. Optimizing communication via such context-sensitive algorithm selection strategies, driven by
the data collected by the introspection framework, will be the goal of our research.
Planned Research: Specifically, we will first implement multiple alternative communication algorithms for
collective operations on sections. These algorithms will be designed and implemented with certain optimiza-
tion goals such as minimum latency, maximum bandwidth, short message etc. We propose development and
implementation of techniques to determine the criticality of a given communication operation, and relative
importance of overhead at that point in the application. These techniques will use the information accrued
over multiple iterations of the application to predict the above mentioned characteristics of an operation.
Finally, we will develop heuristic schemes that can choose and switch among these algorithms for specific
operation instances in the application based on the predictions done by our techniques.

4.5 Auto-tuning Based on Control Points

The picture we have so far is that of a runtime system that is subservient to the application: the application
creates units of decomposition (WUDUs) and hands them over to XARTS to map. When scheduled, a work
unit will create triggers (messages) that it hands over to XARTS to deliver using any of its strategies. But
there is no way for XARTS to reconfigure the application itself. Control Points is an idea to allow such

14

reconfiguration. Think of a control point as a knob, with a description of its effects on standard observable
performance metrics, such as grain-size, message-size, etc. The application (in concert with the compiler
(§5)) provides such a knob to XARTS. Using its knowledge of the current runtime conditions, XARTS may
ask some application components to reconfigure themselves, if they have provided relevant control points.
A recent PhD thesis from the PI’s group explored this idea in a few simple contexts, and demonstrated its
benefits [86, 87].

A simple example is a pipelined communication scheme for a Gauss-Seidel like application. The code
will be pipelined, but the width of the pipeline can be changed by the runtime by calling a control point
created by the compiler. Similarly, the RTS may ask for grainsize adjustments. This facility allows for
fine-tuning of application behavior based on the configuration of the hardware that it is currently running
on, without hard-coding assumptions about that hardware into the application itself.
Planned Research: At runtime, the system can use the knobs in multiple ways. We plan to develop several
strategies in XARTS to navigate the decision trees based on performance metrics observed by XARTS. This
can be thought of as run-time auto-tuning. However, one difference from traditional auto-tuning is that
the “control system” uses the knobs in a directed manner (rather than searching) based on desired effects.
If XARTS detects that finer-grained parallelism will be useful (say for load balancing, and if the chunks
are too coarse), it can look for the right category of knobs, and turn them in the known “right” direction.
Another auto-tuning idea we plan to explore is to have different processors explore a different region of
the parameter space to identify good configurations – when a search is considered desirable. Thus, we turn
the power of the parallel machine to our advantage, by sacrificing performance over a few iterations for
improved performance over the lifetime of the application.

4.6 Scalable Debugging and Analysis Tools

Our execution model presents new opportunities and challenges for scalable tools. Its message-driven exe-
cution is useful to collect data for live analysis/visualization. The ability of the runtime to instrument at the
level of application entities (WUDUs), rather than at the processor-level data collected by current MPI-based
tools, is also beneficial for performance tools that can provide feedback at the application level. However,
the fact that execution of multiple modules can interleave on the same processor (overlapping even wait
times of different modules) adds new wrinkles for analysis. Although, due to resource constraints, we will
not devote a large share of our effort to scalable tools, we do plan to carry out a few specific demonstration
projects to evaluate the utility of our ideas to scalable tools.
Planned Research: We will develop a scalable live performance data collection module (and demonstrate
it with simple client side visualizations). The essential idea of leveraging message-driven execution for this
is described in [88]. In addition to simple profiling, we will develop a few sophisticated distributed analysis
modules for this purpose. We will also demonstrate the idea of “deathbed” analysis — instead of the usual
post-mortem analysis, we can utilize the parallel machine to carry out some automated analysis at the end
of a full-scale parallel run. Using the resources of millions of cores for less than 2-3% of execution time,
one can indeed do much powerful analysis, but it needs automation of the analysis process. We will only
demonstrate the possibilities in this project.

5 XCharJ: MultiParadigm Programming with compiler support
A basic programming system for using XARTS can be constructed simply by providing an API. By going
one step further and providing some interface-description support, the system can support a richer variety
of features, for example the automatic generation of serialization/deserialization code. This is the approach
that Charm++ took, albeit with a somewhat simpler (terascale) RTS. Such a system raises the level of

15

abstraction in one sense, by automating labor-intensive programming tasks such as object mapping, dynamic
load balancing, fault tolerance, and energy management.

However, despite the benefits of this increased abstraction, the “feel” of such a language is very similar
to MPI: explicit communication among multiple control entities, with very fine-grained manual control of
low-level application entities. To address the exascale programming challenges a higher level of abstraction,
and a correspondingly higher-level language is required.

Currently there is widespread acceptance of the idea that our existing programming methodologies are
insufficient for the challenge that exascale computing provides. Therefore, we believe that there is a rela-
tively small window of opportunity over the next several years in which the community will be open to ex-
periment with such new languages and new approaches that go beyond the well-established “C/C++/Fortran
plus MPI” approach that is dominant today.

Specifically, we propose to develop (a) multiple separate notations and abstractions for the few distinct
specialized interaction patterns that we believe are dominant in parallel applications, and (b) an accompany-
ing embedding language that incorporates these special notations as well as a general-purpose base language
to cover patterns not expressible in them. Within this framework, we will develop analysis techniques that
optimize performance and support elegant syntax to help enhance productivity (and create beautiful, clear,
and concise code).

There are several benefits to developing parallel applications in such a multi-model manner. It enables
freer choice of libraries and modules and encourage code re-use. They allow a “right tool for the right job”
approach. For example, an array-based model can be used for array-intensive parallel code while a model
specialized for tree-based parallel computations can be used where trees are the central data structure.

The use of multiple programming models (interaction modes) can also allow for greater analyzability
and more expressive syntax. For example, consider static data flow, where a fixed set of objects exchange
messages with the same neighboring objects, iteration after iteration. This is a common pattern that covers
many algorithms (and complete applications). Given the constrained nature of communication allowed by
this interaction pattern, the compiler can analyze the code to perform optimizations such as inference of
communication collectives, and setup of low-overhead, persistent communication channels between com-
municating entities. Therefore, if we could design a notation specialized for this interaction pattern, we
would create a more elegant, analyzable sub-language, albeit one that cannot cover all applications.

This incompleteness can be addressed by two schemes: first, we will develop a suite of such specialized
notations for covering different interaction patterns, building upon library-level past work [89, 90]; second,
we will ensure that they interoperate with each other, and with a base language. The specific notations are
described in the subsections below. The embeding language, called XCharJ, will have Java-like syntax for
sequential behavior, and will be designed for analyzability. As outlined in § 5.6 we will also make all XCharJ
features available in C++ via ROSE [5]. This will give application programmers the option of programming
using the new syntax via the XCharJ translator (which will produce C++ to be analyzed via ROSE), or to
use the C++ API, which will be lower-level, but in a familiar language.

5.1 Deterministic Access to Global Data

Shared memory applications are often plagued by concurrency bugs such as race conditions and deadlocks.
These bugs may be extremely subtle and require significant time and effort to detect and eliminate. This
makes models that can guarantee that such bugs will not occur very attractive. MSA was developed based
on the observation that applications that use shared arrays often access them in distinct phases [90]. Within
each phase, all accesses to the array use a single mode, in which data is read to accomplish a particular
task, or updated to reflect the results of each thread’s work. MSA formalizes this observation by requiring
synchronization points between phases, and limiting the array to only be accessed using one of several
specially defined access modes (for example, read only, exclusive write, and accumulate), during each phase.

16

MSA is implemented as a C++ library that is tightly integrated with the Charm runtime [91]. It makes
clever use of the C++ type system and template functionality to staticly enforce some aspects of the pro-
gramming model, relying on runtime checking for the remaining cases. However, the lack of special syntax
in MSA makes it easy to mistake remote array operations for local array accesses, because they are syn-
tactically identical. Moreover, MSA’s mechanism for enforcing semantics through the C++ type system is
inflexible and difficult to extend beyond the simple cases of read-only and write-only access. In addition,
because there is no distinction in the MSA programming model between elements stored locally and ele-
ments which must be fetched from another node, simple array accesses are inefficient because it must first
be verified that the element to be accessed is locally available. In particular, in code with a regular pattern of
array accesses it is much more efficient to fetch all the elements to be accessed first, and then perform all the
accesses without performing any checking. However, due to MSA’s library implementation this approach
is quite cumbersome and forgoes even the limited syntactic sugar that C++ operator overloading provides
to protected array accesses. This lengthens and complicates application code unnecessarily and discourages
high performance code in favor of a simpler but less efficient expression.
Planned Research: We will develop a notation inspired by MSA, but extending its concepts, and embed it
within XCharJ. With this, we can take advantage of the opportunity to provide improved semantic checks at
compile time while also improving syntax. There is also scope for beneficial optimizations that will allow
programmers to write simple code while attaining the performance associated with much more complex
code. Furthermore, we are free to pursue access patterns that would be difficult or impossible to enforce
using the C++ typed handle approach. We could support array permutation operations and array subsec-
tioning, thereby allowing the division of an array into distinct subsets, each of which follows its own series
of access phases while remaining part of the same logical array. This array subsectioning would imply a
corresponding machine partitioning, in order to control the cost of synchronization.

5.2 Global Extensible Arrays with Transactions and Atomicity

There are some situations and interactions between parallel entities that are not covered by the disciplined
(or restricted) deterministic access model. Unstructured mesh refinement provides an example, and so do
many graph algorithms. A global address space is often useful in describing the algorithms, but atomicity
(rather than determinism) suffices for controlling concurrency.

Of course, because locality is still important, the unstructured mesh must be chunked into partitions, just
as one does with MPI. But one should be able to address nodes and elements of the mesh using a global
naming scheme. One should be able to atomically (or transactionally) read and modify individual node and
element records. Also, one should be able to add and delete nodes/elements, e.g. to carry out refinements
and coarsening in a mesh.
Planned Research: The mechanisms we mentioned above are useful for applications and interaction behind
unstructured meshes (e.g. covering graph algorithms). We plan to develop (a) a notation that supports
global “collections” or arrays, indexed by sparse indices, to allow dynamic insertion without significant
coordination; (b) global name generation schemes, and schemes for conversion of global indices to local
contiguous indices for efficiency; and (c) synchronization primitives, including software transactions and
atomic blocks that work efficiently across nodes, using low-level synchronization (and shmem) primitives
provided by the machines.

5.3 Static Data Flow

Many CSE applications are iterative, and moreover, exhibit the same communication pattern iteration after
iteration. That is, the communication pattern is static. Of course, the content and the size of the commu-
nication may vary over iterations. This is especially true when applications are expressed in terms of their

17

logical units (WUDUs) rather than in terms of processors. In particular, an algorithm that involves several
activities on each processor will require the posting of wild-card receives in MPI. The same algorithm can
be expressed more simply in terms of the flow of data and transfer of control between individual objects,
leading to a data flow style of programming.

The Charisma notation was designed to support this pattern of static data flow [89]. Each Charisma
object is allowed to communicate with a static set of objects through the consumption and production of
data. Programmers are given a global view of control flow, which is specified in the form of a high-level or-
chestration script, together with separately defined sequential methods. The ability to specify global control
flow makes programs more elegant to write and easier to analyze for correctness. A compiler analyzes the
sequence of orchestration statements and the data items produced and consumed by each to infer the control
and data dependencies in the program. The compiler then generates Charm++ code that encapsulates the
message-driven interactions between the objects. Research has shown that for applications where the mold
of static data flow suffices, it is highly productive and concise for describing interactions.

foreach i in Stencil
<left[i],right[i]> <= Stencil[i].publishBoundaries();

repeat
foreach i in Stencil

<+error,left[i],right[i]> <= Stencil[i].compute(left[i+1],right[i-1]);
until (error < threshold)

< consider if the above code fragment and possibly a picture, is useful here. >
Charisma also enhances productivity through guarantees of determinism [92]. Although Charm++ does

not guarantee message order, the Charisma compiler ensures that generated code respects two rules: (1) the
statement that produces a certain data item always completes before the statements that consume it, and (2)
methods are executed on a single object in the order specified by the program text. Together with a few other
restrictions on program structure, these rules ensure the deterministic evolution of object state.

A higher-level language that encapsulates Charisma-like ideas would allow the user to define transition
points where local control flow would transition to global, and data would flow easily into and out of this
global coordination code. This feature is necessary to ensure tight integration with MSA and other C++
libraries, as well as other programming paradigms (described shortly) and plain Charm++ code.

We also propose compiler-level support for scheduling optimizations, enabled by static data flow. Ma-
chine topology and heuristics for DAG scheduling (instead of relying on local, greedy scheduler priorities)
can be applied when distributing WUDUs across the cores, and can be used to guide the scheduler in mak-
ing better decisions. In addition, by integrating MSA, array pages can be partitioned (or migrated for the
static section of the code) and distributed based on compile-time information obtained from the analysis of
interaction patterns within Charisma code.

5.4 Divide-and-Conquer

The divide-and-conquer paradigm allows the expression of algorithms in a recursive manner: the input
problem is formulated as a set of independent sub-problems, each of which can be solved by applying
the same (recursive) procedure as was applied to the original input. Delaunay triangulation is one common
example of this type of problem. Problems of this type are implicitly parallel – in principle each sub-problem
may be solved by assigning it to a parallel sub-task. The interaction pattern here is that of one parallel task
spawning a set of others, and possibly combining the results of each one.

We will provide a notation specifically tailored for expressing implicitly parallel programs in the func-
tional divide-and-conquer paradigm. A program will be written as a set of abstract statements that produce

18

and consume data, thereby implying a DAG in which nodes are immutable functional work units and edges
represent data dependencies. The runtime system will perform the mapping of work units to hardware re-
sources. The functional nature of our notation will make it much simpler for the compiler to guarantee that
the remapping of program entities is safe.

In addition, we will explore a suite of inter-related optimizations that can be performed by an intelligent
runtime system. For instance, adaptive grainsize control can be employed to strike the right balance between
parallelism and overhead by subdividing large problems and redistributing the resulting sub-problems, even
in computations that yield nonuniform recursion graphs. Furthermore, hierarchical neighborhood schemes
can be used to proactively balance load across large configurations of processors, while minimizing com-
munication volume. Finally, we will devise a set-based notation to specify data-parallel operations in array-
based divide-and-conquer programs, and implement a delayed data movement scheme to reduce communi-
cation costs for programs that exhibit generative recursion.

5.5 Tree-Based Algorithms

The tree data structure is vital to several fields of computational science. The ability of trees to segment data
into spatially-related partitions finds use in applications as diverse as computational astrophysics, collision
detection and data mining.

Tree-based algorithms share several features in common. Prime among these are (a) a distributed tree
data structure and (b) a recursive procedure for the traversal of this data structure. We will adopt a two-step
approach to provide programmers with reusable constructs that can be used to construct tree-based codes.

First, we will develop a framework that commonly needed functionalities of tree-based codes. It will
comprise several modules, foremost among which will be a chunked tree data structure that provides seam-
less access to the nodes of a distributed tree. Chunked trees will capitalize on the spatial locality of tree-based
codes to automatically coarsen the grain of remote data accesses. This data structure will be coupled with a
software caching mechanism with write-back capability to (i) improve reuse of remotely fetched data and (ii)
combine element updates at the source to reduce overhead of communication. The cache will allow sharing
of data across objects on a processor and across processors in an SMP node. It will also provide an MSA-
style phase-based access interface so that concurrent write-back updates may be made to the data without
undue overhead. Next, an extensible traversal framework will be constructed, in which programmers can
express different strategies for the traversal of the distributed chunked tree data structure.

With such a specialized framework in place, we will design a tree-based language for the manipulation
of first class entities such as trees, nodes and particles (possibly with nonzero extent). The language will also
support the recursive formulation of tree traversals. Given its focus on structural recursion, it will be distinct
from the divide-and-conquer language of § 5.4, which will cater to the expression of generative recursion.

5.6 Compiler support through the ROSE framework

ROSE [8], developed at Lawrence Livermore National Laboratory (LLNL), is an open source compiler
infrastructure that can be used to build source-to-source program transformation and analysis tools for large-
scale Fortran 77/95/2003, C, C++, OpenMP, and UPC applications. Internally, it generates a uniform abstract
syntax tree (AST) as its intermediate representation (IR) for input codes. Sophisticated compiler analysis,
transformations and optimizations are developed on top of the AST and encapsulated as simple function
calls, which can be readily leveraged by tool developers. ROSE is particularly well suited for building
custom tools for static analysis, program optimization, arbitrary program transformation, domain-specific
optimizations, performance analysis, and cyber-security.

We will construct a ROSE-based compiler infrastructure that performs several routine and relatively
straightforward optimizations. These include automatic derivation of serialization code, detection of live

19

variables at the point of migration for load balancing or checkpointing, strength reduction from threads to a
set of simple methods that don’t require a user-level thread, and so on.

The XCharJ system will be integrated with the ROSE framework in the following manner. The XCharJ
translator will produce C++ code as its output, with additional semantic information (in the form of pragma’s
or sub-types) to facilitate processing within ROSE’s abstract syntax tree. Convenient syntax for the spe-
cialized notations will be incorporated into XCharJ. For example, regular array notations for MSA and
sequential array operations.

The compiler infrastructure will create “control points” for application-guided reconfiguration based on
observed behavior (§4.5). Use of complier support for transition is described later (§6.1).

5.7 Example: Molecular Dynamics

To illustrate a potential use case for the combination of different special-purpose notations in a single co-
hesive application, consider the case of long-range Particle Mesh Ewald (PME) calculations in a modular
dynamics code.

Cells

Cells

Multicast

Reduction MSA Reads

MSA Accumulate

PME

Bond
Forces

Non-bonded
Pairs

Potential

Reciprocal

Potential.Data[x,y,z]

Charisma

Figure 6: Program module interactions in a molecular dynamics application

In this application, the particles are divided among a collection of Cell objects, each responsible for the
particles within a portion of the simulation space. The direct non-bonded forces among the particles are
computed by Pair objects that receive particle positions from one or two Cells, calculate the interactions
among the particles, and transmit the resulting forces back to the Cells. The Cells are responsible for
integrating the net forces on the particles to obtain their velocity and position for the next time step.

For the PME portion of the computation, particles’ charge contributions must be interpolated onto a
potential grid. This grid is transformed into a reciprocal space via FFT. The long range forces are computed
via convolution, then transformed back out of the reciprocal space and anterpolated back to the Cells.

Different phases of this process lend themselves naturally to different notations that we have described.
The calculation of the potential using the charges of atoms in the Cells, (and its inverse at the end) can be
done using complex point-to-point communication, but are more naturally expressed in terms of read and
write operations on global arrays. These accesses have a natural phase structure, and so by using MSA we
can achieve both a more convenient syntax and greater safety guarantees.

The FFT operation used to compute the long range forces and the communication between Cell and Pair
Objects are natural examples of static dataflow. As such, they can be represented in Charisma in a concise
and efficient manner. By adopting a global control perspective for this segment of the algorithm we can
simplify the expression of the FFT while guarding against common bugs and maintaining high efficiency.

20

The overall algorithm can be described in XCharJ with a similar clarity as the figure (6 plus a manual
explanation, but with a compiled language.

6 Transition Paths
XCharJ can be used to develop exascale applications from scratch. However, there is a significant amount
of legacy MPI code within DOE and elsewhere. We plan to develop two methodologies to ease transition to
our programming model, and to support interoperability with older code.

6.1 Converting MPI codes to use XARTS

We have developed Adaptive MPI (AMPI [93, 94]) that demonstrates that MPI programs can be converted
with a small effort to use the adaptive runtime system. It implements each MPI “process” as a user-level
migratable thread that is embedded in a Charm++ object. Threads are made migratable by using a virtual
memory reservation trick: each thread allocates its stack in virtual memory in a space that is reserved for
it on all processors. This reservation does not cost any memory: one mmaps a thread’s stack in this space
as the thread migrates to a processor. We have demonstrated that AMPI applications benefit from the load
balancing provided by Charm++, e.g. in the Brazillian BRAMS weather simulation code [95, 96].

Planned Research: Although this scheme works well for developing new MPI applications, it requires
avoiding use of global variables. For existing codes, this requires a conversion step, which can be an imped-
iment to adoption of AMPI. In the proposed work, we plan to use ROSE to ease the process of converting
MPI programs to AMPI by transforming applications to repackage their global variables and fixup all uses
of such global variables. This automated step is a reasonable target as a source-to-source transformation
using ROSE and has been the subject of both discussion and some initial work over the years.

Further, the scheme depends on a fragile scheme [19] of utilizing virtual memory reservations for mi-
grating threads. We plan to develop new compiler support techniques, using ROSE, that lead to robust
schemes for migratable user-level threads. This includes moving data from stack to the heap, and bounding
stack size.

6.2 Interoperability with MPI

We will also support interoperability with modules written in plain MPI. This will be useful for modules that
are not yet converted to AMPI (i.e. during the transition), as well as for modules that, for various reasons,
will remain in MPI.

The challenge here is to join the disparate notions of control flow in XARTS/XCharJ and MPI. In MPI
the control flow is explicit, and dictated by the program. In contrasts, XARTS message-driven scheduling
causes interleaved scheduling of modules. The program only loosely controls the ordering; The scheduler is
in control. We plan to meld these styles by means of a method for creating re-entrant XARTS scheduler, and
supporting interoperability via time-sequencing, space-splitting and their combination as shown in Figure 7.
Planned Research: Normally, the scheduler in XARTS is deeply buried inside the “system”. As soon as the
system is initialized, it takes over control. We will create a new control structure that make the scheduler
a “callable” entity. This requires separating initialization from scheduler, and creating data structures that
persist between multiple scheduler invocations.

Library writers in XCharJ will provide a wrapper (possibly with assistance from the XCharJ compiler)
that pure MPI applications can call. Essentially, the wrapper deposits the input data in XCharJ data struc-
tures, and calls the XARTS scheduler in a mode that allows normal return. When the library finishes, it
signals to the scheduler to return control to the caller (the MPI program) on all processors where it was
invoked. Multiple mechanisms for exchanging data between XCharJ and MPI modules will be investigated.

21

MPI Control

XCharj Control
Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

(c) Combined Sharing

...

P(1) P(2) P(N-1) P(N)

Figure 7: Different Modes of MPI-XCharJ Interoperability

Protocols for the reverse operation, where an XCharJ application wants to call a pure MPI module will also
be explored.

Among the modes of control transfer, the first mode which we will support will be time-sequencing:
control on all processors will transfer from MPI to XCharJ library on all processors, and return, like a
collective operation, on all processors. The second, more complex, mode will be space-splitting. Here, a
subset of processors will execute XCharJ module, while the main MPI program will continue on the the
other processors. A more general version that allows space-time splitting and multiple entry-exits across
MPI-XCharJ boundaries will be developed after that. Finally, we will incorporate techniques that allow
backward flow: ability to call pure MPI modules from an XCharJ-based main application.
Interoperability with other models: The combination of message-driven and (MPI-like) explicit-control-
transfer regimes is also expected to interoperate with other languages, such as X10 and Chapel. For example,
the Async construct of X10 can be well-supported by our message-driven design. In addition, as our experi-
ments with AMPI and Global Arrays [97] suggest, one can “virtualize” other models to fit them to XARTS.
With Global Arrays, one can implement the “processes” as user-level threads, and over-decompose the
data arrays to allow XARTS to optimize their mapping. We will cooperate with ongoing exascale language
projects to support such interoperability.

7 Application Demonstrations
The DOE exascale co-design process and the International Exascale Software Program (IESP) have adopted
skeleton, compact, and mini-apps as a central tool for driving co-design of computer architectures, pro-
gramming models, and many other elements of the ecosystem. Since many of the relevant exascale design
points center around data motion it is not sufficient to focus on computational kernels, though these are still
interesting. Skeleton, compact, and mini-apps instead capture increasing levels of detail about communi-
cation and data motion patterns and volumes, ultimately including select full computational kernels. Each
DOE co-design center will be producing multiple such entities with their collective efforts being organized
by the co-design consortium (and RJH is a co-author of the original document founding the consortium).
By shedding extraneous complicating details, mini-apps have also emerged as a good way of gauging the
effectiveness of parallel programming models.

We will collaborate directly with the co-design centers and the co-design consortium to adopt their mini-
apps (and those from Sandia’s Mantevo collection) and also develop additional mini-apps representative of
DOE application domains and algorithms not covered by the current three co-design centers (e.g., chemistry,
nuclear physics, astrophysics, fusion, accelerators, etc.). Analysis early in the project of the mini-apps will
drive design of the framework, and implementation in XCharJ of the mini-apps will guide refinement of the
design, and ultimately enable demonstration of its capabilities and its evaluation.

The mini-apps we propose to develop are:

22

Barnes-Hut: a mini-app useful for testing many unusual use cases: fine grained access to global data,
multiple interaction patterns during different phases of the computation, and complex load balancing re-
quirements.
LeanCP: a simplified mini-app for Car-Parinello method, is useful because of its rich collection of diverse
computational objects (WUDU collections), significant use of static data flow patterns, and need for opti-
mizing voluminous partitioned-collectives communication.
LeanMD-PME: a molecular dynamics mini-app with Particle Mesh Ewald (PME) module included. LeanMD
itself is identical to miniMD of the Mantevo suite. Adding PME for long range force evaluation tests the
expressiveness in context of multiple modules.
Solid-fluid combined simulation, and
Multiresolution algorithms for nuclear physics and chemistry motivated by the MADNESS numerical
environment.

In addition, LLNL will work with UIUC to evaluate the programming model within the context of a
range of applications taken from the EXaCT Exascale Combustion Center. These application will be run at
LLNL and support identifying and evaluating the XCharJ language and its compiler and runtime support.
We will explore the appropriateness of XCharJ to support lab applications and those from EXaCT.

To further evaluate and demonstrate the capabilities of the framework and its interoperability with es-
tablished programming models (MPI, OpenMP, Global Array, PGAS) we will incrementally transform el-
ements of full applications into XCharJ. Currently being considered for this purpose include OpenAtom,
NWChem, NAMD and MADNESS.

8 Management Plan
The overall project will be coordinated by the lead PI (Kale). Broadly, topics related to XARTS will

be led by Kale, compilation/analysis by Quinlan in consulation with UIUC, applications by Harrison, with
feedback/evaluation from LLNL applications and the combustion co-design center from Quinlan, and UIUC
applications from Kale. XCharJ abstractions will be developed at UIUC with consulation and feedback from
all the PIs.
Coordination Mechanisms: the PIs have participated in multiple collaborative development projects.
Leveraging their experience, we will set up several on-line mechanisms for collaborations, including soft-
ware repositories and wiki pages. We plan regular bi-weekly teleconferences, in person meetings every 6
months. Senior personnel at Illinois will track and coordinate milestones.
Evaluation Plan: We will evaluate the techniques, especially the WUDU management, and the adaptive
runtime strategies on at least 250,000 cores. We expect to have access to such machines early in the per-
formance period. Programmability will be studied using prevalent metrics such as lines of code (or unique
tokens), as well as classroom evaluations by students. Large scale scientific study of programmability, al-
though desirable, is not feasible within the proposed effort. The techniques will be evaluated in several
mini-apps, and portions of full applications or frameworks that we are involved with, including NAMD,
OpenAtom, ChaNGa, and MADNESS.
Prototype: of the the software modules embodying the techniques developed will be made available to the
community via some form of open access.
Metrics for Success: Broadly, we will consider the research to be successful if the techniques developed
are adopted by the CSE community. More direct metrics will be downloads of software modules developed.
However, since the results of research take some time to make into production software, and additional
time to be accepted, these may be difficult to demonstrate within the performance period; Yet, we do plan
to measure these. Specific technical metrics for the myriad subtasks planned will be developed once the
project commences.

23

Risk Analysis: Typical risks stemming from milestone management, or in changes in the environment, will
be handled by regular review of progress and ongoing engagement with the community. We consider the
following risks to be of the highest concern:

Risk: High Overhead of Over-Decomposition: This is a common misconception. Low overhead has
been demonstrated for over-decomposed schemes, and by their use in challenging fine-grained applications
(e.g. NAMD). That misperception will be mitigated by the high profile publication of compelling demon-
strations and studies that carefully quantify the overhead. Situations in which overhead is a problem will
be identified and addressed by specific techniques, such as message staging, and compiler optimizations to
improve locality by “stitching” nearby regions together.

Risk: Lack of Community Acceptance of New Models. The PIs have long histories developing
applications and in gaining acceptance of their ideas in the community. Continual evaluation in the context
of mini-apps and complete applications, will ensure that the resulting software framework is efficient and
useful for application development.

Section Task By Lead

XARTS
Mechanisms
§3

Scalable Directory Service - Base Design / Optimization Q4/Q6 UIUC
Unranked sections creation and management Q4 UIUC
Ranked sections - collective operations Q8 UIUC
Compiler assisted migrations Q6 UIUC
Use cases for within node parallelism Q10 UIUC
Chunked array - 1D abstractions / multi-dimensional Q7/Q10 UIUC

Introspective
Framework §3.3

Survey of existing framework (Charm, HPX etc) Q2 UIUC
Framework design Q5 UIUC
Framework implementation Q10 UIUC

Adaptive Load
Balancing
§4.1

Irregular Apps: multiphase, transient imbalance, dependency
graph

Q3 UIUC

Scalable LBs: hierarchical, distributed graph partitioning Q5 UIUC
Topology aware LBs Q8 UIUC
Heterogeneous LBs Q9 UIUC
Meta LB for automation Q11 UIUC

Energy
Efficiency
§4.2

Mechanisms for SEB boundaries - manual and automated Q4 UIUC
Run time profiling of SEBs for impact of frequency Q5 UIUC
Tradeoffs between energy, power and time Q7 UIUC
Energy and Thermal balancers Q9 UIUC
Handling skewed applications Q12 UIUC

Fault
Tolerance
§4.3

Implement semi-blocking cooperated check point restart Q3 UIUC
Utilizing local flash memory Q5 UIUC
Identifying limits of in-memory checkpointing Q7 UIUC
Optimization based on Teams Q8 UIUC
Selective scheme for in-memory vs message logging Q9 UIUC
Soft Error containment Q10 UIUC
Compiler support for reducing check points Q11 UIUC

Communication
Optimization
§4.4

Implementation of section based operations Q5 UIUC
Methods to identify criticality and overhead of operations Q7 UIUC
Automated selection and switching among the algorithms
based on runtime and persistent parameters

Q10 UIUC

24

Control Points
§4.5

Decision tree navigation based on performance metrics Q6 UIUC
Cooperative configuration exploration Q9 UIUC

Debugging and
Analysis §4.6

Scalable live data collection module Q6 UIUC
Distributed analysis modules Q9 UIUC
Deathbed analysis Q11 UIUC

XCharJ
§5

Develop and implement syntactical constructs Q1 UIUC
Implement inter-model techniques Q3 UIUC
Integrate model-specific control points, FT and LDB Q5 UIUC
Generate straight C++ targeting XARTS Q7 UIUC
Generate ROSE-targeted pragmas in code output Q10 UIUC
Directly generate ROSE intermediate representation Q11 UIUC

Deterministic
Global Arrays
§5.1

Design and notation development Q2 UIUC
Parsing and runtime implementation Q4 UIUC
Optimizations Q9 UIUC
Evaluation with applications Q10 UIUC

Global Extensi-
ble Arrays
§5.2

Design of the API Q1 UIUC
Extensible name generation Q3 UIUC
Global to local contiguous indices Q7 UIUC
Implementation and design of synchronization primitives Q9 UIUC

Static Data
Flow
§5.3

Mechanisms for flowing data and control in and out of
Charisma

Q3 UIUC

Compiler-supported scheduling optimizations Q5 UIUC
DAG scheduling for Charisma Q7 UIUC
Evaluation using applications Q11 UIUC

Compiler Sup-
port
§5.6

Analysis and initial transformations for parts of XARTS Q4 LLNL
More complicated analysis to support XARTS and transforma-
tion to optimize the use of the runtime library

Q6 LLNL

Define possible migration path for legacy codes to support
semi-automated transformation to XCharJ

Q8 LLNL

Development of semantic analysis to enforce semantics of
XCharJ usage in large scale applications

Q10 LLNL

Develop mixed static and dynamic analysis to support opti-
mizations using high level XCharJ semantics

Q12 LLNL

Transition
§6

Automate the refactoring of MPI codes to support AMPI Q2 LLNL
MPI-XCharJ Interoperability - time and space sharing Q4 UIUC
MPI-XCharJ Interoperability - combined sharing Q8 UIUC

25

Application
Studies and
Feedback
§7

Cooperation in design of abstractions Q2 ORNL
Analyze used target combustion applications for evaluation of
XARTS and its compile-time support

Q4 LLNL

Analysis of mini-apps from the point of view of adaptivity and
abstractions

Q4 ORNL

Guidance on prioritization of adaptive strategies needed for
DOE applications

Q6 ORNL

Assessment of overheads of the proposed techniques in the
context of mini-apps

Q8 ORNL

Retargeting MADNESS framework to XARTS Q12 ORNL

26

References

[1] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System Based on
C++. In A. Paepcke, editor, Proceedings of OOPSLA’93, pages 91–108. ACM Press, September 1993.

[2] L. V. Kale and Attila Gursoy. Modularity, reuse and efficiency with message-driven libraries. In
Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, pages
738–743, San Francisco, California, USA, February 1995.

[3] Laxmikant V. Kalé. Performance and productivity in parallel programming via processor virtualization.
In Proc. of the First Intl. Workshop on Productivity and Performance in High-End Computing (at
HPCA 10), Madrid, Spain, February 2004.

[4] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-platform co-array fortran com-
piler. In Proceedings of the 13th International Conference of Parallel Architectures and Compilation
Techniques (PACT 2004), Antibes Juan-les-Pins, France, October 2004.

[5] Daniel Quinlan, Qing Yi, Gary Kumfert, Thomas Epperly, and Tamara Dahlgren. Toward the auto-
mated generation of components from existing source code.

[6] L. V. Kale. Application oriented and computer science centered HPCC research. pages 98–105, 1994.

[7] Madness website. http://www.csm.ornl.gov/ccsg/html/projects/madness.html.

[8] Rose website. http://www.llnl.gov/CASC/rose/.

[9] Gasnet: A portable high-performance communication layer for global address-space languages, 2002.

[10] Jarek Nieplocha and Bryan Carpenter. Armci: A portable remote memory copy library for distributed
array libraries and compiler run-time systems. J. Rolim et al. (eds.) Parallel and Distributed Process-
ing, Springer Verlag LNCS 1586, 1999.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. MPICH: A High-Performance, Portable Implementation
of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828, September 1996.

[12] M.J. Koop, T. Jones, and D.K. Panda. Mvapich-aptus: Scalable high-performance multi-transport
mpi over infiniband. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1–12, April 2008.

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 2004.

[14] Pami website. https://wiki.alcf.anl.gov/old/index.php/PAMI.

[15] R. Alverson, D. Roweth, and L Kaplan. The gemini system interconnect. In 2010 IEEE 18th Annual
Symposium on High Performance Interconnects (HOTI), 2011.

[16] Orion Lawlor, Milind Bhandarkar, and Laxmikant V. Kalé. Adaptive mpi. Technical Report 02-05,
Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2002.

1

[17] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An API for programming with
millions of lightweight threads. In International Parallel and Distributed Processing Symposium/In-
ternational Parallel Processing Symposium, pages 1–8, 2008.

[18] G.R. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. ParalleX: A study of a new parallel com-
putation model. In EEE International Parallel and Distributed Processing Symposium, 2007, pages 1
–6, march 2007.

[19] Gabriel Antoniu, Luc Bouge, and Raymond Namyst. An efficient and transparent thread migration
scheme in the PM2 runtime system. In Proc. 3rd Workshop on Runtime Systems for Parallel Pro-
gramming (RTSPP) San Juan, Puerto Rico. Lecture Notes in Computer Science 1586, pages 496–510.
Springer-Verlag, April 1999.

[20] Isomalloc thread migration. //charm.cs.uiuc.edu/papers/migThreads.www/node18.html.

[21] Paul Sack and William Gropp. A scalable mpi comm split algorithm for exascale computing. In
Proceedings of the 17th European MPI users’ group meeting conference on Recent advances in the
message passing interface, EuroMPI’10, 2010.

[22] Humaira Kamal, Seyed M. Mirtaheri, and Alan Wagner. Scalability of communicators and groups
in mpi. In Proceedings of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, pages 264–275. ACM, 2010.

[23] Jerry Yan, S. Sarukhai, and P.Mehra. Performance measurement, visualization and modeling of parallel
and distributed programs using the AIMS toolkit. Software – Practice and Experience, 25(4):429–461,
April 1995.

[24] Brad Topol, John T. Stasko, and Vaidy Sunderam. PVaniM: a tool for visualization in network com-
puting environments. Concurrency: Practice and Experience, 10(14):1197–1222, 1998.

[25] A Knupfer, H Brunst, and W E. Nagel. High performance event trace visualization. Parallel, Dis-
tributed and Network-Based Processing, 2005. PDP 2005. 13th Euromicro Conference on, pages 258–
263, 2005.

[26] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G.
Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger,
Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley.
An overview of the Trilinos project. ACM Trans. Math. Softw., 31(3):397–423, 2005.

[27] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles Packer.
Paramesh: A parallel adaptive mesh refinement community toolkit. Computer Physics Communi-
cations, 126(3):330–354, 2000.

[28] Chombo Software Package for AMR Applications. http://seesar.lbl.gov/anag/chombo/.

[29] George Bosilca, Remi Delmas, Jack Dongarra, and Julien Langou. Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput., 69(4):410–416, 2009.

[30] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak, Cedile Germain,
Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette, Vencent Neri, and Anton
Selikhov. Toward a scalable fault tolerant MPI for volatile nodes. In Proceedings of SC 2002. IEEE,
2002.

2

[31] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in mpich. International Journal of High Performance Computing Applications, 19(1):49–
66, Spring 2005.

[32] Jelena Pjesivac-Grbovic, George Bosilca, Graham E. Fagg, Thara Angskun, and Jack Dongarra. Deci-
sion trees and mpi collective algorithm selection problem. In Euro-Par, pages 107–117, 2007.

[33] TotalView Technologies. TotalView R© debugger. http://www.totalviewtech.com/TotalView.

[34] Allinea. The distributed debugging tool (DDT). http://www.allinea.com/index.php?page=48.

[35] Gregory R. Watson and Craig E. Rasmussen. A strategy for addressing the needs of advanced scientific
computing using eclipse as a parallel tools platform. Technical Report LA-UR-05-9114, Los Alamos
National Laboratory, December 2005.

[36] B. Mohr, D. Brown, and A. Malony. TAU: A Portable Parallel Program Analysis Environment for
pC++. In Proceedings of the 3rd Joint Conference on Parallel Processing: CONPAR 94 - VAPP VI,
September 1994.

[37] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and
analysis of MPI resources. Supercomputer, 12(1):69–80, 1996.

[38] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable performance visu-
alization with Jumpshot. The International Journal of High Performance Computing Applications,
13(3):277–288, Fall 1999.

[39] Luiz DeRose, Bill Homer, Dean Johnson, and Steve Kaufmann. Performance Tuning and Optimization
with CrayPat and Cray Apprentice2. In Cray User Group Meeting 2006, Lugano, Switzerland, 2006.

[40] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tallent.
Hpctoolkit: tools for performance analysis of optimized parallel programs http://hpctoolkit.org. Con-
curr. Comput. : Pract. Exper., 22:685–701, April 2010.

[41] Filippo Gioachin. Debugging Large Scale Applications with Virtualization. PhD thesis, Dept. of
Computer Science, University of Illinois, September 2010.

[42] Chee Wai Lee. Techniques in Scalable and Effective Parallel Performance Analysis. PhD thesis,
Department of Computer Science, University of Illinois, Urbana-Champaign, December 2009.

[43] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuniform memory access pro-
gramming model for high-performance computers. J. Supercomputing, (10):197–220, 1996.

[44] Thomas Sterling Tarek El-Ghazawi, William Carlson and Katherine Yelick. UPC: Distributed Shared
Memory Programming. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005.

[45] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 519–538, New York, NY,
USA, 2005. ACM.

[46] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the chapel language. Int.
J. High Perform. Comput. Appl., 21:291–312, August 2007.

3

[47] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. Parallex an advanced parallel execution
model for scaling-impaired applications. In ICPPW ’09: Proceedings of the 2009 International Con-
ference on Parallel Processing Workshops, pages 394–401, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[48] James Phillips, Gengbin Zheng, and Laxmikant V. Kalé. Namd: Biomolecular simulation on thousands
of processors. In Workshop: Scaling to New Heights, Pittsburgh, PA, May 2002.

[49] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tuckerman, Sameer Kumar, John A. Gun-
nels, and Glenn J. Martyna. Fine Grained Parallelization of the Car-Parrinello ab initio MD Method on
Blue Gene/L. IBM Journal of Research and Development: Applications of Massively Parallel Systems,
52(1/2):159–174, 2008.

[50] Filippo Gioachin, Amit Sharma, Sayantan Chakravorty, Celso Mendes, Laxmikant V. Kale, and
Thomas R. Quinn. Scalable cosmology simulations on parallel machines. In VECPAR 2006, LNCS
4395, pp. 476-489, 2007.

[51] Attila Gursoy and L.V. Kalé. Performance and Modularity Benefits of Message-Driven Execution.
Journal of Parallel and Distributed Computing, 64:461–480, 2004.

[52] O. Lawlor and L. V. Kalé. Supporting dynamic parallel object arrays. In Proceedings of ACM 2001
Java Grande/ISCOPE Conference, pages 21–29, Stanford, CA, Jun 2001.

[53] Gengbin Zheng, Orion Sky Lawlor, and Laxmikant V. Kalé. Multiple flows of control in migratable
parallel programs. In 2006 International Conference on Parallel Processing Workshops (ICPPW’06),
pages 435–444, Columbus, Ohio, August 2006. IEEE Computer Society.

[54] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In Pro-
ceedings of the 2nd conference on Domain-specific languages, DSL ’99, pages 39–52, New York, NY,
USA, 1999. ACM.

[55] Pritish Jetley and Laxmikant V. Kale. Optimizations for message driven applications on multicore
architectures. In 18th annual IEEE International Conference on High Performance Computing (HiPC
2011), December 2011.

[56] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela, Maria J.
Garzaran, David Padua, and Christoph von Praun. Programming for parallelism and locality with
hierarchically tiled arrays. In Proceedings of ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming 2006, March 2006.

[57] David M. Kunzman and Laxmikant V. Kalé. Towards a framework for abstracting accelerators in paral-
lel applications: experience with cell. In SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages 1–12, New York, NY, USA, 2009. ACM.

[58] Laxmikant V. Kale, David M. Kunzman, and Lukasz Wesolowski. Accelerator Support in the Charm++
Parallel Programming Model. In Jakub Kurzak, David A. Bader, and Jack Dongarra, editors, Scientific
Computing with Multicore and Accelerators, pages 393–412. CRC Press, Taylor & Francis Group,
2011.

[59] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal
of Parallel and Distributed Computing, 48:96–129 , 1998.

4

[60] Cdric Chevalier, Franois Pellegrini, Inria Futurs, and Universit Bordeaux I. Improvement of the effi-
ciency of genetic algorithms for scalable parallel graph partitioning in a multi-level framework. In In
Proceedings of Euro-Par 2006, LNCS 4128:243252, pages 243–252, 2006.

[61] George Karypis and Vipin Kumar. A coarse-grain parallel formulation of multilevel k-way graph
partitioning algorithm. In Proc. of the 8th SIAM conference on Parallel Processing for Scientific
Computing, 1997.

[62] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and L.A. Riesen. Hypergraph-
based dynamic load balancing for adaptive scientific computations. In Proc. of 21st International Par-
allel and Distributed Processing Symposium (IPDPS’07), pages 1–11. IEEE, 2007. Best Algorithms
Paper Award.

[63] Filippo Gioachin, Pritish Jetley, Celso L. Mendes, Laxmikant V. Kale, and Thomas R. Quinn. Toward
petascale cosmological simulations with changa. Technical Report 07-08, 2007.

[64] Abhinav Bhatelé, Laxmikant V. Kalé, and Sameer Kumar. Dynamic topology aware load balancing
algorithms for molecular dynamics applications. In 23rd ACM International Conference on Supercom-
puting, 2009.

[65] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. Topology-aware task mapping for reducing
communication contention on large parallel machines. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium 2006, April 2006.

[66] Hao Yu, I-Hsin Chung, and Jose Moreira. Topology mapping for Blue Gene/L supercomputer. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 116, New York, NY,
USA, 2006. ACM.

[67] Abhinav Bhatele. Application specific topology aware mapping and load balancing for three dimen-
sional torus topologies. Master’s thesis, Dept. of Computer Science, University of Illinois, December
2007. http://charm.cs.uiuc.edu/papers/BhateleMSThesis07.shtml.

[68] Torsten Hoefler and Marc Snir. Generic topology mapping strategies for large-scale parallel architec-
tures. In Proceedings of the international conference on Supercomputing, ICS ’11, pages 75–84, New
York, NY, USA, 2011. ACM.

[69] R. F. Sullivan. Alternating cold and hot aisles provides more reliable cooling for server farms. White
Paper, Uptime Institute, 2000.

[70] R Sharma C. D. Patel, C. E. Bash. Smart cooling of datacenters. In IPACK’03: The PacificRim/ASME
International Electronics Packaging Technical Conference and Exhibition.

[71] R. Sawyer. Calculating total power requirements for data centers. American Power Conversion, 2004.

[72] Osman Sarood and Laxmikant V. Kalé. A ‘cool’ load balancer for parallel applications. In Proceedings
of the 2011 ACM/IEEE conference on Supercomputing, Seattle, WA, November 2011.

[73] Barry Rountree, David K. Lowenthal, Shelby Funk, Vincent W. Freeh, Bronis R. de Supinski, and
Martin Schulz. Bounding energy consumption in large-scale MPI programs. In Proceedings of the
ACM/IEEE conference on Supercomputing, pages 49:1–49:9, 2007.

[74] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob Springer, Barry L. Rountree,
and Mark E. Femal. Analyzing the energy-time trade-off in high-performance computing applications.
IEEE Trans. Parallel Distrib. Syst., 18:835–848, June 2007.

5

http://charm.cs.uiuc.edu/papers/BhateleMSThesis07.shtml

[75] Rong Ge, Xizhou Feng, Wuchun Feng, and Kirk W. Cameron. Cpu miser: A performance-directed,
run-time system for power-aware clusters.

[76] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,
G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A 48-core IA-32 message-passing pro-
cessor with DVFS in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2010 IEEE International, pages 108 –109, February 2010.

[77] Franck Cappello. Fault tolerance in petascale/ exascale systems: Current knowledge, challenges and
research opportunities. IJHPCA, 23(3):212–226, 2009.

[78] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein,
Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stan-
ley Williams, and Katherine Yelick. Exascale computing study: Technology challenges in achieving
exascale systems, 2008.

[79] Gengbin Zheng, Lixia Shi, and Laxmikant V. Kalé. FTC-Charm++: An In-Memory Checkpoint-Based
Fault Tolerant Runtime for Charm++ and MPI. In 2004 IEEE International Conference on Cluster
Computing, pages 93–103, San Dieago, CA, September 2004.

[80] Laxmikant V. Kalé et.al. Charm++ for productivity and performance: A submission to the 2011 hpc
class ii challenge. In HPC Challenge, SC, 2011.

[81] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and Franck Cappello. Uncoordi-
nated checkpointing without domino effect for send-deterministic mpi applications. In IPDPS, pages
989–1000, 2011.

[82] Ahmad Faraj, Sameer Kumar, Brian Smith, Amith Mamidala, John Gunnels, and Philip Heidelberger.
Mpi collective communications on the blue gene/p supercomputer: algorithms and optimizations. In
Proceedings of the 23rd international conference on Supercomputing, ICS ’09, pages 489–490, 2009.

[83] E.W. Chan, M.F. Heimlich, A. Purkayastha, and R.A. van de Geijn. On optimizing collective com-
munication. In Cluster Computing, 2004 IEEE International Conference on, pages 145 – 155, sept.
2004.

[84] Rolf Rabenseifner and Jesper Larsson Träff. More efficient reduction algorithms for non-power-of-two
number of processors in message-passing parallel systems. In PVM/MPI, pages 36–46, 2004.

[85] T. Hoefler, J. Squyres, G. Fagg, G. Bosilca, W. Rehm, and A. Lumsdaine. A new approach to mpi
collective communication implementations. In Distributed and Parallel Systems - From Cluster to
Grid Computing (DAPSYS’06), pages 45–54. Springer, Sep. 2006.

[86] Isaac Dooley. Intelligent Runtime Tuning of Parallel Applications With Con-
trol Points. PhD thesis, Dept. of Computer Science, University of Illinois, 2010.
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[87] Isaac Dooley and Laxmikant V. Kale. Control points for adaptive parallel performance tuning. Novem-
ber 2008.

6

[88] Isaac Dooley, Chee Wai Lee, and Laxmikant Kale. Continuous performance monitoring for large-scale
parallel applications. In 16th annual IEEE International Conference on High Performance Computing
(HiPC 2009), December 2009.

[89] Chao Huang and Laxmikant V. Kale. Charisma: Orchestrating migratable parallel objects. In Pro-
ceedings of IEEE International Symposium on High Performance Distributed Computing (HPDC),
July 2007.

[90] Jayant DeSouza and Laxmikant V. Kalé. MSA: Multiphase specifically shared arrays. In Proceed-
ings of the 17th International Workshop on Languages and Compilers for Parallel Computing, West
Lafayette, Indiana, USA, September 2004.

[91] Phil Miller, Aaron Becker, and Laxmikant Kal. Using shared arrays in message-driven parallel pro-
grams. Parallel Computing, 38(12):66 – 74, 2012.

[92] Pritish Jetley and Laxmikant V. Kalé. Static Macro Data Flow: Compiling Global Control into Local
Control. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium
Workshops 2010, 2010.

[93] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive MPI. In Proceedings of the 16th International
Workshop on Languages and Compilers for Parallel Computing (LCPC 2003), LNCS 2958, pages
306–322, College Station, Texas, October 2003.

[94] Chao Huang, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. Performance Evaluation of
Adaptive MPI. In Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

[95] Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Celso L. Mendes, and Laxmikant V.
Kale. Optimizing an MPI Weather Forecasting Model via Processor Virtualization. In Proceedings of
International Conference on High Performance Computing (HiPC), 2010.

[96] Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Alvaro Fazenda, Celso L. Mendes, and
Laxmikant V. Kale. A Comparative Analysis of Load Balancing Algorithms Applied to a Weather
Forecast Model. In Proceedings of 22nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Itaipava, Brazil, 2010.

[97] Chao Huang, Chee Wai Lee, and Laxmikant V. Kalé. Support for adaptivity in armci using migratable
objects. In Proceedings of Workshop on Performance Optimization for High-Level Languages and
Libraries, Rhodes Island, Greece, April 2006.

7

	Introduction
	Broad Approach

	Foundational Concepts
	Execution Model and Cost Model
	Message-driven Execution
	WUDUs empower Runtime Systems
	The Principle Of Persistence

	XARTS: Exascale Mechanisms
	Managing Collections of WUDUs
	Intra-Node Parallelism
	Mechanisms for handling Heterogeneity/Accelerators:

	Continuous Introspection Framework

	XARTS: Exascale Adaptive Strategies
	Scalable Dynamic Load balancing
	Energy Efficiency
	Adapting to Thermal Variations
	Minimizing Energy, Power, and Execution time

	Fault Tolerance Schemes
	Local or In-Memory Checkpointing
	Message Logging with WUDUs

	Communication Optimizers
	Auto-tuning Based on Control Points
	Scalable Debugging and Analysis Tools

	XCharJ: MultiParadigm Programming with compiler support
	Deterministic Access to Global Data
	Global Extensible Arrays with Transactions and Atomicity
	Static Data Flow
	Divide-and-Conquer
	Tree-Based Algorithms
	Compiler support through the ROSE framework
	Example: Molecular Dynamics

	Transition Paths
	Converting MPI codes to use XARTS
	Interoperability with MPI

	Application Demonstrations
	Management Plan

