A Compiler-based Technique for
Simple, Efficient Message Packing

Anonymous Authors

Institution Withheld
Email Withheld

Abstract

The communication of data is fundamental to parallel pro-
gramming, and in any programming model that supports
user-defined types and multiple address spaces, these types
must be marshallable and unmarshallable in order for them
to be well-integrated into the model. However, the design
and implementation of data marshalling and unmarshalling
in many common frameworks leads to an undue burden on
the programmer, requiring time and effort to accomplish
tasks that can be done more accurately and efficiently by
a compiler. We describe the use of compiler techniques to
produce efficient marshalling code without programmer in-
tervention. We employ these techniques in the context of a
parallel programming framework which is primarily imple-
mented as a user-level library, and describe the benefits and
costs of such an approach.

1. Introduction

High Performance Computing (HPC) is a notoriously chal-
lenging software engineering challenge. The complexities
involved in writing fast, scalable applications are enormous
and growing every year. At the same time, many of the au-
thors of HPC software are experts in their particular applica-
tion domain rather than experts in programming, much less
parallel programming.

Considering the intrinsic difficulties of HPC and the de-
mands upon HPC programmers, it can be no surprise that
programmer productivity in this area is notoriously poor [14,
16, 20, 21]. Sadly, no dramatic solution to this problem has
been found, and none seems likely to present itself in the
near future.

Under these circumstances, we must strive to relieve the
programmer of as many burdens as is practically possible.

[Copyright notice will appear here once ’preprint’ option is removed.]

Although the intrinsic complexities of HPC software may
always remain, we can at least aim to remove as much of the
tiresome drudgery of programming as we can, eliminating
boilerplate code wherever possible.

One possible target for this effort is the passing of pro-
gram data between address spaces in distributed memory ap-
plications. This process requires the programmer to convert
application data into a communication-ready format, typi-
cally a packed buffer, on the sending side (this process is
known as marshalling, serialization, or packing), then re-
constitute the data on the receiving side (unmarshalling, de-
serialization, or unpacking).

Empirical studies have indicated that shared memory pro-
gramming is more productive than distributed memory [11],
and one of the factors that weighs against distributed mem-
ory programming is the need to pack and unpack application
data. Any disagreement between packing code and the cor-
responding unpacking code can lead to subtle bugs, and the
code must be carefully maintained whenever the data being
transmitted changes.

In object-oriented programs, the data being transmitted
will typically include user-defined types. In most program-
ming models with explicit messaging, the programmer must
provide code to handle the packing and unpacking of these
types. This support for managing the communication of
user-defined types is notable for requiring the programmer
to manually specify information that the compiler itself must
already know—that is, the types of the variables involved and
how they are laid out in memory.

In this paper we present our approach to the problem
of packing and unpacking application data in a distributed
memory environment. We avoid the need for the program-
mer to manually specify how data structures will be packed
and unpacked. We even avoid the need for the programmer to
specify which fields of a user-defined type should be packed
and which do not need to be sent and can be safely excluded.
We do this while producing efficient packing and unpacking
code which does not require maintenance when application
datatypes or communication patterns are changed. We do
this by leveraging simple compiler analysis and code gen-
eration. In the remainder of this paper we give our rationale

2011/8/19

for implementing this system, describe the system itself and
its advantages and disadvantages, and give two case studies.
We then list related and future work and conclude.

2. Approach

There are many methods by which the code which trans-
mits application data can be created. Perhaps the simplest
approach is for the programmer to do the work manually.
This largely consists of determining the size of the data to
be sent, allocating a buffer of the appropriate size, and then
copying the relevant application data into the buffer.

The advantage of this technique is that it is completely
customizeable. If a subfield of some user-defined type is
needed by a receiver in some portions of an application but
not others, the programmer can account for this fact directly.
If several variables are known to be contiguous in memory,
they can be copied as a block rather than individually.

However, the drawbacks of this approach are obvious.
It is a lot of repetitive work to specify all the data that
an application transmits in detail, and whenever application
data structures change, all the packing and unpacking code
has to change with it. It is also error prone, and there is no
easy way of verifying that the packing and unpacking is bug-
free. While this approach may be feasible, and even high-
performance given time and effort, it is extremely poor for
productivity.

Alternatively, the programmer may use a library to assist
with creating the code. This approach has the advantage
that well-designed libraries can significantly ease the process
of writing packing and unpacking code while increasing
confidence in that code’s correctness. These libraries range
from the relatively spartan to full-featured libraries such as
Boost.Serialization which include features for cyclic data
structures and conditional packing.

However, these libraries typically lack the flexibility to
efficiently change the way that an object is packed based on
application context. Each field of a type must be either al-
ways included or always excluded, leading to inefficiencies.
They also require at least some level of intervention by the
programmer to integrate their data structures with the library
in questin.

A more automatic approach is to use the information
available at compile time to generate packing code that guar-
antees type safety while eliminating the need for manual in-
tervention by the programmer. Because the compiler knows
the data layout of each type it can effectively generate pack-
ing and unpacking code that does not require updates from
the programmer. However, a straightforward implementation
will still pack data that may not be needed on the receiving
side. The programmer can specify which fields to skip, but
this requires user intervention and doesn’t allow for the pos-
siblity that some fields may be needed in one situation but
not in another.

One goal of our work is to produce a tool that can be
genuinely useful to application developers. However, this
goal is somewhat in tension with our decision to do this
work within a compiler and language framework built on a
programming model that is not MPI. Since the great majority
of HPC applications run on MPI, it would be a natural target
for practical productivity work.

While these techniques could be applied in the context
of MPI, we have several reasons for our choice of platform.
First, the object-oriented nature of the Charm programming
model is a natural fit for our method. Parallel objects abound
in any Charm application, and the packing and unpacking
of these objects is therefore a more prominent issue than it
might be in an equivalent MPI program. Second, the exis-
tence of a compiler infrastructure built on Charm made the
implementation of our ideas straightforward. Simply parsing
arbitrary C++ is a complex task, and avoiding this large ini-
tial effort is a large benefit. Third, while Charm is not nearly
as successful or widespread as MPI, there are significant
HPC applications using Charm in production [2, 12, 24], so
there is still scope for practical impact using our implemen-
tation.

3. Implementation

One of the benefits of our approach is that it does not re-
quire any complex or time-intensive compiler analysis. For
each remotely invokable method in our application, we wish
to produce a function that will pack its arguments, discard-
ing any data which can be proven to be unused. The pri-
mary question to be answered is, which variables can be dis-
carded?

Fortunately, there is a simple compiler analysis that an-
swers this question. Since the function does not interact with
its unused fields, the values in those fields are not used in any
control flow path that begins at the head of the functions con-
trol flow graph. Thus, the function argument fields that are
not needed in the body of the function are simply those fields
that are not live at the start of the function. Live variable
analysis is a well-known and well-studied algorithm [15], so
implementation is straightforward. We perform interproce-
dural analysis where possible, and when code from external
libraries is invoked we pessimistically assume that all fields
of all arguments to external functions are used.

We treat each user-defined type as a set of elements, with
each element corresponding to one field. The output of the
live variable analysis is the set of all elements which are
live at the function’s beginning. Using this set we generate
packing code specific to this function which copies each live
variable into a buffer, and corresponding unpacking code
which reconstitutes the function arguments on the receiving
side. To minimize the complexity of our implementation
we recreate the full types of all function arguments. This is
potentially wasteful of memory, as shown in figure 1(c). A
better approach would be to transform the receiving function

2011/8/19

— Pack —»| — Send —»

(a) The simplest approach is to simply pack the entire
data structure regardless of which fields are needed and
which are not. This is wasteful of space but maintains
encapsulation.

— Pack —»| — Send —»|

(b) By writing a custom packing routine, the programmer
can ensure that no data is unnecessarily transmitted at the
cost of breaking encapsulation at the receiving side.

— Pack —»| — Send —»

(c) Our technique packs only required fields, but recon-
stitutes this data on the receiving side as though it was the
full object. This maintains encapsulation without wasting
bandwidth, but does incur memory overhead on the re-
ceiving side.

Figure 1. Three approaches to message packing and un-
packing. The leftmost box represents a data structure to be
sent, and the rectangles inside it represent its fields. The mid-
dle box represents the message buffer, and the rightmost box
represents the unpacked data at its destination. Fields that are
required by the receiving side are colored blue, while wasted
memory is colored pink.

so that instead of expecting the set of arguments specified by
the programmer, it instead expects the set of variables that it
actually uses. We do not believe that this transformation is
difficult in theory, and have left it for future work.

In the base programming model that we are extending,
each type has an associated packing function, and FIXME

4. Case Studies

To get a clear idea of how this all works in practice, it is
helpful to look at message packing in the context of actual
applications. One of the principal advantages of our tech-
nique is that it allows the programmer to describe commu-
nication in terms natural, high-level objects with semantic
meaning rather than simply enumerating the data that will be
consumed by the receiving function. However, this benefit
cannot be demonstrated on tiny programs like microbench-
marks, because by their nature they are stripped down to the
bare essentials needed to perform one task effectively. Thus
there are typically no high-level objects that are used in mul-
tiple different ways in different contexts, as one would ex-
pect in a more realistic application.

To show how our message packing scheme works in an
application context without introducing the full complexities
and size of a real production HPC code, we present two
case studies taken from the examples provided with the
Charm runtime system. These are scaled-down, simplified
applications that maintain the structure of more sophisticated
scientific codes, but in a smaller and simpler package.

4.1 Molecular Dynamics

Charm is best known for NAMD [2], a popular molecular
dynamics program in common use at national supercomput-
ing sites. However, NAMD is large and complex, and we do
not have the resources that would be required to port NAMD
to Charj. However, Charm provides an example molecu-
lar dynamics program, named Molecular2D, with similar
overall structure to NAMD but with greatly simplified two-
dimensional physics. Since this program is provided for ped-
agogical purposes we might expect it to be written in a way
that maximizes clarity at the cost of performance, and in fact
this is the case, at least when it comes to message packing.

The primary data structures used in Molecular2D are Par-
ticles, which represent the physical objects being modeled,
and Patches, which represent a region of space which may
contain any number of particles. Listing 1 shows the full def-
inition of the Particle type, which mostly consists of infor-
mation regarding the physical properties of the particle.

The application simulates the motion of these particles
over a series of timesteps. In each step, particles within a cer-
tain radius exert forces on one another, affecting the position,
velocity and acceleration of each. Objects called computes
are responsible for managing the interactions between neigh-
boring patches. Each patch sends data regarding its parti-
cles to compute objects so that they can determine the ef-

2011/8/19

Listing 1. The central particle data structure used by Molec-
ular2D, and its accompanying PUP method.

class Particle{

public:
int id;
double mass; // mass
double pos[2]; // position
double f[2]; // force
double a[2]; // acceleration
double v[2]; // velocity

void pup(PUP::er &p) {
p | id;
p | mass;
p(pos, 2);
p(f, 2);
p(a, 2);
p(v, 2);

b

fect of those particles on particles belonging to other nearby
patches. As the position of a particle changes, it may be mi-
grated from one patch to another.

Listing 2 shows the signatures of the functions used by
each patch to communicate particle information during each
timestep. These are both remotely invoked functions, so their
arguments have been marshalled by potentially remote ele-
ments. The updateForces function is called by a compute
which has calculated force contributions to local particles.
The function’s argument is a list of particles corresponding
to local particles which have forces exerted on them by parti-
cles from another patch. The function simply updates the net
force on its own particles based on the information it receives
from the compute object. The updateParticles function
migrates particles which have moved outside a patch bound-
ary to the appropriate neighboring patch. This function’s ar-
gument is a list of formerly remote particles which have
moved within the boundaries of the patch during the last
timestep.

Semantically, both of these functions operate on a com-
bination of local and remote particle data, so it is natural
that they each receive a list of particles as their argument.
However, their use of the particle data they receive is quite
different. In the case of updateParticles, the particles in
the list are migrating to a new patch, and so none of their
data can be omitted—each particle will need all of its fields in
the next timestep in its new patch. However, this is not the
case for updateForces. These particles are not migrating,
only contributing to the forces exerted on some local parti-
cles. Indeed, if we look at the function body in detail, we
can see that the only fields of the received particles that used

Listing 2. Methods in Molecular2D which receive Particle
objects from remote senders. Each takes a list of particles
from a remote object which has packed the particle data into
a buffer and delivered it to the current patch.

class Patch {
void updateForces(
vector<Particle > particles);
void updateParticles (
vector<Particle > updates);
//

}s

Listing 3. A pup function equivalent to the packing code
Charj generates for the updateForces method.

void Particle ::pup(PUP::er &p) {
p(f, 2);
}

are the forces. The force members represent 16 bytes out of
a total of 76 bytes per particle, so nearly 80% of the data
transmitted to updateForces is pure waste.

In translating this code to Charj, the functions remain
mostly unchanged, except that the pup function is now un-
necessary. However, the actual communication that takes

place is much different. During compilation, updateParticles

and updateForces are each analyzed to determine which
fields of their arguments are potentially used. In the case
of updateForces the forces are the only particle compo-
nents that can possibly be read, so method-specific pack-
ing code equivalent to listing 3 is generated. In the case of
updateParticles, the elements of the argument array are
added to a data structure belonging to the patch, and from
that point on any of their fields could be accessed by Patch
methods. Therefore the packing code generated by Charj
for this function is equivalent to the full pup method of the
original application.

4.2 N-Body Simulation

The second application we consider is a modified version of
the Barnes-Hut N-body algorithm [1] from the well-known
SPLASH-2 suite [19]. The modifications are limited to port-
ing the application to use the Charm runtime. The kernel and
overall structure of the application remain unchanged.

In this application, a volume of space containing particles
is divided into regions using an oct-tree, with each leaf
of the tree representing a volume of space that contains
an approximately the same number of particles, though the
size of these volumes may vary greatly depending on the
spatial particle distribution. Then when performing n-body

2011/8/19

Listing 4. A method in the Barnes-Hut application that
passes information down the tree. It receives several argu-
ments, each of which is a field of the parent object.

void recvRootFromParent(uint8_t root_id ,
double rx, double ry,
double rz, double rs);

Listing 5. A Charj method signature corresponding the the
method in listing 4.

void recvRootFromParent(TreePiece parent);

calculations, only particles from nearby volumes must be
considered individually, with the contribution of particles
from remote volumes only approximated.

The primary communication that takes place in this ap-
plication is the passing of interaction data up and down the
tree. The tree is decomposed into disjoint segments called
TreePieces, and data is communicated between pieces viare-
mote invocation of a few methods. Actual transfer of particle
data simply uses a vector of particle information in much the
same way as the molecular dynamics application described
previously. However, information about parent-child rela-
tionships within the tree is communicated using other meth-
ods of the TreePiece object, such as recvRootFromParent.

As shown in listing 4, recvRootFromParent takes sev-
eral arguments describing its parent. What is not obvious
from the method signature, however, is that each of the ar-
guments comes from a field of the same parent object. How-
ever, it is completely impractical to send the entire parent
object, because this object contains dozens of fields and a
huge amount of data that should not be transmitted.

While the solution adopted by the application of simply
splitting out the required data and sending it separately is
vastly more efficient, it obscures the origin of the data and
the relationship between its arguments. One could preserve
this information to some extent by creating a custom type
that encapsulates just the information needed for this func-
tion, but that approach has high overhead for the program-
mer, especially in large applications or when an application
is being refactored and its arguments change.

Listing 5 shows a Charj method signature for the same
function. Within the method, uses of rx are replaced by
parent.rx, ry by parent.ry and so on. This simplifies the
method signature, making it easier to see how the function
works at a glance. In this case the improvement isn’t life-
changing, but in a larger and more complicated application
methods may have dozens of parameters, some subset of
which come from a common object and others of which

do not. In those cases the simplification may represent a
dramatic easing of the burden on the programmer.

5. Related Work

A large amount of work has been done on data marshalling,
both on improving efficiency and on reducing the burden on
the programmer. Systems such as Sun RPC [22] provided for
marshalling of C structs, using a high-level specification for
communcication in concert with a stub compiler. Later sys-
tems such as CORBA [5] extended this functionality into the
object-oriented world. Later work improved the efficiency
of generated marshalling code by dynamically choosing be-
tween runtime interpretation of data descriptions and com-
pilation [6, 8, 17]. However, these systems all require the
programmer to explicitly describe the data to be marshalled
and do not attempt to determine if any unused data is being
transmitted.

More recently there have been several approaches pub-
lished for providing serialization of C and C++ data struc-
tures in MPI applications. C++2MPI [10] and the MPI Pre-
processor [18] are both capable of automatically extracting
MPI Datatype definitions from C and C++ types. They gen-
erate a list of offsets describing the location of all data to be
marshalled relative to the base address of the user’s data.
However, they are limited to marshalling the structure in its
entirety and do not handle the case of omitting unneeded
data, even in simple cases where the unneeded data does not
depend on application context.

AutoMap and AutoLink [9] are also tools that extract
MPI datatypes from user code. However, they are limited
to C and require the programmer to annotate which fields to
pack and which to omit.

Software engineering tools focused on boosting produc-
tivity through refactoring have also targeted data marshalling
as an area where productivity gains can be had [7]. In [23],
Tansey and Telvich describe a graphical tool for generating
marshalling code in an MPI context. They allow for multi-
ple versions of the marshalling code to account for the case
where different data is needed by the reciever in different ap-
plication contexts, much as we do here. However, they rely
on the user to manually specify which fields will be packed
and which will be omitted in each case, whereas we generate
all marshalling code automatically and use compiler analysis
to determine which fields to omit.

Boost.Serialization takes a library-based approach to pro-
viding simple marshalling for C++ datatypes [13]. This li-
brary provides largely automatic support for serializing C++
data, but provides no facility for selectively omitting mem-
ber data depending on context.

Many programming languages explicitly targeted at par-
allel applications provide automatic marshalling of data or
simply present a programming model in which marshalling
of user-defined types is not an issue. Generally in program-
ming models where communication is performed via ex-

2011/8/19

plicit messages marshalling is not entirely automated in or-
der to allow the programmer some control over how mar-
shalling takes place, but often as in the case of X10 [4]
and Chapel [3], the lack of explicit messaging eliminates the
need for the programmer to consider marshalling.

6. Conclusions and Future Work

In this paper, we have described a technique for generating
marshalling code in parallel applications that improves pro-
grammer productivity in several ways. It allows the program-
mer to specify messages in a way that makes logical sense
at the level of application structure, rather than forcing them
to construct the minimal set of data required for a given op-
eration and potentially obscuring the relationships between
that data. It frees them from having to maintain marshalling
routines that are customized to provide some subset of an
object’s data while leaving extraneous member variables be-
hind, and eliminates the need to update marshalling code
when member variables change or functions are rewritten to
require different variables. It does this while producing effi-
cient messaging code that excludes member variables which
are known to be unusued on the receiving side.

We have implemented this technique using a compiler
framework built on top of a popular message-driven run-
time system. Applcations built on this programming model
communicate via asynchronous remote method invocation
between parallel objects. The object-oriented nature of this
model harmonizes well with our focus on encapsulation and
the preservation of semantic information about the ways in
which different parts of an application relate to one another.
The actual compiler analysis required to implement our tech-
nique is relatively straightforward and relies on well-known,
proven techniques for discovering dataflow in an applica-
tion. We have demonstrated these techniques on two real,
albeit simple, applications, highlighting areas in which each
application can be improved, either in simplicity or in per-
formance, by applying our technique.

There are many directions this work could be taken in.
First, there are some straightforward improvements that have
not yet been implemented but are not fundamentally differ-
ent from what we have presented here. Any method which
receives unused data which is stripped out by our technique
wastes memory on the receiving side even though no band-
width is wasted, because full objects are reconstituted on the
receiving side rather than just those fields which are neces-
sary. We have not yet implemented this optimization because
of time constraints, but it does not present any theoretical
difficulties. We could also be more sophisticated in our anal-
ysis of arrays and other collections. Currently we do not at-
tempt to detect if only a subset of member elements can ever
be used (for example, accessing only odd elements of an ar-
ray). By making our analysis of which data can potentially
be used by a receiver, we could broaden the effectiveness of
our technique.

We could also move in several new directions with this
work. One major drawback of our approach is that the au-
dience for this technique is limited both by our choice of
platform and by our use of a new language and associated
compiler infrastructure. Although the language is designed
to require minimal porting effort from C++ codes, this is
still a large hurdle to overcome. We could produce a sepa-
rate tool designed to read C or C++ applications and out-
put customized marshalling code. We could also target this
work toward MPI applications, looking to extend the work
of projects such as Boost. MPI with our technique.

References

[1] J. E. Barnes and P. Hut. A hierarchical O(NlogN) force
calculation algorithm. Nature, 324, 1986.

[2] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and
L. V. Kale. NAMD: A Portable and Highly Scalable Program
for Biomolecular Simulations. Technical Report UITUCDCS-
R-2009-3034, Department of Computer Science, University
of Illinois at Urbana-Champaign, February 2009.

[3] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. International
Journal of High Performance Computing Applications, 21
(3):291-312, 2007. doi: 10.1177/1094342007078442. URL
http://hpc.sagepub.com/content/21/3/291.abstract.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10:
an object-oriented approach to non-uniform cluster comput-
ing. In OOPSLA °05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 519-538, New
York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi:
http://doi.acm.org/10.1145/1094811.1094852.

[5] CORBA. The Common Object Request Broker: Architecture
and Specification (Draft), 10 December 1991. Revision 1.1.

P. Dietz, T. Weigert, and F. Weil. Formal techniques for auto-
matically generating marshalling code from high-level spec-
ifications. In Industrial Strength Formal Specification Tech-
niques, 1998. Proceedings. 2nd IEEE Workshop on, pages 40
—47, 1998.

[7] D. D. F. Kjolstad and M. Snir. Bringing the HPC Program-
mer’s IDE into the 21st Century through Refactoring. In
SPLASH 2010 Workshop on Concurrency for the Application
Programmer (CAP’10). Association for Computing Machin-
ery (ACM), Oct. 2010.

[4

—

[6

—_

[8] N. Feske. A case study on the cost and benefit of dynamic rpc
marshalling for low-level system components. SIGOPS Oper:
Syst. Rev., 41:40—48, July 2007. ISSN 0163-5980.

[9] D. Goujon, M. Michel, J. Peeters, and J. Devaney. Au-
tomap and autolink tools for communicating complex and
dynamic data-structures using mpi. In D. Panda and
C. Stunkel, editors, Network-Based Parallel Computing Com-
munication, Architecture, and Applications, volume 1362
of Lecture Notes in Computer Science, pages 98-109.
Springer Berlin / Heidelberg, 1998. ISBN 978-3-540-64140-

2011/8/19

7. URL http://dx.doi.org/10.1007/BFb0052210.
10.1007/BFb0052210.

[10] R. Hillson and M. Iglewski. C++2mpi: a software tool for au-
tomatically generating mpi datatypes from c++ classes. In
Parallel Computing in Electrical Engineering, 2000. PAR-
ELEC 2000. Proceedings. International Conference on, pages
13 =17, 2000. doi: 10.1109/PCEE.2000.873593.

[11] L. Hochstein and V. R. Basili. An empirical study to com-
pare two parallel programming models. In Proceedings of
the eighteenth annual ACM symposium on Parallelism in
algorithms and architectures, SPAA °06, pages 114-114,
New York, NY, USA, 2006. ACM. ISBN 1-59593-452-
9. doi: http://doi.acm.org/10.1145/1148109.1148127. URL
http://doi.acm.org/10.1145/1148109.1148127.

[12] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn.
Massively parallel cosmological simulations with ChaNGa. In
Proceedings of IEEE International Parallel and Distributed
Processing Symposium 2008, pages 1-12, 2008.

[13] P. Kambadur, D. Gregor, A. Lumsdaine, and A. Dharurkar.
Modernizing the c++ interface to mpi. In B. Mohr, J. Traff,
J. Worringen, and J. Dongarra, editors, Recent Advances in
Farallel Virtual Machine and Message Passing Interface, vol-
ume 4192 of Lecture Notes in Computer Science, pages 266—
274. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-
39110-4.

[14] J. Kepner. Hpc productivity: An overarching
view. International Journal of High Performance
Computing Applications, 18(4):393-397, Winter
2004. doi: 10.1177/1094342004048533. URL

http://hpc.sagepub.com/content/18/4/393.abstract.

[15] L. T. Kou. On live-dead analysis for global data flow
problems. J. ACM, 24:473-483, July 1977. ISSN 0004-
5411. doi: http://doi.acm.org/10.1145/322017.322027. URL
http://doi.acm.org/10.1145/322017.322027.

[16] T. Panas, D. Quinlan, and R. Vuduc. Tool support
for inspecting the code quality of hpc applications. In
Proceedings of the 3rd International Workshop on Soft-
ware Engineering for High Performance Computing Appli-
cations, SE-HPC ’07, pages 2—, Washington, DC, USA,
2007. IEEE Computer Society. ISBN 0-7695-2969-
0. doi: http://dx.doi.org/10.1109/SE-HPC.2007.8. URL
http://dx.doi.org/10.1109/SE-HPC.2007.8.

[17] C. Queinnec. Marshaling/demarshaling as a compilation/in-
terpretation process. Parallel Processing Symposium, Inter-
national, 0:616, 1999. ISSN 1063-7133.

[18] E. Renault and C. Parrot. Mpi pre-processor: generating mpi
derived datatypes from c datatypes automatically. In Parallel
Processing Workshops, 2006. ICPP 2006 Workshops. 2006
International Conference on, pages 7 pp. —256, 0-0 2006. doi:
10.1109/ICPPW.2006.56.

[19] J. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford par-
allel applications for shared memory. Computer Architecture
News, 20(1):5-44, March 1992.

[20] M. Snir and D. A. Bader. A framework for measuring
supercomputer productivity. International Journal of
High Performance Computing Applications, 18(4):417-

432, Winter 2004. doi: 10.1177/1094342004048535. URL
http://hpc.sagepub.com/content/18/4/417 .abstract.

[21] T. Sterling. Productivity metrics and models for high
performance computing. International Journal of High
Performance Computing Applications, 18(4):433-440,
Winter 2004. doi: 10.1177/1094342004048536. URL
http://hpc.sagepub.com/content/18/4/433.abstract.

[22] Remote Procedure Calls: Protocol Specification. Sun Mi-
crosystems, Inc., Mountain View, Calif., May 1988.

[23] W. Tansey and E. Tilevich. Efficient automated marshaling of
c++ data structures for mpi applications. In Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1 —12, april 2008.

[24] R. V. Vadali, Y. Shi, S. Kumar, L. V. Kale, M. E. Tuckerman,
and G. J. Martyna. Scalable fine-grained parallelization of
plane-wave-based ab initio molecular dynamics for large su-
percomputers. Journal of Comptational Chemistry, 25(16):
2006-2022, Oct. 2004.

2011/8/19

