
TITLE
Distributed Memory Load Balancing

BYLINE
Aaron Becker, Gengbin Zheng, and Laxmikant Kale
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
abecker3@illinois.edu, gzheng@illinois.edu, kale@illinois.edu

SYNONYMS

DEFINITION
Load balancing in distributed memory systems is the process of redistributing work between hard-
ware resources to improve performance, typically by moving work from overloaded resources to
underloaded resources.

DISCUSSION
In a parallel application, when work is distributed unevenly so that underloaded processors are
forced to wait for overloaded processors, the application is suffering from load imbalance. Load
imbalance is one of the key impediments in achieving high performance on large parallel machines,
especially when solving highly dynamic and irregular problems. Load balancing is a technique
that performs the task of distributing computation and communication load across the hardware
resources of a parallel machine so that no single processor is overloaded. It can reduce processor
idle time across the machine while also reducing communication costs by co-locating related work
on the same processor.

Balancing an application’s load involves making decisions about where to place newly created
computational tasks on processors, or where to migrate existing work among processors. Orthog-
onally, some applications only require static load balancing: they have consistent behaviors over
their lifetimes, and once they are balanced they remain balanced. Other applications exhibit dy-
namic changes in behavior and require periodic re-balancing. Typically it is far too expensive to
compute an optimal distribution of work in any realistic application, but a wide variety of heuristic
algorithms have been developed that are very effective in practice across a wide variety of applica-
tion domains.

The load associated with an application can be conceptualized as a graph, where the nodes
are discrete units of work and an edge exists between two nodes if there is a communication
between them. To solve the load balancing problem one must split this graph into parts, with each



part representing the work to be associated with a particular hardware resource. This partitioning
process is at the heart of load balancing.

Given the heuristic nature of load balancing, which makes perfect load balance an unrealistic
goal, it is important to remember that the goal of load balancing is not so much to equalize the
amount of work on each processor as it is to minimize the load of the most heavily loaded processor
in the system. The most overloaded processor is the bottleneck that determines time to completion.
A heuristic that leaves some processors idle is preferable to one that reduces the variance in load,
as long it reduces the load on the most loaded processor. Load balancing heuristics can also take
factors beyond time to completion into account, for example by trying to minimize power usage
over an application’s lifetime.

Modern HPC systems include clusters of multi-core nodes. The general load balancing strate-
gies described in this article are still applicable at the level of nodes (i.e. work is assigned to nodes).
Finer grained load balancing within a node (work assigned to cores) can be performed indepen-
dently. In the simplest case, it can be done by applying the same load balancing strategies that are
used for node-level load balancing, except that the cost of communication among cores within a
node is much smaller than the inter-node communication, and the number of cores involved within
a node is relatively small.

Periodic Load Balancing
In a periodic load balancing scheme, computational tasks are persistent; load is balanced only
as needed, and the balancing consists of migrating existing tasks and their associated data. With
periodic load balancing, expensive load balancing decision making and data migration are not con-
tinuous processes. They occur only distinct point in the application when a decision to do balancing
has been made. Periodic load balancing schemes are suitable for iterative scientific applications
such as molecular dynamics, adaptive finite element simulation, and climate simulation, where the
computation typically consists of a large number of time steps, iterations (as in iterative linear sys-
tem solvers), or a combination of both. A computational task in these applications is executed for
a long period of time, and tends to be persistent. During execution, at periodic intervals, partially
executed tasks may be moved to different processors to achieve global load balance.

The Load Balancing Process

In an application which rebalances its load periodically, there are four distinct steps in the load
balancing process. The first step is load estimation, which tries to gauge what the load on each
processor will be in the near future if no rebalancing is done. This may involve the use of a model
that predicts future performance based on current conditions, or it may be based directly on past
measured load, with the assumption that the near future will closely resemble the near past. The
second step is making a decision of when to execute load balancing. This is a trade-off between the
cost of load balancing itself (that is, the cost of determining a new mapping of application tasks to
hardware and the cost of migration) and the savings one can expect from a better load distribution.
The nature of the application being balanced and the cost of the load balancing method to be used
factor heavily into this decision. The third step is determining how the load will be rebalanced.
There are many algorithms devoted to computing a good mapping of work onto processors, each
with its own strengths and weaknesses. This section describes some of the most widely used

2



methods. The general problem of creating a mapping of work onto processors which minimizes
time to completion is NP-hard, so all strategies we discuss are heuristic. The final step in the load
balancing process is migration, the process by which work is actually moved. This may simply be
a matter of relocating application data, but it can also encompass thread and process migration.

Initial Balancing

For some classes of application, there is very little change in load balance over time once the
application reaches a steady state. Thus, once good load balance is achieved, no further balancing
need be done. However, load balancing is often still an important part of such applications. For
example, consider the case of molecular dynamics, where one must distribute simulated particles
onto processors. These applications do not experience significant dynamic load imbalance, but
determining a good initial mapping may be difficult because of the difficulty of estimating the load
of multiple computational tasks accurately a priori.

In cases like this, one can simply start the application with an unoptimized distribution of
work, run the application long enough to accurately measure the load, rebalance based on those
measurements, and then continue without the need for any further balancing.

Classifying Load Balancers

There are many families of load balancing approaches that can be classified according to how
they answer the fundamental questions of load balancing: how do we estimate the load, at what
granularity should one balance the load, and where should the load balancing decisions be made.

Load estimation underlies all load balancing algorithms. Load balancing is fundamentally a
forward-looking task which aims to improve the future performance of the application. To do
this effectively, the load balancer must have some model of what the future performance of the
application will be in different scenarios. There are two common approaches to estimating future
load. The first is to measure the current load associated with each piece of work in the application
and to assume that this load will remain the same after load balancing. This assumption is based
on the principle of persistence, which posits that, for certain classes of scientific and engineering
applications, computational loads and communication patterns tend to persist over time, even in
dynamically evolving computations. This approach has several advantages: it can be applied to
any application, it accurately and automatically accounts for the particular characteristics of the
machine on which the application is running, and it removes some of the burden of load estimation
from the application developer.

The alternative is to build some model of application performance which will provide a perfor-
mance estimate for any given distribution of work. These models can be sophisticated enough to
take into account dynamic changes in application performance that a measurement-based scheme
will not account for, but they must be created specifically to match the actual characteristics of the
application they are used for. If the model does not match reality then poor load balancing may
result.

Load balancing may take place at any of several levels of granularity. The greatest flexibil-
ity in mapping work onto hardware resources can be achieved by exposing the smallest possible
meaningful units of data to the load balancer. For example, these may be nodes in a finite element
application or individual particles in a molecular simulation. Alternatively, one may group this

3



data into larger chunks and only expose those chunks to the load balancing algorithm. This makes
the load balancing problem smaller while guaranteeing respect for locality within the chunks. For
example, in an molecular simulation the load balancer might only try to balance contiguous re-
gions which may contain a large number of particles without being directly aware of the particles.
It is also possible to balance load by migrating entire processes, avoiding the need for application
developers to write code dedicated to migrating their data during the load balancing process.

Load balancers may be further categorized according to where decisions are made: locally,
globally, or according to some hierarchical scheme. Global load balancers collect global infor-
mation about load across the entire machine and can use this information to make decisions that
take the entire state of the application into account. The advantage of these schemes is that load
balancing decisions can take a global view of the application, and all decisions about which ob-
jects should migrate to which processors can be made without further coordination during the load
balancing process. However, these schemes inherently lack scalability. As problem sizes increase,
the object communication graph may not even fit in memory on a single node, making global al-
gorithms infeasible. Even if the load balancing process is not constrained by memory, the time
required to compute an assignment for very large problems may preclude the use of a global strat-
egy. However, with coarse granularity, it is possible to use global strategies up to several thousand
processors, especially if load balancing is relatively infrequent.

Parallelized versions of global load balancing schemes are also possible. These use the same
principles for partitioning as a serial global scheme, but to improve scalability the task graph is
spread across many processors. This introduces some overhead in the partitioning process, but
allows much larger problems to be solved than a purely serial scheme. One example of a parallel
global solver is ParMETIS, the parallel version of the METIS graph partitioner.

Distributed load balancing schemes lie at the opposite end of the scale from global schemes.
Distributed schemes use purely local information in their decision making process, typically look-
ing to offload work from overloaded processors to their less-loaded immediate neighbors in some
virtualized topology. This leads to a sort of diffusion of work through the system as objects gradu-
ally move away from overloaded regions into underloaded regions. These schemes are very cheap
computationally, and do not require global synchronization. However, they have the disadvantage
of redistributing work slowly compared to global schemes, often requiring many load balancing
phases before acheiving system-wide load balance, and they typically perform more migrations
before load balance is achieved.

Hybrid load balancing schemes represent a compromise between global and distributed schemes.
In a hybrid load balancer, the problem domain is split into a hierarchy of sub-domains. At the
bottom of the hierarchy, global load balancing algorithms are applied to the small sub-domains,
redistributing load within each sub-domain. At higher levels of the hierarchy, the load balancing
strategies operate on the sub-domains as indivisible units, redistributing these larger units of work
across the machine. This keeps the size of the partitioning problem to be solved low without giving
up some global decision-making capabilities.

Algorithms
An application’s load balancing needs can vary widely depending on its computational character-
istics. Accordingly, a wide variety of load balancing algorithms have been developed. Some do
careful analysis of an application’s communication patterns in an effort to reduce inter-node com-

4



munication; others only try to minimize the maximum load on a node. Some try to do a reasonably
good job as quickly as possible; others take longer to provide a higher quality solution. Some
are even tailored to meet the needs of particular application domains. Despite the wide variety of
algorithms available, there are a few in wide use that demonstrate the range of available techniques.

Parallel Prefix

In some cases, the pattern of communication between objects is unimportant, and we care only
about keeping an equal amount of work on each processor. In this scenario, load may be effectively
distributed using a simple parallel prefix strategy (also known as scan or prefix sum).

The input to the parallel prefix algorithm is simply a local array of work unit weights on each
processor reflecting the amount of work that each unit represents. The classic parallel prefix al-
gorithm computes the sum of the first i units for each of the n unit in the list. Once the prefix
sum is computed, all work can be equally distributed across processors by sending each unit to the
processor number given by its prefix sum value divided by the total work divided by the number
of processors.

The primary advantage of the parallel prefix scheme is its fast, inexpensive nature. The com-
putation can be shared across p processors using only log p communications, and efficient prefix
algorithms are widely available in the form of library functions like MPI Scan. An assignment of
work units to processors based on parallel prefix can be computed virtually instantaneously even
for extremely large processor counts, regardless of variations in work unit weights.

The corresponding disadvantage of using the parallel prefix algorithm for load balancing is its
simplicity. It does not account for the structure of communication between processors and will not
attempt to minimize the communication volume of the resulting partition. It also does not attempt
to minimize the amount of migration needed.

Recursive Bisection

1 3

20

2nd cut

2nd cut

1st cut
(0,0) (4,0)

(0,3)

Figure 1: Orthogonal recursive bisection partitions by finding a cutting plane that splits the work
into two approximately equal pieces and recursing until the resulting pieces are small enough.

Recursive bisection is a divide-and-conquer technique that reduces the partitioning problem to
a series of bisection operations. The strategy of recursive bisection is to split the object graph in

5



two approximately equal parts while minimizing communication between the parts, then proceed-
ing to subdivide each half recursively until the required number of partitions is achieved. This
recursive process introduces parallelism into the partitioning process itself. After the top level split
is completed, the two child splits are independent and can be computed in parallel, and after n
levels of bisection there are 2n independent splitting operations to perform. In addition, geometric
bisection operations can themselves be parallelized by constructing a histogram of the nodes to be
split.

There are many variations of the recursive bisection algorithm based on the algorithm used to
split the graph. Orthogonal recursive bisection (ORB) is a geometric approach in which each object
is associated with coordinates in some spatial domain. The bisection process splits the domain in
two using an axis-aligned cutting plane. This can be a fast way of creating a good bisection if
most communication between objects is local. However, this method does not guarantee that it
will produce geometrically connected subdomains, and it may also produce subdomains with high
aspect ratios. Further variations exist which allow cutting planes that are not axis-aligned.

An alternate approach is to use spectral methods to do the bisection. This involves constructing
a sparse matrix from the communication graph, finding an eigenvector of that matrix, and using it
as a separator field to do the bisection. This method can produce superior results compared with
ORB, but at a substantially higher computational cost.

For many problems, recursive bisection is a fast way of computing good partitions, with the
added benefit that the recursive procedure naturally exposes parallelism in the partitioning process
itself. The advantages and disadvantages of recursive bisection depend greatly on the nature of the
bisection algorithm used, which can greatly affect partition quality and computational cost.

Space-Filling Curve

Figure 2: To partition data using a space-filling curve, a very coarse approximation of the curve
is replaced with finer and finer approximations until each unit of work is in its own segment. The
curve is then split into pieces, with each piece containing an equal number of work units. This
figure shows a Hilbert curve.

A space-filling curve is a mathematical function that maps a line onto the entire unit square
(in 2 dimensions, or the entire unit N -cube in N dimensions). There are many such curves, and

6



they are typically defined as the limit of sequence of simple curves, so that closer and closer
approximations to the space filling curve can be constructed using an iterative process. The value
of space-filling curves for load balancing is that they can be used to convert n-dimensional spatial
data into one-dimensional data. Once the higher-dimensional data has been linearized, it can be
easily partitioned by splitting the line into pieces with equal numbers of elements.

Consider the case where each object in the application has a two-dimensional coordinate associ-
ated with it. Starting with a coarse approximation to the space-filling curve, a recursive refinement
process can be used to create closer and closer approximations until each object is associated with
its own segment of the approximated curve. This creates a linear ordering of the objects, which
can then be split into even partitions.

A good choice of space-filling curve will tend to keep objects which are close together in the
higher-dimensional space. This property is necessary so that the partitions that result respect the
locality of the data. Many different curves have been used for load balancing purposes, including
the Peano curve, the Morton curve, and the Hilbert curve. The Hilbert curve is a common choice
of space-filling curve for partitioning applications because it provides good locality.

Graph Partitioning

The pattern of communication in any parallel program can be represented as a graph, with nodes
representing discrete units of work, and weighted edges representing communication. Graph par-
titioning is a general purpose technique for splitting such a graph into pieces, typically with the
goal of creating one piece for each processor. There are two conflicting goals in graph partition-
ing: achieving equal-size partitions, and minimizing the total amount of communication across
partition boundaries, known as the edge cut. Finding an optimal solution to the graph partitioning
problem is NP-Hard, so heuristic algorithms are required.

Because it is computationally infeasible to attempt to partition the whole input graph at once,
the graph partitioning algorithm proceeds by constructing a series of coarser representations of the
input graph by combining distinct nodes in the input graph into a single node in the coarser graph.
By retaining information about which nodes in the original graph have been combined into each
node of the coarse graph, the algorithm maintains basic information about the graph’s structure
while reducing its size enough that computing a partitioning is very simple.

Once the coarsest graph has been partitioned, the coarsening process is reversed, breaking com-
bined nodes apart. At each step of this uncoarsening process, a refinement algorithm such as the
Kernighan-Lin algorithm can be used to improve the quality of the partition by finding advanta-
geous swaps of nodes across partition boundaries. Once the uncoarsening process is complete, the
user is left with a partitioning for the original input mesh.

This technique can be further generalized to operate on hypergraphs. Whereas in a graph an
edge connects two nodes, in a hypergraph a hyperedge can connect any number of nodes. This
allows for the explicit representation of relationships that link several nodes together as one edge
rather than the standard graph representation of pairwise edges between each of the nodes. For
example, in VLSI simulations hypergraphs can be used to more accurately reflect circuit structure,
leading to higher quality partitions. Hypergraphs can be partitioned using a variation of the basic
graph partitioning algorithm which coarsens the initial hypergraph until it can be easily partitioned,
then refining the partitioned coarse hypergraph to obtain a partitioning for the full hypergraph.

7



The primary advantages of load balancing schemes based on graph partitioning are their flexi-
bility and generality. An object communication graph can be constructed for any problem without
depending on any particular features of the problem domain. The resulting partition can be made to
account for varying amounts of work per object by weighting the nodes of the graph and to account
for varying amounts of communication between objects by weighting the edges. This flexibility
makes graph partitioners a powerful tool for load balancing.

The primary disadvantage of these schemes is their cost. Compared to the other methods
discussed here, graph partitioning may be computationally intensive, particularly when a very
large number of partitions is needed. The construction of an explicit communication graph may
also be unnecessary for problems where communication may be inferred from domain-specific
information such as geometric data associated with each object.

Rebalancing with Refinement vs. Total Reassignment

There are two ways to approach the problem of rebalancing the computational load of an appli-
cation. The first approach is to take an existing data distribution as a baseline and attempt to
incrementally improve load balance by migrating small amounts of data between partitions while
leaving the majority of data in place. The second approach is to perform a total repartitioning,
without taking the existing data distribution into account. Incremental load balancing approaches
are desirable when the application is already nearly balanced, because they impose smaller costs
in terms of data motion and communication. Incremental approaches are more amenable to asyn-
chronous implementations that operate using information from only a small set of processors.

Software Frameworks

Many parallel dynamic load balancing libraries and frameworks have been developed before for
specialized domains. These libraries are often particularly useful because they allow application
developers to specify the structure of their application once and then easily try a number of different
load balancing strategies to see which is most effective in practice without needing to reformulate
the load measurement and task graph construction process for each new algorithm.

The Zoltan toolkit [1] provides a suite of dynamic load balancing and parallel repartitioning
algorithms, including geometric, hypergraph, and graph methods. It provides a simple interface
to switch between algorithms, allowing straightforward comparisons of algorithms in applications.
The application developers provide an explicit cost function and communication graph for the
Zoltan algorithms to use.

Charm++ [2] adopts a migratable object-based load balancing model. As such, Charm pro-
grams have a natural grain size determined by their objects, and can be load balanced by redis-
tributing their objects among processors. Charm provides facilities for automatically measuring
load, and provides a variety of associated measurement-based load balancing strategies that use
the recent past as a guideline for the near future. This avoids the need for developers to explic-
itly specify any cost functions or information about the application’s communication structure.
Charm++ includes a suite of global, distributed, and hierarchical load balancing schemes.

DRAMA [3] is a library for parallel dynamic load balancing of finite element applications.
The application must provide the current distributed mesh, including information about its compu-
tation and communication requirements. DRAMA then provides it with all necessary information

8



to re-allocate the application data. The library computes a new partitioning, either via direct mesh
migration or via parallel graph re-partitioning, by interfacing to the ParMetis or Jostle graph parti-
tioning libraries. This project is no longer under active development.

The Chombo [4] package was developed by Lawrence Berkeley National Lab. It provides a
set of tools including load balancing for implementing finite difference methods for the solution of
partial differential equations on block-structured adaptively refined rectangular grids. It requires
users to provide input indicating the computational workload for each box, or mesh partition.

Task Scheduling Methods
Some applications are characterized by the continuous production of tasks rather than by iterative
computations on a collection of work units. These tasks, which are continually being created
and completed as the application runs, form the basic unit of work for load balancing. For these
applications, load balancing is essentially a task scheduling or task allocation problem. This task
pool abstraction captures the execution style of many applications such as master/worker and state-
space search computations. Such applications are typically non-iterative.

Load balancing strategies in this category can be classified as centralized, fully distributed, or
hierarchical. Hierarchical strategies are hybrids that aim to combine the benefits of centralized and
distributed methods. In centralized strategies, a dedicated “central” processor gathers global infor-
mation about the state of the entire machine and uses it to make global load balancing decisions.
On the other hand, in a fully distributed strategy, each processor exchanges state information only
with other processors in its neighborhood.

Fully distributed load balancing received significant attention from the early days in parallel
computing. One way to categorize them is based on which processor initiates movement of tasks.

Sender-initiated schemes assign newly created tasks to some processor, chosen randomly or
from one of the neighbors in a physical or virtual topology. The decision to assign it to another
processor, instead of retaining the task locally may also be taken randomly, or based on a load
metric such as a queue size. Random assignment has some good statistical properties but suffers
from high communication costs, by requiring that most tasks be sent to remote processors. With
neighborhood strategies, global balancing is achieved as tasks are moved from heavily loaded
neighborhood diffuse onto lightly loaded processors. In the adaptive contraction within neighbor-
hood (ACWN) scheme, tasks always travel to topologically adjacent neighbors with the least load,
but only if the difference in loads is more than a predefined threshold. In addition, ACWN does
saturation control by classifying the system as being either lightly, moderately or heavily loaded.

In receiver-initiated schemes, the underloaded processors request load from heavily loaded
processors. You may chose the victim to request work from randomly, or via a round-robin policy,
or from among “neighboring” processors. Randomized work stealing is yet another distributed
dynamic load balancing technique, which is used in some runtime systems such as Cilk.

The distinction between sender or receiver initiation is blurred when processors exchange load
information, typically with neighbors in a virtual topology. Although the decision to send work is
taken by the sender, it is taken in response to load information from the receiver. For example, in
neighborhood averaging schemes, after periodically exchanging load information with neighbors
in a virtual (and typically, low-diameter) topology, each processor that is overloaded compared
with its neighbors, sends equalizing work to its lower-loaded neighbors. Such policies tend to be
proactive compared with work stealing, trading better load balance for extra communication.

9



Another strategy in this category, and one of the oldest ones, is the gradient model. Here each
processor participates in a continuous fixed-point computation with its neighbors to identify the
neighbor that is closest to an idle processor. Overloaded processors then send work towards the
idle processors via that neighbor.

The gradient model is a demand-driven approach. In gradient schemes, underloaded processors
inform other processors of their state, and overloaded processors respond by sending a portion of
their load to the nearest lightly loaded processor. The resulting effect is a form of a gradient map
that guides the migration of tasks from overloaded to underloaded processors.

The dimensional exchange method is a distributed strategy in which balancing is performed in
an iterative fashion by “folding” an P processor system into log P dimensions and balancing one
dimension at a time. I.e. in phase i, each processor exchanges load with its neighbor in the ith
dimension so as to equalize load among the two. After log P phases, the load is balanced across all
the processors. This scheme is conceptually designed for a hypercube system but may be applied
to other topologies with some modification.

Several hierarchical schemes have been proposed that avoid the bottleneck of a centralized
strategies, while retaining some of their ability to achieve global balance quickly. Typically, pro-
cessors are organized in a two level hierarchy. Managers at the lower level behave like masters in
centralized strategies for their domain of processors, and interact with other managers as proces-
sors in a distributed strategies. Alternatively, load balancing is initiated at the lowest levels in the
hierarchy, and global balancing is achieved by ascending the tree and balancing the load between
adjacent domains at each level in the hierarchy.

Often, priorities are associated with tasks, especially for applications such as branch-and-bound
or searching for one solution in a state-space search. Task balancing for these scenarios is com-
plicated because of the need to balance load while ensuring that high priority work does not get
delayed by low priority work. Sender-initiated random assignment as well as some hierarchical
strategies have shown good performance in this context.

RELATED ENTRIES
CHACO
Graph Partitioning
Hypergraph Partitioning
Parallel Prefix
Partitioning
SFC - Space-filling Curves
Topology Aware Task Mapping
Task Graph Scheduling

BIBLIOGRAPHIC NOTES AND FURTHER READING
There is a rich history of load balancing literature that spans decades. This article is only able
to cite a very small amount of this literature, and attempts to include modern papers with broad
scope and great impact. Kumar et al. [5] describe the scalability and performance characteristics

10



of several task scheduling schemes, and Devine et al. [6] gives a good overview of the range of
techniques used for periodic balancing in modern scientific applications and the load balancing
challenges faced by these applications. Xu and Lau [7] give an in-depth treatment of distributed
load balancing articles, covering both mathematical theory and actual implementations.

For practical information on integrating load balancing frameworks into real applications, lit-
erature describing principles and practical use of such systems as DRAMA [3], Charm++ [2, 8],
Chombo [4], and Zoltan [1] is a crucial resource.

More information is available on the implementation of task scheduling methods, whether they
are centralized [9, 10], distributed [11, 12, 13], or hierarchical [13]. Work stealing is described in
detail by Kumar et al. [5], while associated work on Cilk is described in Frigo et al. [14]. Dinan et
al. [15] extended work stealing to run on thousands of processors using ARMCI.

BIBLIOGRAPHY
[1] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Design of Dynamic

Load-Balancing Tools for Parallel Applications. In Proc. Intl. Conf. Supercomputing, May
2000.

[2] Laxmikant V. Kale and Gengbin Zheng. Charm++ and AMPI: Adaptive Runtime Strategies
via Migratable Objects. In M. Parashar, editor, Advanced Computational Infrastructures for
Parallel and Distributed Applications, pages 265–282. Wiley-Interscience, 2009.

[3] A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux, J.-M.
Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, and C. Walshaw. Dynamic load
balancing of finite element applications with the DRAMA Library. In Applied Math. Model-
ing, volume 25, pages 83–98, 2000.

[4] Chombo Software Package for AMR Applications. http://seesar.lbl.gov/anag/chombo/.

[5] V. Kumar, A. Y. Grama, and Nageshwara Rao Vempaty. Scalable load balancing techniques
for parallel computers. Journal of Parallel and Distributed Computing, 22(1):60–79, 1994.

[6] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson, James D.
Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio. New challenges in dynamic
load balancing. Appl. Numer. Math., 52(2–3):133–152, 2005.

[7] Chengzhong Xu and Francis C. M. Lau. Load Balancing In Parallel Computers Theory and
Practice. Kluwer Academic Publishers, 1997.

[8] Gengbin Zheng, Esteban Meneses, Abhinav Bhatele, and Laxmikant V. Kale. Hierarchical
Load Balancing for Charm++ Applications on Large Supercomputers. In Proceedings of the
Third International Workshop on Parallel Programming Models and Systems Software for
High-End Computing (P2S2), San Diego, California, USA, September 2010.

[9] Yaun-Chien Chow and Walter H. Kohler. Models for dynamic load balancing in homoge-
neous multiple processor systems. In IEEE Transactions on Computers, volume c-36, pages
667–679, May 1982.

11



[10] L. M. Ni and Kai Hwang. Optimal load balancing in a multiple processor system with many
job classes. In IEEE Trans. on Software Eng., volume SE-11, 1985.

[11] A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive load balancing policies for dynamic
applications. In IEEE Concurrency, pages 7(1):22–31, 1999.

[12] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic load balancing
on highly parallel computers. In IEEE Transactions on Parallel and Distributed Systems,
volume 4, September 1993.

[13] Amitabh Sinha and L.V. Kalé. A load balancing strategy for prioritized execution of tasks. In
International Parallel Processing Symposium, pages 230–237, New Port Beach, CA., April
1993.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5 Multi-
threaded Language. In ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation (PLDI), volume 33 of ACM Sigplan Notices, pages 212–223, Montreal,
Quebec, Canada, June 1998.

[15] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha.
Scalable work stealing. In SC ’09: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1–11, New York, NY, USA, 2009. ACM.

12


