
COMPILER SUPPORT FOR PRODUCTIVE MESSAGE-DRIVEN
PARALLEL PROGRAMMING

Draft of June 6, 2012 at 15 : 47

BY

AARON KARL BECKER

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Research Assistant Professor Maria Garzaran
Professor David Padua
Professor Ponnuswamy Sadayappan, Ohio State University

Draft of June 6, 2012 at 15 : 47

ABSTRACT

Historically, the creators of parallel programming models have employed two

different approaches to make their models availalble to developers: either

make model available to programmers through a library with hooks for com-

mon programming languages, or develop a new language altogether. Despite

the flexibility of the language approach and the great number of parallel lan-

guages that have been created, the library approach exemplified by MPI has

dominated large-scale high performance computing.

It is our hypothesis that the combination of a rich runtime system and a rel-

atively simple compiler infrastructure can significantly improve programmer

productivity without compromising performance. In this work, we examine

this hypothesis through the lens of Charj, a simple language based on the

Charm++ runtime system. We consider the effect that the addition of a

compiler has on the user experience that a programming model presents in

the ways in which features are exposed to the programmer and in opportuni-

ties for optimization and code simplification, drawing from our experiences

developing the Charm++ runtime and the Charj language.

ii

Draft of June 6, 2012 at 15 : 47

Dedication goes here

iii

Draft of June 6, 2012 at 15 : 47

ACKNOWLEDGMENTS

Acknowledgments go here

iv

Draft of June 6, 2012 at 15 : 47

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 METHODOLOGY . 4
2.1 Objectives . 5
2.2 Infrastructure . 9

CHAPTER 3 THE CHARJ LANGUAGE 11
3.1 The Charj Programming Model 11
3.2 Charj Syntax . 13
3.3 Comparing Charm Applications with Charj Applications . . . 26
3.4 Example Application . 27
3.5 Summary . 32

CHAPTER 4 THE CHARJ COMPILER 33
4.1 Software Ecosystem . 33
4.2 Compiler Architecture . 36
4.3 Summary . 43

CHAPTER 5 EMBEDDING DIVERSE PROGRAMMING MODELS 44
5.1 Related Work . 45
5.2 Supporting Multiple Programming Models 45
5.3 Structured Dagger . 46
5.4 Multiphase Shared Arrays . 58
5.5 Heterogeneous Computing . 74
5.6 Summary . 78

CHAPTER 6 WRITING APPLICATIONS IN CHARJ 80
6.1 Conjugate Gradient . 81
6.2 Molecular Dynamics . 81
6.3 N-Body Simulation . 83

v

Draft of June 6, 2012 at 15 : 47

6.4 Jacobi Relaxation . 88
6.5 LU Decomposition . 88

CHAPTER 7 OPTIMIZATIONS . 90
7.1 Optimizing Local MSA Array Accesses 92
7.2 Optimizing Data Exchange . 92

CHAPTER 8 FUTURE WORK . 103

REFERENCES . 104

vi

Draft of June 6, 2012 at 15 : 47

CHAPTER 1

INTRODUCTION

In many ways, high performance computing (HPC) remains the wild west of

the programming world. While ever-growing performance and the inevitable

march of Moore’s Law has led to the increasing popularity of managed code,

garbage collection, and dynamic typing in mainstream programming, the

developers of high performance parallel applications make very few conces-

sions to speed, and as a result they pay a high price in development and

maintenance time.

Considering the intrinsic difficulties of HPC and the demands upon HPC

programmers, it can be no surprise that programmer productivity in this

area is notoriously poor [1–4]. Sadly, no dramatic solution to this problem

has been found, and none seems likely to present itself in the near future.

Indeed, even measuring exactly what one means by productivity in HPC can

be a difficult problem to solve [5–7].

Under these circumstances, we must strive to relieve the programmer of

as many burdens as is practically possible. The Message Passing Interface

(MPI) takes the approach of giving the programmer maximal control, to the

point that it has been called the assembly language of parallel computing [8].

While this approach makes it possible to write extremely successful paral-

lel programs, it is also widely blamed in the computer science community,

whether fairly or not, for creating many of the productivity problems that we

aim to remedy [9]. On the other end of the spectrum, parallelizing compilers

have promised to automatically extract parallelism, giving the programmer

1

Draft of June 6, 2012 at 15 : 47

little or no control over the parallel structure of their code. While this ap-

proach sounds appealing, in practice attaining real performance and scalabil-

ity outside of narrow problem domains has not been possible without a real

investment of time and effort by human programmers [10–12]. Although the

intrinsic complexities of HPC software may always remain, we can at least

aim to remove as much of the tiresome drudgery of programming as we can.

We cannot expose the programmer to all of the overwhelming complexity of

a modern HPC execution environment, nor can we hide all of the complexity

behind abstractions and automation. We must rather seek a productive di-

vision of labor between the programmer and the system that provides useful

abstractions without taking away the programmer’s control.

This raises a natural question: how can we make it easier to write high

performance parallel code? Many years of research has been dedicated to

this question, and many answers have been provided, some successful and

others not. Research in parallel applications has yielded a wide variety of

programming models, dozens of languages, auto-parallelizing compilers, and

a variety of parallel runtime systems. However, it is often difficult to see

how these pieces fit together to improve the experience of actual application

developers, or if in fact the pieces can be made to fit at all.

Thus far, the bulk of HPC programmers have been indifferent to the great

variety of research at least partially dedicated to improving their lives. This

fact argues for an approach that is more focused on the practical aspects of

HPC application development and on minimizing the difficulties of adopting

new tools and techniques.

It is our hypothesis that the combination of a rich runtime system and a

relatively simple compiler infrastructure can significantly improve program-

mer productivity without compromising performance. We believe that well-

known compiler techniques can be applied to carefully targeted areas to

significantly simplify the development process for high performance paral-

lel applications, and that this process need not produce less efficient code.

In particular, the features exposed by a rich parallel runtime system can be

made simpler, more user-friendly, and less error-prone while maintaining high

performance. Rather than attempting to use the compiler to apply sophis-

ticated optimizations or dramatic restructuring of the developer’s code, we

will identify areas in which we can simplify common tasks, facilitate interop-

erability between program modules, and support such high-level application

2

Draft of June 6, 2012 at 15 : 47

features as load balancing and fault tolerance through compiler support. It

is our hope that by focusing on such practical considerations on a platform

that is already widely used in the real world that we really can reduce the

amount of blood, sweat, and tears that HPC developers must pour into their

creations.

3

Draft of June 6, 2012 at 15 : 47

CHAPTER 2

METHODOLOGY

The primary goal of this research is to investigate the ways in which program-

ming language and compiler support can improve programmer productivity

when writing parallel HPC applications. We pursue this goal by creating

a new language called Charj and an associated compiler which incorporate

syntax, semantic analysis, and optimizations targeted at HPC code. We

then use Charj to develop small-scale but fully functional HPC codes that

are representative of a variety of common problem domains, and compare

the resulting code to equivalents written using popular existing frameworks.

However, to demonstrate the usefulness of applying compiler technology

to parallel-specific productivity problems, one must first decide what pro-

gramming environment to target. Endless choices are possible. The type

of language, the particular language syntax, the compiler framework, the

optimizations to pursue–there are a huge number of variables.

Our solution space is highly constrained because of the nature of our goals.

For example, if we want to create a programming environment that is broadly

acceptable to current HPC programmers and that can leverage existing run-

time infrastructure, it would be very problematic to create a purely func-

tional programming language. For many of these variables, however, there

is no provably right or wrong choice to be made, and so we must be guided

by our notion of what will prove most expedient and practical in the demon-

stration of our thesis. However, even though we cannot provide logical proof

that our choices are correct, we can at least provide our rationale, in the form

4

Draft of June 6, 2012 at 15 : 47

of guiding principles that we have used when designing the Charj language

and its compiler infrastructure.

2.1 Objectives

In this chapter we discuss our goals in creating a new parallel programming

environment and the ways in which our goals have informed our choices about

the nature of the Charj programming language, its runtime, and its compiler

infrastructure. Broadly, we aim to develop a programming environment that

has four key features. First, it must have practical utility for working HPC

developers. When we are faced with a choice between theoretically inter-

esting features and practically useful features, we opt for practical utility.

Second, it must effectively integrate high-level parallel features, giving the

programmer simple and elegant access to complex tasks like load balancing

and fault tolerance. Third, it should provide a concise and elegant syntax

for expressing parallelism. Parallel operations should be smoothly integrated

into the language design and not be tacked on as second-class citizens. Fi-

nally, Charj should reduce the burden on the programmer by automating

tasks that are routine but effort-intensive or error-prone, especially when

those tasks are related to communication.

2.1.1 Practical Utility

With Charj, we set out to create a programming language that is useful to

the HPC community in practice, not only in theory. Usefulness ultimately

depends on a large number of factors with little or no connection to our

research agenda, such as the development of a vibrant user community and

adoption by prominent users and applications, so of course our work is not

and cannot be sufficient to guarantee that Charj will be practically useful.

Conscientious design is nevertheless necessary to allow the possibility that

Charj could be broadly adopted in the HPC community. HPC programmers

are known for being relatively conservative in their adoption of new technol-

ogy. The Message Passing Interface (MPI), the most broadly used library

for enabling parallelism in HPC applications, dates back over twenty years,

and the mathematical kernels relied on by many scientific HPC applications

5

Draft of June 6, 2012 at 15 : 47

are still written in Fortran [13]. If Charj were to represent a complete break

with existing HPC programming practice then it would have slim hopes for

practical use.

Of course, in order to increase productivity in a significant way, Charj must

differentiate itself from the alternatives it aims to supplant. Indeed, we must

aggressively pursue opportunities to improve on the status quo. However,

an appreciation for the comfort of existing HPC programmers will tend to

lead us to make changes which primarily simplify or eliminate common HPC

development tasks rather than making wholesale structural changes to the

practice of HPC programming. Therefore, to facilitate acceptance by the

existing community of HPC programmers, Charj must have familiar and

easily recognizable syntax.

Syntax is a common sticking point for programmers, and minor differences

in programming language syntax can lead to endless debate over aesthetics.

For example, the inclusion of significant whitespace in Python has spawned

reams of debate, ranting, and discussion by both Python supporters and

detractors, over the years. Discussion on this topic has far outweighed dis-

cussion on more consequential matters of expressiveness and performance.

This is not to say that significant whitespace is good or bad, only that this

type of concern over aesthetics is important to programmers, sometimes even

more important than more ostensibly substantive issues1. Where possible,

we adopt familiar, recognizable syntax, and make as few changes as possible

relative to the most widely known and used languages, which in the case of

Charj means that the syntax is very similar to Java, or a subset of C++.

If HPC programmers are conservative with regard to technology choices,

they are far more conservative (and understandably so) when it comes to

performance. A huge amount of time and effort goes into optimizing HPC

codes, and programmers are extremely reluctant to trade away any of their

performance gains. This points to two key characteristics that Charj must

have. First, it must produce efficient baseline code. That is, straightforward

1It is difficult to compare the volume of discussion on significant whitespace in Python
versus the volume of discussion on more substantive Python language issues in any rigorous
way. However, it is suggestive that on the c2.com wiki, a popular site for programming-
related discussions, the combined size of the pages “Python Language”, “Python Phi-
losophy”, and “Python Discussion” is 5764 words as of May 2012, while the combined
size of “Python White Space Discussion” and the related page “Syntactically Significant
Whitespace Considered Harmful” is 11072 works.

6

Draft of June 6, 2012 at 15 : 47

Charj code that performs basic communication must have high performance.

The infrastructure must be sound. Second, Charj must accommodate pro-

grammers who wish to optimize performance-critical code by hand. It must

have a reasonably transparent programming model and it should allow pro-

grammers who want to invest significant time and effort into optimization to

do so effectively.

The requirement for high performance dictates that Charj must have a

well-optimized messaging infrastructure. Building a high performance mes-

saging subsystem that works across the variety of specialized networking

hardware found in modern supercomputers is a very difficult undertaking in

itself, and one that is largely orthogonal to the issues that we wish to address

in Charj. Therefore it is much more efficient to adopt an existing messaging

infrastructure for Charj.

Selecting a well-established communication framework has an additional

benefit: compatibility with existing code. A large amount of time and ef-

fort has been sunk into creating highly tuned parallel code using existing

frameworks, and the ability to take advantage of this code is an important

factor in determining the acceptability of Charj in practical use. By sharing

a common foundation with a body of existing code, Charj applications can

more easily integrate with existing applications and libraries.

2.1.2 Integrating High-Level Parallel Features

HPC applications are constantly growing larger and more complex. At the

same time, supercomputers are themselves growing larger and more compli-

cated, becoming more heterogeneous and more topologically differentiated

even as their increasing size drives down mean time to failure to the point

where applications must have a strategy for gracefully recovering from errors.

In this environment, application developers must struggle to implement fea-

tures like fault tolerance and dynamic load balancing in their applications.

Although each individual application will have its own unique needs, the

prerequisites for implementing such features are typically similar. They in-

volve the need to identify key application data structures and relocate them,

with sensitivity to the parallel structure of the application. By integrating

these tasks into the Charj programming environment so that the compiler

7

Draft of June 6, 2012 at 15 : 47

has some understanding of the high-level tasks that the programmer may be

attempting to perform, we believe that we can significantly improve the ease

with which a programmer can produce a successful implementation.

2.1.3 Concise and Elegant Syntax

We have already claimed that Charj should have familiar syntax, because

familiar syntax makes it easier to use for the existing community of HPC

programmers. However, this proviso mainly applies to the syntax of serial

code implemented in Charj. Nearly all HPC code is written in a language

with no syntactic support for parallelism, typically C, C++, or Fortran.

Although there are exceptions to this rule, such as Co-Array Fortran, they

have not yet been widely adopted. In order for Charj to look and feel familiar,

sequential Charj code should resemble existing sequential code to the extent

possible.

However, most parallel operations in existing HPC applications are per-

formed via library calls. There is no parallel-specific syntax for Charj to

emulate. In these cases Charj should provide the simplest possible interface

to the parallel functionality. Ideally all new parallel syntax should feel like

part of an organic whole with the familiar serial syntax. Redundancy should

be minimized.

At the same time, it is important to be able to easily distinguish serial op-

erations from parallel operations. Especially as application and machine sizes

grow, the performance implications of each parallel task can be enormous,

and it is essential that the programmer can easily discern which sections of

the code are purely local and which sections involve communication.

While it is important to pursue simple, elegant expressions of the program-

mer’s intent, we must be careful not to unduly degrade performance for the

sake of elegance. Often, the complexity of HPC programs are due to the

need for careful performance optimizations, and while they can be simplified

significantly, these simplifications come at the cost of their speed [14]. While

there is often a trade-off to be made between elegance and performance, in

the world of high performance computing we must err on the side of perfor-

mance and carefully justify any slowdowns or inefficiencies that we introduce

in the name of simplicity.

8

Draft of June 6, 2012 at 15 : 47

2.1.4 Reducing Programmer Burden

Ultimately, each goal that we have described for Charj can be considered a

part of a larger, more encompassing goal: that of reducing burden on the

programmer. Programmers experience many kinds of burdens in the course

of developing an application, and much of the history of the compiler could

be summarized as an attempt to alleviate these burdens. Generally, we aim

to reduce or eliminate programming tasks that are repetitive, mechanical,

and error-prone, via syntactic analysis and code generation.

2.2 Infrastructure

Given these guiding principles, we can select the existing software infras-

tructure on which Charj will be built. Our goals of practical utility and

compatibility with existing HPC code point in the direction of established

and successful frameworks. This already narrows our options considerably.

Given our desire for tight integration with sophisticated parallel services like

load balancing and fault tolerance∗ , we also prefer systems that are feature
Make sure this is
adequately
substantiated in
later chapters

rich. Moreover, systems that have a rich runtime environment for Charj to

interface with provide more interesting opportunities for novel optimizations

and syntactic improvements.

With these requirements in mind, we have decided to build Charj on the

Charm++ adaptive runtime system. Charm is already widely used and

Charm applications account for a significant fraction of total usage at many

of the largest clusters in the world. It achieves high performance on a variety

of platforms, and there is a pre-existing community of Charm programmers

to draw upon. This makes it an attractive target for productivity-enhancing

efforts relative to less widely-used systems. It also presents significant com-

plexity to a programmer who wishes to make good use of all its features.

In addition to basic messaging capabilities, Charm provides functionality for

load balancing [15, 16], semi-automated marshalling and unmarshalling of

messages, fault tolerance [17,18], power management [19], use of accelerator

architectures [20], control points [21], and many other features.

In addition, multiple programming models already target the Charm run-

time [22–25]. Their existence allows for inquiry into techniques for integrat-

ing multiple programming models effectively into a single application. Also,

9

Aaron Becker

Aaron Becker
Add productivity/performance diagram and discussion of objectives relative to naive and optimized charm programs

Aaron Becker
Add discussion of library approach and why we choose to go with language/compiler as opposed to a library and what the trade-offs are

Draft of June 6, 2012 at 15 : 47

Charm already includes an associated translator which generates messaging

code from a programmer-provided interface file. This allows us to compare

the advantages of a minimalist approach (generating supplemental interface

code only and developing the main application code in C++) to a more

thoroughgoing approach in which the compiler for the parallel language has

access to method bodies and class structure information. Were we deciding

on a platform based solely on popularity and ubiquity we would certainly

have built on MPI instead, but given comparative richness and complexity

of the Charm runtime system, we claim that Charm is a better environment

in which to demonstrate the merits of our approach.

Our goals also influenced our choice of compiler construction tools. Charj

is built using the ANTLR LL(*) parser generator [26], discussed further in

chapter 4. Its LL(*) parsing algorithm allows for straightforward definition

of the language grammar. ANTLR uses a common notation for specify-

ing the language lexer, parser, and abstract syntax tree (AST) traversals,

which substantially simplifies the process of writing the compiler. ANTLR

provides a domain-specific language for recognizing and modifying AST sub-

trees, which we use for simple program transformations and recognition oper-

ations. ANTLR also provides us the freedom to build explicit representations

of the program outside of its infrastructure, which we use to for more complex

analysis.

10

Draft of June 6, 2012 at 15 : 47

CHAPTER 3

THE CHARJ LANGUAGE

This chapter describes the Charj programming environment and its rela-

tionship to the Charm runtime system. It describes Charj program seman-

tics, syntax and program structure, and gives simple example programs that

demonstrate the advantages of Charj programs over their Charm equivalents

in terms of concision, safety, and convenience.

3.1 The Charj Programming Model

Charj programs consist of collections of objects which interact via asyn-

chronous method invocation. These objects are called chares. Chares can be

collected into chare arrays or groups, or can stand alone. Each chare has a

globally unique identifier called a proxy, which can be used by other chares to

communicate with it. The programmer addresses chares via proxies, rather

than by specifying the processor on which the chare resides. This allows

the programmer to delegate responsibility for mapping chares onto physical

hardware to the runtime system.

Chare objects are specified much as ordinary objects in C++ or Java would

be, in terms of their data members and methods. Chares can also inherit

from other chares, as is typical in object-oriented design. However, chares

contain one or more remotely invocable methods, known as entry methods.

These methods can be called using only the chare’s proxy, even if the caller

11

Draft of June 6, 2012 at 15 : 47

resides in a different address space from the callee. Entry methods can take

arguments just as normal functions do. These arguments are serialized by

the sender, sent to the receiver in a message, and deserialized and used by

the receiver. The constructor of a chare class is also considered an entry

method, but rather than being sent to an existing instance of the class, it

results in the creation of a new instance.

Chare objects can be part of a collection, in which each element has the

same chare type. The most common of these is an indexed chare array. Entry

methods can be invoked on individual array elements, on the entire array,

or on a section of the array. Arguments to entry methods that are sent to

multiple array elements are duplicated (except for special cases where dupli-

cation may be avoided as an optimization which does not affect the results

of a computation), so that a message is sent for each individual receiving

chare. The programmer can also conduct asynchronous reductions over the

elements of a chare array. Each array element contributes one or more data

elements to the reduction, specifying a reducing function and a callback to

be called with the result data. The values are combined using the reducing

function, and the result is delivered using the specified callback. One spe-

cial case of chare collections is the group, which is a collection where each

physical processor is home to exactly one member of the group. Groups are

commonly used to implement application services such as caching and IO.

In a typical application, each processor core will be home to multiple

chares. Generally in the Charj programming model, the programmer ad-

dresses only individual cores and does not directly program at the level of a

multicore node. Throughout this dissertation, when we refer to a processor

we mean a single core of a possibly multicore processor node, unless other-

wise specified. Messages received by that processor correspond to an entry

method invocation on one of the chares located there. Because there may

be many such messages outstanding on a processor at any given time, a per-

processor scheduler maintains a queue of pending entry method invocations

to be processed. The scheduler selects a queue entry and invokes the specified

method on the target object using the provided data arguments. The method

then runs non-preemptively (and may spawn new entry method invocations

of its own). When the method completes, control returns to the scheduler.

The scheduler is not guaranteed to use any particular queueing policy, and

in-order receipt of messages is not guaranteed. Because application control

12

Draft of June 6, 2012 at 15 : 47

flow is driven by the receipt of messages, we refer to this as a message-driven

programming model.

The message-driven programming model has several important features

that make it suitable for large-scale parallel applications. First, it provides a

natural way of overlapping communication and computation. Because mes-

sages are sent asynchronously, chares do not block execution while waiting

to receive data. Instead, the scheduler can select other available messages

to process, so that a processor will only go idle if no messages for any of its

chares are available. Second, it allows for runtime control of features that

would otherwise have to be tightly integrated into application-level code. For

example, consider adaptive load balancing. In a model where the program-

mer addresses application components by their location, the application logic

must be explicitly aware of any dynamic movement of those components. In

Charj’s model, application logic can be more effectively decoupled from the

physical location of components, giving us the opportunity to more effec-

tively integrate features like adaptive load balancing and checkpointing into

the language itself. The message-driven execution model also effectively sup-

ports multi-paradigm parallel applications. As long as each paradigm can

be expressed in terms of asynchronous remote method invocations, the code

from many distinct paradigms can coexist, mediated by the scheduler. This

avoids partitioning of hardware resources between program modules or in-

efficient time partitioning where an application cannot use multiple models

concurrently. We make use of this capability to effectively support a variety

of programming model within Charj, as detailed in Chapter 5.

3.2 Charj Syntax

In designing a language targeted at the Charm runtime, we were guided

by the principle that new syntax must match the underlying programming

model and must always provide a concrete benefit that justifies its inclusion

in the language. It is our goal to minimize the time and effort required for

a programmer to learn Charj, and to make Charj programs look familiar to

anyone acquainted with Charm. To this end, we have adopted a simple Java-

like base syntax for serial language constructs and added a small number of

new language keywords to support Charm-specific constructs like readonly

13

Draft of June 6, 2012 at 15 : 47

variables, entry methods, and chare arrays. Invocations of remote methods

and proxies for remote objects are marked with a ‘@’ sigil that allows the

programmer to easily distinguish between local and remote operations. Our

overarching goal is designing Charj syntax is to make familiar constructs and

operations look familiar while drawing attention to Charj-specific features in

a consistent and logical way.

3.2.1 Charj Keywords

Several Charj keywords exist primarily to denote the varieties of message-

driven entities that are central to Charj programs but which have no di-

rect corresponding concept in other parallel programming models such as

MPI and OpenMP. Foremost among these are the keywords for declaring

the parallel objects described in section 3.1: chare, group, nodegroup, and

chare array. The simplest of these is chare, which indicates a parallel ob-

ject with no particular relationship to other chares in the program or to the

hardware on which the application is run.

Whereas in a Charm++ application the programmer creates a normal

C++ class and identifies that class as a chare in a separate interface (.ci) file,

in Charj chares are declared and defined in the same way that classes and

other user-defined data types are, simply using the chare keyword instead

of class. Similarly, programmers can specify parallel collections of objects

that are mapped one per physical processing element (groups), or one per

physical node (nodegroups) using the group and nodegroup keywords.

More general indexed collections of chares can be defined using the chare array

keyword, which takes an optional dimension argument that specifies the di-

mensionality of the array’s index set. Chare arrays provide a flexible way

of creating collections of chares with a well-defined relationship between one

another.

Entry Methods

Charj introduces another set of keywords that specify the behavior of the

methods of a chare class. First and most important is entry, which indicates

that a method is remotely invocable via proxy objects. Any attempt to call a

non-entry method via a proxy results in a compile-time error. However, entry

14

Draft of June 6, 2012 at 15 : 47

methods can still be invoked locally in the usual way. The entry keyword is

used in the declaration of a function, and comes after any visibility specifiers

such as “public” or “private” and before the return type of the function. It is

mutually exclusive with the “static” keyword, which indicates that a method

belongs to the class as a whole rather than to any particular instance. This

is because entry methods are inherently concerned with the particular place

where the object corresponding to a proxy resides. Since classes as a whole

do not reside in any one location, remote invocation of class methods has no

obvious meaning and is disallowed.

Threaded Entry Methods

Any entry method can be designated as a threaded method. Threaded

methods execute in their own user-level non-preemptible threads. This al-

lows threaded methods to execute blocking operations and return control to

the runtime scheduler, which will re-enqueue the blocked method and per-

form other pending work before resuming the thread. This allows the use of

blocking operations in Charj code.

Generally, it is undesirable to make the programmer explicitly specify that

a method needs its own thread. If the programmer does not use the threaded

keyword on a method that blocks, it results in a runtime error, and errors of

this sort are among the problems that Charj aims at ameliorating. However,

since it is possible for the programmer to invoke arbitrary code from an entry

method and the Charj compiler has no way of determining whether or not

that code might block, it is impossible to be sure at compile time whether

or not a method needs to be threaded.

One possible solution is to simply make all entry methods threaded. We

rejected this option because threading imposes some extra overhead, and

one of our foremost design principles is to avoid any mandatory performance

penalties∗ in favor of highly optimizable code. However, this doesn’t mean
need experiment
on this to
measure
overhead.

that the programmer is stuck identifying all methods that could potentially

block by hand. In practice, most methods that require their own thread need

it because they use one of several common runtime features. For example,

any method that uses a Multiphase Shared Array (see section 5.4) which

changes phase must be threaded. For common cases like this, we can build

knowledge into the compiler indicating that particular function calls require

15

Draft of June 6, 2012 at 15 : 47

that the containing entry method be threaded.

To identify entry methods which must be threaded, we first create a table of

expressions which are known to potentially invoke blocking operations. These

are typically the invocation of top-level functions, such as the CthYield()

function which explicitly blocks the current thread and yields control to the

scheduler, or methods of known datatypes, such as phase-change functions of

the aforementioned multiphase shared arrays. Any of these expressions can

be identified in the program’s AST using tree pattern matching as described

in chapter 4, and the method containing the expression is marked as poten-

tially blocking. Then all callers of that method are also marked potentially

blocking, continuing recursively until all potential callers have been marked.

We are left with a set of methods known to be potentially blocking (although

they may not ever block in actual practice).

Armed with this knowledge, we have two potential courses of action. We

can either automatically promote all potentially blocking methods to be

threaded, or we can check that the programmer has marked all potentially

blocking methods as threaded him- or herself and provide warning or error

messages if he or she has not. The advantage of the first option is that it

automates as much as possible for the programmer. If we can definitely learn

that a method should be threaded, why should we require the programmer

to provide that information redundantly? However, consistency argues for

the second approach. We must allow the programmer to explicitly specify

that a method is threaded to accommodate the invocation of external code

not visible to the Charj compiler, which suggests that methods which are

not marked “threaded” are indeed not threaded. Automatically threading

potentially blocking methods without requiring the use of the “threaded”

keyword also makes the threading behavior of the application more opaque

to the programmer and increases the difficulty of identifying places in the

application which can potentially block.

Since blocking mid-method goes against the normal operating assumptions

of a Charj application and provides opportunities for synchronization errors,

identifying these places may be relevant when debugging an application. For

these reasons, we simply notify the programmer when a potentially blocking

method is not marked threaded, rather than promoting the method to its

own thread behind the scenes.

The compiler’s knowledge about potentially blocking operations can also

16

Draft of June 6, 2012 at 15 : 47

Listing 3.1: Charj source for a generic Node chare class, with one threaded
entry method and one local method. All relevant data is located together in
a single file.

1 // Charj source file (.cj)
2 chare Node {
3 entry Node() {...}
4 threaded entry void receiveData(Data d) {...}
5 void sendData() {...}
6 }

be used in the opposite direction. Rather than just verifying that the pro-

grammer has correctly marked potentially blocking methods as such, it could

also identify methods which have been marked as threaded but which con-

tain no potentially blocking calls. This may happen due to code refactoring

in which blocking calls are relocated from one threaded method to another

or simply due to conservative practices on the part of the programmer. In

either case, the compiler can notify the programmer to eliminate the unnec-

essary overhead caused by threading a method which has no need for its own

thread.

Sample Code

To summarize and clarify the relationship between Charj language constructs

and their Charm++ equivalents, we present a brief example of the high-

level structure of Charj code for a generic chare class called Node, with a

threaded entry method receiveData and a local method sendData. List-

ing 3.1 presents the Charj definitions for such a class, and listing 3.4 gives a

Charm++ equivalent.

In Charj, chares are declared in the same way as serial classes, but using the

chare keyword instead of class. Entry methods and threaded entry meth-

ods are indicated by the use of the corresponding keywords in the method

declaration. The declarations and definitions are all grouped together in a

common source file, typically with file extension .cj.

In Charm++ applications, chares are declared by creating standard C++

classes and identifying them as chares in a separate interface (.ci) file. List-

ing 3.4 provides a Charm++ equivalent to the Charj code in listing 3.1. There

is a direct correspondence of program constructs between the two listings,

17

Draft of June 6, 2012 at 15 : 47

Listing 3.2: Charm++ equivalent code to the Charj code in listing 3.4. The
same information and program constructs are present, but are split across
multiple files without any unifying syntax. This listing gives the Charm++
header file (.h).

1 // Charm++ header file (.h)
2 class Node {
3 Node();
4 void sendData();
5 void receiveData(Data d);
6 };

Listing 3.3: The Charm++ implementation file (.cc).
1 Node::Node() {...}
2 void Node::receiveData(Data d) {...}
3 void Node::sendData() {...}

Listing 3.4: The Charm++ interface file (.ci).
1 chare Node {
2 entry Node();
3 entry [threaded] void receiveData(Data d);
4 };

but the Charj version benefits from consolidating all relevant program infor-

mation into a single file with a unified syntax, while the Charm++ version

splits this data into separate header, implementation, and interface definition

files, significantly increasing the size of the code and requiring the program-

mer to deal with non-local information when working with any one of those

files.

Readonly Variables

Applications commonly have need for data which is not known until after

the program is running, but which remains unchanged over the life of the

program once it is calculated at startup. Typically this data might include

proxies to important application chares and program parameters which are

read out of configuration files or command line arguments. It is convenient to

make this data globally available, but in many parallel programming models

the means of providing this data are unnecessarily complex and error-prone.

For example, consider an MPI application that needs to make several pa-

18

Draft of June 6, 2012 at 15 : 47

rameters from a configuration file available to all ranks. First, to distribute

the data, one might use MPI Broadcast to send the variables to all ranks.

However, this approach requires either a separate call for each variable to be

sent. In fact, if any of the data is of a user-defined type that is not contiguous

in memory, it will require even more than that. Particularly if there is a lot

of data to share, the distribution of data requires a large number of mostly

redundant broadcast calls. Alternatively, the programmer could manually

pack the variables into a single buffer and then unpack them on the receiving

side. This can increase efficiency by reducing the number of messages sent

and received, but introduces more complexity and new opportunities for bugs

at the point where buffers are packed and unpacked.

Furthermore, if the programmer forgets to broadcast one of the variables,

an uninitialized value will be used, potentially creating bugs. Once the data

has been received, the programmer must ensure that the application never

assigns to any of the broadcast variables, or else the values held by each rank

will no longer be in agreement. This is an important semantic restriction

on the program that is not communicated anywhere within the program text

and which is invisible to the compiler. The desired behavior is similar to that

provided by the “const” keyword, but because the variables must be assigned

to during the initialization phase, const variables can’t be used without the

use of casting tricks.

To address this common situation in Charj, we provide “readonly” vari-

ables. A readonly variable is declared in the top-level scope using the readonly

modifier keyword. Readonly variables have special assignment behavior.

They can be assigned to freely during the startup phase of the program,

in the main chare’s constructor. At that time, configuration files can be

read, proxies generated, and so on. When the constructor finishes, all read-

only variables are broadcast and made available on every processor. At that

time, they become read-only variables, and any assignment to them is an

error. This provides increased convenience for the programmer in that they

do not have to explicitly broadcast each piece of readonly data. It also pro-

vides increased safety by guaranteeing that readonly values remain identical

on each processor and are never overwritten.

Readonly variables are not original to Charj. They were first implemented

for the Charm runtime system. However, the addition of compiler support

in Charj allows for much greater safety and usability of readonly variables.

19

Draft of June 6, 2012 at 15 : 47

Consider the key property of a readonly variable: after the program’s startup

phase is complete, the only access allowed to such a variable is read access.

In the original Charm implementation of readonly types, this restriction is

completely unenforceable. Because the user’s application is simply C++,

which has no notion of readonly types, the semantic restrictions on read-

only variables are up to the programmer to enforce. The Charm++ runtime

system does provide a valuable service to the programmer by automating

the broadcast of readonly variables at the end of the initialization phase.

However, just in terms of safety and enforcement of programming model

semantics, this state of affairs is little different from the MPI situation in

which the programmer must simply be careful not to overwrite global data

and receives no specific help from the system. The Charm++ manual [27]

simply states “The current Charm++ translator cannot prevent assignments

to read-only variables. The user must make sure that no assignments occur in

the program.” In fact, it is common to see variable declarations in Charm++

applications annotated with a comment indicating that the variable is read-

only, since otherwise that information is available on in the interface file, and

the variable cannot be made const.

In contrast, the Charj compiler is aware of readonly types and their seman-

tics. Since the user specifies all readonly variables and the program’s startup

phase is well-defined by the main chare’s constructor, the compiler can verify

both that every readonly variable has been assigned to before the end of the

startup phase and that no readonly variable is assigned to after the startup

phase concludes. Thus, in Charj the semantics of readonly types are directly

enforced, whereas in other programming models or in the base Charm model

with no compiler support, the burden of ensuring correctness falls only on

the programmer, who receives little or no help from the compiler.

It is important to note that this analysis is not precise, in the sense that

there are programs which can never assign to a readonly variable outside

of the initialization phase, but which will nevertheless be flagged by the

Charj compiler as problematic. Consider, for instance, a function which

takes a boolean variable as an argument, and in its body assigns to a readonly

variable if and only if that variable is true. If this function is only ever called

with a true argument during the initialization phase, then the program is

correct. However, in general it is not possible to prove this condition at

compile time, and the compiler will conservatively warn the programmer

20

Draft of June 6, 2012 at 15 : 47

about the assignment. The programmer is then free to evaluate the function

in question using their independent knowledge of the program and determine

whether or not the assignment in question represents a bug.

Proxy Objects

Proxies are local representatives of remote objects. They consist of a unique

identifier that the runtime system can use to local the object in question.

A proxy to an object of type T has type “proxy to T,” which is roughly

equivalent to “pointer to T” with the restriction that a proxy can only be

used to invoke entry methods on its referent, and not, for example, to access

its member variables or invoke other methods. In the same way that the

syntax T* indicates a pointer to T, T@ denotes a proxy to T. Entry methods

are also invoked using the @ operator (in contrast to -> for pointers). The

use of a separate operator for proxies and remote invocation serves to clearly

delineate remote objects and operations in application code.

Applications can also make use of proxies to collections of chares, includ-

ing chare arrays, groups, and nodegroups. Proxies to chare collections are

also denoted by a @, but messages sent through them are sent to the entire

collection. Alternatively, messages can be sent to a single element of a chare

array by indexing it.

Proxies allow for a clear expression of the program’s parallel structure in a

way that can be understood by the compiler. In particular, for any message,

the compiler can determine the type of the receiver, the signature of the entry

method being invoked, and the types of all arguments to that method. This

allows for a significant degree of static checking to be done at compile time.

The compiler verifies that messages are only sent through proxy objects, that

the proxies involved expose the intended entry methods, and that the entry

methods in question take the appropriate arguments. Compare this to an

MPI-style application, where messages are sent to processors rather than

objects, and message payloads are all untyped memory buffers. In a well-

written program, the programmer’s intentions may be clear, and the parallel

structure of the application may be readily apparent. However, there is

little opportunity for the static detection of programmer errors, and the type

system is effectively non-existent for the purposes of checking communication

between nodes.

21

Draft of June 6, 2012 at 15 : 47

Listing 3.5: Function prototypes for reductions on an array of data, in MPI,
Charm, and Charj.

1 // MPI Reduction
2 int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
3 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);
4 // Charm reduction
5 void contribute(int nBytes, void* data,
6 CkReduction::reducerType type, CkCallback cb);
7 // Charj reduction
8 void contribute(Array<T> data, Reducer reducer, Callback cb);

Collectives

Collectives are one of the building blocks that parallel applications are con-

structed from. Collectives in Charj largely take the form of operations on

chare arrays. Broadcasts are handled in much the same way as point-to-point

entry method invocations via proxy: an invocation made using a proxy to

a chare array (rather than using one of the indexed members of that array)

indicates a broadcast to all array members. The type checking described in

the previous section applies equally well to broadcasts over chare arrays.

Now, consider reduction operations. The nature of a reduction operation

guarantees that the inputs share a common type, that the result of the re-

duction shares the same type, and that the types of the arguments and result

of the reducing operation are also of that type.

Consider the functions used to contribute to a reduction in Charm or MPI,

as shown in listing 3.5. The input and output types are unspecified, and there

is no guarantee that the types accepted by the reduction operation matches

the type of the contributed data. The need to support a wide variety of

input types and reduction functions, including user-defined data types and

reducers, precludes library designers from effectively encoding the type rules

of reductions into their API.

However, by extending knowledge of programming model semantics into

the compiler, we can use the type system to catch errors that are not de-

tected by a library approach. The Charj reduction function (also shown in

listing 3.5) can verify that the relevant types all match, eliminating the pos-

sibility for a reduction operation that doesn’t match the contributed data or

contributed data of mismatched types.

Charj provides an even more pronounced improvement versus Charm++

22

Draft of June 6, 2012 at 15 : 47

Listing 3.6: Charm++ implementation of a custom reducer for the type
MyType, which has its own reduce function already defined elsewhere. The
requirements for explicit handling of system reduction messages and regis-
tration of the reduction function with the runtime at startup add significant
complexity to the implementation.

1 // Interface declarations (.ci)
2 initcall void register_my_reducer(void);
3

4 // Implementation (.cc)
5 CkReductionMsg* reduceMyType(int nMsg, CkReductionMsg** msgs)
6 {
7 MyType* accum = new MyType();
8 for (int i=0; i<nMsg; ++i) {
9 MyType* x;

10 PUP::fromMem p(msgs[i]->getData());
11 p | *x;
12 accum->reduce(x);
13 }
14 return CkReductionMsg::buildNew(sizeof(MyType), accum);
15 }
16

17 CkReduction::reducerType _my_reducer_type;
18 void register_my_reducer(void)
19 {
20 _my_reducer_type =
21 CkReduction::addReducer(reduceMyType);
22 }

23

Draft of June 6, 2012 at 15 : 47

Listing 3.7: Charj implementation of a custom reducer equivalent to the
Charm++ code in listing 3.6. Function registration with the runtime and
handling of system reduction messages is handled transparently by code gen-
erated by the Charj compiler.

1 reducer<MyType> my_reducer {
2 my_reducer() { accum = new MyType(); }
3 reduce(MyType x) { accum.reduce(x); }
4 }

in the case of custom reduction operations. These are reductions in which

the data items are of a user-defined type with its own reduction operation.

Sample code for supporting custom reductions for a hypothetical MyType

type, with its own reduce function, is given in listing 3.6. Considering that

the definition of the type in question and its reduction function are both

omitted, the size and complexity of the implementation are notable. The

programmer must engage in non-trivial memory management of runtime data

structures associated with reduction trees, and must arrange to register the

custom reduction function with the runtime at startup.

In contrast, the equivalent Charj custom reduction code in listing 3.7 is

quite brief. Charj custom reducers have an implicit accum variable which is

used to accumulate new values via the reduce method. Reduction registra-

tion and runtime reduction message handling code equivalent to the Charm

listing are produced from this definition by the Charj compiler, thereby sub-

stantially reducing both the length and the complexity of the Charj imple-

mentation.

Generics and Sequential Arrays

While the primary focus of Charj is on expressing parallelism, some of its

features are aimed primarily at producing effective serial code. Our goal is

to provide the tools necessary for efficient, concise serial code that integrates

seamlessly with the parallel-specific features of Charj while maintaining fa-

miliar syntax.

One example is the implementation of generic types in Charj. Generic

types are important for re-usability and are widely used in both Java and

C++. However, their implementations are very different. C++ generics

are built on a full template metaprogramming system, which is complex and

24

Draft of June 6, 2012 at 15 : 47

sophisticated enough that it is Turing complete in itself [28]. In contrast, Java

generics work via type erasure and include no metaprogramming facilities. In

Charj we need to support generic types, but the complexity of C++ template

metaprogramming is a poor fit for Charj’s focus on simplicity, particularly in

serial code. However, C++ templates have a key performance advantage over

Java’s type erasure approach, which depends on universal inheritance from

the Object class. While recent advances in Java compilers have ameliorated

this problem [29], this work falls outside the scope of what we can reasonably

include in the Charj compiler.

As a result of these constraints, in Charj we have adopted a generic system

whose syntax is substantially similar to Java’s, but whose implementation is

based on C++ templates. This approach provides the straightforward syntax

of Java without sacrificing performance to boxing and unboxing of primitive

types, allowing high-performance generics to be used in computational ker-

nels.

The most widely used generic type in Charj is the array. The Array type in

Charj denotes the sequential container used within the scope of a single chare

object. Arrays in Charj are one of its largest departures from C++-based

Charm++ applications. The C and C++ approach, in which array elements

are accessed through arithmetic on raw pointers, causes several issues that

we wish to avoid. It prevents reliable array bounds-checking, increasing the

difficulty of debugging. It makes points-to compiler analysis more difficult

by conflating pointers and arrays. It translates poorly to two dimensions

and higher, relying on convention to establish layout and, in the case of ar-

rays of arrays, gives up memory locality in exchange for convenient syntax.

Although Java eliminates many of the safety and elegance problems of the

C++ approach, typical Java array implementations offer extremely poor per-

formance on HPC workloads, and extensive sophisticated optimizations are

required to achieve good performance [30].

To address these problems, we introduce our own generic array type in

Charj, simply named Array. It is built into the compiler, and translates

to a templatized C++ class implementing the relevant features. Array ac-

cesses can be bounds-checked for debugging purposes or left unchecked for

maximum performance based on compile-time options. The user can select

from row-major, column-major, or block-cyclic data distributions, and re-

distribute data on the fly as needed.

25

Draft of June 6, 2012 at 15 : 47

Charj also provides syntax for specifying ranges over arrays, which allows

clear and concise expression of looping constructs. These ranges can also be

used to extract contiguous sub-regions of arrays, treating them as indepen-

dent entities that can be processed without incurring copy overhead.

TODO: expand this text and add examples. Maybe ask Jonathan? talk

about subranges and library interfaces, too

3.3 Comparing Charm Applications with Charj
Applications

It is often the case in discussions of programming languages that any syntax

becomes the foremost issue and semantics are neglected. Indeed, according

to Wadler’s Law1,

In any language design, the total time spent discussing a feature

in this list is proportional to two raised to the power of its position

in the following list:

1. Semantics

2. Syntax

3. Lexical syntax

4. Lexical syntax of comments

More seriously, it does seem that language discussion is often tightly fo-

cused on syntax, perhaps because the syntax is the most obvious feature of

any new language. However, many of the most tedious and most error-prone

programming tasks in parallel computing have nothing to do with syntax,

but are rather matters of semantics.

By incorporating knowledge of the Charm programming model’s seman-

tics, Charj greatly simplifies the creation of message-driven applications as

compared to a C++ program targeting the Charm runtime. The C++ ap-

plication must specify type and visibility information for remotely invocable

functions and global read only data via an interface file, which the Charm

translator uses to generate wrapper code for sending and receiving data. This

1http://www.haskell.org/haskellwiki/Wadlers Law

26

Draft of June 6, 2012 at 15 : 47

separates important semantic information about remotely invocable func-

tions from the implementation of those functions, both needlessly duplicating

data and making it more difficult for the programmer to get a comprehensive

view of the way an application works. A C++ application developer must

also be very careful about the semantics of runtime system constructs. For

example, Charm provides “readonly” variables which can be assigned only

at program startup. There is no facility for enforcing this rule, however,

since the application code which accesses these variables is standard C++.

Charj resolves these problems simply by eliminating the need for external in-

terface specifications and understanding the semantics of readonly variables,

which allows the compiler to enforce their access rules with appropriate error

messages.

This basic language and infrastructure serve as the foundation for our work

to demonstrate our hypothesis. Even without adding analysis or optimiza-

tion, this language already provides important productivity benefits relative

to using Charm as a C++ library. It eliminates the need for separate inter-

face files which specify which methods may be invoked remotely by cleanly

integrating this information into the main body of the program. Standard

Charm programs are split into implementation code, headers, and interface

files, producing redundancy that can lead to simple errors and inconsisten-

cies. By consolidating the information from these files, Charj presents a

unified view of the program that is more concise and can be understood

more quickly.

3.4 Example Application

To illustrate the use of Charj in the context of a real program and to highlight

differences between equivalent Charj and Charm++ implementations, we

present a simple tree-based computation that calculates the Nth Fibonacci

number, fib(N). The program consists of a driver main chare class named

Main (lines 3-17 of listing 3.8 in the Charj version, and lines 4-7 of listing 3.9,

lines 3-10 of listing 3.10, and lines 4-16 of listing 3.11 in the Charm++ ver-

sion. The driver reads from the command line to determine which Fibonacci

number to compute, then creates a Fib chare to perform the actual com-

putation. The program terminates when the Fib chare invokes the driver’s

27

Draft of June 6, 2012 at 15 : 47

done method.

The actual computation of the Fibonacci number is performed recursively

by the Fib class. To compute the fib(N), as long as N is greater than

a given threshold value, two new Fib chares are spawned, one to calculate

fib(N−1) and one to calculate fib(N−2). When they have finished their own

computations, they pass their partial results to their parent via the passUp

method. The parent waits for responses from both children before passing

up its own value in turn. The threshold value acts as grainsize control for

the application and limits the number of new chares which are spawned.

Listing 3.8: Charj implementation of a simple tree-based Fibonacci applica-

tion.

1 readonly Main@ main;

2

3 public mainchare Main {

4 int n;

5

6 public entry Main(CkArgMsg m) {

7 if (m.argc < 2) n = 16;

8 else n = atoi(m.argv[1]);

9 main = thisProxy;

10 Fib@ fib = new Fib@(true, n, thishandle);

11 }

12

13 public entry void done(int value) {

14 CkPrintf("Fib(%d)�=�%d\n", n, value);

15 CkExit();

16 }

17 }

18

19 public chare Fib {

20 Fib@ parent;

21 boolean root;

22 int n;

23 int partialResult;

24 int pendingChildren;

25 const int threshold = 16;

26

27 private int seq_fib(int n) {

28 if (n < 2) return n;

29 return seq_fib(n-1) + seq_fib(n-2);

28

Draft of June 6, 2012 at 15 : 47

30 }

31

32 public entry Fib(boolean root_, int n_, Fib@ parent_) {

33 n = n_;

34 root = root_;

35 parent = parent_;

36

37 if (n <= threshold) {

38 partialResult = seq_fib(n);

39 passUp();

40 } else {

41 Fib@ child1 = new Fib@(false, n-1, thisProxy);

42 Fib@ child2 = new Fib@(false, n-2, thisProxy);

43 partialResult = 0;

44 pendingChildren = 2;

45 }

46 }

47

48 public entry void gather(int value) {

49 partialResult += value;

50 if (--pendingChildren == 0) passUp();

51 }

52

53 public void passUp() {

54 if (root) main@done(partialResult);

55 else parent@gather(partialResult);

56 delete this;

57 }

58 }

Listing 3.9: Charm++ interface file for the simple Fibonacci application.

1 mainmodule pgm {

2 readonly CProxy_Main main;

3

4 mainchare Main {

5 entry Main();

6 entry void done(int value);

7 };

8

9 chare Fib {

10 entry fib(bool root_, int n_, CProxy_fib parent_);

11 entry void gather(int value);

12 };

29

Draft of June 6, 2012 at 15 : 47

13 };

Listing 3.10: Charm++ header file for the simple Fibonacci application.

1 #include "pgm.decl.h"

2

3 class Main : public CBase_Main

4 {

5 public:

6 int n;

7 Main(CkMigrateMessage *m) {}

8 Main(CkArgMsg *m);

9 void done(int value);

10 };

11

12 class Fib : public CBase_Fib

13 {

14 private:

15 int n;

16 int partialResult;

17 int pendingChildren;

18 bool parent;

19 CProxy_fib parent;

20 int seq_fib(int n);

21 public:

22 Fib(CkMigrateMessage *m) {}

23 Fib(bool root_, int n_, CProxy_fib parent_);

24 void gather(int value);

25 void passUp();

26 };

Listing 3.11: Charm++ implementation file for the simple Fibonacci appli-

cation.

1 #include "pgm.h"

2 #define THRESHOLD 10

3

4 Main::Main(CkArgMsg* m)

5 {

6 if(m->argc < 2) n = 16;

7 else n = atoi(m->argv[1]);

8 main = thisProxy;

9 CProxy_Fib::ckNew(true, n, thishandle);

10 }

30

Draft of June 6, 2012 at 15 : 47

11

12 void Main::done(int value)

13 {

14 CkPrintf("Fib(%d)�=�%d\n", n, value);

15 CkExit();

16 }

17

18 Fib::Fib(bool root_, int n_, CProxy_Fib parent_)

19 {

20 root = root_;

21 n = n_;

22 parent = parent_;

23

24 if (n < THRESHOLD) {

25 result = seqFib(n);

26 passUp();

27 } else {

28 CProxy_Fib::ckNew(false, n-1, thishandle);

29 CProxy_Fib::ckNew(false, n-2, thishandle);

30 partialResult = 0;

31 pendingChildren = 2;

32 }

33 }

34

35 int Fib::seqFib(int n) {

36 if (n < 2) return n;

37 return seqFib(n-1) + seqFib(n-2);

38 }

39

40 void Fib::gather(int value) {

41 partialResult += value;

42 if (--pendingChildren == 0) passUp();

43 }

44

45 void Fib::passUp()

46 {

47 if (root) main.done(partialResult);

48 else parent.gather(partialResult);

49 delete this;

50 }

51

52 #include "pgm.def.h"

31

Draft of June 6, 2012 at 15 : 47

Despite the brief and simple nature of this example code, many impor-

tant differences between Charm++ and Charj are apparent in these listings.

First, and perhaps most importantly, the Charm++ version is significantly

more verbose. Despite the identical structure of the two implementations

and the fact that no particularly space-saving Charj features such as custom

reductions are used in the code, the Charj version weighs in at 58 lines, com-

pared to the Charm++ version, which takes 92 lines spread over three files.

The Charm++ version is over 1.5 times as long, mostly due to replication of

information across the interface file, header file, and implementation file.

The bodies of the functions which perform the actual work are largely iden-

tical between versions. The biggest exceptions to this rule are in the use of

parallel-specific features, specifically the invocation of entry methods, which

are marked by the @ symbol in Charj as opposed to a period in Charm++,

and the creation of new Fib chare objects, which are created via new Fib@

in Charj, and via CProxy Fib::ckNew in Charm++. The similarity in serial

code serves to lower the barrier to entry for new Charj programmers, while

the new parallel-specific syntax calls attention to explicitly parallel opera-

tions and distinguishes them from operations on local objects.

3.5 Summary

In this chapter we have described the structure of the Charj language and

its relationship to the Charm++ runtime system and programming model.

Charj aims to ease the process of writing message-driven applications by

providing language constructs well-suited to the task and more tightly inte-

grating the language with key programming model concepts. This approach

allows for greater concision and simplicity, while also facilitating greater type

safety and opening up the possibility for better feedback to the program-

mer in the form of meaningful warnings and error messages. It also creates

the opportunity for compile-time optimizations that are not possible with a

library-based approach.

32

Aaron Becker
Add charj language grammar (or reduced grammar), possibly as an appendix

Draft of June 6, 2012 at 15 : 47

CHAPTER 4

THE CHARJ COMPILER

In order to demonstrate the value of a compiler to a rich runtime system, one

must have a compiler. For reasons outlined in section 2, we have elected to

build our own compiler and associated infrastructure rather than adopting

the software infrastructure from a pre-existing compiler project.

In this chapter, we describe the overall architecture of the Charj compiler

and the steps by which Charj source code is turned into an executable for

the target architecture. This includes the tokenization, lexing, and parsing

of the input program, the construction of an abstract syntax tree (AST) and

symbol table, semantic analysis, optimization, and code generation. The

specific optimizations performed by the compiler will be deferred to chapter 7,

and here we will only describe the high-level structure of the compiler that

supports these specific optimizations.

4.1 Software Ecosystem

One of our primary goals with Charj is to create a tool that is actually useful

in practice for creating programs based on the Charm++ runtime system. In

order to accomplish this goal, we must allow the programmer to make use of

the preexisting suite of tools that exist to support Charm++ programs, while

adding new Charj-specific tools that interact well with the existing codebase.

As discussed in chapter 3, Charm++ programs are largely composed of

33

Draft of June 6, 2012 at 15 : 47

C++ code, with an accompanying interface (.ci) file that specifies informa-

tion about parallel-specific features of the code. The Charm++ software

distribution includes a translator, charmxi, which can read an interface file

and produce stub code that ties the programmer’s application code to the

runtime system. The translator produces two output files: the declarations

file (.decl.h), which contains forward declarations for all Charm++-specific

functions and variables, and the definitions file (.def.h), which contains their

implementations. These generated files are then included in the user’s C++

implementation, along with any needed C++ headers, and from that point

on the process of producing a functioning application binary is identical to

that of standard C++, with the caveat that the binary must be linked against

the Charm++ runtime libraries.

The process of creating a binary from the C++ source code that results

from the combination of the user’s own code and the output of the charmxi

translator is not specific to Charm++. However, this process can become

quite involved, given that the user must specify the include path for the

Charm++ system headers, the path to the Charm++ libraries and any li-

braries that they depend upon, and provide the appropriate flags to the

linker. These flags may vary significantly depending on the particular com-

piler and compiler version being used and the location of system libraries on

the machine where compilation occurs. To mitigate this problem and simplify

the toolchain needed by Charm++ programmers, the standard distribution

of Charm++ includes a wrapper script, charmc, which handles many of the

details of the translation, compilation, and linking process.

One advantage of using Charm++ as the basis for Charj is the ability

to make use of the significant institutional support for Charm++. Default

Charm++ installations are commonly provided on supercomputers, and the

engineering effort required to make the Charm++ software environment work

effectively across a wide variety of hardware and software configurations has

already been done. By piggybacking on the existing Charm++ infrastruc-

ture, we avoid a substantial effort that is not directly tied to our research

goals.

In order to effectively integrate with Charm++, we provide tools to aid

the programmer in going from a Charj program (possibly interacting with or

partially composed from Charm++ code) to a functional application, with-

out giving up access to the features provided by charmc. The core Charj

34

Draft of June 6, 2012 at 15 : 47

.ci

.C

.h

decl

def
Charm++

App

(a) Compilation process for a Charm++
application.

.ci

.C

.h

decl

def
Charm++
App

.cj

(b) Compilation process for a Charj ap-
plication.

Figure 4.1: In a Charm++ application, the programmer specifies an inter-
face (.ci) file that accompanies the C++ code that forms the bulk of their
application and specifies type signatures and visibility information about re-
motely invocable functions. A corresponding Charj program integrates this
information directly into the application, and the Charj compiler generates
code targeting the Charm runtime.

compiler is a Java application described in detail in the following sections. It

takes Charj source files as input and outputs C++ code and Charm interface

definitions suitable for compilation by charmc, as shown in figure 4.1. The

Charj compiler accepts a number of optional command-line arguments that

control features such as the verbosity of its diagnostic output and the level

of warning and error messages produced.

In order to simplify the compilation process for end users, we provide a

wrapper script called charjc. This wrapper accepts as arguments the union

of legal arguments to the Charj compiler and legal arguments to charmc. It

invokes the Charj compiler on the input source files, passing all Charj op-

tions through. It then takes the Charm++ interface and C++ code output

of the Charj compiler and invokes charmc on them, applying the remaining

charmc command-line flags. The output of this process includes both the

source code output of the Charj compiler and the binary output obtained

from charmc. This output can be linked directly with the Charm libraries

and Charj runtime. By making the output of the Charj compiler as close as

possible to a normal Charm program, we make it easier to integrate Charj

code into existing Charm code and vice-versa, while also giving the program-

mer an easy way of inspecting the outcome of the Charj compilation process.

Although the Charj compiler and the charjc wrapper script that handles ar-

gument passing and invoking charmc on the output of the Charj compiler

35

Draft of June 6, 2012 at 15 : 47

are distinct entities, for brevity we use the name of the wrapper script which

invokes the Charj compiler, charjc, synonymously with the Charj compiler

itself in places where this distinction is not important.

4.2 Compiler Architecture

The Charj compiler is a Java application composed of several modules. The

main components of the compiler are the parser, the abstract syntax tree

(AST) handler, the symbol table and associated symbol definitions, and the

code generator. The parsing, AST manipulation, and code generation are all

implemented using ANTLR [26], which dictated the choice of Java for the

application as a whole.

The compiler driver is essentially a Java wrapper around the core compiler

functionality. The driver parses command-line arguments, reads input, con-

structs the appropriate ANTLR objects to first construct an AST, and then

to perform passes over that AST and generate code, optionally outputting

debugging information about the current state of the AST on each pass. It

also manages the creation of the output source files. Before passing the input

file to the ANTLR parser, the driver first preprocesses the source using the

cpp preprocessing tool. While the initial design of the Charj language did not

include the use of preprocessor macros, in practice we found that the need

for conditional compilation of application code in HPC applications was so

widespread that support for this conditional compilation was necessary. The

use of cpp allows this conditional compilation in a way that is already famil-

iar to Charj programmers and eases the porting of existing C and C++ codes

that use conditional compilation extensively, usually to enable and disable

architecture-specific performance optimizations.

4.2.1 Generating an AST

ANTLR (short for ANother Tool for Language Recognition) provides domain-

specific languages for specifying language grammars and constructing and

manipulating ASTs. From the specification, ANTLR creates code to tok-

enize and lex Charj source input and construct an AST. ANTLR also pro-

vides a language, called filter grammars, for recognizing and modifying AST

36

Draft of June 6, 2012 at 15 : 47

Listing 4.1: ANTLR grammar rules for Structured Dagger statements. Each
rule consists of a list of alternative patterns with associated AST outputs.

1 sdagTrigger
2 : IDENT (’[’! expression ’]’!)? formalParameterList
3 ;
4

5 sdagStatement
6 : OVERLAP block
7 -> ^(OVERLAP block)
8 | WHEN (sdagTrigger (’,’ sdagTrigger)*)? block
9 -> ^(WHEN sdagTrigger* block)

10 ;

subtrees. Charjc is a multi-pass compiler, and each pass is implemented

as a series of operations on subtrees identified via ANTLR filter grammars.

Simple code transformations and recognition operations are implemented di-

rectly within these filter grammars, but for more complex tasks we construct

an explicit representation of the program’s control flow graph (CFG) and op-

erate directly on that data structure in Java rather than relying on ANTLR’s

domain specific language.

Listing 4.1 illustrates rules from the ANTLR specification for Charj’s gram-

mar, specifically for Structured Dagger statements described in section 5.3.

Each rule consists of a list of alternatives. Each alternative is composed of

tokens, such as IDENT and WHEN, literals, such as ‘[’ and ‘,’, and other rules,

such as expression and formalParameterList. ANTLR allows supports

extended Backus-Naur Form (EBNF) notation [31] for denoting alternation,

repetition, optional elements, and so on within the alternatives.

Each alternative is associated with an output AST. The default is to create

a tree whose nodes are the elements of the alternative, with the first element

as the root and each subsequent element is a child. Elements suffixed with a ‘!’

are excluded from the resulting AST. In the example listing, the sdagTrigger

rule uses this method of AST creation.

Alternatively, AST outputs can be specified explicitly. ANTLR’s AST

notation has the following form:

1 ^(root child1 child2 ... childN)

AST outputs can be explicitly constructed using this notation by affixing

a -> symbol to the alternative, followed by the desired result AST, as is done

for the alternatives for the sdagStatement rule in the example listing.

37

Draft of June 6, 2012 at 15 : 47

The specification of grammar rules is made simpler by the flexibility of

ANTLR’s LL(*) parsing algorithm, which eliminates or mitigates many com-

mon problems experienced in the use of common LR-based parsers such as

YACC [32]. LL(*) parsing is a generalization of LL(k) parsing featuring

arbitrary lookahead, which eliminates the need for the grammar writer to

determine the correct value of k, and allows for grammars that are not LL(k)

for any fixed k.

4.2.2 Semantic Analysis and Optimization

Once the input is parsed and the AST is created, the compiler makes several

passes over the AST prior to code generation. The purpose of these passes is

to analyze the AST and extract information that is useful either for providing

more effective warnings and error messages to the programmer, or to aid in

the process of code generation.

These passes are written in terms of ANTLR tree pattern matchers [33],

which allow the programmer to specify the structure of AST subtrees of

interest and actions to be performed when those subtrees are encountered,

in either a top-down or a bottom-up traversal of the tree. This avoids the

need to describe the entire AST structure for each pass, while still allowing

the use of descriptive ANTLR syntax for describing subtrees. In addition,

it abstracts the details of the tree traversal operation and the process of

identifying AST substructures away from the action to be performed once

those substructures are encountered.

For example, consider listing 4.2, which shows a portion of a tree pattern

matcher which identifies class variables that require initializers in the class’s

constructor and/or inclusion in the class’s generated pack/unpack (PUP)

routine (see section 7.2 for a description of PUP methods and PUP-related

optimizations in Charj).

Each top-level rule in the listing describes a tree structure using ANTLR

syntax. The rules for describing trees in this way are more relaxed than for

the full language grammar, since rules here match entire families of subtree.

Most notably, it allows the use of the ‘.’ and ‘*’ operators to denote an

arbitrary tree node, and an arbitrary repetition of the preceding element,

respectively. So, for example, the pattern (̂TYPE .*) would match any sub-

38

Draft of June 6, 2012 at 15 : 47

tree whose root is a TYPE node. Then, following each rule, the programmer

can specify a block of Java code to be executed when the rule is matched,

or a rewrite rule which specifies a transformation of the matched subtree, or

both. If the AST is modified during a traversal, it is re-walked until an entire

traversal takes place with no AST modifications.

Additionally, there are two special top-level rules in a tree pattern matcher:

topdown and bottomup. These rules simply list the patterns that can be

matched when walking the tree from top to bottom and from bottom to

top, respectively. These can be used to track the current location of the

traversal within the tree. In the example listing, the rules enterMethod and

exitMethod are only used to track whether or not the traversal is currently

within a class’s method when it matches the varDeclaration rule, because

local variable declarations within a method do not need class-level initializa-

tion or inclusion in PUP routines.

The varDeclaration rule simply matches the AST structure for a vari-

able declaration, including any initialization expression. The associated code

action for this rule first verifies that the declaration occurs within a class,

but not within the definition of one of its methods. Then, if the declaration

includes an initializer, it is added to its class’s initialization list, using the

AST associated with the initialization expression. The variable is also added

to the list of class variables used for generating the PUP function, and a

distinction is made between proxy types and non-proxy types for the sake of

simpler processing later on.

Tree pattern matchers of this type are widely used in Charj to perform

tasks such as type resolution, symbol table population, and identification of

places in the program that are candidates for optimization or possible sites

of errors.

4.2.3 Code Generation

When our optimizations and analysis are complete, we output C++ code and

Charm interface code which is compiled against the Charm API. ANTLR

integrates tightly with the StringTemplate template engine. StringTemplate

provides a way to produce structured text directly from the AST structure

without coupling the AST structure to the format of the output [34] . One

39

Draft of June 6, 2012 at 15 : 47

Listing 4.2: ANTLR filter grammar rules used for identifying class variables
that need to be initialized and packed/unpacked. Context in the form of the
symbol of the current class is maintained in the enterClass and exitClass
rules, and all AST subtrees that match the pattern associated with variable
declarations

1 topdown : enterClass | enterMethod | varDeclaration;
2 bottomup : exitClass | exitMethod
3

4 enterClass :
5 ^(TYPE .*) {
6 currentClass = $IDENT.def.sym;
7 };
8

9 exitClass :
10 ^(TYPE ...) {
11 currentClass = null;
12 };
13

14 enterMethod :
15 ^((FUNCTION_DECL | ENTRY_FUNCTION_DECL) .*) {
16 inMethod = true;
17 };
18

19 exitMethod :
20 ^((FUNCTION_DECL | ENTRY_FUNCTION_DECL) .*) {
21 inMethod = false;
22 };
23

24 varDeclaration :
25 ^(VAR_DECLARATOR ^(IDENT .*) (expr=.)?) {
26 if (!inMethod && currentClass != null) {
27 if ($expr != null) {
28 currentClass.initializers.add(
29 new VariableInitializer($expr, $IDENT));
30 }
31

32 currentClass.varsToPup.add($IDENT);
33 if (!($IDENT.symbolType instanceof ProxyType ||
34 $IDENT.symbolType instanceof ProxySectionType))
35 currentClass.pupInitializers.add(
36 new VariableInitializer($expr, $IDENT));
37 }
38 };

40

Draft of June 6, 2012 at 15 : 47

of our goals in code generation is to produce output that can be read and

readily understood by the programmer. Because the overall structure of a

Charj application and its Charm++ equivalent are generally quite close, it

is straightforward for the programmer to look at the generated output and

find a correspondence between the generated code and their input Charj

code. This is an important quality to maintain in order to maximize the

programmer’s ability to debug Charj applications, particularly when Charj

code is being integrated with existing Charm++ modules or components.

In order to maximize the similarity of the generated code to the input

code, we preserve the original identifier names, and use meaningful names for

generated variables whenever possible. For example, local variables in meth-

ods that contain Structured Dagger constructs must be promoted to class

variables (see section 5.3). In order to avoid name conflicts, the promoted

variable names must be mangled to ensure their uniqueness. Rather than

using meaningless random names, we combine the original variable name,

the name of the method in which it is declared, and a number indicating

the scope within that method where that variable was declared. The scope

indicator is necessary because two variables with different types but the same

name can be declared in different blocks within the same function. So, for

example, the variable iteration declared at the top level of the calculate

method would appear in its mangled form as iteration calculate 1.

From the final program AST, we produce three different output source files:

a C++ header file, a C++ implementation file, and a Charm++ interface

file. To achieve this, we write a generic function for walking the AST and

invoking a set of StringTemplate templates to produce output. Each template

is associated with a particular type of AST node. We produce the three

output files by supplying three different sets of templates to the generic code

generation function.

For example, consider the templates in listing 4.3, which demonstrates

slightly simplified templates associated with the declaration of entry meth-

ods. The templates each take a list of arguments, each of which is either a

symbol from the symbol table or a template associated with some subtree

of the AST rooted at the current node. So, for example, the “modifiers”

argument to the template is itself the template associated with the list of

keyword modifiers for this method, such as public, static, or threaded,

and the “block” argument is the template associated with the body of the

41

Draft of June 6, 2012 at 15 : 47

Listing 4.3: Simplified StringTemplate templates associated with an entry
method declaration for each of C++ header, C++ implementation, and
Charm++ interface output targets. The arguments to the template are them-
selves the templates associated with subtrees of the AST rooted at the entry
method declaration, or, in the case of classSym and methodSym, symbols
representing the current class and method.

1 // Header output template
2 entryMethodDecl_h(classSym, methodSym, modifiers, type, id, params, block) ::=
3 <<
4 <modifiers><type> <id><params>;
5 >>
6

7 // Interface output template
8 entryMethodDecl_ci(classSym, methodSym, modifiers, type, id, params, block) ::=
9 <<

10 <modifiers><type> <id><params>;
11 >>
12

13 // Implementation output template
14 entryMethodDecl_cc(classSym, methodSym, modifiers, type, id, params, block) ::=
15 <<
16 <if(block)>
17 <modifiers><type> <classSym.Name>::<id><params>
18 {
19 <if(methodSym.isTraced)>
20 int _charj_method_trace_timer = CkWallTimer();
21 #endif
22 <endif>
23

24 <block>
25

26 <if(methodSym.isTraced)>
27 traceUserBracketEvent(<methodSym.traceID>,
28 _charj_method_trace_timer, CkWallTimer());
29 <endif>
30 }
31 <endif>
32 >>

42

Draft of June 6, 2012 at 15 : 47

method.

When generating output for the header or interface files, the body template

will return an empty string because the function body does not appear in

those files, while in the implementation file it will expand to the whole body

of the method in question. The use of symbol arguments allows us to access

information stored in the symbol table to make decisions about what to

output. In the example given, tracing code will be inserted in the method

body if that method’s symbol indicates that it should be traced. The unique

id used for tracing is also stored in the symbol data structure.

4.3 Summary

The Charj compiler is an essential component of our research agenda. It gives

concrete form to the Charj language, and creates the opportunity to explore

a wide variety of optimizations specific to Charj programs. It is fair to say

that the Charj compiler does not contain any novel new technology which

will advance the state of the art in compiler research. In fact, we designed

it to rely on well-known and thoroughly tested techniques. However, this

software acts as a solid foundation from which to explore the possibilities of

productivity-enhancing techniques specific to message-driven applications.

43

Draft of June 6, 2012 at 15 : 47

CHAPTER 5

EMBEDDING DIVERSE

PROGRAMMING MODELS

As parallel applications grow larger and more complex, it becomes less and

less feasible to write an entire application using a single programming model.

In a large application with multiple constituent modules, no one paradigm is

necessarily suitable for writing the entire application. While it has in the past

been common practice to produce applications that exclusively use message

passing, or global arrays, or actors, or any of a number of other models,

this approach is unnecessarily limiting, and may force the programmer to

choose a compromise model that is only mostly suitable and force the entire

application to use that model. In particular, if one wishes to make use of

parallel modules which encompass some task-specific parallel algorithm, it

is difficult to require that the module use the same programming model as

the rest of the application without sacrificing programmer productivity via

longer development time, lower maintainability, and generally inelegant code.

There are several benefits to multi-model parallel applications. They en-

able freer choice of libraries and modules and encourage code re-use. They

allow a “right tool for the right job” approach in which, for example, an

array-based model can be used for array-intensive parallel code while a model

specialized for tree-structured parallel computations can be used where trees

are the central data structure. They also allow the use of incomplete models,

which are models that are not capable of expressing arbitrary parallel inter-

44

Draft of June 6, 2012 at 15 : 47

actions but which in return are able to provide increased safety guarantees

and more elegant notation to programmers.

One powerful technique for making use of multiple programming models

in a single application is for all the models to target a common parallel

runtime system. The runtime system can mediate communication between

modules and schedule code belonging to different models in an intelligent way

because it has access to and control over the entire state of the application.

This allows for the minimization of compatibility layers between models and

the potential for overlapping execution of code belonging to different models.

In this work, we take advantage of the ability for the Charj compiler to be

aware of multiple programming models that can be used together in a single

application. Charj programs can then provide much greater integration be-

tween models via improved static checking and model-specific optimizations.

5.1 Related Work

Multi-model (or multi-paradigm) programming and ability of programming

languages to accommodate that style is a topic that extends far beyond the

confines of parallel computing. For example, C++ is often referred to as a

multi-paradigm language, in that it supports programming with an impera-

tive style, object-oriented programming, and template-based meta- and func-

tional programming. For the purposes of this discussion, however, we limit

ourselves to those systems which allow multiple programming paradigms

which are specifically parallel in nature. These systems can be roughly cat-

egorized as either multi-paradigm parallel languages, parallel programming

model extensions, interoperability frameworks, and runtime systems which

unify multiple programming models.

TODO: discuss and cite examples of each, make case that Charj is novel,

good approach.

5.2 Supporting Multiple Programming Models

We believe that the use of multiple programming models can provide signif-

icant productivity benefits to the programmer, particularly in the context of

45

Draft of June 6, 2012 at 15 : 47

large applications with many linked components. In Charj, we attempt to

support a variety of programming models and notations within the base Charj

programming environment, all operating on a common runtime system. In

the following sections, we will describe the models that Charj supports, the

ways in which these models are useful to HPC programmers, and the benefits

that accrue from integrating them into the Charj programming environment.

5.3 Structured Dagger

Structured dagger (SDAG) [24, 35, 36] addresses a common need in parallel

message-driven applications to effectively coordinate the sequence of execu-

tion between the methods of communicating objects. SDAG facilitates this

process by providing a clear expression of the flow of control within an ob-

ject while maintaining the ability to adaptively overlap communication and

computation.

In the basic message-driven model the body of a remotely invokable method

contains serial code which does not block, and when data must be received

from a remote entity, callbacks are typically used. This approach suffers from

the non-local nature of program control flow. Because each entry method is

directly invoked by the scheduler, and the receiver of a message may respond

with any of a variety of return messages or none at all, the natural pattern of

messages that are passed between objects over the course of an application’s

lifetime is not immediately obvious from the code, and may require significant

interpretation by skilled programmers to discover. In addition, the program-

mer has no built-in way of describing common interaction patterns such as

“proceed when I have received n messages of type t”, as when an object waits

for its neighboring objects before continuing a computation. The advantage

of this scheme is that it allows the runtime system to adaptively overlap com-

munication with computation and supports data-dependent communication

patterns, but in some cases it does so at the expense of program clarity.

Structured dagger is a coordination language aimed at clarifying control

flow in message-driven applications and supporting common idioms needed

in applications which depend on asynchronous method invocation, without

sacrificing the associated benefits of overlap of communication and compu-

tation. It defines several constructs that allow the programmer to express

46

Aaron Becker
Either incorporate SDAG into Charj grammar in appendix and refer to it or give SDAG grammar here

Aaron Becker
Need clearer description of SDAG background information, programming model, etc.

Draft of June 6, 2012 at 15 : 47

message-driven control flow within the context of a single method.

The most important of these constructs is the “when” block. A when block

specifies dependence between the arrival of a particular type of message and

the execution of a given block of code. Syntactically, the when block has a

name, an argument list, and an associated block of code, much like a function

definition. The name is used by other elements of the application to trigger

the when, the argument list specifies the type of data expected by the when,

and the block of code is executed when the message is received. A when

block may contain multiple pairs of names and arguments, in which case the

block is only executed after all the expected incoming messages have been

received.

SDAG also defines an “overlap” block, which specifies that its constituent

components can be concurrently enabled and executed in any order. The ac-

tual order of execution will depend on the order in which triggering messages

are received. The overlap block only completes once all of its components

complete.

Additionally, SDAG supplies a “forall” keyword, which acts like a for

loop in which all the iterations can be overlapped with one another.

SDAG defines several additional constructs to denote serially executable

C++ code and to allow conditional execution and looping, but these con-

structs primarily exist to allow SDAG code to coexist with serial code rather

than to enable new parallel-specific functionality. Specifically, “atomic”

blocks indicate that their contents are simply C++ code that contains no

SDAG constructs. This keyword is an artifact of SDAG’s initial implementa-

tion, and does not persist as a keyword or program concept in Charj. SDAG

also defines the control-flow constructs “if,” “for,” and “while”, which are

all semantically equivalent to their C counterparts.

Listing 5.1 illustrates the use of SDAG to express the main loop of a simple

Jacobi relaxation application with a one dimensional data decomposition. In

each iteration, every chare sends a strip of boundary elements to each of its

neighbors. Once the chare has received strips from each of its neighbors (via

getStripFromLeft and getStripFromRight), the actual stencil computa-

tion can be performed via doStencil. The reception of the left and right

boundary regions is overlapped via the overlap construct.

The equivalent C++ message-driven version of the Jacobi code in list-

ing 5.1 is provided in listing 5.3. The differences between these code listings

47

Draft of June 6, 2012 at 15 : 47

Listing 5.1: A simple SDAG function illustrating the use of overlap and
when statements in the context of an iterative Jacobi stencil application with
a 1-D decomposition.

1 entry void jacobi()
2 {
3 for (int i=0; i<N; ++i) {
4 sendStrips();
5 overlap {
6 when getStripFromLeft(Strip s) {
7 processStripFromLeft(s);
8 }
9 when getStripFromRight(Strip s) {

10 processStripFromRight(s);
11 }
12 }
13 doStencil();
14 }
15 }

illustrate a few of the advantages that the use of SDAG can bring to message-

driven applications.

The first and most obvious advantage of the SDAG implementation is its

brevity. While the actual work involved in the Jacobi computation is not

included for the sake of clarity and brevity, the entire top-level structure of

the application is contained in a single fifteen line function. The equiva-

lent message-driven version spans five different functions and uses more than

double the lines of code.

However, merely comparing the length of the two listings understates the

advantage in clarity that SDAG provides. Adding additional functions does

not only increase the length of the code. It also increases the mental burden

on the programmer, because the nature of the interactions between these

functions is never explicit in the code. To determine the path of execution

that will occur when the code is run, the programmer must reason carefully

about the chain of messages and function calls that will occur. In addition,

it is not clear if these functions might be called from other code elsewhere in

the application. Furthermore, the functions do not all correspond to natural

units of work. The fact that the loop calculations are now split across the

three functions jacobi, mainLoop, and checkOverlapCompletion obscures

the programmer’s intent and forces the reader to jump between various points

in the program with no obvious connection in order to determine the overall

48

Draft of June 6, 2012 at 15 : 47

Listing 5.2: The message-driven equivalent of the SDAG Jacobi function in
listing 5.1. The simple control flow expressed in the SDAG loop is broken
into several interacting functions.

1 entry void jacobi()
2 {
3 i = 0;
4 mainLoop();
5 }
6

7 void mainLoop()
8 {
9 leftStripReceived = rightStripReceived = false;

10 if (i < N) {
11 sendStrips();
12 }
13 }
14

15 entry void getStripFromLeft(Strip s)
16 {
17 processStripFromLeft(s);
18 leftStripReceived = true;
19 checkOverlapCompletion();
20 }
21

22 entry void getStripFromRight(Strip s)
23 {
24 processStripFromRight(s);
25 rightStripReceived = true;
26 checkOverlapCompletion();
27 }
28

29 void checkOverlapCompletion()
30 {
31 if (leftStripReceived && rightStripReceived) {
32 doStencil();
33 ++i;
34 mainLoop();
35 }
36 }

49

Draft of June 6, 2012 at 15 : 47

control flow of the application. Reasoning about code becomes much more

difficult because the desired semantics of the function are not made explicit

as they are in the SDAG version.

In addition, the message-driven version of the code suffers from an in-

creased need for state variables. The overlap between receiving the left and

right boundary regions is accomplished transparently in the SDAG code, but

requires the addition of two state variables to determine when both sides

have been received. While the additional overhead is small in this case, in

larger and more complicated functions, the number of state variables required

to track control flow can become onerous. Here, SDAG does not reduce

the computational or storage overhead associated with dependency tracking.

However, it does effectively hide this complexity from the programmer and

present a clear view of the control flow of the application without the need

for exposing the state variables needed to implement it in a message-driven

system.

5.3.1 Implementing SDAG

In Charm++, SDAG is implemented as a system of complex C++ macros,

partially produced through the Charm++ translator. This allows it to in-

troduce new syntactic constructs while keeping it tightly bound to the Char-

m/C++ application and obviating the need for significant SDAG-specific

compilation tools. However, this approach entails significant compromises

in exchange for the convenience of avoiding a full language definition and

compiler infrastructure.

SDAG neatly illustrates the difficulty of building new parallel program-

ming models to interoperate with existing C++ applications without any

compiler support. SDAG defines a small set of new keywords which can

be used to specify the high-level communication structure of message-driven

code, avoiding some of the problems of non-local control flow and hidden

dependencies that can make message-driven applications difficult to follow.

However, its implementation as a macro system added on to C++-based

Charm code is very limiting, despite the fact that the Charm translator pro-

vides it with some code generation capabilities.

50

Draft of June 6, 2012 at 15 : 47

Atomic Blocks

The most obvious limitation of SDAG is that while its constructs include

C++ expressions and blocks of arbitrary C++ code, the SDAG infrastructure

has no way of parsing C++, and adding general-purpose C++ parsing is

notoriously complicated. As a result, C++ blocks inside SDAG constructs

must be enclosed in an “atomic” block which renders the contents of the

block invisible to the SDAG translator. This process is error-prone because

the translator must assume that all code in the atomic block can be correctly

parsed by a C++ compiler later, and if this is not the case the resulting

error messages can be confusing. It is also fragile, because the translator

relies on being able to match curly braces to determine where each atomic

block ends. If the programmer erroneously omits a curly brace inside a

block, the resulting error message is very confusing. The translator must

also go to efforts to detect whether or not braces within a block are inside

a comment or not. In addition, SDAG has no way of verifying that the

code contained in these blocks obeys the rule that code in an atomic block

invokes no parallel coordination operations, nor does the SDAG translator

parse the expressions that it uses for conditional and looping constructs,

eliminating any possibility for optimizations or warnings and errors based on

these expressions. Outside the context of a parser that understands block

contents, the process of translating SDAG code is messy and fragile.

Beyond this lack, SDAG also suffers from its implementation as a macro

system. Once the SDAG code is generated by the translator, the user must

insert multiple SDAG-specific macros into any class that uses SDAG meth-

ods. These macros then expand into the orchestration code that comprises

SDAG. The error messages if the programmer forgets these macros are neces-

sarily opaque and unhelpful to programmers who have not experienced them

before, and contribute to the difficulty of using SDAG. In addition to these

inconveniences, the way in which SDAG code is generated prevents an SDAG

method from invoking other SDAG methods, which is a serious problem for

anyone who wishes to use SDAG as a significant part of a real application.

Furthermore, the way that SDAG methods are split apart by the translator

prevents the use of local variables that span multiple blocks.

One fundamental limitation of combining a simple SDAG translator with

C++ applications is poor integration of sequential code with SDAG code.

51

Draft of June 6, 2012 at 15 : 47

C++ is far too difficult for a simple translator to parse, but it would be ex-

tremely limiting to completely segregate SDAG constructs that indicate the

conditions under which messages should be sent and actions should be taken

from the C++ code that actually implements those actions. To get around

this problem, the SDAG translator introduces the “atomic” construct, con-

sisting of the keyword atomic followed by a block of sequential code enclosed

in curly braces. When the SDAG translator encounters an atomic block, it

treats the contents as a black box to be inserted into generated code, and

does not attempt to the inner C++. This allows intermixing of serial code

with SDAG code without complicating the translator. However, it does so

by imposing an additional semantic burden on the programmer, forcing them

to insert additional syntax that has no bearing on meaning of the code in

question. This problem is exacerbated by the fact that SDAG uses several

common control flow constructs in its own grammar to allow the program-

mer to express application messaging behavior. In particular, SDAGmethods

may contain “if” statements and “for” and “while” loops that operate identi-

cally to their C++ equivalents, even to the point of allowing arbitrary C++

expressions in the conditionals and loop initializers and updaters, but which

are nevertheless considered SDAG code which should not be enclosed in an

atomic block. This semantic mismatch is confusing to programmers who

are not familiar with the implementation of the SDAG translator, and the

need for atomic block specifiers is an annoyance even to experienced SDAG

programmers.

In Charj, SDAG constructs coexist with the sequential portions of the

language, with no arbitrary separation between them. The compiler can

infer the existence of sequential blocks of code that execute when SDAG

triggers fire, and emit correct code based on this knowledge. This eliminates

the status of standard control flow constructs like “for” and “if” as quasi-

SDAG constructs that have their normal semantic meaning but are used as

though they are not part of the normal sequential code in a method.

Initialization and Communication of SDAG Data Structures

Some of the limitations imposed by attempting to graft SDAG onto a C++-

based programming environment are not particularly deep from a technical

perspective, but nevertheless impose a substantial cognitive burden on the

52

Draft of June 6, 2012 at 15 : 47

programmer. To integrate code generated by the SDAG translator into the

larger C++ application, the programmer inserts special macros and func-

tion calls into their code. Specifically, for each class with SDAG methods,

the programmer inserts an SDAG CODE macro in the class body to insert the

generated code into the class, calls the sdag init() function in the class’s

constructor, and calls the sdag pup() function in the Chare’s PUP function

(see section ??)∗ to handle serialization and deserialization of SDAG-specific
Add section
reference on
PUP functions
once it exists.

data structures.

Inserting these function calls and macros is not in itself a huge burden on

the programmer, but the necessity for these additions degrades programmer

productivity in several ways. First, they represent an easily forgotten and

somewhat arbitrary additional step that the programmer must remember

when coding. They be forgotten initially, but they also represent a continuing

maintenance burden. For example, if a Chare does not initially need a PUP

function because it is never migrated, then no sdag pup() call is needed.

However if a PUP function later becomes necessary, perhaps to facilitate

dynamic load balancing, then the programmer who adds this PUP function

must be aware that the class contains SDAG methods and that he or she must

therefore insert the appropriate call. The likelihood of errors is increased by

the fact that SDAG code must all be placed in an interface file that normally

contains only declarations and no method definitions. Since the actual SDAG

code is segregated from the bulk of the C++ implementation code, it is

more easily overlooked. In the event that one or more of the macros and

function calls is forgotten, the resulting errors can be subtle and difficult to

track down, particularly for programmers who aren’t familiar with the details

of SDAG’s implementation techniques. Particularly in the case of omitted

initialization and pup calls, the errors may manifest themselves only as subtly

incorrect data, and bugs may manifest themselves only on certain platforms.

In addition, SDAG’s macro-based implementation makes it more difficult to

debug the serial code within SDAG methods. The SDAG translator does not

attempt to parse this code. It simply breaks the sequential blocks within

the SDAG method into separate message-driven methods, which are injected

into the programmer’s Chare class via the SDAG code macro. As a result,

the C++ compiler doesn’t see this code before it is broken into pieces and

inserted via macro. Any compile-time errors in the code will therefore refer

to source code that was generated by the SDAG tools, in a method that

53

Draft of June 6, 2012 at 15 : 47

corresponds to some section of the original SDAG code, but which contains

automatically generated message handling code and non-semantic method

and variable names. Figuring out the relationship between this generated

code and the original SDAG method can be a daunting task for programmers

who are not already well-versed in SDAG.

Handling Sequential Code

Fortunately, these problems are not inherent to the SDAG programming

model. They are only present as an artifact of the way that the SDAG trans-

lator coexists with a C++ application. If the SDAG translator was able to

properly understand C++ code and interface with the programmer’s classes,

these issues could be easily avoided. In Charj, we have no such limitations.

The same parser is used to handle sequential Charj code and all SDAG-

specific constructs. Therefore all warning and error messages related to the

sequential code can be emitted as normal, with reference to their location in

the original source file and in their proper context. Furthermore, there is no

need for the insertion of macros or SDAG utility functions in separate user

code, since in Charj there is no distinction between the compilation of code

which contains SDAG constructs and code which does not.

Handling Local Variables

SDAG programming suffers from a variety of small warts and annoyances that

stem from its lack of tight integration with the larger C++ application. For

example, one significant limitation of of the original SDAG implementation

is its lack of support for local variables. Because of the way that the SDAG

translator breaks each SDAG function into a series of independent message-

driven functions, local variables declared in one part of an SDAG function

do not persist in other regions of the function. Even a loop index variable

may not be visible within the entirety of the loop body. To get around this

restriction, SDAG programs typically promote what would normally be local

variables to class variables in the enclosing Chare. This approach has several

drawbacks. First and most obviously, it removes what would normally be

locally scoped information, moving the information contained in the variable

declaration farther away from the point at which that information is useful

54

Draft of June 6, 2012 at 15 : 47

and exposing that data to wider visibility than is necessary. The increased

visibility of what would otherwise be local variables is also a potential source

of bugs. If, for example, two SDAG methods in the same Chare happen

to both use the loop index variable “i”, execution from portions of each

SDAG method can be interleaved, giving incorrect results. The programmer

must therefore be careful that the semantically local variables needed by each

SDAG method are in fact only used locally.

This problem is addressed in a straightforward way by the Charj compiler.

In a Charj program, variables may be declared in the normal way in a function

that contains SDAG constructs. The compiler ensures that any accesses

to these local variables obey the normal variable scoping rules. However,

when generating code, the compiler promotes these variables to become class

variables of the enclosing Chare. The names of the variables are mangled with

the name of the scope in which they are declared, so that there can be no

incorrect aliasing that would lead to unexpected, incorrect behavior. Local

variables in SDAG methods do incur more overhead than local variables in

other methods, because they require persistent storage in their containing

class rather than living entirely on the stack, but because the semantics

of SDAG method execution guarantee that the method’s stack frame will

be torn down and control returned to the scheduler before the method is

completed, this limitation is unavoidable.

Although the hoisting of local variables in SDAGmethods to class variables

is not particularly sophisticated from a compiler analysis perspective, it is

emblematic of the things we aim to accomplish with Charj. It provides real

utility to the programmer and simplifies SDAG programs without needing

to be complicated or sophisticated. Although the ability to declare local

variables in SDAG methods is not necessarily a momentous one in terms of

its impact on the programmer, the accumulation of small advantages like this

can quickly become significant.

Calling SDAG Methods

One important criterion for assessing SDAG’s integration into a program-

ming environment is the ease with which SDAG methods can be called.

Unfortunately the original implementation of SDAG imposes some unintu-

itive restrictions on the programmer. Although SDAG methods superficially

55

Draft of June 6, 2012 at 15 : 47

appear identical to other entry methods, they may contain asynchronous

control flow, in that they may block to await expected incoming messages.

In order to support this control flow, SDAG must preserve local state across

any blocking operations. Furthermore, the SDAG code generation must be

aware of all code locations where control may be ceded to the scheduler.

These requirement put some important restrictions on the calling of SDAG

methods in the original translator. First and foremost, the programmer

cannot invoke any blocking functions from within an atomic block. Doing

so would change the parallel control flow DAG represented by the function

in a way that is invisible to the translator and produce incorrect results.

Note that since anything within an atomic block is opaque to the SDAG

translator, these errors cannot be caught at compile time. Typically they

present as corrupted data or race conditions in the user’s code. Such errors

are particularly time consuming to debug, especially when invoking third-

party code with which the programmer may not be intimately familiar.

In practice, the largest inconvenience caused by the inability to call block-

ing functions from within SDAG methods is the inability to call one SDAG

function from the body of another SDAG function. This limitation prevents

the programmer from performing common refactoring and code organization

tasks and can result in unneeded and unwanted duplication of code, increas-

ing maintenance costs and creating new opportunities for bugs.

One goal of our Charj implementation of SDAG constructs was to ease this

limitation on the calling of blocking functions. The Charj compiler’s ability

to analyze sequential code blocks and do inter-procedural analysis provides

us with all the tools needed to determine the correct DAG for any SDAG

method. However, the fact that the Charj compiler emits Charm and SDAG

code puts limits on what we can achieve without reimplementing the logic of

the original SDAG translator within Charj. There is no way of representing

such entities as a recursive SDAG function in a way that the SDAG translator

can understand.

We therefore narrow our scope to simply allow SDAG functions to invoke

other SDAG functions, with the restriction that we do not allow mutual

recursion. The Charj compiler observes that one SDAG method is calling

another SDAG method, and embeds the body of the callee within the caller,

renaming local variables as necessary. This process is repeatedly invoked until

all SDAG calls are expanded. The resulting SDAG methods each contain

56

Draft of June 6, 2012 at 15 : 47

their entire parallel control flow DAG, and can therefore the output of the

Charj compiler can be processed by the original SDAG translator. This

provides a useful service to the programmer (i.e. increased flexibility in the

calling of SDAG methods) without requiring the reimplementation of the

SDAG infrastructure within the Charj compiler. There are no theoretical

problems involved with allowing arbitrary calls from within SDAG methods,

but in practice doing so would involve substantial implementation effort to

bring SDAG infrastructure into the Charj compiler.

Handling “When” Triggers

We can also see signs of SDAG’s uneasy integration in the way that when trig-

gers are declared. Each trigger is associated with one or more actions, as in

when my action(int x) atomic { ...action... }. The names of these

actions correspond to methods that are generated by the SDAG translator,

so the programmer does not supply definitions for the actions. However, the

programmer must still provide declarations for each action type in the inter-

face file. So, for the example given, the programmer would have to declare

entry void my action(int x); in the interface file. This looks identical

to declarations for which the programmer would be required to also supply

a definition, muddling the issue of which interface definitions correspond to

actual user code somewhere in the application and which definitions only

correspond to generated code. In Charj, we scan all SDAG code to identify

triggers without the need for separate declarations. This reduces redundant

information and avoids potential confusion on the part of the reader.

The aggregate impact of these differences between the Charj SDAG im-

plementation and the original SDAG translator is a much tighter integration

between SDAG code and the rest of an application. This integration can have

a substantial qualitative effect on the experience of developing applications

that contain SDAG. In fact, one of the most important SDAG-related im-

provements in Charj is simply the capability to freely add SDAG constructs

in any Charj method without the need for relocating them to a different file

or marking their definitions with special keywords. The total effect of these

changes is to make SDAG much easier and less frustrating to use. These

benefits come without any modification of the SDAG feature set and with

no degradation of performance. In short, by bringing SDAG into the Charj

57

Draft of June 6, 2012 at 15 : 47

programming model as a first-class citizen, we provide a much more cohesive

and seamless experience to the programmer.

5.4 Multiphase Shared Arrays

Multiphase Shared Arrays (MSA) [22, 25] is a programming model for dis-

tributed arrays in a partitioned global address space, where array accesses are

governed by a shared sequence of access modes and synchronization points.

MSA addresses a common problem faced by shared memory applications:

non-deterministic outcomes due to data races. These data races may lead

to time-consuming, difficult-to-find bugs, and eliminating them while main-

taining high performance is a difficult task.

One problem common to shared memory applications are data races, where

concurrent access to globally visible data yields a non-deterministic result.

The initial development of MSA was based on the observation that applica-

tions that use shared arrays typically do so in phases. Within each phase, all

accesses to the array use a single mode, in which data is read to accomplish

a particular task, or updated to reflect the results of each thread’s work.

MSA provides a formal way of expressing and enforcing this phase struc-

ture by requiring that phases be explicitly declared and separated by syn-

chronization points. This allows MSA to provide a guarantee of deterministic

behavior and freedom from data races and deadlock. However, it also con-

fines MSA to express only a subset of all possible parallel interactions. It

is not a general-purpose parallel programming model, and as such it is only

useful as one part of a rich multi-model environment in which it can perform

its limited role extremely well while leaving general-purpose parallelism to

other models.

5.4.1 The MSA Programming Model

FIXME: some of this text comes directly from the last MSA paper and needs

to be adapted and revised for this context. Limit to factors important to

Charj implementations. Some of this knowledge is only needed to understand

optimizations, so maybe it needs to be moved/reorganized.

MSA provides an abstraction common to several HPC libraries, languages,

58

Draft of June 6, 2012 at 15 : 47

and applications: arrays whose elements are simultaneously accessible to mul-

tiple client threads of execution, running on distinct processors. These clients

are user-level threads, typically many on each processing element (PE), which

are tied to their PE unless explicitly migrated by the runtime system or by

the programmer. Application code specifies the dimension, type, and extent

of an array at the time of its creation, and then distributes a reference to it

among client threads. Each element has a particular home location, defined

by the array’s distribution, and is accessed through software-managed caches.

By establishing this discipline, MSA usage is inherently deterministic.

However, in exchange for this guarantee, the programmer gives up some

of the freedom of a completely general-purpose programming model.

Data Decomposition and Distribution

MSA decomposes arrays not into fixed chunks per PE, but rather into pages

of a common shape. Developers can vary the shape of the pages to suit

applications’ needs. For example, a 10 × 10 array could be broken into ten

10×1-shaped pages, or four 5×5 pages, etc. Thus, the library does not cou-

ple the number of pages that make up an array to the number of processors

on which an application is running or the number of threads that will oper-

ate on that array. If the various parts of a program are overdecomposed into

sufficiently more pieces than there are processors, the granularity of commu-

nication associated with data transfer can be effectively controlled, and the

runtime system can flexibly map pages to available hardware resources.

At the simplest, the pages can take a blocked row- or column-major ar-

rangement, with the block shape determined by the library to suit the under-

lying memory and communications hardware. MSA allows the application

programmer to manually specify one of a few simple decompositions, and

can be extended to support more complex cases as application needs dictate.

Once the array is split into pages, the pages are distributed among PEs.

The page objects are managed by the Charm++ runtime system. Thus,

each MSA offers control of the way in which array elements are mapped to

pages, and the mapping of pages to PEs. This affords opportunities to tune

MSA code for both application and system characteristics. The page objects

are initially distributed according to a mapping function, either specified by

application code or following the defaults in Charm++. As the program

59

Draft of June 6, 2012 at 15 : 47

Client

Threads
MSA

Message-driven

Objects

(a) The user view of an MSA application.

PE 1 PE 2 PE 3

(b) One possible mapping of program entities onto PEs

Figure 5.1: The developer works with MSAs, client threads, and parallel
objects without reference to their location, allowing the runtime system to
manage the mapping of entities onto physical resources. FIXME: this graphic
needs to be updated/modified for copyright or removed.

executes, the runtime may redistribute the pages by migrating them to dif-

ferent PEs in order to account for load imbalance, communication locality,

system faults, or other concerns. The user view of an MSA program and

corresponding mapping by the runtime system are illustrated in figure 5.1.

The drawback of this scheme is high latencies for non-local reads and

phase changes. The runtime compensates by overlapping the execution of

other local threads with blocking MSA operations. This process is enabled

by overdecomposition, so that on each PE there are many threads using the

MSA. When the active thread blocks, either due to an MSA cache miss, or

a non-MSA operation, another thread can be scheduled.

Caching

The runtime library caches data accessed from MSAs. This approach differs

from Global Arrays [37], where the user must either allocate and manage

buffers for bulk remote array segments or incur remote communication costs

for each access. It is more similar to caching schemes in UPC, with the differ-

60

Draft of June 6, 2012 at 15 : 47

ence that MSA’s phase structure places much fewer restrictions on commu-

nication optimizations than even UPC’s most relaxed memory model [38].

Runtime-managed caching offers several benefits, including simpler appli-

cation logic, the potential for less memory allocation and copying, sharing

of cached data among threads, and consolidating messages from multiple

threads.

When an MSA is used by an application, each access checks whether the

element in question is present in the local cache. If the data is available, it is

returned and the executing thread continues uninterrupted. The programmer

can also make prefetch accesses spanning particular ranges of the array, with

subsequent accesses specifying that the programmer has ensured the local

availability of the requested element. Bulk operations allow manipulation of

an entire section of the array at once, as in Global Arrays.

These prefetch calls can be blocking or non-blocking, as the programmer

desires. This scheme naturally lends itself to optimization by a compiler.

When static compiler analysis can determine array access patterns, prefetch-

ing can be done transparently, improving program performance without in-

tervention by the programmer. This technique is discussed in detail in chap-

ter 7.

When a thread accesses data that is not cached locally, the cache requests

it from its home page, then suspends the requesting thread. At this point,

messages queued for other threads are delivered. The cache manager receives

the home page’s response and unblocks the requesting thread. Previous work

with MSA [39] has shown that the overhead of caching and associated checks

is reasonable, and well-tuned application code can match the performance of

equivalent sequential code.

Each PE hosts a cache management object which is responsible for moving

remote data to and from that PE. Synchronization work is also coalesced

from the computational threads to the cache objects to limit the number of

synchronizing entities to the number of PEs in the system. Depending on the

mode that a given array is in, the cache managers will treat its data according

to different coherence protocols, as the Munin system does [40]. However,

the MSA access modes are designed to make cache coherence simple and

inexpensive. Accesses never require remote cache invalidations or immediate

writeback.

In write-once mode, all writes to remote data can be buffered until the

61

Draft of June 6, 2012 at 15 : 47

end of the phase, minimizing communication costs. Runtime verification

that the write-once guarantee has not been violated takes place within the

home objects (see below) when remote writes are committed at the end of

the phase. Similarly, accumulations are performed in a local buffer, and the

result is consolidated with the remote data during the phase change.

Access Modes and Safety

By limiting programs to a few well-defined access modes and requiring syn-

chronization from all MSA client threads to pass from one mode to another,

race conditions within the array are excluded without requiring the program-

mer to understand a complicated memory model. The access modes MSA

provides are suitable for many common parallel access patterns, but it is

not clear that these modes are the only ones necessary or suitable to this

model. As we extend MSA further, we expect to discover more as we explore

a broader set of use cases.

Read-Only Mode: As its name suggests, read-only mode makes the

array immutable, permitting reads of any element but writes to none. Re-

mote cache lines can simply be mirrored locally, and discarded at the next

synchronization point. In this mode, there are no writes to produce race

conditions.

Write-Once Mode: Since reads are disallowed in this mode, the primary

safety concern when threads are allowed to make assignments to the array

is the prevention of write-after-write conflicts. We prevent these conflicts by

requiring that each element of the array only be assigned by a single thread

during any phase in which the array is in write-once mode. This is checked

at runtime as cached writes are flushed back to their home locations. Static

analysis could allow us to check this condition at compile time for some access

patterns and elide the runtime checks when possible.

Accumulate Mode: This mode effects a reduction into each element

of the array, with each thread potentially making zero, one, or many con-

tributions to any particular element. While it is most natural to think of

accumulation in terms of operations like addition or multiplication, any as-

sociative, commutative binary operator can be used in this fashion. One

example, used for mesh repartitioning in the ParFUM framework [41], uses

set union as the accumulation function. The operator’s properties guaran-

62

Draft of June 6, 2012 at 15 : 47

Listing 5.3: The message-driven equivalent of the SDAG Jacobi function in
listing 5.1. The simple control flow expressed in the SDAG loop is broken
into several interacting functions.

1 A.syncToWrite();
2

3 for (int i = 0; i < N/P; ++i)
4 A(tid + i*(P-1)) = f(x, i);
5

6 A.syncToRead(); // Done writing A; data can now be read
7 H.syncToAccum(); // Get ready to increment entries in H
8

9 for (int i = 0; i < N/P; ++i) {
10 int a = A(i + tid*N/P);
11 H(a) += 1;
12 }

tee that the order in which it’s applied does not introduce non-deterministic

results.

The various access modes are illustrated in the following Charm++ code

snippet that computes a histogram in array H from data written into array

A by different threads:

Array subscripts are set off by parentheses, rather than the more con-

ventional square brackets, so that syntax remains consistent when access-

ing arrays of dimension greater than one. This is a restriction imposed by

C++’s different rules for overloading the subscript (operator[]) and call

(operator()) operators. This restriction does not apply to the Charj imple-

mentation of MSA, as discussed in section 5.4.2.

Even when considering only one-dimensional arrays, C++ operator over-

loading presents a problem. Depending on where it is used, an MSA array

access can be either an lvalue (that is, a value that can be assigned to),

or an rvalue (that is, a value that can be assigned, but not assigned to).

C++ operator overloading facilities are too restrictive to allow the range of

operations that we wish to express through the overloading of the bracket

operators.

TODO: why is this a problem for us when it seems to work for, say,

std::map?

63

Draft of June 6, 2012 at 15 : 47

Synchronization

A shared array moves from one phase to the next when its client threads

have all indicated that they have finished accessing it in the current phase,

by calling the synchronization method. During synchronization, each cache

flushes modified data to its home location and waits for its counterparts

on other PEs to do the same. Logically, client threads cannot access the

array again until synchronization is complete. In SPMD-style MSA code,

this requires that threads explicitly wait for synchronization to complete

sometime before any post-synchronization access

5.4.2 Implementing MSA

Because Charj uses the same runtime system as MSA, it is straightforward

to make use of MSA within Charj programs. Because the Charj compiler

has explicit knowledge of the MSA programming model, it can provide a far

better experience for the programmer than the C++ MSA library can.

One area in which this advantage shows itself is in enforcement of MSA’s

various access modes. Detection of MSA programming model violations is

made difficult by the fact that MSA is implemented as a C++ library. In

the original implementation of MSA, the access mode of each phase was

implicit in the structure of the code. Phase boundaries were delimited by

sync() calls, but there was no mechanism for determining the intended phase

structure of an application aside from comments or a close reading of the

code to determine which kinds of accesses are used inside of each phase.

The process of determining array phase becomes even more difficult when

considering that arrays may be passed into a function from many different

places in an application, and the function’s signature gives no indication

of the expected array phase. The MSA library performs checks at runtime

to ensure that there are no access mode violations, but this process incurs

performance overhead for the checking, lengthens the debugging process, and

leaves the possibility that unexercised code paths contain MSA access mode

errors.

To address these problems, MSA was later redesigned to enforce as many of

its access restrictions as possible using the C++ type system. In the modified

MSA, all accesses to the array take place through a handle object, and there

64

Aaron Becker
Expand description of how MSA enforcement happens at synchronization time and the nature of the global phase sequence property.

Draft of June 6, 2012 at 15 : 47

is a different type of handle for each kind of MSA phase (i.e. there is a read

phase handle type, a write phase handle type, an accumulate handle type, et

cetera). In addition, the single sync() call is replaced with specialized calls

that perform synchronization and return a handle of the appropriate type for

the ensuing phase, for example syncToRead() which performs synchroniza-

tion to end the previous phase and returns a read handle to be used in the

next phase. The interfaces of these handles enforce the access rules of the

phase by exposing only allowed operations. So, for example, trying to write

a value using a read mode handle will create a type error at compile time.

C++ operator overloading is used to support familiar array syntax.

Using the C++ type system does address some of the problems of the orig-

inal implementation. However, it suffers from problems of its own. Whereas

code using the original library could present itself as a straightforward se-

ries of operations on a single array variable, the new interface requires a

proliferation of handle objects, which are often short-lived and provide little

value to the programmer. This problem could be addressed by the use of

linear types [42], but this option is precluded by the need to work within

the C++ type system. The use of the C++ type system to detect access

mode violations is also fairly limited in the types of errors that it can de-

tect at compile time. MSA uses read-only mode, exclusive write mode, and

accumulate mode. These modes can all be enforced by careful declaration

of MSA operations in the handles (for example the array accessors in read

mode are all const), but this technique is not easily generalizable to other

access modes. To some extent this deficit could be addressed using policy

templates and static assertions in the latest C++ standard, but this would

complicate the library interface significantly.

Other techniques for enforcing MSA semantics rely on external tools.

MSAs high-level semantic conditions could be enforced using a contract ap-

proach [43] describing allowable operations. However, the use of contracts in

the context of the MSA C++ libary would require an external enforcement

tool and the contract conditions would depend on state variables that aren’t

visible in user code. Some alternative external static analysis tool could

also provide an enforcement mechanism, but any such tool would have to do

flow-dependent analysis and replicate much of the work of the compiler in a

separate application.

However, when implementing MSA as an integrated part of Charj, we

65

Aaron Becker
Give simpler code examples of different MSA implementations here.

Draft of June 6, 2012 at 15 : 47

can avoid some of the problems inherent in expressing it as a C++ library.

We can have the best of both worlds: simple syntax which does not rely

on a typed handle approach, combined with compiler enforcement of the

MSA safety properties. Simply by observing all accesses to a particular

array, the compiler can verify that the accesses during any given phase are

consistent, provided that it has a complete view of the lifecycle of the array.

In general, this requires a whole-program analysis. However, this excludes

the possibility of calling Charj functions which take MSA arguments from

C++ code (because the mode of the MSA when it enters the function is

unknown). Pragmatically, we issue errors if any inconsistent array accesses

are detected at compile time, and warnings if functions are exposed that

could potentially be misused by external code unavailable to the compiler.

To illustrate the difference between the typed handle syntax and the di-

rect access syntax, we provide a sample MSA application which performs a

histogramming task. There are two MSAs involved in the computation: a

2D data array which is filled with random numbers, and a 1D bins array

which holds a histogram of the data the first array.

The handle-based application in listing 5.4 and 5.5 consists of a simple

Driver mainchare which creates worker Histogram chares and then waits

for results to be delivered via the done entry method. The Histogram ob-

jects have a single entry method that is invoked to do the main work of

the application, which must be threaded to allow MSA operations to block.

The additional MSA declarations are needed in order for the correct MSA

templates to be instantiated at compile time.

All accesses to the array take place through the typed handles MSA2D::Read,

MSA1D::Accum, etc. Each change of phase requires a new handle instantia-

tion, leading to a proliferation of variables throughout the program. However,

these handles ensure that the accesses to the arrays obey the appropriate

MSA phase rules, so that, for example, no elements are read out of an array

that is in write mode.

Listing 5.4: The interface (.ci) file for the Charm++ histogram application

with typed handles.

1 mainmodule histogram

2 {

3 mainchare Driver

4 {

66

Draft of June 6, 2012 at 15 : 47

5 entry void Driver(CkArgMsg*);

6 entry void done(CkReductionMsg*);

7 };

8

9 array [1D] Histogram

10 {

11 entry void Histogram(MSA2D data_, MSA1D bins_);

12 entry [threaded] void start();

13 };

14

15 // Any MSA templates used in the application must be

16 // explicitly instantiated in the interface file.

17 group MSA_CacheGroup<int, DefaultEntry<int>,

18 MSA_DEFAULT_ENTRIES_PER_PAGE>;

19 array [1D] MSA_PageArray<int, DefaultEntry<int>,

20 MSA_DEFAULT_ENTRIES_PER_PAGE>;

21 };

Listing 5.5: The implementation (.cc) file for the Charm++ histogram ap-

plication with typed handles.

1 #include "msa/msa.h"

2

3 typedef MSA::MSA2D<int, DefaultEntry<int>,

4 MSA_DEFAULT_ENTRIES_PER_PAGE, MSA_ROW_MAJOR> MSA2D;

5 typedef MSA::MSA1D<int, DefaultEntry<int>, MSA_DEFAULT_ENTRIES_PER_PAGE> MSA1D;

6

7 #include "histogram.decl.h"

8

9 const unsigned int ROWS = 2000;

10 const unsigned int COLS = 2000;

11 const unsigned int BINS = 10;

12 const unsigned int MAX_ENTRY = 1000;

13 unsigned int WORKERS = 10;

14

15 class Driver : public CBase_Driver

16 {

17 public:

18 Driver(CkArgMsg* m)

19 {

20 // Usage: histogram [number_of_worker_threads]

21 if (m->argc > 1) WORKERS=atoi(m->argv[1]);

22 delete m;

67

Draft of June 6, 2012 at 15 : 47

23

24 // Actually build the shared arrays: a 2d array to hold arbitrary

25 // data, and a 1d histogram array.

26 MSA2D data(ROWS, COLS, WORKERS);

27 MSA1D bins(BINS, WORKERS);

28

29 // Create worker threads and start them off.

30 workers = CProxy_Histogram::ckNew(data, bins, WORKERS);

31 workers.ckSetReductionClient(

32 new CkCallback(CkIndex_Driver::done(NULL), thisProxy));

33 workers.start();

34 }

35

36 void done(CkReductionMsg* m)

37 {

38 // When the reduction is complete, everything is ready to exit.

39 CkExit();

40 }

41 };

42

43

44 class Histogram: public CBase_Histogram

45 {

46 public:

47 MSA2D data;

48 MSA1D bins;

49

50 Histogram(const MSA2D& data_, const MSA1D& bins_)

51 : data(data_), bins(bins_) {}

52

53 Histogram(CkMigrateMessage* m) {}

54

55 ~Histogram() {}

56

57 // Note: it’s important that start is a threaded entry method

58 // so that the blocking MSA calls work as intended.

59 void start()

60 {

61 data.enroll(WORKERS);

62 bins.enroll(WORKERS);

63

64 // Fill the data array with random numbers.

65 MSA2D::Write wd = data.getInitialWrite();

68

Draft of June 6, 2012 at 15 : 47

66 if (thisIndex == 0) fill_array(wd);

67

68 // Fill the histogram bins: read from the data array and

69 // accumulate to the histogram array.

70 MSA2D::Read rd = wd.syncToRead();

71 MSA1D::Accum ab = bins.getInitialAccum();

72 fill_bins(ab, rd);

73

74 // Print the histogram.

75 MSA1D::Read rb = ab.syncToRead();

76 if (thisIndex == 0) print_array(rb);

77

78 // Contribute to Driver::done to terminate the program.

79 contribute();

80 }

81

82 void fill_array(MSA2D::Write& w)

83 {

84 // Just let one thread fill the whole data array

85 // with random entries to be histogrammed.

86 //

87 // Note: this is potentially a very inefficient access

88 // pattern, especially if the MSA doesn’t fit into

89 // memory, but it can be convenient.

90 for (unsigned int r = 0; r < data.getRows(); r++) {

91 for (unsigned int c = 0; c < data.getCols(); c++) {

92 w.set(r, c) = random() % MAX_ENTRY;

93 }

94 }

95 }

96

97 void fill_bins(MSA1D::Accum& b, MSA2D::Read& d)

98 {

99 // Determine the range of the data array that this

100 // worker should read from.

101 unsigned int range = ROWS / WORKERS;

102 unsigned int min_row = thisIndex * range;

103 unsigned int max_row = (thisIndex + 1) * range;

104

105 // Count the entries that belong to each bin and accumulate

106 // counts into the bins.

107 for (unsigned int r = min_row; r < max_row; r++) {

108 for (unsigned int c = 0; c < data.getCols(); c++) {

69

Draft of June 6, 2012 at 15 : 47

109 unsigned int bin = d.get(r, c) / (MAX_ENTRY / BINS);

110 b(bin) += 1;

111 }

112 }

113 }

114

115 void print_array(MSA1D::Read& b)

116 {

117 for (unsigned int i=0; i<BINS; ++i) {

118 CkPrintf("%d�", b.get(i));

119 }

120 }

121 };

122

123 #include "histogram.def.h"

Now, in contrast to the typed handle approach, consider the direct access

approach shown in listing 5.6. The differences in approach only affect the

Histogram class, so other portions of the application are omitted. The phase

of each array is now implicit in the code, and accesses are not mediated by

handle objects. This simplifies and shortens the code, but at the cost of

less explicit information about the phase of each array and the lack of an

enforcement mechanism for detecting illegal array accesses.

Listing 5.6: The implementation (.cc) file for the Charm++ histogram ap-

plication with direct array accesses.

1 class Histogram: public CBase_Histogram

2 {

3 public:

4 MSA2D data;

5 MSA1D bins;

6

7 Histogram(const MSA2D& data_, const MSA1D& bins_)

8 : data(data_), bins(bins_) {}

9

10 Histogram(CkMigrateMessage* m) {}

11

12 ~Histogram() {}

13

14 // Note: it’s important that start is a threaded entry method

15 // so that the blocking MSA calls work as intended.

16 void start()

70

Draft of June 6, 2012 at 15 : 47

17 {

18 if (thisIndex == 0) fill_array(data);

19

20 // transition from write mode to read mode

21 data.sync();

22

23 fill_bins(bins, data);

24

25 // transition from accumulate mode to read mode

26 bins.sync();

27

28 // Print the histogram.

29 if (thisIndex == 0) print_array(bins);

30

31 // Contribute to Driver::done to terminate the program.

32 contribute();

33 }

34

35 void fill_array()

36 {

37 // Just let one thread fill the whole data array

38 // with random entries to be histogrammed.

39 //

40 // Note: this is potentially a very inefficient access

41 // pattern, especially if the MSA doesn’t fit into

42 // memory, but it can be convenient.

43 for (unsigned int r = 0; r < data.getRows(); r++) {

44 for (unsigned int c = 0; c < data.getCols(); c++) {

45 data.set(r, c) = random() % MAX_ENTRY;

46 }

47 }

48 }

49

50 void fill_bins()

51 {

52 // Determine the range of the data array that this

53 // worker should read from.

54 unsigned int range = ROWS / WORKERS;

55 unsigned int min_row = thisIndex * range;

56 unsigned int max_row = (thisIndex + 1) * range;

57

58 // Count the entries that belong to each bin and accumulate

59 // counts into the bins.

71

Draft of June 6, 2012 at 15 : 47

60 for (unsigned int r = min_row; r < max_row; r++) {

61 for (unsigned int c = 0; c < data.getCols(); c++) {

62 unsigned int bin = data.get(r, c) / (MAX_ENTRY / BINS);

63 bins(bin) += 1;

64 }

65 }

66 }

67

68 void print_array()

69 {

70 for (unsigned int i=0; i<BINS; ++i) {

71 CkPrintf("%d�", bins.get(i));

72 }

73 }

74 };

The Charj version of this histogram application, given in listing 5.7 is

similar to the handle-less approach, but it adds phase names to the syn-

chronization calls (e.g. one might call syncToAccum rather than sync, but

the call is made directly on the MSA in question rather than on a handle

object. This adds semantic information about the programmer’s intent and

improves code readability. Actual detection of MSA access mode violations is

done by the compiler. Additionally, array access syntax uses square brackets

for consistency with sequential array access syntax, rather than getter/setter

functions and overloading of the parentheses operator.

The ability to use MSAs in a message-driven application makes it much

simpler to express a variety of interaction patterns that involve unstructured

or simply complex sharing of data across processor boundaries, as long as

that sharing conforms to a phase structure that can be expressed within

MSA. While this is more restrictive than a general-purpose partitioned global

address space array package, it provides much greater safety guarantees and

offers the possibility of increased scope for runtime optimizations thanks to

its rigid phase structure.

Listing 5.7: The core of the Charj version of the histogram application.

1 chare Histogram

2 {

3 // Member variables and constructor omitted for brevity

4 public threaded entry void start()

5 {

72

Aaron Becker
Need much more detail on Charj MSA implementation. Describe how MSA accesses are identified, how checking happens, what class of access violations are caught and which are not caught, and where we must rely on runtime checking.

Draft of June 6, 2012 at 15 : 47

6 data.syncToWrite();

7 bins.syncToAccum();

8

9 if (thisIndex == 0) fill_array(data);

10

11 data.syncToRead();

12 fill_bins(bins, data);

13

14 print_array(bins);

15 contribute(null, CkReduction.nop, Driver.done);

16 }

17

18 private void fill_array()

19 {

20 for (unsigned int r = 0; r < data.getRows(); r++) {

21 for (unsigned int c = 0; c < data.getCols(); c++) {

22 data[r, c] = random() % MAX_ENTRY;

23 }

24 }

25 }

26

27 private void fill_bins()

28 {

29 unsigned int range = ROWS / WORKERS;

30 unsigned int min_row = thisIndex * range;

31 unsigned int max_row = (thisIndex + 1) * range;

32

33 for (unsigned int r = min_row; r < max_row; r++) {

34 for (unsigned int c = 0; c < data.getCols(); c++) {

35 unsigned int bin = data[r, c] / (MAX_ENTRY / BINS);

36 bins[bin] += 1;

37 }

38 }

39 }

40

41 private void print_array()

42 {

43 bins.syncToRead();

44 if (thisIndex != 0) return;

45 for (unsigned int i=0; i<BINS; ++i) {

46 CkPrintf("%d�", bins[i]);

47 }

48 }

73

Draft of June 6, 2012 at 15 : 47

49 };

5.5 Heterogeneous Computing

The increasing use of floating point accelerator hardware such as general pur-

pose graphical processing units (GPGPUs), field programmable gate arrays

(FPGAs), and the Cell processor, and heterogeneous systems that incor-

porate both traditional multicore processors and accelerators in HPC sys-

tems presents a challenge to developers of HPC applications. The high peak

performance and energy efficiency associated with accelerators make them

attractive targets for compute-intensive HPC codes, but this hardware is

widely considered difficult to use effectively, relative to more conventional

hardware [44–46].

However, the natural data encapsulation and virtualization provided by

the Charm++ runtime system make it well-suited to the effective use of ac-

celerator hardware. This observation led to the development of accelerated

entry methods [20,47], which are chare entry methods that the runtime may

choose to execute on accelerator hardware (but which may still be executed

on a traditional host core. By expressing an application’s expensive com-

putational kernels as accelerated entry methods, the programmer allows the

runtime system to use available acceleration hardware. This can allow work

to be shared between all the different available hardware resources, which

increases the scope for dynamically balancing computational load between

host and accelerator hardware at runtime.

Accelerated entry methods, as implemented in Charm++, look similar

to normal entry methods with a number of syntactic and semantic differ-

ences. They are identified with the accel keyword and are both defined and

declared in the Charm++ interface file, so as to give the translator the req-

uisite information needed to produce both a host implementation and one or

more accelerator implementations of the function in question. In addition,

accelerated entry methods require some special syntax and have additional

restrictions compared to non-accelerated entry methods:

1. In addition to the formal parameters of the method, the programmer

must specify which member variables of the parent chare class will be

74

Draft of June 6, 2012 at 15 : 47

accessed in the body of the function. These are referred to as the local

parameters. Local parameters are marked as readOnly, writeOnly, or

readWrite depending on the needs of the method. Any writeOnly or

readWrite local parameters are copied back to the host device at the

end of the method’s execution if the execution took place on accelerator

hardware.

2. Each accelerated entry method has an associated callback function,

specified by the programmer at the end of the function body. This entry

method is invoked on the host core when execution of the accelerated

entry method is complete.

3. Within the body of the accelerated entry method, the use of some

language features is restricted. Most notably, other entry methods

may not be invoked from the body of an accelerated entry method.

In other respects, accelerated entry methods are the same as any other

entry method. In order to demonstrate the use of accelerated entry meth-

ods and illustrate their associated syntax, in listing ?? we present simple

Charm++ code which takes two matrix tiles as input, multiplies them, and

adds the result to a third matrix tile stored locally on the Tile chare.

In the listing, the local tile is a variable named C, and has M rows and N

columns. Line 3 of the listing contains the local parameter list. It indicates

that the local variable C in this function corresponds to the chare member

variable C, and that it is both read and written in the method. The body

of the method simply performs the matrix multiply. At the close of the

method on line 13, the completion callback calcTile callback is given.

This callback will be invoked by the runtime system once the method has

completed and, if the execution took place on an accelerator, any modified

chare member variables have been copied back to the host core.

5.5.1 Accelerated Entry Methods in Charj

Charj presents several opportunities for simplifying the process of developing

applications which make use of accelerated entry methods. Because of the

lack of compiler support in the Charm++ implementation, the programmer

75

Draft of June 6, 2012 at 15 : 47

Listing 5.8: An accelerated entry method for multiplying matrix tiles in
Charm++.

1 entry [accel] void calcTile
2 (int M, int N, int K, float A[M*K], float B[K*N])
3 [readWrite : float C[M*N] <impl_obj->C>]
4 {
5 for (int row=0; row<M; ++row) {
6 for (int col=0; col<M; ++col) {
7 float cv = 0;
8 for (int elem=0; elem<K; ++elem)
9 cv += A[elem+K*row]*B[col+N*elem];

10 C[col+N*row] += cv;
11 }
12 }
13 } calcTile_callback;

must manually specify a variety of information that is either readily available

to or easily computed by the compiler.

For example, consider the specification of local parameters. Any chare

member variables used in the body of an accelerated entry method must be

declared in the local parameter declaration block, using syntax of the form:

1 access_specifier : type local_name <impl_obj->member_name>

where access specifier is one of readOnly, readWrite, or writeOnly,

type is the variable’s type, local name is the name used for the variable

in the accelerated entry method, and member name is the name given to the

variable in its containing class. This specification allows the generation of

code to copy class variables into an accelerator’s address space and back out

again as necessary. The impl obj syntax is clunky, but it simplifies the code

generation process undertaken by the Charm++ translator.

However, all of the information provided in the local parameter declara-

tion is also present in the method body. The information is opaque to the

Charm++ translator because it does not parse the C++ method body, but

in a Charj implementation of accelerated entry methods, we have full access

to it. We need only identify all class variables used in the accelerated entry

method, and all potential writes to and reads from these variables.

We use an interprocedural dataflow analysis to identify, for each variable,

whether it is only written, only read, or potentially both written and read.

Because Charj functions may include calls to C++ functions or blocks of

C++ code that are not analyzable by the compiler, any local parameter

76

Aaron Becker
Describe this analysis in more detail.

Draft of June 6, 2012 at 15 : 47

Listing 5.9: A Charj equivalent to the Charm++ accelerated entry method
in listing 5.8.

1 accelerated entry void calcTile(int M, int N, int K,
2 Array<float>A, Array<float> B)
3 {
4 for (int row=0; row<M; ++row) {
5 for (int col=0; col<M; ++col) {
6 float cv = 0;
7 for (int elem=0; elem<K; ++elem)
8 cv += A[elem+K*row]*B[col+N*elem];
9 C[col+N*row] += cv;

10 }
11 }
12 } calcTile_callback;

which is reachable from C++ code is assumed to be both written and read.

This provides the full set of information needed, and obviates the need for

local parameter declarations in Charj. As a result, accelerated entry methods

in Charj look very similar to their unaccelerated siblings, except for the use

of the accelerated keyword and the presence of the final callback, as shown

in listing 5.9.

In addition, the removal of local parameter declarations avoids a possible

source of bugs in the Charm++ implementation. Although the programmer

must specify whether a given local parameter is read only, write only, or

read/write, there is no enforcement or verification mechanism to ensure that

then local parameter in question is actually used in the way specified.

If the programmer wrongly declares a variable to be readonly, any writes

to that variable will still occur. If the accelerated entry method happens

to be executing on accelerator hardware, those writes will be lost, because

readonly local parameters are not copied back to the host when execution

completes. However, if the method is executed on the host, the writes will

persist. Since the runtime makes dynamic decisions about which hardware to

execute on at runtime, this non-deterministic bug may be extremely difficult

to identify.

If, on the other hand, a variable is marked as read/write or writeonly and

is in fact only ever read, the program will work as intended, but suffer from

decreased performance due to unnecessary copying of the local parameter in

question.

By eliminating the need to mark the access mode of local parameters, or

77

Draft of June 6, 2012 at 15 : 47

indeed to declare local parameters at all, the Charj version of accelerated

entry methods remove a possible source of programmer error while simplify-

ing the process of writing accelerated entry methods and presenting a more

familiar and consistent syntax to the programmer.

Aliasing

Generally, the parameters of entry methods are guaranteed not to alias be-

cause each resides in a separate buffer packed by the sender. However, local

parameters in accelerated entry methods represent an unusual problem be-

cause local parameters are only packed and unpacked in the event that the

method is executed on an accelerator. Therefore, if two class variables alias

one another, different behavior will be observed if the method executes on

the host than if it executes on the accelerator.

Consider the case of two arrays, A and B, which both refer to the same

region of memory. In an accelerated entry method, all even indices of A are

written to, and all odd indices of B are written to. If this method is executed

on the host core, at its completion all of the writes will persist. However, if

it is executed on an accelerator, A and B will represent two different buffers

on the device, and which ever one is copied back to the host last will be the

only one to persist.

We do not detect the potential aliasing of class variables in our analysis of

accelerated entry methods. Even if we did, there is currently no mechanism in

the runtime code used to execute accelerated entry methods that would allow

for correct behavior in the case of aliased local parameters. So, in this respect

Charj shares the same shortcoming of the C++ implementation of accelerated

entry methods. In practice, the requirement that local parameters do not

alias has not caused any difficulties in application development thus far.

5.6 Summary

The Charm++ runtime system is a capable platform that can support a wide

variety of programming models built on top of its message-driven foundation.

It offers high performance, flexibility, and the possibility for significant run-

time optimizations. However, past models implemented on Charm++ have

78

Draft of June 6, 2012 at 15 : 47

suffered from inelegance. In the case of multiphase shared arrays, this inele-

gance stemmed from the difficulty of enforcing programming model semantics

from within the confines of a C++ library.

In the case of Structured Dagger and Accelerated Entry Methods, the

inelegance stemmed from the use of the Charm++ translator as an ad-hoc

compiler for syntax added onto C++. Because the analytical power of the

Charm++ translator is relatively limited and because the C++ code that still

makes up the bulk of the syntax of both Structured Dagger and Accelerated

Entry Methods is entirely opaque to the translator, these models could not

take full advantage of the features offered by a compiler, nor were they well

integrated with C++ code.

By implementing these programming models within Charj, we integrate

them more tightly into mixed codebases, provide clearer syntax to the pro-

grammer, eliminate the possibility for common errors while gaining the abil-

ity to issue warnings or error messages for problematic code, and create the

possibility for model-specific optimizations that would not be possible using

the hybrid C++ and translator approach.

79

Draft of June 6, 2012 at 15 : 47

CHAPTER 6

WRITING APPLICATIONS IN

CHARJ

Ultimately, the goal of improving productivity using Charj cannot be judged

outside the context of actual parallel applications. Abstract arguments about

clarity and concision and isolated code snippets may be suggestive of benefits,

but can never be conclusive on their own. However, given the size and

complexity of real, production-ready parallel codes, it is infeasible to create

a representative sample of HPC applications in Charj without a massive

investment of resources.

Although it is infeasible to produce a suite of full-scale parallel applications

in Charj due to the huge amount of developer time and effort that would be

required, we can still capture much of the benefit we would gain from such

a suite by instead developing stripped-down versions of HPC applications

that implement core application functionality while eliminating many of the

features that make an application useful for scientists and engineers but which

have little bearing on the parallel structure of the application.

In fact, the use of small, self-contained, simplified versions of full applica-

tions as a proxy for real, fully-developed applications has gained some popu-

larity in the high performance computing community as way of investigating

design trade-offs, algorithm choices, and performance issues [48]. These sim-

plified applications, sometimes referred to as mini-apps, take advantage of

the fact that even enormous applications with over one million lines of code

80

Aaron Becker
This chapter needs a ton of work. For each app, need much more detail about Charj implementation, where that implementation differs from Charm, and specifically where advantages come from. We need code excerpts and performance comparisons as well.

Finally, we need productivity comparison. Both SLOC, as in defense, and other measures (token, operators, cyclomatic number). Try to identify where the productivity benefits come from specifically, and make the argument that Charj productivity benefits extend beyond what these measures will show.

Draft of June 6, 2012 at 15 : 47

often have performance characteristics dominated by a tiny subset of that

code, and that of the remainder, these applications can contain a large num-

ber of distinct physical models that nevertheless have common performance

characteristics [49].

For example, Sandia National Laboratories has developed a suite of mini-

apps called Mantevo [50] that aims to provide self-contained open source

software that allows for easier analysis of scientific and engineering appli-

cations in HPC. It includes mini-apps related to finite element simulation,

molecular dynamics, contact detection, and circuit simulation.

6.1 Conjugate Gradient

Finite element simulations are among the most important scientific applica-

tions in the HPC world. Many of these simulations entail implicit solution

of a nonlinear system of equations. As problem size increases, the dominant

factor in application performance quickly becomes the implicit solver.

The conjugate gradient kernel represents the bulk of the work involved in

many finite element applications. It solves a symmetric system represented

by a sparse matrix with no preconditioning. The benchmark generates a

27-point finite difference matrix, and the user defines the size of the matrix

sub-blocks that the problem is decomposed into.

The original benchmark was written as an MPI application for the Mantevo

project. An equivalent Charm++ version was developed, and our Charj

implementation is based on it.

6.2 Molecular Dynamics

TODO: Placeholder text, rewrite

LeanMD is a molecular dynamics simulation program written in Charm++.

This benchmark simulates the behavior of atoms based on the Lennard-Jones

potential, which is an effective potential that describes the interaction be-

tween two uncharged molecules or atoms. The computation performed in this

code mimics the short-range non-bonded force calculation in NAMD [51,52]

and resembles the miniMD application in the Mantevo benchmark suite [53]

81

Draft of June 6, 2012 at 15 : 47

maintained by Sandia National Laboratories.

The force calculation in Lennard-Jones dynamics is done within a cutoff-

radius, rc for every atom. In LeanMD, the computation is parallelized using

a hybrid scheme of spatial and force decomposition. The three-dimensional

(3D) simulation space consisting of atoms is divided into cells of dimensions

that are equal to the sum of the cutoff distance, rc and a margin. In each

iteration, force calculations are done for all pairs of atoms that are within

the cutoff distance. The force calculation for a pair of cells is assigned to a

different set of objects called computes. Based on the forces sent by the com-

putes, the cells perform the force integration and update various properties

of their atoms – acceleration, velocity and positions.

In the Charm++ implementation of LeanMD, the computation is paral-

lelized using a hybrid scheme of spatial and force decomposition. The three-

dimensional (3D) simulation space consisting of atoms is divided into cells of

dimensions that are equal to the sum of the cutoff distance, rc and a margin.

In each iteration, force calculations are done for all pairs of atoms that are

within the cutoff distance. The force calculation for a pair of cells is assigned

to a different set of objects called computes.

At the beginning of each time step, every cell multicasts the positions of its

atoms to the computes that need them for force calculations. Every compute

receives positions from two cells and calculates the forces. These forces are

sent back to the cells which update other properties of the atoms. Every few

iterations, atoms are migrated among the cells based on their new positions.

SDAG is used to control the flow of operations in each iteration and trigger

dependent events. The load balancing framework is invoked periodically after

a certain number of iterations to redistribute computes and cells among the

processors. In the submitted version, the parallel control flow is described

in the run functions of each chare in leanmd.ci. The reduction for forces

computed by computes is in physics.h.

6.2.1 Specification and Verification

For a pair of atoms, the force can be calculated based on the distance by,

�F =

�
A

r13
− B

r7

�
× �r (6.1)

82

Draft of June 6, 2012 at 15 : 47

where A and B are Van der Waals constants and r is the distance between

the pair of atoms. Table 6.1 lists a set of parameters and their values used

in LeanMD.

Parameter Values

A 1.6069× 10−134

B 1.0310× 10−77

Atoms per cell 150
Cutoff distance, rc 12 Å

Cell Margin 2 Å
Time step 1 femtosecond

Table 6.1: Simulation details for LeanMD

The benchmark computes kinetic and potential energy and uses the prin-

ciple of conservation of energy to verify that the computations are stable.

Users can choose to run the benchmark for as many timesteps as desired,

and verification statistics are printed at the end.

LeanMD has been developed to be as concise and clear as possible while

maintaining high performance as a part of the winning entry for the HPC

Challenge in 2011 []. The Charm++ implementation of LeanMD is only

773 lines of code, compared to nearly 3000 lines for the Matevo miniMD

benchmark, which has similar goals to and fewer features than LeanMD.

6.3 N-Body Simulation

TODO: Placeholder text, rewrite

The N -body problem involves the numerical calculation of the trajectories

of N point masses (or charges) moving under the influence of a conservative

force field such as that induced by gravity (or electrical charges). In its sim-

plest form, the method models bodies as particles of zero extent moving in

a collision-less manner. The objective is to calculate the net force incident

on every particle at discrete time steps. These forces are then used to up-

date the velocity and position of each particle, leading into the next time

step, where the net force on each particle is calculated once more, etc. In

general, the force may be long-range in nature (as is the case with gravity),

so that interactions between distant particles must also be calculated. Thus,

83

Draft of June 6, 2012 at 15 : 47

in order to obtain a good approximation to the actual solution of a system,

O(N2) computations must be performed. Given its quadratic complexity, the

amount of work done by this all-pairs method makes it infeasible for systems

with large N .

Barnes and Hut [54] devised a hierarchical N -body method that performs

significantly fewer computations but at the cost of a greater relative error in

the computed solution. The method relies on the spatial partitioning of the

input system of particles, thereby imposing a tree-structure on it. Particles

that are close to each other in space are grouped into closely related nodes

of the tree. This allows the approximation of forces on a particle due to

a distant group of particles through the multipole moments of that group.

Note that applying such an approximation to points relatively close to the

group will result in gross errors of calculation. In such a case, sub-partitions

within the group are tested for proximity to the point. This technique,

applied systematically, yields an expected complexity of O(N lgN), making

it suitable for large systems of particles.

6.3.1 Implementation

Below we describe the structure of the Barnes-Hut method in greater detail.

We also discuss the distributed tree data structure used to partition particles

and detail its construction.

Space partitioning trees

The Barnes-Hut algorithm relies on the organization of particles into a spa-

tial tree. The leaves of such a tree represent particles, or small groups of

particles called buckets. Each node of the tree represents a spatial partition

enclosing a certain number of particles. Space partitioning trees may be con-

structed to have different properties and structures. For example the kd-tree

attempts to balance the number of particles within each child of a parent

node. Here, we focus on the distributed binary space partitioning tree as the

underlying data structure for the Barnes-Hut algorithm. This data struc-

ture has several desirable properties, such as good aspect ratio of partitions

(leading to a reduction in the surface area per unit volume, and therefore

total communication) and flexibility in deciding the communication grain

84

Draft of June 6, 2012 at 15 : 47

size. However, by itself the binary space partitioning tree does not guaran-

tee an even distribution of particles or computational load across partitions.

The tree is constructed recursively in the following fashion. Given a node

that represents a particular partition of space, if the node has more than a

threshold number of particles, it is split along an axis (the axis is chosen in

a round-robin fashion) to create two new children of equal size, maintaining

the axis-aligned nature of the children.

When constructing the tree in parallel on a distributed memory machine, it

is customary to divide the procedure into two distinct phases, namely domain

decomposition and tree construction. In the Charm++ implementation that

we discuss here, both phases are managed by a PE-level entity (i.e. a group)

called the DataManager. Therefore, we will refer to DataManagers (DMs)

and PEs interchangeably.

Domain decomposition

The objective of the domain decomposition phase is to assign particles to

members of a one-dimensional chare array of TreePieces. This step is similar

to the sorting of keys in parallel, both in structure and effect. In fact, the it-

erative master-worker structure used here closely resembles that of histogram

sort [55]. Each PE (i.e. DM) begins by loading its share of particles from an

input file. The PE then performs a local sort on its particles. An iterative

distributed histogramming phase follows, in which a master PE obtains the

total number of particles in each active node. A node is active if the his-

togramming procedure is currently determining the number of particles in

it through a global reduction. The reduction operation is done on arrays of

counts contributed by worker PEs. If it is determined that an active node

has more than a threshold number of particles, it is removed from the ac-

tive list and its children are made active. This new list of active nodes is

broadcast to the workers, each of which performs a local partitioning of the

parents’ particles among the new, active children. On the other hand, if a

node is determined to be within the user-specified threshold of particles, it

is removed from the active list and a corresponding TreePiece is created. At

this point, each PE flushes the subset of its particles that lie beneath that

node to the TreePiece. When there are no active nodes remaining, domain

decomposition is complete. The master also broadcasts a list of key ranges to

85

Draft of June 6, 2012 at 15 : 47

the workers, thereby informing all PEs of the range of particles held by each

TreePiece. This information is needed in order to label the nodes of a local

tree with ownership data in the tree construction phase (described below).

Tree construction

Upon receiving all the particles intended for it, each TreePiece submits its

particles to the DataManager on its PE. This allows all particles on a PE to

be agglomerated by the DataManager, resulting in a larger locally accessible

tree for all TreePieces on the PE. The DataManager calculates the moments

(in our simple implementation these are the total mass and center of mass)

of all nodes that are exclusively on its PE. However, in general each PE

holds only a subset of the particles in the system, so that the global tree

cannot be recreated in its entirety on any PE. Therefore, in order to enable

access to remote portions of the tree the DataManager annotates it with

ownership information. In effect, the information about the (disjoint) range

of particles held by each TreePiece is used to calculate the range of owners

of each node. Note that nodes, especially those at shallower levels of the

tree, can be shared among many TreePieces since they may enclose particles

assigned to a number of TreePieces. In particular, the root is shared by all

TreePieces.

Tree traversal

The computation of gravitational forces is preceded by a traversal of the dis-

tributed Barnes-Hut tree by each TreePiece. The traversal can be defined

recursively, and is at the heart of the O(N lgN) complexity of the algorithm.

Given a target particle, on which net force is to be calculated, and a source

node (initially the root), the traversal checks whether the distance between

the particle and node is large enough to apply the Barnes-Hut approxima-

tion. If so, an interaction between the particle and the moments of the node

is computed and the node is discarded. If the node is not far enough, the

children of the node are considered in turn. In the Charm++ version of the

code the DataManager provides TreePieces with seamless access to remote

nodes. If the node is a leaf, pairwise interactions between its particles and

the target are performed. In our implementation, the cost of traversing the

86

Draft of June 6, 2012 at 15 : 47

tree is amortized over several local particles by grouping them into buck-

ets. Of course, by group particles into buckets, we are forcing interactions

that needn’t be performed, but this extra computation is insignificant when

compared to the benefit of reduced memory accesses due to fewer traversals.

For each bucket of local particles the global tree is traversed in two parts –

a local traversal is conducted on that portion of the Barnes-Hut tree that

is local to the PE whereas a remote traversal operates on the remainder

of the distributed Barnes-Hut tree, leading to communication between tree

pieces in the form of requests for remote nodes and particles. By assign-

ing greater precedence to remote traversals than local ones, we can use the

Charm++ feature of automatic computation-communication overlap

to accelerate the critical path: in effect, the latency of high-priority remote

data communication can be overlapped with low-priority local work.

Requests for remote data are funneled through the DataManager so as to

merge requests for the same particles and nodes from local TreePieces. This

optimization in itself can substantially reduce the volume of communication.

We combine this technique with a software-managed remote data cache to

increase the amount of data reuse. Upon receipt of remote data, the Data-

Manager maintains a copy of the data so that it may be reused by other

TreePieces that require it.

Advancing particles

Once the net force on each particle has been calculated, we integrate the

kinematical equations of motions for it over the duration of a single time

step. We use a single-timestepping second-order leapfrog integration tech-

nique for this purpose. Note that this translation can only be performed

once it is guaranteed that all traversals have completed. This serves as the

boundary for an iteration; following it, particles are once again decomposed

onto TreePieces, this time based on the new positions of the particles.

87

Draft of June 6, 2012 at 15 : 47

6.4 Jacobi Relaxation

6.5 LU Decomposition

TODO: Placeholder text, rewrite

The LU program was written as simply as possible, without any explicit

memory-awareness in the parallel program’s code. This implementation does

not perform pivoting. Hence some numerical stability is lost, but the same

number of floating point operations are still performed when compared to an

LU program that implements pivoting [56].

The program uses a 2-D chare array to decompose the 2-D matrix into

b × b square blocks. Each matrix block is stored in one of the chare array

elements. The mapping of the chare array elements to processors is flexible.

The default Charm++ mapping is a block mapping, but the program can

easily specify other mappings.

The main communication pattern that occurs in an LU matrix factoriza-

tion is a multicast of a data block from a source block to all subsequent blocks

in the same row, and a downward multicast of a data block from its source

to all blocks below it in the same column. The Charm++ language natively

supports chare array section sends, which are a mechanism for sending a sin-

gle message to a set of destination chare array elements. The programmer

can choose one of many predefined algorithms for each section send [57]. The

Charm++ LU implementation can therefore easily represent the pattern of

communication that needs to occur. The multicast algorithm that appears to

perform well for the cases described below uses a simple processor spanning

tree of degree 4.

The main computations performed in a dense LU algorithm are matrix-

matrix multiplications that update the values in a block. This update op-

eration is referred to as a trailing update. For block (i, j), the block LU

algorithm performs min (i, j) trailing updates. The closer a block is to the

bottom right corner of the overall matrix, the more computation is performed

for it. Other computationally intensive portions of the algorithm involve local

single-block LU factorizations to be performed for blocks along the diagonal,

and updates along the topmost active row and leftmost active column.

To factorize an n× n matrix, approximately 2n3

3 floating point operations

88

Draft of June 6, 2012 at 15 : 47

are required. Assuming the matrix is decomposed into b × b square blocks,

the fraction of the floating point operations spent inside the matrix-matrix

multiply operation approaches 1 − 1
b2 as b increases [56]. Thus for large LU

factorizations, almost all floating point operations occur in the context of

matrix multiplication. Therefore, a performance of a good LU implemen-

tation should approach the performance achieved by the double precision

matrix-matrix multiply.

89

Draft of June 6, 2012 at 15 : 47

CHAPTER 7

OPTIMIZATIONS

This chapter discusses parallel-specific optimizations enabled by the Charj

compiler. It starts with a discussion of the basic compiler techniques used,

then goes on to describe their application in the context of specific problems

in Charm-style parallel applications.

Compiler optimization is ostensibly a tool for improving the performance of

programs. It can, when executed well and applied in the correct context, take

naive code that ignores important performance issues (potentially specific to

a particular hardware architecture) and produce efficient binaries. Viewed in

this light, compiler optimizations are a performance-improving technology.

However, compiler optimization can also provide value in the opposite di-

rection, by removing the necessity to write sophisticated code that is made

more bulky and obscure because of performance considerations. For the

sophisticated and performance-sensitive applications that are typical of the

HPC world, the potential benefit of improved compiler optimization is typ-

ically not improving the performance characteristics of straightforward but

poorly performing code. Rather, it is the replacement of baroque and opaque

but high-performing code with simpler and more straightforward code that

attains the same performance while becoming more maintainable and more

accessible to non-experts. Viewed in this light, compiler optimizations are a

productivity-improving technology.

HPC applications tend to be highly optimized by their very nature. Al-

though much productive research and huge amounts of development time

90

Draft of June 6, 2012 at 15 : 47

have been dedicated to automatic techniques for improving performance, ex-

tensive hand-tuning is still the norm, particularly for performance-sensitive

computational kernels.

In part, hand optimization is the product of the need to run efficiently

on a large variety of hardware, often while supporting a wide collection of

different compilers provided by different vendors. In the case of Charm++,

the nightly build tests alone include over a dozen compiler configurations

created by multiple providers including GNU, IBM, Microsoft, PGI, and

Intel [58]. The variety of hardware and compilers that must be supported by

the software prevents developers from relying on optimizations that aren’t

provided by even the least effective supported compiler configuration. In

fact, highly tuned (and self-tuning) software such as ATLAS [59] sometimes

goes to substantial lengths to prevent the compiler from trying to perform

optimizations that might undo their own performance tweaks and degrade

performance.

The need for labor-intensive hand optimizations is also driven in some part

by the need to support a large variety of hardware. Even considering only the

top 10 supercomputers as ranked by [60] as of November 2011, portable high

performance codes must work not only on the familiar Intel Xeon and AMD

Opteron multicore processors, but also on Fujitsu SPARC64 and IBM Pow-

erXCell, and NVIDIA GPU architectures. Particularly in the case of Cell

and GPU accelerator hardware, programmers must write special-purpose

architecture-dependent code to fully take advantage of the hardware’s po-

tential.

This diversity of hardware to be supported is a substantial challenge not

only to HPC application developers, but also to anyone aiming to provide

practical improvements to the compiler optimizations used by HPC pro-

grams. Even a very effective optimization that would allow the programmer

to substantially simplify his or her program will not produce any simplifica-

tion of code in practice unless it can be applied across the whole range of

architectures and software tool-chains that the program supports.

With Charj, our research agenda is focused on producing enabling technol-

ogy that simplifies the task of producing high performance parallel programs.

Therefore, given high complexity of typical HPC code and the relative so-

phistication of HPC programmers, compiler optimizations in Charj serve

primarily as a tool for enhancing programmer productivity by simplifying or

91

Draft of June 6, 2012 at 15 : 47

eliminating the need for program elements that may be complex and bug-

prone, repetitive and time-consuming, or time consuming to edit and modify.

Our goal is not to advance the state of the art in performance-enabling anal-

ysis and optimization, but rather to supply “retail-level” optimizations based

on well-understood compiler techniques, but to aim these optimizations di-

rectly towards what we believe to be a valuable target: the productivity of

practicing HPC application developers. By identifying common but labor-

intensive programming tasks, particularly tasks that are specific to parallel

application development in a message-driven context, we aim to provide sub-

stantial value without the need for groundbreaking analytic techniques.

Related Work

In the context of compiler optimizations for explicitly parallel languages, it

is worth noting briefly the large body of research in optimizing compilers

with parallel targets whose approaches are very different from ours, both to

clarify our own objectives and to place this work within a broader context of

work on compiler optimizations for parallel applications.

TODO: add text on related work in parallelizing compilers, HPF and other

array-based parallel optimization, etc.

7.1 Optimizing Local MSA Array Accesses

7.2 Optimizing Data Exchange

Empirical studies have sometimes suggested that shared memory program-

ming is more productive than distributed memory [61]. One of the factors

that weighs against distributed memory programming in this analysis is the

need to pack and unpack application data. Any disagreement between pack-

ing code and the corresponding unpacking code can lead to subtle bugs, and

the code must be carefully maintained whenever the data being transmitted

changes.

In object-oriented programs, the data being transmitted will typically in-

clude user-defined types. In most programming models with explicit messag-

92

Aaron Becker
This whole section needs to be written. Describe details of the analysis and code generation, and compare a library iterator-based approach to what we do. Give performance numbers, perhaps as applied to the histogram code.

Make the case that this simple optimization supports more complex prefetching optimizations in future work.

Draft of June 6, 2012 at 15 : 47

ing, the programmer must provide code to handle the packing and unpacking

of these types. This support for managing the communication of user-defined

types is notable for requiring the programmer to manually specify informa-

tion that the compiler itself must already know–that is, the types of the

variables involved and how they are laid out in memory.

There are many methods by which the code which transmits application

data can be created. Perhaps the simplest approach is for the programmer

to do the work manually. This largely consists of determining the size of the

data to be sent, allocating a buffer of the appropriate size, and then copying

the relevant application data into the buffer.

The advantage of this technique is that it is completely customizeable. If

a subfield of some user-defined type is needed by a receiver in some portions

of an application but not others, the programmer can account for this fact

directly. If several variables are known to be contiguous in memory, they can

be copied as a block rather than individually.

However, the drawbacks of this approach are obvious. It is a lot of repeti-

tive work to specify all the data that an application transmits in detail, and

whenever application data structures change, all the packing and unpack-

ing code has to change with it. It is also error prone, and there is no easy

way of verifying that the packing and unpacking is bug-free. While this ap-

proach may be feasible, and even high-performance given time and effort, it

is extremely poor for productivity.

Alternatively, the programmer may use a library to assist with creating

the code. This approach has the advantage that well-designed libraries can

significantly ease the process of writing packing and unpacking code while

increasing confidence in that code’s correctness. These libraries range from

the relatively spartan to full-featured libraries such as Boost.Serialization

which include features for cyclic data structures and conditional packing.

However, these libraries typically lack the flexibility to efficiently change

the way that an object is packed based on application context. Each field

of a type must be either always included or always excluded, leading to

inefficiencies. They also require at least some level of intervention by the

programmer to integrate their data structures with the library in question.

A large amount of work has been done on data marshalling, both on im-

proving efficiency and on reducing the burden on the programmer. Systems

such as Sun RPC [62] provided for marshalling of C structs, using a high-level

93

Draft of June 6, 2012 at 15 : 47

specification for communication in concert with a stub compiler. Later sys-

tems such as CORBA [63] extended this functionality into the object-oriented

world. Later work improved the efficiency of generated marshalling code by

dynamically choosing between runtime interpretation of data descriptions

and compilation [64–66]. However, these systems all require the program-

mer to explicitly describe the data to be marshalled and do not attempt to

determine if any unused data is being transmitted.

More recently there have been several approaches published for providing

serialization of C and C++ data structures in MPI applications. C++2MPI [67]

and the MPI Preprocessor [68] are both capable of automatically extracting

MPI Datatype definitions from C and C++ types. They generate a list of

offsets describing the location of all data to be marshalled relative to the

base address of the user’s data. However, they are limited to marshalling

the structure in its entirety and do not handle the case of omitting unneeded

data, even in simple cases where the unneeded data does not depend on

application context.

AutoMap and AutoLink [69] are also tools that extract MPI datatypes

from user code. However, they are limited to C and require the programmer

to annotate which fields to pack and which to omit.

Software engineering tools focused on boosting productivity through refac-

toring have also targeted data marshalling as an area where productivity

gains can be had [70]. In [71], Tansey and Telvich describe a graphical tool

for generating marshalling code in an MPI context. They allow for multiple

versions of the marshalling code to account for the case where different data

is needed by the receiver in different application contexts, much as we do

here. However, they rely on the user to manually specify which fields will

be packed and which will be omitted in each case, whereas we generate all

marshalling code automatically and use compiler analysis to determine which

fields to omit.

Boost.Serialization takes a library-based approach to providing simple mar-

shalling for C++ datatypes [72]. This library provides largely automatic sup-

port for serializing C++ data, but provides no facility for selectively omitting

member data depending on context.

Many programming languages explicitly targeted at parallel applications

provide automatic marshalling of data or simply present a programming

model in which marshalling of user-defined types is not an issue. Gener-

94

Draft of June 6, 2012 at 15 : 47

ally in programming models where communication is performed via explicit

messages marshalling is not entirely automated. This allows the programmer

some control over how marshalling takes place. In models where messaging is

implicit, the programmer may not even need to consider marshalling. How-

ever, in our case we wish to facilitate the productive use of a programming

model that does require explicit messaging rather than avoiding the issue

altogether.

7.2.1 Implementation

We use Charj to address the problem of packing and unpacking application

data in a distributed memory environment in a way that minimizes the bur-

den on the programmer while maintaining high performance. We avoid the

need for the programmer to manually specify how data structures will be

packed and unpacked, and even avoid the need for the programmer to spec-

ify which fields of a user-defined type should be packed and which do not

need to be sent and can be safely excluded. We do this while producing effi-

cient packing and unpacking code which does not require maintenance when

application datatypes or communication patterns are changed.

To this end, we use the information available at compile time to generate

packing code that guarantees type safety while eliminating the need for man-

ual intervention by the programmer. Because the compiler knows the data

layout of each type it can effectively generate packing and unpacking code

that does not require updates from the programmer. However, a straight-

forward implementation will still pack data that may not be needed on the

receiving side. The programmer can specify which fields to skip, but this re-

quires user intervention and doesn’t allow for the possibility that some fields

may be needed in one situation but not in another.

One of the benefits of our approach is that it does not require complex

or time-intensive compiler analysis. For each remotely invocable method in

our application, we wish to produce a function that will pack its arguments,

discarding any data which can be proven to be unused. The primary question

to be answered is, which variables can be discarded?

Fortunately, there is a simple compiler analysis that answers this question.

Since the function does not interact with its unused fields, the values in those

95

Draft of June 6, 2012 at 15 : 47

Pack Send

(a) The simplest approach is to simply
pack the entire data structure regardless of
which fields are needed and which are not.
This is wasteful of space but maintains en-
capsulation.

Pack Send

(b) By writing a custom packing routine,
the programmer can ensure that no data
is unnecessarily transmitted at the cost
of breaking encapsulation at the receiving
side.

Pack Send

(c) Our technique packs only required
fields, but reconstitutes this data on the
receiving side as though it was the full ob-
ject. This maintains encapsulation without
wasting bandwidth, but does incur mem-
ory overhead on the receiving side.

Figure 7.1: Three approaches to message packing and unpacking. The left-
most box represents a data structure to be sent, and the rectangles inside it
represent its fields. The middle box represents the message buffer, and the
rightmost box represents the unpacked data at its destination. Fields that
are required by the receiving side are colored blue, while wasted memory is
colored pink.

96

Draft of June 6, 2012 at 15 : 47

fields are not used in any control flow path that begins at the head of the

functions control flow graph. Thus, the function argument fields that are

not needed in the body of the function are simply those fields that are not

live at the start of the function. Live variable analysis is a well-known and

well-studied algorithm [73], so implementation is straightforward. We per-

form interprocedural analysis where possible, and when code from external

libraries is invoked we pessimistically assume that all fields of all arguments

to external functions are used.

We treat each user-defined type as a set of elements, with each element

corresponding to one field. The output of the live variable analysis is the set

of all elements which are live at the function’s beginning. Using this set we

generate packing code specific to this function which copies each live vari-

able into a buffer, and corresponding unpacking code which reconstitutes the

function arguments on the receiving side. To minimize the complexity of our

implementation we recreate the full types of all function arguments. This is

potentially wasteful of memory, as shown in figure 7.1(c). A better approach

would be to transform the receiving function so that instead of expecting the

set of arguments specified by the programmer, it instead expects the set of

variables that it actually uses. We do not believe that this transformation is

difficult, and have left it for future work.

7.2.2 Case Studies

To get a clear idea of how this all works in practice, it is helpful to look at

message packing in the context of actual applications. One of the principal

advantages of our technique is that it allows the programmer to describe com-

munication in terms natural, high-level objects with semantic meaning rather

than simply enumerating the data that will be consumed by the receiving

function. However, this benefit cannot be demonstrated on tiny programs

like microbenchmarks, because by their nature they are stripped down to the

bare essentials needed to perform one task effectively. Thus there are typi-

cally no high-level objects that are used in multiple different ways in different

contexts, as one would expect in a more realistic application.

To show how our message packing scheme works in an application context

without introducing the full complexities and size of a real production HPC

97

Aaron Becker
Give details about how the live variable analysis works--dataflow eqns, etc.

Draft of June 6, 2012 at 15 : 47

code, we present two case studies taken from the examples provided with the

Charm runtime system. These are scaled-down, simplified applications that

maintain the structure of more sophisticated scientific codes, but in a smaller

and simpler package.

Molecular Dynamics

Charm is best known for NAMD [74], a popular molecular dynamics program

in common use at national supercomputing sites. However, NAMD is large

and complex, and we do not have the resources that would be required to port

NAMD to Charj. However, Charm provides an example molecular dynam-

ics program, named Molecular2D, with similar overall structure to NAMD

but with greatly simplified two-dimensional physics. Since this program is

provided for pedagogical purposes we might expect it to be written in a way

that maximizes clarity at the cost of performance, and in fact this is the case,

at least when it comes to message packing.

The primary data structures used in Molecular2D are Particles, which

represent the physical objects being modeled, and Patches, which represent a

region of space which may contain any number of particles. Listing 7.1 shows

the full definition of the Particle type, which mostly consists of information

regarding the physical properties of the particle.

The application simulates the motion of these particles over a series of

timesteps. In each step, particles within a certain radius exert forces on

one another, affecting the position, velocity and acceleration of each. Ob-

jects called computes are responsible for managing the interactions between

neighboring patches. Each patch sends data regarding its particles to com-

pute objects so that they can determine the effect of those particles on parti-

cles belonging to other nearby patches. As the position of a particle changes,

it may be migrated from one patch to another.

Listing 7.2 shows the signatures of the functions used by each patch to com-

municate particle information during each timestep. These are both remotely

invoked functions, so their arguments have been marshalled by potentially

remote elements. The updateForces function is called by a compute which

has calculated force contributions to local particles. The function’s argument

is a list of particles corresponding to local particles which have forces exerted

98

Draft of June 6, 2012 at 15 : 47

Listing 7.1: The central particle data structure used by Molecular2D, and its
accompanying PUP method.

1 class Particle{
2 public:
3 int id;
4 double mass; // mass
5 double pos[2]; // position
6 double f[2]; // force
7 double a[2]; // acceleration
8 double v[2]; // velocity
9

10 void pup(PUP::er &p) {
11 p | id;
12 p | mass;
13 p(pos, 2);
14 p(f, 2);
15 p(a, 2);
16 p(v, 2);
17 }
18 };

Listing 7.2: Methods in Molecular2D which receive Particle objects from
remote senders. Each takes a list of particles from a remote object which has
packed the particle data into a buffer and delivered it to the current patch.

1 class Patch {
2 void updateForces(
3 vector<Particle> particles);
4 void updateParticles(
5 vector<Particle> updates);
6 // ...
7 };

on them by particles from another patch. The function simply updates the

net force on its own particles based on the information it receives from the

compute object. The updateParticles function migrates particles which

have moved outside a patch boundary to the appropriate neighboring patch.

This function’s argument is a list of formerly remote particles which have

moved within the boundaries of the patch during the last timestep.

Semantically, both of these functions operate on a combination of local and

remote particle data, so it is natural that they each receive a list of particles

as their argument. However, their use of the particle data they receive is

quite different. In the case of updateParticles, the particles in the list

are migrating to a new patch, and so none of their data can be omitted–

99

Draft of June 6, 2012 at 15 : 47

Listing 7.3: A pup function equivalent to the packing code Charj generates
for the updateForces method.

1 void Particle::pup(PUP::er &p) {
2 p(f, 2);
3 }

each particle will need all of its fields in the next timestep in its new patch.

However, this is not the case for updateForces. These particles are not

migrating, only contributing to the forces exerted on some local particles.

Indeed, if we look at the function body in detail, we can see that the only

fields of the received particles that used are the forces. The force members

represent 16 bytes out of a total of 76 bytes per particle, so nearly 80% of

the data transmitted to updateForces is pure waste.

In translating this code to Charj, the functions remain mostly unchanged,

except that the pup function is now unnecessary. However, the actual commu-

nication that takes place is much different. During compilation, updateParticles

and updateForces are each analyzed to determine which fields of their

arguments are potentially used. In the case of updateForces the forces

are the only particle components that can possibly be read, so method-

specific packing code equivalent to listing 7.3 is generated. In the case of

updateParticles, the elements of the argument array are added to a data

structure belonging to the patch, and from that point on any of their fields

could be accessed by Patch methods. Therefore the packing code generated

by Charj for this function is equivalent to the full pup method of the original

application.

N-Body Simulation

The second application we consider is a modified version of the Barnes-Hut

N-body algorithm [54] from the well-known SPLASH-2 suite [75]. The mod-

ifications are limited to porting the application to use the Charm runtime.

The kernel and overall structure of the application remain unchanged.

In this application, a volume of space containing particles is divided into

regions using an oct-tree, with each leaf of the tree representing a volume of

space that contains an approximately the same number of particles, though

the size of these volumes may vary greatly depending on the spatial particle

100

Draft of June 6, 2012 at 15 : 47

Listing 7.4: A method in the Barnes-Hut application that passes information
down the tree. It receives several arguments, each of which is a field of the
parent object.

1 void recvRootFromParent(uint8_t root_id,
2 double rx, double ry,
3 double rz, double rs);

Listing 7.5: A Charj method signature corresponding the the method in
listing 7.4.

1 void recvRootFromParent(TreePiece parent);

distribution. Then when performing n-body calculations, only particles from

nearby volumes must be considered individually, with the contribution of

particles from remote volumes only approximated.

The primary communication that takes place in this application is the

passing of interaction data up and down the tree. The tree is decomposed

into disjoint segments called TreePieces, and data is communicated between

pieces via remote invocation of a few methods. Actual transfer of particle

data simply uses a vector of particle information in much the same way as the

molecular dynamics application described previously. However, information

about parent-child relationships within the tree is communicated using other

methods of the TreePiece object, such as recvRootFromParent.

As shown in listing 7.4, recvRootFromParent takes several arguments de-

scribing its parent. What is not obvious from the method signature, however,

is that each of the arguments comes from a field of the same parent object.

However, it is completely impractical to send the entire parent object, be-

cause this object contains dozens of fields and a huge amount of data that

should not be transmitted.

While the solution adopted by the application of simply splitting out the

required data and sending it separately is vastly more efficient, it obscures

the origin of the data and the relationship between its arguments. One could

preserve this information to some extent by creating a custom type that

encapsulates just the information needed for this function, but that approach

has high overhead for the programmer, especially in large applications or

when an application is being refactored and its arguments change.

Listing 7.5 shows a Charj method signature for the same function. Within

101

Draft of June 6, 2012 at 15 : 47

the method, uses of rx are replaced by parent.rx, ry by parent.ry and

so on. This simplifies the method signature, making it easier to see how

the function works at a glance. Although each TreePiece contains a large

number of fields, only the ones used by the receiver are actually transmitted.

Thus we get the clarity of the simple code and the efficiency of the more cum-

bersome, optimized code. In this case the improvement isn’t life-changing,

but in a larger and more complicated application methods may have dozens

of parameters, some subset of which come from a common object and others

of which do not. In those cases the simplification may represent a dramatic

easing of the burden on the programmer.

102

Draft of June 6, 2012 at 15 : 47

CHAPTER 8

FUTURE WORK

The work discussed in this dissertation is only a part of a wider research

agenda to improve the experience of writing high performance parallel appli-

cations through the application of compiler technology.

1. Charisma integration

2. GA abstraction

3. Examples of further optimizations

103

Aaron Becker
This whole thing needs to be written.

Draft of June 6, 2012 at 15 : 47

REFERENCES

[1] M. Snir and D. A. Bader, “A framework for measuring supercomputer
productivity,” International Journal of High Performance Computing
Applications, vol. 18, no. 4, pp. 417–432, Winter 2004. [Online].
Available: http://hpc.sagepub.com/content/18/4/417.abstract

[2] T. Panas, D. Quinlan, and R. Vuduc, “Tool support for inspecting
the code quality of hpc applications,” in Proceedings of the
3rd International Workshop on Software Engineering for High
Performance Computing Applications, ser. SE-HPC ’07. Washington,
DC, USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/SE-HPC.2007.8 pp. 2–.

[3] J. Kepner, “Hpc productivity: An overarching view,” International
Journal of High Performance Computing Applications, vol. 18,
no. 4, pp. 393–397, Winter 2004. [Online]. Available: http:
//hpc.sagepub.com/content/18/4/393.abstract

[4] T. Sterling, “Productivity metrics and models for high performance
computing,” International Journal of High Performance Computing
Applications, vol. 18, no. 4, pp. 433–440, Winter 2004. [Online].
Available: http://hpc.sagepub.com/content/18/4/433.abstract

[5] D. J. Kuck, “Productivity in high performance computing,” Int. J.
High Perform. Comput. Appl., vol. 18, no. 4, pp. 489–504, Nov. 2004.
[Online]. Available: http://dx.doi.org/10.1177/1094342004048541

[6] M. O. McCracken, N. Wolter, and A. Snavely, “Beyond performance
tools: Measuring and modeling productivity in hpc,” in Proceedings
of the 3rd International Workshop on Software Engineering for High
Performance Computing Applications, ser. SE-HPC ’07. Washington,
DC, USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/SE-HPC.2007.2 pp. 4–.

[7] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and L. Votta,
“Measuring high performance computing productivity,” Int. J. High

104

http://hpc.sagepub.com/content/18/4/417.abstract
http://dx.doi.org/10.1109/SE-HPC.2007.8
http://hpc.sagepub.com/content/18/4/393.abstract
http://hpc.sagepub.com/content/18/4/393.abstract
http://hpc.sagepub.com/content/18/4/433.abstract
http://dx.doi.org/10.1177/1094342004048541
http://dx.doi.org/10.1109/SE-HPC.2007.2

Draft of June 6, 2012 at 15 : 47

Perform. Comput. Appl., vol. 18, no. 4, pp. 459–473, Nov. 2004.
[Online]. Available: http://dx.doi.org/10.1177/1094342004048539

[8] W. Gropp, “Learning from the success of mpi,” in High Performance
Computing HiPC 2001, ser. Lecture Notes in Computer Science,
B. Monien, V. Prasanna, and S. Vajapeyam, Eds. Springer Berlin
/ Heidelberg, 2001, vol. 2228, pp. 81–92, 10.1007/3-540-45307-5 8.
[Online]. Available: http://dx.doi.org/10.1007/3-540-45307-5 8

[9] L. Hochstein, F. Shull, and L. B. Reid, “The role of mpi
in development time: a case study,” in Proceedings of the
2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413405 pp. 34:1–34:10.

[10] R. Eigenmann and W. Blume, “An effectiveness study of parallelizing
compiler techniques,” in ICPP (2), 1991, pp. 17–25.

[11] D. Hisley, G. Agrawal, and L. Pollock, “Evaluating the effectiveness
of a parallelizing compiler,” in Languages, Compilers, and Run-Time
Systems for Scalable Computers, ser. Lecture Notes in Computer
Science, D. OHallaron, Ed. Springer Berlin / Heidelberg, 1998,
vol. 1511, pp. 195–204, 10.1007/3-540-49530-414. [Online]. Available:
http://dx.doi.org/10.1007/3-540-49530-414

[12] W. Blume and R. Eigenmann, “Performance analysis of parallelizing
compilers on the perfect benchmarks programs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 3, pp. 643–656, 1992.

[13] M. L. Van De Vanter, A. Wood, C. Vick, S. Faulk, S. Squires, and L. G.
Votta, “Productive petascale computing: requirements, hardware, and
software,” Mountain View, CA, USA, Tech. Rep., 2009.

[14] E. Loh, M. L. Van De Vanter, and L. G. Votta, “Can
software engineering solve the hpcs problem?” in Proceedings
of the second international workshop on Software engineering for
high performance computing system applications, ser. SE-HPCS
’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1145319.1145328 pp. 27–31.

[15] R. K. Brunner, “Versatile automatic load balancing with migratable
objects,” TR 00-01, January 2000.

[16] G. Zheng, “Achieving high performance on extremely large parallel ma-
chines: performance prediction and load balancing,” Ph.D. disserta-
tion, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

105

http://dx.doi.org/10.1177/1094342004048539
http://dx.doi.org/10.1007/3-540-45307-5_8
http://dl.acm.org/citation.cfm?id=1413370.1413405
http://dx.doi.org/10.1007/3-540-49530-414
http://doi.acm.org/10.1145/1145319.1145328

Draft of June 6, 2012 at 15 : 47

[17] E. Meneses, G. Bronevetsky, and L. V. Kale, “Dynamic load balance
for optimized message logging in fault tolerant hpc applications,” in
IEEE International Conference on Cluster Computing (Cluster) 2011,
September 2011.

[18] S. Chakravorty and L. V. Kale, “A fault tolerant protocol for massively
parallel machines,” in FTPDS Workshop for IPDPS 2004. IEEE Press,
2004.

[19] O. Sarood and L. V. Kalé, “A ‘cool’ load balancer for parallel applica-
tions,” in Proceedings of the 2011 ACM/IEEE conference on Supercom-
puting, Seattle, WA, November 2011.

[20] L. V. Kale, D. M. Kunzman, and L. Wesolowski, “Accelerator Support
in the Charm++ Parallel Programming Model,” in Scientific Computing
with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. Don-
garra, Eds. CRC Press, Taylor & Francis Group, 2011, pp. 393–412.

[21] I. Dooley, “Intelligent runtime tuning of parallel ap-
plications with control points,” Ph.D. dissertation,
Dept. of Computer Science, University of Illinois, 2010,
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[22] J. DeSouza and L. V. Kalé, “MSA: Multiphase specifically shared ar-
rays,” in Proceedings of the 17th International Workshop on Languages
and Compilers for Parallel Computing, West Lafayette, Indiana, USA,
September 2004.

[23] A. Gursoy and L. Kale, “Dagger: Combining the benefits of synchronous
and asynchronous communication styles,” Parallel Programming Labo-
ratory, Department of Computer Science, University of Illinois, Tech.
Rep., March 1993.

[24] L. V. Kale and M. Bhandarkar, “Structured Dagger: A Coordination
Language for Message-Driven Programming,” in Proceedings of Second
International Euro-Par Conference, ser. Lecture Notes in Computer Sci-
ence, vol. 1123-1124, September 1996, pp. 646–653.

[25] P. Miller, A. Becker, and L. Kal, “Using shared arrays in message-driven
parallel programs,” Parallel Computing, vol. 38, no. 12, pp. 66 – 74, 2012.

[26] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll(k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp.
789–810, 1995. [Online]. Available: http://dx.doi.org/10.1002/spe.
4380250705

106

http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1002/spe.4380250705

Draft of June 6, 2012 at 15 : 47

[27] The CHARM (5.9) programming language manual, Department of Com-
puter Science,University of Illinois at Urbana-Champaign, Urbana, IL,
2006.

[28] T. L. Veldhuizen, “C++ templates are turing complete,” Tech. Rep.,
2003.

[29] J. Sasitorn and R. Cartwright, “Efficient first-class generics on stock
java virtual machines,” in Proceedings of the 2006 ACM symposium on
Applied computing, ser. SAC ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1141277.1141656 pp.
1621–1628.

[30] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira,
“High performance numerical computing in java: Language and
compiler issues,” in Proceedings of the 12th International Workshop
on Languages and Compilers for Parallel Computing, ser. LCPC
’99. London, UK, UK: Springer-Verlag, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645677.663925 pp. 1–17.

[31] L. M. Garshol, “Bnf and ebnf: What are they and how do they work?”
2012. [Online]. Available: http://www.garshol.priv.no/download/text/
bnf.html

[32] T. Parr and K. Fisher, “Ll(*): the foundation of the antlr parser
generator,” SIGPLAN Not., vol. 46, no. 6, pp. 425–436, June 2011.
[Online]. Available: http://doi.acm.org/10.1145/1993316.1993548

[33] T. Parr, Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages, 1st ed. Pragmatic Book-
shelf, 2009.

[34] T. J. Parr, “Enforcing strict model-view separation in template
engines,” in Proceedings of the 13th international conference on World
Wide Web, ser. WWW ’04. New York, NY, USA: ACM, 2004. [Online].
Available: http://doi.acm.org/10.1145/988672.988703 pp. 224–233.

[35] A. Gursoy and L. Kalé, “Dagger: Combining the Benefits of Syn-
chronous and Asynchronous Communication Styles,” in Proceedings of
the 8th International Parallel Processing Symposium, H. G. Siegel, Ed.,
Cancun, Mexico, April 1994, pp. 590–596.

[36] A. Gursoy and L. Kale, “Tolerating latency with dagger,” in Proceedings
of the Eigth International Symposium on Computer and Information
Sciences, Istanbul, Turkey, November 1993.

107

http://doi.acm.org/10.1145/1141277.1141656
http://dl.acm.org/citation.cfm?id=645677.663925
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://doi.acm.org/10.1145/1993316.1993548
http://doi.acm.org/10.1145/988672.988703

Draft of June 6, 2012 at 15 : 47

[37] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
nonuniform memory access programming model for high-performance
computers,” J. Supercomputing, no. 10, pp. 197–220, 1996.

[38] W. Kuchera and C. Wallace, “The upc memory model: Problems and
prospects,” 2004.

[39] J. DeSouza, “Jade: Compiler-supported multi-paradigm processor
virtualization-based parallel programming,” Ph.D. dissertation, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign,
2004.

[40] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Proc.
of the Second ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming (PPOPP’90), 1990. [Online]. Available:
citeseer.nj.nec.com/bennett90munin.html pp. 168–177.

[41] O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley,
G. Zheng, and L. Kale, “Parfum: A parallel framework for unstruc-
tured meshes for scalable dynamic physics applications,” Engineering
with Computers, vol. 22, no. 3-4, pp. 215–235, September 2006.

[42] P. Wadler, “Linear types can change the world!” in Programming Con-
cepts and Methods, M. Broy and C. Jones, Eds., 1990.

[43] R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: specifying
behavioral compositions in object-oriented systems,” SIGPLAN Not.,
vol. 25, no. 10, 1990.

[44] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Petascale
computing with accelerators,” in Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, ser.
PPoPP ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1504176.1504212 pp. 241–250.

[45] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Programming
the linpack benchmark for roadrunner,” IBM Journal of Research and
Development, vol. 53, no. 5, pp. 9:1 –9:11, sept. 2009.

[46] T. Endo, A. Nukada, S. Matsuoka, and N. Maruyama, “Linpack evalu-
ation on a supercomputer with heterogeneous accelerators,” in Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, april 2010, pp. 1 –8.

[47] D. M. Kunzman, “Runtime support for object-based message-driven
parallel applications on heterogeneous clusters,” Ph.D. dissertation,
Dept. of Computer Science, University of Illinois, 2012, (to appear).

108

citeseer.nj.nec.com/bennett90munin.html
http://doi.acm.org/10.1145/1504176.1504212

Draft of June 6, 2012 at 15 : 47

[48] A. Geist and S. Dosanjh, “Iesp exascale challenge: Co-design
of architectures and algorithms,” Int. J. High Perform. Comput.
Appl., vol. 23, no. 4, pp. 401–402, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1177/1094342009347766

[49] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. R. Thornquist, and R. W.
Numrich, “Improving performance via mini-applications,” Sandia Na-
tional Laboratories, Tech. Rep., 2009.

[50] M. Heroux and R. Barrett, “Mantevo project homepage,” 2012.
[Online]. Available: https://software.sandia.gov/mantevo/index.html

[51] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V.
Kale, “Overcoming scaling challenges in biomolecular simulations across
multiple platforms,” in Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2008, April 2008.

[52] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kalé, J. C.Phillips, and
C. Harrison, “Enabling and scaling biomolecular simulations of 100 mil-
lion atoms on petascale machines with a multicore-optimized message-
driven runtime,” in Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

[53] M. A. Heroux, D. W. Doerer, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep., September 2009.

[54] J. E. Barnes and P. Hut, “A hierarchical O(NlogN) force calculation
algorithm,” Nature, vol. 324, 1986.

[55] L. V. Kale and S. Krishnan, “A comparison based parallel sorting algo-
rithm,” in Proceedings of the 22nd International Conference on Parallel
Processing, St. Charles, IL, Aug. 1993, pp. 196–200.

[56] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hop-
kins Studies in Mathematical Sciences). The Johns Hopkins University
Press, October 1996.

[57] The Charm++ Programming Language Manual, (Version 6.1.3), Par-
allel Programming Laboratory, Department of Computer Science, Uni-
versity of Illinois, Urbana, IL, 2010.

[58] G. Zheng, “Charm++ automated-build status,” 2012. [Online].
Available: https://charm.cs.illinois.edu/autobuild/cur/

109

http://dx.doi.org/10.1177/1094342009347766
https://software.sandia.gov/mantevo/index.html
https://charm.cs.illinois.edu/autobuild/cur/

Draft of June 6, 2012 at 15 : 47

[59] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3 – 35, 2001.

[60] “Top500 supercomputing sites,” http://top500.org.

[61] L. Hochstein and V. R. Basili, “An empirical study to compare two
parallel programming models,” in Proceedings of the eighteenth annual
ACM symposium on Parallelism in algorithms and architectures, ser.
SPAA ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1148109.1148127 pp. 114–114.

[62] Remote Procedure Calls: Protocol Specification, Sun Microsystems, Inc.,
Mountain View, Calif., May 1988.

[63] The Common Object Request Broker: Architecture and Specification
(Draft), 10 December 1991, revision 1.1.

[64] P. Dietz, T. Weigert, and F. Weil, “Formal techniques for automatically
generating marshalling code from high-level specifications,” in Industrial
Strength Formal Specification Techniques, 1998. Proceedings. 2nd IEEE
Workshop on, 1998, pp. 40 –47.

[65] N. Feske, “A case study on the cost and benefit of dynamic rpc mar-
shalling for low-level system components,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 40–48, July 2007.

[66] C. Queinnec, “Marshaling/demarshaling as a compilation/interpreta-
tion process,” Parallel Processing Symposium, International, vol. 0, p.
616, 1999.

[67] R. Hillson and M. Iglewski, “C++2mpi: a software tool for automat-
ically generating mpi datatypes from c++ classes,” in Parallel Com-
puting in Electrical Engineering, 2000. PARELEC 2000. Proceedings.
International Conference on, 2000, pp. 13 –17.

[68] E. Renault and C. Parrot, “Mpi pre-processor: generating mpi derived
datatypes from c datatypes automatically,” in Parallel Processing Work-
shops, 2006. ICPP 2006 Workshops. 2006 International Conference on,
0-0 2006, pp. 7 pp. –256.

[69] D. Goujon, M. Michel, J. Peeters, and J. Devaney, “Automap and
autolink tools for communicating complex and dynamic data-structures
using mpi,” in Network-Based Parallel Computing Communication,
Architecture, and Applications, ser. Lecture Notes in Computer Science,
D. Panda and C. Stunkel, Eds. Springer Berlin / Heidelberg,
1998, vol. 1362, pp. 98–109, 10.1007/BFb0052210. [Online]. Available:
http://dx.doi.org/10.1007/BFb0052210

110

http://doi.acm.org/10.1145/1148109.1148127
http://dx.doi.org/10.1007/BFb0052210

Draft of June 6, 2012 at 15 : 47

[70] D. D. F. Kjolstad and M. Snir, “Bringing the HPC Programmer’s IDE
into the 21st Century through Refactoring,” in SPLASH 2010 Workshop
on Concurrency for the Application Programmer (CAP’10). Associa-
tion for Computing Machinery (ACM), Oct. 2010.

[71] W. Tansey and E. Tilevich, “Efficient automated marshaling of c++
data structures for mpi applications,” in Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on, april
2008, pp. 1 –12.

[72] P. Kambadur, D. Gregor, A. Lumsdaine, and A. Dharurkar, “Modern-
izing the c++ interface to mpi,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, ser. Lecture Notes in Com-
puter Science, B. Mohr, J. Traff, J. Worringen, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2006, vol. 4192, pp. 266–274.

[73] L. T. Kou, “On live-dead analysis for global data flow problems,”
J. ACM, vol. 24, pp. 473–483, July 1977. [Online]. Available:
http://doi.acm.org/10.1145/322017.322027

[74] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kale,
“NAMD: A Portable and Highly Scalable Program for Biomolecular
Simulations,” Department of Computer Science, University of Illinois
at Urbana-Champaign, Tech. Rep. UIUCDCS-R-2009-3034, February
2009.

[75] J. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford parallel
applications for shared memory,” Computer Architecture News, vol. 20,
no. 1, pp. 5–44, March 1992.

111

http://doi.acm.org/10.1145/322017.322027

	CHAPTER 1 Introduction
	CHAPTER 2 Methodology
	Objectives
	Practical Utility
	Integrating High-Level Parallel Features
	Concise and Elegant Syntax
	Reducing Programmer Burden

	Infrastructure

	CHAPTER 3 The Charj Language
	The Charj Programming Model
	Charj Syntax
	Charj Keywords

	Comparing Charm Applications with Charj Applications
	Example Application
	Summary

	CHAPTER 4 The Charj Compiler
	Software Ecosystem
	Compiler Architecture
	Generating an AST
	Semantic Analysis and Optimization
	Code Generation

	Summary

	CHAPTER 5 Embedding Diverse Programming Models
	Related Work
	Supporting Multiple Programming Models
	Structured Dagger
	Implementing SDAG

	Multiphase Shared Arrays
	The MSA Programming Model
	Implementing MSA

	Heterogeneous Computing
	Accelerated Entry Methods in Charj

	Summary

	CHAPTER 6 Writing Applications in Charj
	Conjugate Gradient
	Molecular Dynamics
	Specification and Verification

	N-Body Simulation
	Implementation

	Jacobi Relaxation
	LU Decomposition

	CHAPTER 7 Optimizations
	Optimizing Local MSA Array Accesses
	Optimizing Data Exchange
	Implementation
	Case Studies

	CHAPTER 8 Future Work
	REFERENCES

