
c© 2012 Aaron Karl Becker

COMPILER SUPPORT FOR PRODUCTIVE MESSAGE-DRIVEN
PARALLEL PROGRAMMING

BY

AARON KARL BECKER

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Research Assistant Professor Maria Garzaran
Professor David Padua
Professor Ponnuswamy Sadayappan, Ohio State University

ABSTRACT

Historically, the creators of parallel programming models have employed two

different approaches to make their models available to developers: either

by providing a library with hooks for common programming languages, by

developing a new language and associated infrastructure altogether. Despite

the flexibility of the language approach and the great number of parallel

languages that have been created, the library approach, as exemplified by

the Message Passing Interface, has dominated large-scale high performance

computing.

It is our hypothesis that the combination of a rich runtime system and a rel-

atively simple compiler infrastructure can significantly improve programmer

productivity without compromising performance. In this work, we examine

this hypothesis through the lens of Charj, a simple language based on the

Charm++ runtime system. We consider the effect that the addition of a

compiler has on user experience in terms of the ways in which features are

exposed to the programmer and in opportunities for optimization, and code

simplification, and the integration of multiple programming models, drawing

from our experiences developing the Charm++ runtime and the Charj lan-

guage. We substantiate our conclusions through the development of Charj

applications that are significantly more simple than their Charm++ equiva-

lents without sacrificing performance.

ii

To my family.

You never asked for a dissertation, but here one is anyway.

iii

ACKNOWLEDGMENTS

The work in this dissertation is a small part of a decades-long research agenda

carried out by the members of the Parallel Programming Laboratory. As

such, I owe a great debt to my friends and colleagues in the lab who have

collaborated with me and provided invaluable feedback and advice over the

years that I have spent there.

In particular, I would like to thank Pritish Jetley, Jonathan Lifflander,

Philip Miller, and Minas Charalambides for their help during the process of

designing and implementing Charj and applications based on Charj. I would

also like to thank David Kunzman and Chao Mei for their support in the

process of actually writing this dissertation. I am also very thankful to my

dissertation committee for their valuable suggestions and comments. Finally,

I owe a great debt of gratitude to my advisor, Laxmikant Kalé, who always

seems to have several solutions to every problem I encounter.

I would also like to acknowledge the use of the parallel computing resource

provided by the Computational Science and Engineering Program at the

University of Illinois. I performed performance testing for Charj applications

and their Charm++ equivalents using the Taub cluster, which is part of the

CSE computing resource.

Finally, I would like to thank my family and friends, who kept me mostly

sane during the process of writing and researching, put up with my com-

plaints, and who convinced me that I would eventually succeed. I don’t trust

myself to list your names without forgetting anyone, but I couldn’t have done

it without you.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 METHODOLOGY . 4
2.1 Objectives . 5
2.2 Libraries versus Languages . 10
2.3 Infrastructure . 11

CHAPTER 3 THE CHARJ LANGUAGE 14
3.1 The Charj Programming Model 14
3.2 Charj Syntax . 16
3.3 Comparing Charm Applications with Charj Applications . . . 29
3.4 Example Application . 30
3.5 Summary . 35

CHAPTER 4 THE CHARJ COMPILER 36
4.1 Software Ecosystem . 36
4.2 Compiler Architecture . 39
4.3 Summary . 46

CHAPTER 5 EMBEDDING DIVERSE PROGRAMMING MODELS 47
5.1 Related Work . 48
5.2 Supporting Multiple Programming Models 50
5.3 Structured Dagger . 51
5.4 Multiphase Shared Arrays . 64
5.5 Heterogeneous Computing . 82
5.6 Summary . 87

CHAPTER 6 OPTIMIZATIONS . 88
6.1 Loop Optimizations for MSA 90
6.2 Optimizing Data Exchange . 96
6.3 Summary . 105

v

CHAPTER 7 WRITING APPLICATIONS IN CHARJ 107
7.1 Measuring Productivity . 108
7.2 Selecting Applications . 111
7.3 Jacobi Relaxation . 113
7.4 Molecular Dynamics . 118
7.5 LU Decomposition . 124
7.6 Summary . 133

CHAPTER 8 FUTURE WORK . 134

APPENDIX A CHARJ LANGUAGE GRAMMAR 137

REFERENCES . 151

vi

CHAPTER 1

INTRODUCTION

In many ways, high performance computing (HPC) remains the wild west of

the programming world. While ever-growing performance and the inevitable

march of Moore’s Law has led to the increasing popularity of managed code,

garbage collection, and dynamic typing in mainstream programming, the

developers of high performance parallel applications make very few conces-

sions to speed, and as a result they pay a high price in development and

maintenance time.

Considering the intrinsic difficulties of HPC and the demands upon HPC

programmers, it can be no surprise that programmer productivity in this

area is notoriously poor [1–4]. Sadly, no dramatic solution to this problem

has been found, and none seems likely to present itself in the near future.

Indeed, even measuring exactly what one means by productivity in HPC can

be a difficult problem to solve [5–7].

Under these circumstances, we must strive to relieve the programmer of

as many burdens as is practically possible. The Message Passing Interface

(MPI) takes the approach of giving the programmer maximal control, to the

point that it has been called the assembly language of parallel computing [8].

While this approach makes it possible to write extremely successful paral-

lel programs, it is also widely blamed in the computer science community,

whether fairly or not, for creating many of the productivity problems that we

aim to remedy [9]. On the other end of the spectrum, parallelizing compilers

have promised to automatically extract parallelism, giving the programmer

1

little or no control over the parallel structure of their code. While this ap-

proach sounds appealing, in practice attaining real performance and scalabil-

ity outside of narrow problem domains has not been possible without a real

investment of time and effort by human programmers [10–12]. Although the

intrinsic complexities of HPC software may always remain, we can at least

aim to remove as much of the tiresome drudgery of programming as we can.

We cannot expose the programmer to all of the overwhelming complexity of

a modern HPC execution environment, nor can we hide all of the complexity

behind abstractions and automation. We must rather seek a productive di-

vision of labor between the programmer and the system that provides useful

abstractions without taking away the programmer’s control.

This raises a natural question: how can we make it easier to write high

performance parallel code? Many years of research has been dedicated to

this question, and many answers have been provided, some successful and

others not. Research in parallel applications has yielded a wide variety of

programming models, dozens of languages, auto-parallelizing compilers, and

a variety of parallel runtime systems. However, it is often difficult to see

how these pieces fit together to improve the experience of actual application

developers, or if in fact the pieces can be made to fit at all.

Thus far, the bulk of HPC programmers have been indifferent to the great

variety of research at least partially dedicated to improving their lives. This

fact argues for an approach that is more focused on the practical aspects of

HPC application development and on minimizing the difficulties of adopting

new tools and techniques.

It is our hypothesis that the combination of a rich runtime system and a

relatively simple compiler infrastructure can significantly improve program-

mer productivity without compromising performance. We believe that well-

known compiler techniques can be applied to carefully targeted areas to

significantly simplify the development process for high performance paral-

lel applications, and that this process need not produce less efficient code.

In particular, the features exposed by a rich parallel runtime system can be

made simpler, more user-friendly, and less error-prone while maintaining high

performance. Rather than attempting to use the compiler to apply sophis-

ticated optimizations or dramatic restructuring of the developer’s code, we

will identify areas in which we can simplify common tasks, facilitate interop-

erability between program modules, and support such high-level application

2

features as load balancing and fault tolerance through compiler support. It

is our hope that by focusing on such practical considerations on a platform

that is already widely used in the real world that we really can reduce the

amount of blood, sweat, and tears that HPC developers must pour into their

creations.

3

CHAPTER 2

METHODOLOGY

The primary goal of this research is to investigate the ways in which program-

ming language and compiler support can improve programmer productivity

when writing parallel HPC applications. We pursue this goal by creating

a new language called Charj and an associated compiler which incorporate

syntax, semantic analysis, and optimizations targeted at HPC code. We

then use Charj to develop small-scale but fully functional HPC codes that

are representative of a variety of common problem domains, and compare

the resulting code to equivalents written using popular existing frameworks.

However, to demonstrate the usefulness of applying compiler technology

to parallel-specific productivity problems, one must first decide what pro-

gramming environment to target. Endless choices are possible. The type

of language, the particular language syntax, the compiler framework, the

optimizations to pursue–there are a huge number of variables.

Our solution space is highly constrained because of the nature of our goals.

For example, if we want to create a programming environment that is broadly

acceptable to current HPC programmers and that can leverage existing run-

time infrastructure, it would be very problematic to create a purely func-

tional programming language. For many of these variables, however, there

is no provably right or wrong choice to be made, and so we must be guided

by our notion of what will prove most expedient and practical in the demon-

stration of our thesis. However, even though we cannot provide logical proof

that our choices are correct, we can at least provide our rationale, in the form

4

of guiding principles that we have used when designing the Charj language

and its compiler infrastructure.

2.1 Objectives

In this chapter we discuss our goals in creating a new parallel programming

environment and the ways in which our goals have informed our choices about

the nature of the Charj programming language, its runtime, and its compiler

infrastructure. Broadly, we aim to develop a programming environment that

has four key features. First, it must have practical utility for working HPC

developers. When we are faced with a choice between theoretically inter-

esting features and practically useful features, we opt for practical utility.

Second, it must effectively integrate high-level parallel features, giving the

programmer simple and elegant access to complex tasks like load balancing

and fault tolerance. Third, it should provide a concise and elegant syntax

for expressing parallelism. Parallel operations should be smoothly integrated

into the language design and not be tacked on as second-class citizens. Fi-

nally, Charj should reduce the burden on the programmer by automating

tasks that are routine but effort-intensive or error-prone, especially when

those tasks are related to communication.

2.1.1 Practical Utility

With Charj, we set out to create a programming language that is useful to

the HPC community in practice, not only in theory. Usefulness ultimately

depends on a large number of factors with little or no connection to our

research agenda, such as the development of a vibrant user community and

adoption by prominent users and applications, so of course our work is not

and cannot be sufficient to guarantee that Charj will be practically useful.

Conscientious design is nevertheless necessary to allow the possibility that

Charj could be broadly adopted in the HPC community. HPC programmers

are known for being relatively conservative in their adoption of new technol-

ogy. The Message Passing Interface (MPI), the most broadly used library

for enabling parallelism in HPC applications, dates back over twenty years,

and the mathematical kernels relied on by many scientific HPC applications

5

are still written in Fortran [13]. If Charj were to represent a complete break

with existing HPC programming practice then it would have slim hopes for

practical use.

Of course, in order to increase productivity in a significant way, Charj must

differentiate itself from the alternatives it aims to supplant. Indeed, we must

aggressively pursue opportunities to improve on the status quo. However,

an appreciation for the comfort of existing HPC programmers will tend to

lead us to make changes which primarily simplify or eliminate common HPC

development tasks rather than making wholesale structural changes to the

practice of HPC programming. Therefore, to facilitate acceptance by the

existing community of HPC programmers, Charj must have familiar and

easily recognizable syntax.

Syntax is a common sticking point for programmers, and minor differences

in programming language syntax can lead to endless debate over aesthetics.

For example, the inclusion of significant whitespace in Python has spawned

reams of debate, ranting, and discussion by both Python supporters and

detractors, over the years. Discussion on this topic has far outweighed dis-

cussion on more consequential matters of expressiveness and performance.

This is not to say that significant whitespace is good or bad, only that this

type of concern over aesthetics is important to programmers, sometimes even

more important than more ostensibly substantive issues1. Where possible,

we adopt familiar, recognizable syntax, and make as few changes as possible

relative to the most widely known and used languages, which in the case of

Charj means that the syntax is very similar to Java, or a subset of C++.

If HPC programmers are conservative with regard to technology choices,

they are far more conservative (and understandably so) when it comes to

performance. A huge amount of time and effort goes into optimizing HPC

codes, and programmers are extremely reluctant to trade away any of their

performance gains. This points to two key characteristics that Charj must

have. First, it must produce efficient baseline code. That is, straightforward

1It is difficult to compare the volume of discussion on significant whitespace in Python
versus the volume of discussion on more substantive Python language issues in any rigorous
way. However, it is suggestive that on the c2.com wiki, a popular site for programming-
related discussions, the combined size of the pages “Python Language”, “Python Phi-
losophy”, and “Python Discussion” is 5764 words as of May 2012, while the combined
size of “Python White Space Discussion” and the related page “Syntactically Significant
Whitespace Considered Harmful” is 11072 works.

6

Charj code that performs basic communication must have high performance.

The infrastructure must be sound. Second, Charj must accommodate pro-

grammers who wish to optimize performance-critical code by hand. It must

have a reasonably transparent programming model and it should allow pro-

grammers who want to invest significant time and effort into optimization to

do so effectively.

The requirement for high performance dictates that Charj must have a

well-optimized messaging infrastructure. Building a high performance mes-

saging subsystem that works across the variety of specialized networking

hardware found in modern supercomputers is a very difficult undertaking in

itself, and one that is largely orthogonal to the issues that we wish to address

in Charj. Therefore it is much more efficient to adopt an existing messaging

infrastructure for Charj.

Selecting a well-established communication framework has an additional

benefit: compatibility with existing code. A large amount of time and ef-

fort has been sunk into creating highly tuned parallel code using existing

frameworks, and the ability to take advantage of this code is an important

factor in determining the acceptability of Charj in practical use. By sharing

a common foundation with a body of existing code, Charj applications can

more easily integrate with existing applications and libraries.

2.1.2 Integrating High-Level Parallel Features

HPC applications are constantly growing larger and more complex. At the

same time, supercomputers are themselves growing larger and more compli-

cated, becoming more heterogeneous and more topologically differentiated

even as their increasing size drives down mean time to failure to the point

where applications must have a strategy for gracefully recovering from errors.

In this environment, application developers must struggle to implement fea-

tures like fault tolerance and dynamic load balancing in their applications.

Although each individual application will have its own unique needs, the

prerequisites for implementing such features are typically similar. They in-

volve the need to identify key application data structures and relocate them,

with sensitivity to the parallel structure of the application. By integrating

these tasks into the Charj programming environment so that the compiler

7

has some understanding of the high-level tasks that the programmer may be

attempting to perform, we believe that we can significantly improve the ease

with which a programmer can produce a successful implementation.

2.1.3 Concise and Elegant Syntax

We have already claimed that Charj should have familiar syntax, because

familiar syntax makes it easier to use for the existing community of HPC

programmers. However, this proviso mainly applies to the syntax of serial

code implemented in Charj. Nearly all HPC code is written in a language

with no syntactic support for parallelism, typically C, C++, or Fortran.

Although there are exceptions to this rule, such as Co-Array Fortran, they

have not yet been widely adopted. In order for Charj to look and feel familiar,

sequential Charj code should resemble existing sequential code to the extent

possible.

However, most parallel operations in existing HPC applications are per-

formed via library calls. There is no parallel-specific syntax for Charj to

emulate. In these cases Charj should provide the simplest possible interface

to the parallel functionality. Ideally all new parallel syntax should feel like

part of an organic whole with the familiar serial syntax. Redundancy should

be minimized.

At the same time, it is important to be able to easily distinguish serial op-

erations from parallel operations. Especially as application and machine sizes

grow, the performance implications of each parallel task can be enormous,

and it is essential that the programmer can easily discern which sections of

the code are purely local and which sections involve communication.

While it is important to pursue simple, elegant expressions of the program-

mer’s intent, we must be careful not to unduly degrade performance for the

sake of elegance. Often, the complexity of HPC programs are due to the

need for careful performance optimizations, and while they can be simplified

significantly, these simplifications come at the cost of their speed [14]. While

there is often a trade-off to be made between elegance and performance, in

the world of high performance computing we must err on the side of perfor-

mance and carefully justify any slowdowns or inefficiencies that we introduce

in the name of simplicity.

8

Performance

Pr
od

uc
tiv

ity Simple Charm++

Optimized Charm++

Charj

Figure 2.1: Charj aims to combine the performance associated with a well-
optimized, sophisticated Charm++ application with the productivity asso-
ciated with a more näıve, unoptimized approach.

2.1.4 Reducing Programmer Burden

Ultimately, each goal that we have described for Charj can be considered a

part of a larger, more encompassing goal: that of reducing burden on the

programmer. Programmers experience many kinds of burdens in the course

of developing an application, and much of the history of the compiler could

be summarized as an attempt to alleviate these burdens. Generally, we aim

to reduce or eliminate programming tasks that are repetitive, mechanical,

and error-prone, via syntactic analysis and code generation.

With Charj, we aim to allow programmers to achieve the performance

associated with carefully written, hand-optimized Charm++ applications,

but with much less time and effort. If effect, we hope to combine the

productivity that programmers experience when writing relatively simple,

näıveapplications while enjoying performance that would normally require a

much greater investment of time, effort, and expertise, as shown in figure 2.1.

Eventually we hope to use sophisticated optimizations that would be ex-

tremely cumbersome to apply by hand to extend the performance that Charj

applications can realize beyond the level of even well-optimized Charm++

9

applications.

2.2 Libraries versus Languages

For any software environment for parallel programming, there is a question

of whether it is best implemented as a language, or as a library for an ex-

isting language. There are substantial benefits to a library-based approach,

especially in terms of likelihood of adoption and effort required by users. Cer-

tainly MPI, the most successful parallel programming model yet developed,

makes a strong case for implementation via libraries. Its ubiquity is bolstered

by the fact that programmers can use it directly in programs of a wide vari-

ety of languages. Similarly, Intel’s Threaded Building Blocks (TBB) [15] and

Concurrent Collections (CnC) [16] aim to attract existing C++ program-

mers, and their implementation as C++ libraries gives them a much lower

barrier to entry than a new programming language which implemented the

same parallel programming model would have.

In the case of Charj, we are building a language on top of an existing

runtime library, and it is important to justify the time and effort overhead

associated with that decision. This overhead manifests itself both in the

development cost of the Charj language, compiler, and associated infrastruc-

ture, and in the costs incurred by programmers who must learn the Charj

language in order to make use of it. In order to justify this overhead, we

must provide convincing features that could not be delivered if we simply

spent more time improving upon the Charm++ runtime libraries.

Charj aims to provide value that cannot be delivered via library in three

key areas: syntax, safety, and speed. The first area, syntax, is an area where

a new language has a decided advantage over a library-based approach, es-

pecially for libraries in commonly used HPC languages such as C, C++, and

Fortran. We can provide syntax that maps directly onto key programming

model concepts, and are not limited by syntax developed with only sequential

execution in mind. This allows us to make parallel operations visually dis-

tinct from serial operations, where in a library-based approach, the calling of

a function which invokes parallel behavior will look no different syntactically

than the calling of a function which is purely sequential. Some languages are

more conducive to the introduction of new syntax specific to some particular

10

task. For example, Ruby libraries and applications can introduce new syntax

embedded into the core language transparently, and thereby gain some of the

advantages that we experience in using a new language [17]. However, since

Ruby is unsuitable for HPC programming, and commonly-used HPC pro-

gramming languages do not easily allow for the introduction of new syntax,

this feature has little practical importance for us.

In the area of safety, languages allow for more flexible compile-time check-

ing of programming model semantics than are possible with a library. For

example, MPI communication takes place using void pointers which discard

type information, which prevents the programmer from enforcing consistent

types across messaging boundaries. Compiler writers for sequential languages

spend enormous time and effort on the automated detection of sequential er-

rors: incorrect function signatures, inappropriate use of pointers, the misuse

of constant variables, and so on. This kind of detection can be equally useful

in the case of parallel-specific errors. In particular, we discuss the detection

of errors in readonly variables in section 3.3 and the detection of phase vi-

olations in multiphase shared arrays in section 5.4. Charj also benefits from

the extension of the type system to cover situations like ensuring that the

input and output types of a reduction match appropriately. This kind of

static checking gives valuable compile-time information to the programmer

which cannot be easily duplicated in a library-based approach.

Finally, the use of a language as opposed to a library gives increased op-

portunity for optimization. While library code itself can be highly optimized

and tuned, it generally does not take unoptimized user code and improve it

in the way that a compiler can. In some cases, well-designed libraries can

in fact deliver the kind of optimization that is usually only associated with

compilers (see, for example, the discussion of iterator-based loop tiling in

section 6.1), but a compiler offers greater freedom to transform user code

and thereby improve it.

2.3 Infrastructure

Given these guiding principles, we can select the existing software infras-

tructure on which Charj will be built. Our goals of practical utility and

compatibility with existing HPC code point in the direction of established

11

and successful frameworks. This already narrows our options considerably.

Given our desire for tight integration with sophisticated parallel services like

load balancing and fault tolerance, we also prefer systems that are feature

rich. Moreover, systems that have a rich runtime environment for Charj to

interface with provide more interesting opportunities for novel optimizations

and syntactic improvements.

With these requirements in mind, we have decided to build Charj on the

Charm++ adaptive runtime system. Charm is already widely used and

Charm applications account for a significant fraction of total usage at many

of the largest clusters in the world. It achieves high performance on a variety

of platforms, and there is a pre-existing community of Charm programmers

to draw upon. This makes it an attractive target for productivity-enhancing

efforts relative to less widely-used systems. It also presents significant com-

plexity to a programmer who wishes to make good use of all its features.

In addition to basic messaging capabilities, Charm provides functionality for

load balancing [18, 19], semi-automated marshalling and unmarshalling of

messages, fault tolerance [20,21], power management [22], use of accelerator

architectures [23], control points [24], and many other features.

In addition, multiple programming models already target the Charm run-

time [25–28]. Their existence allows for inquiry into techniques for integrat-

ing multiple programming models effectively into a single application. Also,

Charm already includes an associated translator which generates messaging

code from a programmer-provided interface file. This allows us to compare

the advantages of a minimalist approach (generating supplemental interface

code only and developing the main application code in C++) to a more

thoroughgoing approach in which the compiler for the parallel language has

access to method bodies and class structure information. Were we deciding

on a platform based solely on popularity and ubiquity we would certainly

have built on MPI instead, but given comparative richness and complexity

of the Charm runtime system, we claim that Charm is a better environment

in which to demonstrate the merits of our approach.

Our goals also influenced our choice of compiler construction tools. Charj

is built using the ANTLR LL(*) parser generator [29], discussed further in

chapter 4. Its LL(*) parsing algorithm allows for straightforward definition

of the language grammar. ANTLR uses a common notation for specify-

ing the language lexer, parser, and abstract syntax tree (AST) traversals,

12

which substantially simplifies the process of writing the compiler. ANTLR

provides a domain-specific language for recognizing and modifying AST sub-

trees, which we use for simple program transformations and recognition oper-

ations. ANTLR also provides us the freedom to build explicit representations

of the program outside of its infrastructure, which we use to for more complex

analysis.

13

CHAPTER 3

THE CHARJ LANGUAGE

This chapter describes the Charj programming environment and its rela-

tionship to the Charm runtime system. It describes Charj program seman-

tics, syntax and program structure, and gives simple example programs that

demonstrate the advantages of Charj programs over their Charm equivalents

in terms of concision, safety, and convenience.

3.1 The Charj Programming Model

Charj programs consist of collections of objects which interact via asyn-

chronous method invocation. These objects are called chares. Chares can be

collected into chare arrays or groups, or can stand alone. Each chare has a

globally unique identifier called a proxy, which can be used by other chares to

communicate with it. The programmer addresses chares via proxies, rather

than by specifying the processor on which the chare resides. This allows

the programmer to delegate responsibility for mapping chares onto physical

hardware to the runtime system.

Chare objects are specified much as ordinary objects in C++ or Java would

be, in terms of their data members and methods. Chares can also inherit

from other chares, as is typical in object-oriented design. However, chares

contain one or more remotely invocable methods, known as entry methods.

These methods can be called using only the chare’s proxy, even if the caller

14

resides in a different address space from the callee. Entry methods can take

arguments just as normal functions do. These arguments are serialized by

the sender, sent to the receiver in a message, and deserialized and used by

the receiver. The constructor of a chare class is also considered an entry

method, but rather than being sent to an existing instance of the class, it

results in the creation of a new instance.

Chare objects can be part of a collection, in which each element has the

same chare type. The most common of these is an indexed chare array. Entry

methods can be invoked on individual array elements, on the entire array,

or on a section of the array. Arguments to entry methods that are sent to

multiple array elements are duplicated (except for special cases where dupli-

cation may be avoided as an optimization which does not affect the results

of a computation), so that a message is sent for each individual receiving

chare. The programmer can also conduct asynchronous reductions over the

elements of a chare array. Each array element contributes one or more data

elements to the reduction, specifying a reducing function and a callback to

be called with the result data. The values are combined using the reducing

function, and the result is delivered using the specified callback. One spe-

cial case of chare collections is the group, which is a collection where each

physical processor is home to exactly one member of the group. Groups are

commonly used to implement application services such as caching and IO.

In a typical application, each processor core will be home to multiple

chares. Generally in the Charj programming model, the programmer ad-

dresses only individual cores and does not directly program at the level of a

multicore node. Throughout this dissertation, when we refer to a processor

we mean a single core of a possibly multicore processor node, unless other-

wise specified. Messages received by that processor correspond to an entry

method invocation on one of the chares located there. Because there may

be many such messages outstanding on a processor at any given time, a per-

processor scheduler maintains a queue of pending entry method invocations

to be processed. The scheduler selects a queue entry and invokes the specified

method on the target object using the provided data arguments. The method

then runs non-preemptively (and may spawn new entry method invocations

of its own). When the method completes, control returns to the scheduler.

The scheduler is not guaranteed to use any particular queueing policy, and

in-order receipt of messages is not guaranteed. Because application control

15

flow is driven by the receipt of messages, we refer to this as a message-driven

programming model.

The message-driven programming model has several important features

that make it suitable for large-scale parallel applications. First, it provides a

natural way of overlapping communication and computation. Because mes-

sages are sent asynchronously, chares do not block execution while waiting

to receive data. Instead, the scheduler can select other available messages

to process, so that a processor will only go idle if no messages for any of its

chares are available. Second, it allows for runtime control of features that

would otherwise have to be tightly integrated into application-level code. For

example, consider adaptive load balancing. In a model where the program-

mer addresses application components by their location, the application logic

must be explicitly aware of any dynamic movement of those components. In

Charj’s model, application logic can be more effectively decoupled from the

physical location of components, giving us the opportunity to more effec-

tively integrate features like adaptive load balancing and checkpointing into

the language itself. The message-driven execution model also effectively sup-

ports multi-paradigm parallel applications. As long as each paradigm can

be expressed in terms of asynchronous remote method invocations, the code

from many distinct paradigms can coexist, mediated by the scheduler. This

avoids partitioning of hardware resources between program modules or in-

efficient time partitioning where an application cannot use multiple models

concurrently. We make use of this capability to effectively support a variety

of programming model within Charj, as detailed in Chapter 5.

3.2 Charj Syntax

In designing a language targeted at the Charm runtime, we were guided

by the principle that new syntax must match the underlying programming

model and must always provide a concrete benefit that justifies its inclusion

in the language. It is our goal to minimize the time and effort required for

a programmer to learn Charj, and to make Charj programs look familiar to

anyone acquainted with Charm. To this end, we have adopted a simple Java-

like base syntax for serial language constructs and added a small number of

new language keywords to support Charm-specific constructs like readonly

16

variables, entry methods, and chare arrays. Invocations of remote methods

and proxies for remote objects are marked with a ‘@’ sigil that allows the

programmer to easily distinguish between local and remote operations. Our

overarching goal is designing Charj syntax is to make familiar constructs and

operations look familiar while drawing attention to Charj-specific features in

a consistent and logical way.

A full grammar for the Charj language is provided in Appendix A. In the

following sections we highlight language constructs that embody key compo-

nents of the programming model or which enable particular improvements

compared to C++-based Charm++ applications.

3.2.1 Charj Keywords

Several Charj keywords exist primarily to denote the varieties of message-

driven entities that are central to Charj programs but which have no di-

rect corresponding concept in other parallel programming models such as

MPI and OpenMP. Foremost among these are the keywords for declaring

the parallel objects described in section 3.1: chare, group, nodegroup, and

chare array. The simplest of these is chare, which indicates a parallel ob-

ject with no particular relationship to other chares in the program or to the

hardware on which the application is run.

Whereas in a Charm++ application the programmer creates a normal

C++ class and identifies that class as a chare in a separate interface (.ci) file,

in Charj chares are declared and defined in the same way that classes and

other user-defined data types are, simply using the chare keyword instead

of class. Similarly, programmers can specify parallel collections of objects

that are mapped one per physical processing element (groups), or one per

physical node (nodegroups) using the group and nodegroup keywords.

More general indexed collections of chares can be defined using the chare array

keyword, which takes an optional dimension argument that specifies the di-

mensionality of the array’s index set. Chare arrays provide a flexible way

of creating collections of chares with a well-defined relationship between one

another.

17

Entry Methods

Charj introduces another set of keywords that specify the behavior of the

methods of a chare class. First and most important is entry, which indicates

that a method is remotely invocable via proxy objects. Any attempt to call a

non-entry method via a proxy results in a compile-time error. However, entry

methods can still be invoked locally in the usual way. The entry keyword is

used in the declaration of a function, and comes after any visibility specifiers

such as “public” or “private” and before the return type of the function. It is

mutually exclusive with the “static” keyword, which indicates that a method

belongs to the class as a whole rather than to any particular instance. This

is because entry methods are inherently concerned with the particular place

where the object corresponding to a proxy resides. Since classes as a whole

do not reside in any one location, remote invocation of class methods has no

obvious meaning and is disallowed.

Threaded Entry Methods

Any entry method can be designated as a threaded method. Threaded

methods execute in their own user-level non-preemptible threads. This al-

lows threaded methods to execute blocking operations and return control to

the runtime scheduler, which will re-enqueue the blocked method and per-

form other pending work before resuming the thread. This allows the use of

blocking operations in Charj code.

Generally, it is undesirable to make the programmer explicitly specify that

a method needs its own thread. If the programmer does not use the threaded

keyword on a method that blocks, it results in a runtime error, and errors of

this sort are among the problems that Charj aims at ameliorating. However,

since it is possible for the programmer to invoke arbitrary code from an entry

method and the Charj compiler has no way of determining whether or not

that code might block, it is impossible to be sure at compile time whether

or not a method needs to be threaded.

One possible solution is to simply make all entry methods threaded. We

rejected this option because threading imposes some extra overhead, and

one of our foremost design principles is to avoid any mandatory performance

penalties in favor of highly optimizable code. However, this doesn’t mean

18

that the programmer is stuck identifying all methods that could potentially

block by hand. In practice, most methods that require their own thread need

it because they use one of several common runtime features. For example,

any method that uses a Multiphase Shared Array (see section 5.4) which

changes phase must be threaded. For common cases like this, we can build

knowledge into the compiler indicating that particular function calls require

that the containing entry method be threaded.

To identify entry methods which must be threaded, we first create a table of

expressions which are known to potentially invoke blocking operations. These

are typically the invocation of top-level functions, such as the CthYield()

function which explicitly blocks the current thread and yields control to the

scheduler, or methods of known datatypes, such as phase-change functions of

the aforementioned multiphase shared arrays. Any of these expressions can

be identified in the program’s AST using tree pattern matching as described

in chapter 4, and the method containing the expression is marked as poten-

tially blocking. Then all callers of that method are also marked potentially

blocking, continuing recursively until all potential callers have been marked.

We are left with a set of methods known to be potentially blocking (although

they may not ever block in actual practice).

Armed with this knowledge, we have two potential courses of action. We

can either automatically promote all potentially blocking methods to be

threaded, or we can check that the programmer has marked all potentially

blocking methods as threaded him- or herself and provide warning or error

messages if he or she has not. The advantage of the first option is that it

automates as much as possible for the programmer. If we can definitely learn

that a method should be threaded, why should we require the programmer

to provide that information redundantly? However, consistency argues for

the second approach. We must allow the programmer to explicitly specify

that a method is threaded to accommodate the invocation of external code

not visible to the Charj compiler, which suggests that methods which are

not marked “threaded” are indeed not threaded. Automatically threading

potentially blocking methods without requiring the use of the “threaded”

keyword also makes the threading behavior of the application more opaque

to the programmer and increases the difficulty of identifying places in the

application which can potentially block.

Since blocking mid-method goes against the normal operating assumptions

19

Listing 3.1: Charj source for a generic Node chare class, with one threaded
entry method and one local method. All relevant data is located together in
a single file.

1 // Charj source file (.cj)

2 chare Node {

3 entry Node() {...}

4 threaded entry void receiveData(Data d) {...}

5 void sendData() {...}

6 }

of a Charj application and provides opportunities for synchronization errors,

identifying these places may be relevant when debugging an application. For

these reasons, we simply notify the programmer when a potentially blocking

method is not marked threaded, rather than promoting the method to its

own thread behind the scenes.

The compiler’s knowledge about potentially blocking operations can also

be used in the opposite direction. Rather than just verifying that the pro-

grammer has correctly marked potentially blocking methods as such, it could

also identify methods which have been marked as threaded but which con-

tain no potentially blocking calls. This may happen due to code refactoring

in which blocking calls are relocated from one threaded method to another

or simply due to conservative practices on the part of the programmer. In

either case, the compiler can notify the programmer to eliminate the unnec-

essary overhead caused by threading a method which has no need for its own

thread.

Sample Code

To summarize and clarify the relationship between Charj language constructs

and their Charm++ equivalents, we present a brief example of the high-

level structure of Charj code for a generic chare class called Node, with a

threaded entry method receiveData and a local method sendData. List-

ing 3.1 presents the Charj definitions for such a class, and listing 3.4 gives a

Charm++ equivalent.

In Charj, chares are declared in the same way as serial classes, but using the

chare keyword instead of class. Entry methods and threaded entry meth-

ods are indicated by the use of the corresponding keywords in the method

20

Listing 3.2: Charm++ equivalent code to the Charj code in listing 3.4. The
same information and program constructs are present, but are split across
multiple files without any unifying syntax. This listing gives the Charm++
header file (.h).

1 // Charm++ header file (.h)

2 class Node {

3 Node();

4 void sendData();

5 void receiveData(Data d);

6 };

Listing 3.3: The Charm++ implementation file (.cc).

1 Node::Node() {...}

2 void Node::receiveData(Data d) {...}

3 void Node::sendData() {...}

Listing 3.4: The Charm++ interface file (.ci).

1 chare Node {

2 entry Node();

3 entry [threaded] void receiveData(Data d);

4 };

declaration. The declarations and definitions are all grouped together in a

common source file, typically with file extension .cj.

In Charm++ applications, chares are declared by creating standard C++

classes and identifying them as chares in a separate interface (.ci) file. List-

ing 3.4 provides a Charm++ equivalent to the Charj code in listing 3.1. There

is a direct correspondence of program constructs between the two listings,

but the Charj version benefits from consolidating all relevant program infor-

mation into a single file with a unified syntax, while the Charm++ version

splits this data into separate header, implementation, and interface definition

files, significantly increasing the size of the code and requiring the program-

mer to deal with non-local information when working with any one of those

files.

Readonly Variables

Applications commonly have need for data which is not known until after

the program is running, but which remains unchanged over the life of the

21

program once it is calculated at startup. Typically this data might include

proxies to important application chares and program parameters which are

read out of configuration files or command line arguments. It is convenient to

make this data globally available, but in many parallel programming models

the means of providing this data are unnecessarily complex and error-prone.

For example, consider an MPI application that needs to make several pa-

rameters from a configuration file available to all ranks. First, to distribute

the data, one might use MPI Broadcast to send the variables to all ranks.

However, this approach requires either a separate call for each variable to be

sent. In fact, if any of the data is of a user-defined type that is not contiguous

in memory, it will require even more than that. Particularly if there is a lot

of data to share, the distribution of data requires a large number of mostly

redundant broadcast calls. Alternatively, the programmer could manually

pack the variables into a single buffer and then unpack them on the receiving

side. This can increase efficiency by reducing the number of messages sent

and received, but introduces more complexity and new opportunities for bugs

at the point where buffers are packed and unpacked.

Furthermore, if the programmer forgets to broadcast one of the variables,

an uninitialized value will be used, potentially creating bugs. Once the data

has been received, the programmer must ensure that the application never

assigns to any of the broadcast variables, or else the values held by each rank

will no longer be in agreement. This is an important semantic restriction

on the program that is not communicated anywhere within the program text

and which is invisible to the compiler. The desired behavior is similar to that

provided by the “const” keyword, but because the variables must be assigned

to during the initialization phase, const variables can’t be used without the

use of casting tricks.

To address this common situation in Charj, we provide “readonly” vari-

ables. A readonly variable is declared in the top-level scope using the readonly

modifier keyword. Readonly variables have special assignment behavior.

They can be assigned to freely during the startup phase of the program,

in the main chare’s constructor. At that time, configuration files can be

read, proxies generated, and so on. When the constructor finishes, all read-

only variables are broadcast and made available on every processor. At that

time, they become read-only variables, and any assignment to them is an

error. This provides increased convenience for the programmer in that they

22

do not have to explicitly broadcast each piece of readonly data. It also pro-

vides increased safety by guaranteeing that readonly values remain identical

on each processor and are never overwritten.

Readonly variables are not original to Charj. They were first implemented

for the Charm runtime system. However, the addition of compiler support

in Charj allows for much greater safety and usability of readonly variables.

Consider the key property of a readonly variable: after the program’s startup

phase is complete, the only access allowed to such a variable is read access.

In the original Charm implementation of readonly types, this restriction is

completely unenforceable. Because the user’s application is simply C++,

which has no notion of readonly types, the semantic restrictions on read-

only variables are up to the programmer to enforce. The Charm++ runtime

system does provide a valuable service to the programmer by automating

the broadcast of readonly variables at the end of the initialization phase.

However, just in terms of safety and enforcement of programming model

semantics, this state of affairs is little different from the MPI situation in

which the programmer must simply be careful not to overwrite global data

and receives no specific help from the system. The Charm++ manual [30]

simply states “The current Charm++ translator cannot prevent assignments

to read-only variables. The user must make sure that no assignments occur in

the program.” In fact, it is common to see variable declarations in Charm++

applications annotated with a comment indicating that the variable is read-

only, since otherwise that information is available on in the interface file, and

the variable cannot be made const.

In contrast, the Charj compiler is aware of readonly types and their seman-

tics. Since the user specifies all readonly variables and the program’s startup

phase is well-defined by the main chare’s constructor, the compiler can verify

both that every readonly variable has been assigned to before the end of the

startup phase and that no readonly variable is assigned to after the startup

phase concludes. Thus, in Charj the semantics of readonly types are directly

enforced, whereas in other programming models or in the base Charm model

with no compiler support, the burden of ensuring correctness falls only on

the programmer, who receives little or no help from the compiler.

It is important to note that this analysis is not precise, in the sense that

there are programs which can never assign to a readonly variable outside

of the initialization phase, but which will nevertheless be flagged by the

23

Charj compiler as problematic. Consider, for instance, a function which

takes a boolean variable as an argument, and in its body assigns to a readonly

variable if and only if that variable is true. If this function is only ever called

with a true argument during the initialization phase, then the program is

correct. However, in general it is not possible to prove this condition at

compile time, and the compiler will conservatively warn the programmer

about the assignment. The programmer is then free to evaluate the function

in question using their independent knowledge of the program and determine

whether or not the assignment in question represents a bug.

Proxy Objects

Proxies are local representatives of remote objects. They consist of a unique

identifier that the runtime system can use to local the object in question.

A proxy to an object of type T has type “proxy to T,” which is roughly

equivalent to “pointer to T” with the restriction that a proxy can only be

used to invoke entry methods on its referent, and not, for example, to access

its member variables or invoke other methods. In the same way that the

syntax T* indicates a pointer to T, T@ denotes a proxy to T. Entry methods

are also invoked using the @ operator (in contrast to -> for pointers). The

use of a separate operator for proxies and remote invocation serves to clearly

delineate remote objects and operations in application code.

Applications can also make use of proxies to collections of chares, includ-

ing chare arrays, groups, and nodegroups. Proxies to chare collections are

also denoted by a @, but messages sent through them are sent to the entire

collection. Alternatively, messages can be sent to a single element of a chare

array by indexing it.

Proxies allow for a clear expression of the program’s parallel structure in a

way that can be understood by the compiler. In particular, for any message,

the compiler can determine the type of the receiver, the signature of the entry

method being invoked, and the types of all arguments to that method. This

allows for a significant degree of static checking to be done at compile time.

The compiler verifies that messages are only sent through proxy objects, that

the proxies involved expose the intended entry methods, and that the entry

methods in question take the appropriate arguments. Compare this to an

MPI-style application, where messages are sent to processors rather than

24

objects, and message payloads are all untyped memory buffers. In a well-

written program, the programmer’s intentions may be clear, and the parallel

structure of the application may be readily apparent. However, there is

little opportunity for the static detection of programmer errors, and the type

system is effectively non-existent for the purposes of checking communication

between nodes.

Collectives

Collectives are one of the building blocks that parallel applications are con-

structed from. Collectives in Charj largely take the form of operations on

chare arrays. Broadcasts are handled in much the same way as point-to-point

entry method invocations via proxy: an invocation made using a proxy to

a chare array (rather than using one of the indexed members of that array)

indicates a broadcast to all array members. The type checking described in

the previous section applies equally well to broadcasts over chare arrays.

Now, consider reduction operations. The nature of a reduction operation

guarantees that the inputs share a common type, that the result of the re-

duction shares the same type, and that the types of the arguments and result

of the reducing operation are also of that type.

Consider the functions used to contribute to a reduction in Charm or MPI,

as shown in listing 3.5. The input and output types are unspecified, and there

is no guarantee that the types accepted by the reduction operation matches

the type of the contributed data. The need to support a wide variety of

input types and reduction functions, including user-defined data types and

reducers, precludes library designers from effectively encoding the type rules

of reductions into their API.

However, by extending knowledge of programming model semantics into

the compiler, we can use the type system to catch errors that are not de-

tected by a library approach. The Charj reduction function (also shown in

listing 3.5) can verify that the relevant types all match, eliminating the pos-

sibility for a reduction operation that doesn’t match the contributed data or

contributed data of mismatched types.

Charj provides an even more pronounced improvement versus Charm++

in the case of custom reduction operations. These are reductions in which

the data items are of a user-defined type with its own reduction operation.

25

Listing 3.5: Function prototypes for reductions on an array of data, in MPI,
Charm, and Charj.

1 // MPI Reduction

2 int MPI_Reduce(void* sendbuf, void* recvbuf, int count,

3 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

4 // Charm reduction

5 void contribute(int nBytes, void* data,

6 CkReduction::reducerType type, CkCallback cb);

7 // Charj reduction

8 void contribute(Array<T> data, Reducer reducer, Callback cb);

Listing 3.6: Charm++ implementation of a custom reducer for the type
MyType, which has its own reduce function already defined elsewhere. The
requirements for explicit handling of system reduction messages and regis-
tration of the reduction function with the runtime at startup add significant
complexity to the implementation.

1 CkReductionMsg* reduceMyType(int nMsg, CkReductionMsg** msgs)

2 {

3 MyType* accum = new MyType();

4 for (int i=0; i<nMsg; ++i) {

5 MyType* x;

6 PUP::fromMem p(msgs[i]->getData());

7 p | *x;

8 accum->reduce(x);

9 }

10 return CkReductionMsg::buildNew(sizeof(MyType), accum);

11 }

12

13 CkReduction::reducerType _my_reducer_type;

14 void register_my_reducer(void)

15 {

16 _my_reducer_type =

17 CkReduction::addReducer(reduceMyType);

18 }

26

Listing 3.7: Charj implementation of a custom reducer equivalent to the
Charm++ code in listing 3.6. Function registration with the runtime and
handling of system reduction messages is handled transparently by code gen-
erated by the Charj compiler.

1 reducer<MyType> my_reducer {

2 my_reducer() { accum = new MyType(); }

3 reduce(MyType x) { accum.reduce(x); }

4 }

Sample code for supporting custom reductions for a hypothetical MyType

type, with its own reduce function, is given in listing 3.6. Considering that

the definition of the type in question and its reduction function are both

omitted, the size and complexity of the implementation are notable.

The programmer must engage in non-trivial memory management of run-

time data structures associated with reduction trees, and must arrange to

register the custom reduction function with the runtime at startup. Beyond

the code provided here, the register my reducer function which adds the

custom reduction to the list of reductions that the runtime system knows

about must be specified in the Charm++ interface file as an “initcall” func-

tion, meaning that it will be executed by the runtime at startup before the

main application is started.

In contrast, the equivalent Charj custom reduction code in listing 3.7 is

quite brief. Charj custom reducers have an implicit accum variable which is

used to accumulate new values via the reduce method. Reduction registra-

tion and runtime reduction message handling code equivalent to the Charm

listing are produced from this definition by the Charj compiler, thereby sub-

stantially reducing both the length and the complexity of the Charj imple-

mentation.

Generics and Sequential Arrays

While the primary focus of Charj is on expressing parallelism, some of its

features are aimed primarily at producing effective serial code. Our goal is

to provide the tools necessary for efficient, concise serial code that integrates

seamlessly with the parallel-specific features of Charj while maintaining fa-

miliar syntax.

One example is the implementation of generic types in Charj. Generic

27

types are important for re-usability and are widely used in both Java and

C++. However, their implementations are very different. C++ generics

are built on a full template metaprogramming system, which is complex and

sophisticated enough that it is Turing complete in itself [31]. In contrast, Java

generics work via type erasure and include no metaprogramming facilities. In

Charj we need to support generic types, but the complexity of C++ template

metaprogramming is a poor fit for Charj’s focus on simplicity, particularly in

serial code. However, C++ templates have a key performance advantage over

Java’s type erasure approach, which depends on universal inheritance from

the Object class. While recent advances in Java compilers have ameliorated

this problem [32], this work falls outside the scope of what we can reasonably

include in the Charj compiler.

As a result of these constraints, in Charj we have adopted a generic system

whose syntax is substantially similar to Java’s, but whose implementation is

based on C++ templates. This approach provides the straightforward syntax

of Java without sacrificing performance to boxing and unboxing of primitive

types, allowing high-performance generics to be used in computational ker-

nels.

The most widely used generic type in Charj is the array. The Array type in

Charj denotes the sequential container used within the scope of a single chare

object. Arrays in Charj are one of its largest departures from C++-based

Charm++ applications. The C and C++ approach, in which array elements

are accessed through arithmetic on raw pointers, causes several issues that

we wish to avoid. It prevents reliable array bounds-checking, increasing the

difficulty of debugging. It makes points-to compiler analysis more difficult

by conflating pointers and arrays. It translates poorly to two dimensions

and higher, relying on convention to establish layout and, in the case of ar-

rays of arrays, gives up memory locality in exchange for convenient syntax.

Although Java eliminates many of the safety and elegance problems of the

C++ approach, typical Java array implementations offer extremely poor per-

formance on HPC workloads, and extensive sophisticated optimizations are

required to achieve good performance [33].

To address these problems, we introduce our own generic array type in

Charj, simply named Array. It is built into the compiler, and translates

to a templatized C++ class implementing the relevant features. Array ac-

cesses can be bounds-checked for debugging purposes or left unchecked for

28

maximum performance based on compile-time options. The user can select

from row-major, column-major, or block-cyclic data distributions, and re-

distribute data on the fly as needed.

Charj also provides syntax for specifying ranges over arrays, which allows

clear and concise expression of looping constructs. These ranges can also be

used to extract contiguous sub-regions of arrays, treating them as indepen-

dent entities that can be processed without incurring copy overhead.

3.3 Comparing Charm Applications with Charj

Applications

It is often the case in discussions of programming languages that any syntax

becomes the foremost issue and semantics are neglected. Indeed, according

to Wadler’s Law1,

In any language design, the total time spent discussing a feature

in this list is proportional to two raised to the power of its position

in the following list:

1. Semantics

2. Syntax

3. Lexical syntax

4. Lexical syntax of comments

More seriously, it does seem that language discussion is often tightly fo-

cused on syntax, perhaps because the syntax is the most obvious feature of

any new language. However, many of the most tedious and most error-prone

programming tasks in parallel computing have nothing to do with syntax,

but are rather matters of semantics.

By incorporating knowledge of the Charm programming model’s seman-

tics, Charj greatly simplifies the creation of message-driven applications as

compared to a C++ program targeting the Charm runtime. The C++ ap-

plication must specify type and visibility information for remotely invocable

functions and global read only data via an interface file, which the Charm

1http://www.haskell.org/haskellwiki/Wadlers Law

29

translator uses to generate wrapper code for sending and receiving data. This

separates important semantic information about remotely invocable func-

tions from the implementation of those functions, both needlessly duplicating

data and making it more difficult for the programmer to get a comprehensive

view of the way an application works. A C++ application developer must

also be very careful about the semantics of runtime system constructs. For

example, Charm provides “readonly” variables which can be assigned only

at program startup. There is no facility for enforcing this rule, however,

since the application code which accesses these variables is standard C++.

Charj resolves these problems simply by eliminating the need for external in-

terface specifications and understanding the semantics of readonly variables,

which allows the compiler to enforce their access rules with appropriate error

messages.

This basic language and infrastructure serve as the foundation for our work

to demonstrate our hypothesis. Even without adding analysis or optimiza-

tion, this language already provides important productivity benefits relative

to using Charm as a C++ library. It eliminates the need for separate inter-

face files which specify which methods may be invoked remotely by cleanly

integrating this information into the main body of the program. Standard

Charm programs are split into implementation code, headers, and interface

files, producing redundancy that can lead to simple errors and inconsisten-

cies. By consolidating the information from these files, Charj presents a

unified view of the program that is more concise and can be understood

more quickly.

3.4 Example Application

To illustrate the use of Charj in the context of a real program and to highlight

differences between equivalent Charj and Charm++ implementations, we

present a simple tree-based computation that calculates the Nth Fibonacci

number, fib(N). The program consists of a driver main chare class named

Main (lines 3-17 of listing 3.8 in the Charj version, and lines 4-7 of listing 3.9,

lines 3-10 of listing 3.10, and lines 4-16 of listing 3.11 in the Charm++ ver-

sion. The driver reads from the command line to determine which Fibonacci

number to compute, then creates a Fib chare to perform the actual com-

30

putation. The program terminates when the Fib chare invokes the driver’s

done method.

The actual computation of the Fibonacci number is performed recursively

by the Fib class. To compute the fib(N), as long as N is greater than

a given threshold value, two new Fib chares are spawned, one to calculate

fib(N−1) and one to calculate fib(N−2). When they have finished their own

computations, they pass their partial results to their parent via the passUp

method. The parent waits for responses from both children before passing

up its own value in turn. The threshold value acts as grainsize control for

the application and limits the number of new chares which are spawned.

Listing 3.8: Charj implementation of a simple tree-based Fibonacci applica-

tion.

1 readonly Main@ main;

2

3 public mainchare Main {

4 int n;

5

6 public entry Main(CkArgMsg m) {

7 if (m.argc < 2) n = 16;

8 else n = atoi(m.argv[1]);

9 main = thisProxy;

10 Fib@ fib = new Fib@(true, n, thishandle);

11 }

12

13 public entry void done(int value) {

14 CkPrintf("Fib(%d) = %d\n", n, value);

15 CkExit();

16 }

17 }

18

19 public chare Fib {

20 Fib@ parent;

21 boolean root;

22 int n;

23 int partialResult;

24 int pendingChildren;

25 const int threshold = 16;

26

27 private int seq_fib(int n) {

28 if (n < 2) return n;

31

29 return seq_fib(n-1) + seq_fib(n-2);

30 }

31

32 public entry Fib(boolean root_, int n_, Fib@ parent_) {

33 n = n_;

34 root = root_;

35 parent = parent_;

36

37 if (n <= threshold) {

38 partialResult = seq_fib(n);

39 passUp();

40 } else {

41 Fib@ child1 = new Fib@(false, n-1, thisProxy);

42 Fib@ child2 = new Fib@(false, n-2, thisProxy);

43 partialResult = 0;

44 pendingChildren = 2;

45 }

46 }

47

48 public entry void gather(int value) {

49 partialResult += value;

50 if (--pendingChildren == 0) passUp();

51 }

52

53 public void passUp() {

54 if (root) main@done(partialResult);

55 else parent@gather(partialResult);

56 delete this;

57 }

58 }

Listing 3.9: Charm++ interface file for the simple Fibonacci application.

1 mainmodule pgm {

2 readonly CProxy_Main main;

3

4 mainchare Main {

5 entry Main();

6 entry void done(int value);

7 };

8

9 chare Fib {

10 entry fib(bool root_, int n_, CProxy_fib parent_);

11 entry void gather(int value);

32

12 };

13 };

Listing 3.10: Charm++ header file for the simple Fibonacci application.

1 #include "pgm.decl.h"

2

3 class Main : public CBase_Main

4 {

5 public:

6 int n;

7 Main(CkMigrateMessage *m) {}

8 Main(CkArgMsg *m);

9 void done(int value);

10 };

11

12 class Fib : public CBase_Fib

13 {

14 private:

15 int n;

16 int partialResult;

17 int pendingChildren;

18 bool parent;

19 CProxy_fib parent;

20 int seq_fib(int n);

21 public:

22 Fib(CkMigrateMessage *m) {}

23 Fib(bool root_, int n_, CProxy_fib parent_);

24 void gather(int value);

25 void passUp();

26 };

Listing 3.11: Charm++ implementation file for the simple Fibonacci appli-

cation.

1 #include "pgm.h"

2 #define THRESHOLD 10

3

4 Main::Main(CkArgMsg* m)

5 {

6 if(m->argc < 2) n = 16;

7 else n = atoi(m->argv[1]);

8 main = thisProxy;

9 CProxy_Fib::ckNew(true, n, thishandle);

33

10 }

11

12 void Main::done(int value)

13 {

14 CkPrintf("Fib(%d) = %d\n", n, value);

15 CkExit();

16 }

17

18 Fib::Fib(bool root_, int n_, CProxy_Fib parent_)

19 {

20 root = root_;

21 n = n_;

22 parent = parent_;

23

24 if (n < THRESHOLD) {

25 result = seqFib(n);

26 passUp();

27 } else {

28 CProxy_Fib::ckNew(false, n-1, thishandle);

29 CProxy_Fib::ckNew(false, n-2, thishandle);

30 partialResult = 0;

31 pendingChildren = 2;

32 }

33 }

34

35 int Fib::seqFib(int n) {

36 if (n < 2) return n;

37 return seqFib(n-1) + seqFib(n-2);

38 }

39

40 void Fib::gather(int value) {

41 partialResult += value;

42 if (--pendingChildren == 0) passUp();

43 }

44

45 void Fib::passUp()

46 {

47 if (root) main.done(partialResult);

48 else parent.gather(partialResult);

49 delete this;

50 }

51

52 #include "pgm.def.h"

34

Despite the brief and simple nature of this example code, many impor-

tant differences between Charm++ and Charj are apparent in these listings.

First, and perhaps most importantly, the Charm++ version is significantly

more verbose. Despite the identical structure of the two implementations

and the fact that no particularly space-saving Charj features such as custom

reductions are used in the code, the Charj version weighs in at 58 lines, com-

pared to the Charm++ version, which takes 92 lines spread over three files.

The Charm++ version is over 1.5 times as long, mostly due to replication of

information across the interface file, header file, and implementation file.

The bodies of the functions which perform the actual work are largely iden-

tical between versions. The biggest exceptions to this rule are in the use of

parallel-specific features, specifically the invocation of entry methods, which

are marked by the @ symbol in Charj as opposed to a period in Charm++,

and the creation of new Fib chare objects, which are created via new Fib@

in Charj, and via CProxy Fib::ckNew in Charm++. The similarity in serial

code serves to lower the barrier to entry for new Charj programmers, while

the new parallel-specific syntax calls attention to explicitly parallel opera-

tions and distinguishes them from operations on local objects.

3.5 Summary

In this chapter we have described the structure of the Charj language and

its relationship to the Charm++ runtime system and programming model.

Charj aims to ease the process of writing message-driven applications by

providing language constructs well-suited to the task and more tightly inte-

grating the language with key programming model concepts. This approach

allows for greater concision and simplicity, while also facilitating greater type

safety and opening up the possibility for better feedback to the program-

mer in the form of meaningful warnings and error messages. It also creates

the opportunity for compile-time optimizations that are not possible with a

library-based approach.

35

CHAPTER 4

THE CHARJ COMPILER

In order to demonstrate the value of a compiler to a rich runtime system, one

must have a compiler. For reasons outlined in section 2, we have elected to

build our own compiler and associated infrastructure rather than adopting

the software infrastructure from a pre-existing compiler project.

In this chapter, we describe the overall architecture of the Charj compiler

and the steps by which Charj source code is turned into an executable for

the target architecture. This includes the tokenization, lexing, and parsing

of the input program, the construction of an abstract syntax tree (AST) and

symbol table, semantic analysis, optimization, and code generation. The

specific optimizations performed by the compiler will be deferred to chapter 6,

and here we will only describe the high-level structure of the compiler that

supports these specific optimizations.

4.1 Software Ecosystem

One of our primary goals with Charj is to create a tool that is actually useful

in practice for creating programs based on the Charm++ runtime system. In

order to accomplish this goal, we must allow the programmer to make use of

the preexisting suite of tools that exist to support Charm++ programs, while

adding new Charj-specific tools that interact well with the existing codebase.

As discussed in chapter 3, Charm++ programs are largely composed of

36

C++ code, with an accompanying interface (.ci) file that specifies informa-

tion about parallel-specific features of the code. The Charm++ software

distribution includes a translator, charmxi, which can read an interface file

and produce stub code that ties the programmer’s application code to the

runtime system. The translator produces two output files: the declarations

file (.decl.h), which contains forward declarations for all Charm++-specific

functions and variables, and the definitions file (.def.h), which contains their

implementations. These generated files are then included in the user’s C++

implementation, along with any needed C++ headers, and from that point

on the process of producing a functioning application binary is identical to

that of standard C++, with the caveat that the binary must be linked against

the Charm++ runtime libraries.

The process of creating a binary from the C++ source code that results

from the combination of the user’s own code and the output of the charmxi

translator is not specific to Charm++. However, this process can become

quite involved, given that the user must specify the include path for the

Charm++ system headers, the path to the Charm++ libraries and any li-

braries that they depend upon, and provide the appropriate flags to the

linker. These flags may vary significantly depending on the particular com-

piler and compiler version being used and the location of system libraries on

the machine where compilation occurs. To mitigate this problem and simplify

the toolchain needed by Charm++ programmers, the standard distribution

of Charm++ includes a wrapper script, charmc, which handles many of the

details of the translation, compilation, and linking process.

One advantage of using Charm++ as the basis for Charj is the ability

to make use of the significant institutional support for Charm++. Default

Charm++ installations are commonly provided on supercomputers, and the

engineering effort required to make the Charm++ software environment work

effectively across a wide variety of hardware and software configurations has

already been done. By piggybacking on the existing Charm++ infrastruc-

ture, we avoid a substantial effort that is not directly tied to our research

goals.

In order to effectively integrate with Charm++, we provide tools to aid

the programmer in going from a Charj program (possibly interacting with or

partially composed from Charm++ code) to a functional application, with-

out giving up access to the features provided by charmc. The core Charj

37

.ci

.C

.h

decl

def
Charm++
App

(a) Compilation process for a Charm++
application.

.ci

.C

.h

decl

def
Charm++
App.cj

(b) Compilation process for a Charj ap-
plication.

Figure 4.1: In a Charm++ application, the programmer specifies an inter-
face (.ci) file that accompanies the C++ code that forms the bulk of their
application and specifies type signatures and visibility information about re-
motely invocable functions. A corresponding Charj program integrates this
information directly into the application, and the Charj compiler generates
code targeting the Charm runtime.

compiler is a Java application described in detail in the following sections. It

takes Charj source files as input and outputs C++ code and Charm interface

definitions suitable for compilation by charmc, as shown in figure 4.1. The

Charj compiler accepts a number of optional command-line arguments that

control features such as the verbosity of its diagnostic output and the level

of warning and error messages produced.

In order to simplify the compilation process for end users, we provide a

wrapper script called charjc. This wrapper accepts as arguments the union

of legal arguments to the Charj compiler and legal arguments to charmc. It

invokes the Charj compiler on the input source files, passing all Charj op-

tions through. It then takes the Charm++ interface and C++ code output

of the Charj compiler and invokes charmc on them, applying the remaining

charmc command-line flags. The output of this process includes both the

source code output of the Charj compiler and the binary output obtained

from charmc. This output can be linked directly with the Charm libraries

and Charj runtime. By making the output of the Charj compiler as close as

possible to a normal Charm program, we make it easier to integrate Charj

code into existing Charm code and vice-versa, while also giving the program-

mer an easy way of inspecting the outcome of the Charj compilation process.

Although the Charj compiler and the charjc wrapper script that handles ar-

gument passing and invoking charmc on the output of the Charj compiler

38

are distinct entities, for brevity we use the name of the wrapper script which

invokes the Charj compiler, charjc, synonymously with the Charj compiler

itself in places where this distinction is not important.

4.2 Compiler Architecture

The Charj compiler is a Java application composed of several modules. The

main components of the compiler are the parser, the abstract syntax tree

(AST) handler, the symbol table and associated symbol definitions, and the

code generator. The parsing, AST manipulation, and code generation are all

implemented using ANTLR [29], which dictated the choice of Java for the

application as a whole.

The compiler driver is essentially a Java wrapper around the core compiler

functionality. The driver parses command-line arguments, reads input, con-

structs the appropriate ANTLR objects to first construct an AST, and then

to perform passes over that AST and generate code, optionally outputting

debugging information about the current state of the AST on each pass. It

also manages the creation of the output source files. Before passing the input

file to the ANTLR parser, the driver first preprocesses the source using the

cpp preprocessing tool. While the initial design of the Charj language did not

include the use of preprocessor macros, in practice we found that the need

for conditional compilation of application code in HPC applications was so

widespread that support for this conditional compilation was necessary. The

use of cpp allows this conditional compilation in a way that is already famil-

iar to Charj programmers and eases the porting of existing C and C++ codes

that use conditional compilation extensively, usually to enable and disable

architecture-specific performance optimizations.

4.2.1 Generating an AST

ANTLR (short for ANother Tool for Language Recognition) provides domain-

specific languages for specifying language grammars and constructing and

manipulating ASTs. From the specification, ANTLR creates code to tok-

enize and lex Charj source input and construct an AST. ANTLR also pro-

vides a language, called filter grammars, for recognizing and modifying AST

39

Listing 4.1: ANTLR grammar rules for Structured Dagger statements. Each
rule consists of a list of alternative patterns with associated AST outputs.

1 sdagTrigger

2 : IDENT (’[’! expression ’]’!)? formalParameterList

3 ;

4

5 sdagStatement

6 : OVERLAP block

7 -> ^(OVERLAP block)

8 | WHEN (sdagTrigger (’,’ sdagTrigger)*)? block

9 -> ^(WHEN sdagTrigger* block)

10 ;

subtrees. Charjc is a multi-pass compiler, and each pass is implemented

as a series of operations on subtrees identified via ANTLR filter grammars.

Simple code transformations and recognition operations are implemented di-

rectly within these filter grammars, but for more complex tasks we construct

an explicit representation of the program’s control flow graph (CFG) and op-

erate directly on that data structure in Java rather than relying on ANTLR’s

domain specific language.

Listing 4.1 illustrates rules from the ANTLR specification for Charj’s gram-

mar, specifically for Structured Dagger statements described in section 5.3.

Each rule consists of a list of alternatives. Each alternative is composed of

tokens, such as IDENT and WHEN, literals, such as ‘[’ and ‘,’, and other rules,

such as expression and formalParameterList. ANTLR allows supports

extended Backus-Naur Form (EBNF) notation [34] for denoting alternation,

repetition, optional elements, and so on within the alternatives.

Each alternative is associated with an output AST. The default is to create

a tree whose nodes are the elements of the alternative, with the first element

as the root and each subsequent element is a child. Elements suffixed with a ‘!’

are excluded from the resulting AST. In the example listing, the sdagTrigger

rule uses this method of AST creation.

Alternatively, AST outputs can be specified explicitly. ANTLR’s AST

notation has the following form:

1 ^(root child1 child2 ... childN)

AST outputs can be explicitly constructed using this notation by affixing

a -> symbol to the alternative, followed by the desired result AST, as is done

for the alternatives for the sdagStatement rule in the example listing.

40

The specification of grammar rules is made simpler by the flexibility of

ANTLR’s LL(*) parsing algorithm, which eliminates or mitigates many com-

mon problems experienced in the use of common LR-based parsers such as

YACC [35]. LL(*) parsing is a generalization of LL(k) parsing featuring

arbitrary lookahead, which eliminates the need for the grammar writer to

determine the correct value of k, and allows for grammars that are not LL(k)

for any fixed k.

4.2.2 Semantic Analysis and Optimization

Once the input is parsed and the AST is created, the compiler makes several

passes over the AST prior to code generation. The purpose of these passes is

to analyze the AST and extract information that is useful either for providing

more effective warnings and error messages to the programmer, or to aid in

the process of code generation.

These passes are written in terms of ANTLR tree pattern matchers [36],

which allow the programmer to specify the structure of AST subtrees of

interest and actions to be performed when those subtrees are encountered,

in either a top-down or a bottom-up traversal of the tree. This avoids the

need to describe the entire AST structure for each pass, while still allowing

the use of descriptive ANTLR syntax for describing subtrees. In addition,

it abstracts the details of the tree traversal operation and the process of

identifying AST substructures away from the action to be performed once

those substructures are encountered.

For example, consider listing 4.2, which shows a portion of a tree pattern

matcher which identifies class variables that require initializers in the class’s

constructor and/or inclusion in the class’s generated pack/unpack (PUP)

routine (see section 6.2 for a description of PUP methods and PUP-related

optimizations in Charj).

Each top-level rule in the listing describes a tree structure using ANTLR

syntax. The rules for describing trees in this way are more relaxed than for

the full language grammar, since rules here match entire families of subtree.

Most notably, it allows the use of the ‘.’ and ‘*’ operators to denote an

arbitrary tree node, and an arbitrary repetition of the preceding element,

respectively. So, for example, the pattern (̂TYPE .*) would match any sub-

41

tree whose root is a TYPE node. Then, following each rule, the programmer

can specify a block of Java code to be executed when the rule is matched,

or a rewrite rule which specifies a transformation of the matched subtree, or

both. If the AST is modified during a traversal, it is re-walked until an entire

traversal takes place with no AST modifications.

Additionally, there are two special top-level rules in a tree pattern matcher:

topdown and bottomup. These rules simply list the patterns that can be

matched when walking the tree from top to bottom and from bottom to

top, respectively. These can be used to track the current location of the

traversal within the tree. In the example listing, the rules enterMethod and

exitMethod are only used to track whether or not the traversal is currently

within a class’s method when it matches the varDeclaration rule, because

local variable declarations within a method do not need class-level initializa-

tion or inclusion in PUP routines.

The varDeclaration rule simply matches the AST structure for a vari-

able declaration, including any initialization expression. The associated code

action for this rule first verifies that the declaration occurs within a class,

but not within the definition of one of its methods. Then, if the declaration

includes an initializer, it is added to its class’s initialization list, using the

AST associated with the initialization expression. The variable is also added

to the list of class variables used for generating the PUP function, and a

distinction is made between proxy types and non-proxy types for the sake of

simpler processing later on.

Tree pattern matchers of this type are widely used in Charj to perform

tasks such as type resolution, symbol table population, and identification of

places in the program that are candidates for optimization or possible sites

of errors.

4.2.3 Code Generation

When our optimizations and analysis are complete, we output C++ code and

Charm interface code which is compiled against the Charm API. ANTLR

integrates tightly with the StringTemplate template engine. StringTemplate

provides a way to produce structured text directly from the AST structure

without coupling the AST structure to the format of the output [37] . One

42

Listing 4.2: ANTLR filter grammar rules used for identifying class variables
that need to be initialized and packed/unpacked. Context in the form of the
symbol of the current class is maintained in the enterClass and exitClass

rules, and all AST subtrees that match the pattern associated with variable
declarations

1 topdown : enterClass | enterMethod | varDeclaration;

2 bottomup : exitClass | exitMethod

3

4 enterClass :

5 ^(TYPE .*) {

6 currentClass = $IDENT.def.sym;

7 };

8

9 exitClass :

10 ^(TYPE ...) {

11 currentClass = null;

12 };

13

14 enterMethod :

15 ^((FUNCTION_DECL | ENTRY_FUNCTION_DECL) .*) {

16 inMethod = true;

17 };

18

19 exitMethod :

20 ^((FUNCTION_DECL | ENTRY_FUNCTION_DECL) .*) {

21 inMethod = false;

22 };

23

24 varDeclaration :

25 ^(VAR_DECLARATOR ^(IDENT .*) (expr=.)?) {

26 if (!inMethod && currentClass != null) {

27 if ($expr != null) {

28 currentClass.initializers.add(

29 new VariableInitializer($expr, $IDENT));

30 }

31

32 currentClass.varsToPup.add($IDENT);

33 if (!($IDENT.symbolType instanceof ProxyType ||

34 $IDENT.symbolType instanceof ProxySectionType))

35 currentClass.pupInitializers.add(

36 new VariableInitializer($expr, $IDENT));

37 }

38 };

43

of our goals in code generation is to produce output that can be read and

readily understood by the programmer. Because the overall structure of a

Charj application and its Charm++ equivalent are generally quite close, it

is straightforward for the programmer to look at the generated output and

find a correspondence between the generated code and their input Charj

code. This is an important quality to maintain in order to maximize the

programmer’s ability to debug Charj applications, particularly when Charj

code is being integrated with existing Charm++ modules or components.

In order to maximize the similarity of the generated code to the input

code, we preserve the original identifier names, and use meaningful names for

generated variables whenever possible. For example, local variables in meth-

ods that contain Structured Dagger constructs must be promoted to class

variables (see section 5.3). In order to avoid name conflicts, the promoted

variable names must be mangled to ensure their uniqueness. Rather than

using meaningless random names, we combine the original variable name,

the name of the method in which it is declared, and a number indicating

the scope within that method where that variable was declared. The scope

indicator is necessary because two variables with different types but the same

name can be declared in different blocks within the same function. So, for

example, the variable iteration declared at the top level of the calculate

method would appear in its mangled form as iteration calculate 1.

From the final program AST, we produce three different output source files:

a C++ header file, a C++ implementation file, and a Charm++ interface

file. To achieve this, we write a generic function for walking the AST and

invoking a set of StringTemplate templates to produce output. Each template

is associated with a particular type of AST node. We produce the three

output files by supplying three different sets of templates to the generic code

generation function.

For example, consider the templates in listing 4.3, which demonstrates

slightly simplified templates associated with the declaration of entry meth-

ods. The templates each take a list of arguments, each of which is either a

symbol from the symbol table or a template associated with some subtree

of the AST rooted at the current node. So, for example, the “modifiers”

argument to the template is itself the template associated with the list of

keyword modifiers for this method, such as public, static, or threaded,

and the “block” argument is the template associated with the body of the

44

Listing 4.3: Simplified StringTemplate templates associated with an entry
method declaration for each of C++ header, C++ implementation, and
Charm++ interface output targets. The arguments to the template are them-
selves the templates associated with subtrees of the AST rooted at the entry
method declaration, or, in the case of classSym and methodSym, symbols
representing the current class and method.

1 // Header output template

2 entryMethodDecl_h(classSym, methodSym, modifiers,

3 type, id, params, block) ::=

4 <<

5 <modifiers><type> <id><params>;

6 >>

7

8 // Interface output template

9 entryMethodDecl_ci(classSym, methodSym, modifiers,

10 type, id, params, block) ::=

11 <<

12 <modifiers><type> <id><params>;

13 >>

14

15 // Implementation output template

16 entryMethodDecl_cc(classSym, methodSym, modifiers,

17 type, id, params, block) ::=

18 <<

19 <if(block)>

20 <modifiers><type> <classSym.Name>::<id><params>

21 {

22 <if(methodSym.isTraced)>

23 int _charj_method_trace_timer = CkWallTimer();

24 #endif

25 <endif>

26

27 <block>

28

29 <if(methodSym.isTraced)>

30 traceUserBracketEvent(<methodSym.traceID>,

31 _charj_method_trace_timer, CkWallTimer());

32 <endif>

33 }

34 <endif>

35 >>

45

method.

When generating output for the header or interface files, the body template

will return an empty string because the function body does not appear in

those files, while in the implementation file it will expand to the whole body

of the method in question. The use of symbol arguments allows us to access

information stored in the symbol table to make decisions about what to

output. In the example given, tracing code will be inserted in the method

body if that method’s symbol indicates that it should be traced. The unique

id used for tracing is also stored in the symbol data structure.

4.3 Summary

The Charj compiler is an essential component of our research agenda. It gives

concrete form to the Charj language, and creates the opportunity to explore

a wide variety of optimizations specific to Charj programs. It is fair to say

that the Charj compiler does not contain any novel new technology which

will advance the state of the art in compiler research. In fact, we designed

it to rely on well-known and thoroughly tested techniques. However, this

software acts as a solid foundation from which to explore the possibilities of

productivity-enhancing techniques specific to message-driven applications.

46

CHAPTER 5

EMBEDDING DIVERSE

PROGRAMMING MODELS

As parallel applications grow larger and more complex, it becomes less and

less feasible to write an entire application using a single programming model.

In a large application with multiple constituent modules, no one paradigm is

necessarily suitable for writing the entire application. While it has in the past

been common practice to produce applications that exclusively use message

passing, or global arrays, or actors, or any of a number of other models,

this approach is unnecessarily limiting, and may force the programmer to

choose a compromise model that is only mostly suitable and force the entire

application to use that model. In particular, if one wishes to make use of

parallel modules which encompass some task-specific parallel algorithm, it

is difficult to require that the module use the same programming model as

the rest of the application without sacrificing programmer productivity via

longer development time, lower maintainability, and generally inelegant code.

There are several benefits to multi-model parallel applications. They en-

able freer choice of libraries and modules and encourage code re-use. They

allow a “right tool for the right job” approach in which, for example, an

array-based model can be used for array-intensive parallel code while a model

specialized for tree-structured parallel computations can be used where trees

are the central data structure. They also allow the use of incomplete models,

which are models that are not capable of expressing arbitrary parallel inter-

47

actions but which in return are able to provide increased safety guarantees

and more elegant notation to programmers.

One powerful technique for making use of multiple programming models

in a single application is for all the models to target a common parallel

runtime system. The runtime system can mediate communication between

modules and schedule code belonging to different models in an intelligent way

because it has access to and control over the entire state of the application.

This allows for the minimization of compatibility layers between models and

the potential for overlapping execution of code belonging to different models.

In this work, we take advantage of the ability for the Charj compiler to be

aware of multiple programming models that can be used together in a single

application. Charj programs can then provide much greater integration be-

tween models via improved static checking and model-specific optimizations.

5.1 Related Work

Multi-model (or multi-paradigm) programming and ability of programming

languages to accommodate that style is a topic that extends far beyond the

confines of parallel computing. For example, C++ is often referred to as a

multi-paradigm language, in that it supports programming with an impera-

tive style, object-oriented programming, and template-based meta- and func-

tional programming. For the purposes of this discussion, however, we limit

ourselves to those systems which allow multiple programming paradigms

which are specifically parallel in nature. These systems can be roughly cat-

egorized as either multi-paradigm parallel languages, parallel programming

model extensions, interoperability frameworks, and runtime systems which

unify multiple programming models.

Before we begin a discussion of the particular programming models that we

have embedded in Charj, we should first make more explicit what we mean

by “embedding” in this context, as this term can denote several distinct tech-

niques for incorporating multiple models within a program or programming

environment.

In some cases, supporting embedded programming models means that the

language provides support for users or library writers to provide their own

custom syntax which closely integrates with the parent language, and which

48

allows syntax for domain-specific models which were not envisioned by the

original language developers to be cleanly integrated in the basic model after

the fact.

One example of this use is“Rakefile” syntax in the Ruby programming

language, which provides constructs for managing software build and de-

ployment processes similar to the common Unix “make” utility. Rakefiles

are valid Ruby programs which incorporate this embedded special syntax to

simplify the process of describing dependencies, build environments, and so

on [38,39]. Similar techniques have been applied in other high-level languages

such as Scala [40] and Haskell [41].

This practice of users embedding syntax in a parent language is perhaps

best exemplified by the Lips macro system, which allows the programmer to

specify sophisticated operations on the Lisp s-expressions that make up their

program. This allows the creation of new control structures and so on at the

level of libraries or application code. The extensive use of such constructs

in Lisp programs is made possible by the fact that Lisp programs are essen-

tially explicit representations of their own syntax tree, with no intermediate

syntax. As a result, Lisp is a very effective platform for embedding new syn-

tax to support domain specific languages or otherwise extend core language

functionality [42].

Another use of “embedding” in the context of programming models is to

describe the use of preprocessing tools which transform an input file that is a

mix of the parent model and the embedded model and output a pure program

that consists only of code in the parent model. This allows the developer of

the embedded model to piggyback on the infrastructure provided by the

parent model and potentially reduce the barrier to entry for potential users

of the embedded model. For example, the MetaBorg system allows the user

to embed domain-specific languages in the Java language to support such

tasks as user interface specification and XML generation [43, 44], and Lua-

ML allows the embedding of Lua code within ML applications [45].

However, these uses are not what we mean to indicate by the term “embed-

ding.” Rather, we take embedding to mean that we incorporate syntax and

other program constructs from other special-purpose programming models

or extensions to the base message-driven Charj programming model directly

within Charj programs in a fashion that can be understood by the Charj com-

piler and all targeted to a common runtime system. Whereas in the original

49

Charm++ system, these models would require either their own translator

support or implementation as a C++ library, in Charj we can directly in-

corporate them as first-class citizens, making them possible targets for static

checking and optimizations, as well as simpler, more direct syntax. These

models typically target a particular class of parallel interactions, such as dis-

ciplined access to global arrays, or the interaction between host hardware

and accelerator hardware in software which runs on hybrid systems. By em-

bedding these models within Charj, we make it easier for programmers to

make use of the advantages they provide in their particular problem domains

while maintaining the advantage of a unified Charj infrastructure.

We also avoid the need to embed models which would benefit from custom

syntax in a language which supports custom syntax only weakly. While we

discussed the embedding of custom syntax in Ruby and Lisp above, these

languages are not widely used in HPC application development. In that

arena one is much more likely to encounter programs written in C, C++,

or Fortran. C and Fortran provide essentially no support for incorporat-

ing special-purpose syntax into their base syntaxes. C++ provides greater

opportunities, particularly through its template metaprogramming facilities.

Indeed, the multiphase shared arrays programming model which we embed

in Charj and which is discussed further in section 5.4 was originally imple-

mented as a C++ library, and later revised to improve the static checking

provided to the programmer by leveraging the C++ type system. However,

C++ provides only weak embedding facilities compared to languages like

Lisp and Ruby, and greatly constrains the syntax and language constructs

that a model implementer can feasibly provide. As we discuss in the sub-

sequent section, embedding this model directly in Charj provides a variety

of benefits that are not available to implementations that are constrained to

use only the facilities provided by C++.

5.2 Supporting Multiple Programming Models

We believe that the use of multiple programming models can provide signif-

icant productivity benefits to the programmer, particularly in the context of

large applications with many linked components. In Charj, we attempt to

support a variety of programming models and notations within the base Charj

50

programming environment, all operating on a common runtime system. In

the following sections, we will describe the models that Charj supports, the

ways in which these models are useful to HPC programmers, and the benefits

that accrue from integrating them into the Charj programming environment.

5.3 Structured Dagger

Structured dagger (SDAG) [27, 46, 47] addresses a common need in parallel

message-driven applications to effectively coordinate the sequence of execu-

tion between the methods of communicating objects. SDAG facilitates this

process by providing a clear expression of the flow of control within an ob-

ject while maintaining the ability to adaptively overlap communication and

computation.

In the basic message-driven model the body of a remotely invokable method

contains serial code which does not block, and when data must be received

from a remote entity, callbacks are typically used. This approach suffers from

the non-local nature of program control flow. Because each entry method is

directly invoked by the scheduler, and the receiver of a message may respond

with any of a variety of return messages or none at all, the natural pattern of

messages that are passed between objects over the course of an application’s

lifetime is not immediately obvious from the code, and may require significant

interpretation by skilled programmers to discover. In addition, the program-

mer has no built-in way of describing common interaction patterns such as

“proceed when I have received n messages of type t”, as when an object waits

for its neighboring objects before continuing a computation. The advantage

of this scheme is that it allows the runtime system to adaptively overlap com-

munication with computation and supports data-dependent communication

patterns, but in some cases it does so at the expense of program clarity.

Structured dagger is a coordination language aimed at clarifying control

flow in message-driven applications and supporting common idioms needed

in applications which depend on asynchronous method invocation, without

sacrificing the associated benefits of overlap of communication and compu-

tation. It defines several constructs that allow the programmer to express

message-driven control flow within the context of a single method.

The most important of these constructs is the “when” block. A when block

51

specifies dependence between the arrival of a particular type of message and

the execution of a given block of code. Syntactically, the when block has a

name, an argument list, and an associated block of code, much like a function

definition. The name is used by other elements of the application to trigger

the when, the argument list specifies the type of data expected by the when,

and the block of code is executed when the message is received. A when

block may contain multiple pairs of names and arguments, in which case the

block is only executed after all the expected incoming messages have been

received.

SDAG also defines an “overlap” block, which specifies that its constituent

components can be concurrently enabled and executed in any order. The ac-

tual order of execution will depend on the order in which triggering messages

are received. The overlap block only completes once all of its components

complete.

Additionally, SDAG supplies a “forall” keyword, which acts like a for

loop in which all the iterations can be overlapped with one another.

SDAG defines several additional constructs to denote serially executable

C++ code and to allow conditional execution and looping, but these con-

structs primarily exist to allow SDAG code to coexist with serial code rather

than to enable new parallel-specific functionality. Specifically, “atomic”

blocks indicate that their contents are simply C++ code that contains no

SDAG constructs. This keyword is an artifact of SDAG’s initial implementa-

tion, and does not persist as a keyword or program concept in Charj. SDAG

also defines the control-flow constructs “if,” “for,” and “while”, which are

all semantically equivalent to their C counterparts.

Listing 5.1 illustrates the use of SDAG to express the main loop of a simple

Jacobi relaxation application with a one dimensional data decomposition. In

each iteration, every chare sends a strip of boundary elements to each of its

neighbors. Once the chare has received strips from each of its neighbors (via

getStripFromLeft and getStripFromRight), the actual stencil computa-

tion can be performed via doStencil. The reception of the left and right

boundary regions is overlapped via the overlap construct.

In this example code, the sending of left and right neighbor information

is elided via the use of the sendStrips method. Within this method, each

chare would invoke the getStripFromLeft and getStripFromRight entry

methods on its neighbors using proxy objects, providing the necessary infor-

52

Listing 5.1: A simple SDAG function illustrating the use of overlap and
when statements in the context of an iterative Jacobi stencil application with
a 1-D decomposition.

1 entry void jacobi()

2 {

3 for (int i=0; i<N; ++i) {

4 sendStrips();

5 overlap {

6 when getStripFromLeft(Strip s) {

7 processStripFromLeft(s);

8 }

9 when getStripFromRight(Strip s) {

10 processStripFromRight(s);

11 }

12 }

13 doStencil();

14 }

15 }

mation to them via the Strip argument, which simply encapsulates the strip

of array elements that constitutes a boundary between array chunks. These

entry methods are not defined explicitly by the programmer, but rather are

implicitly defined by their use as SDAG triggers within the overlap state-

ment. Their use in the when statements creates a synthetic entry method

which receives the expected data and invokes the code indicated by the trig-

ger once the data has all arrived. In this case, the indicated code is the

processStripFromLeft or processStripFromRight method. These meth-

ods, which are also elided for brevity, simply extract the data necessary for

the eventual stencil operation and store it in a place where it can be accessed

conveniently in the eventaul doStencil call.

The equivalent C++ message-driven version of the Jacobi code in list-

ing 5.1 is provided in listing 5.2. The differences between these code listings

illustrate a few of the advantages that the use of SDAG can bring to message-

driven applications.

The first and most obvious advantage of the SDAG implementation is its

brevity. While the actual work involved in the Jacobi computation is not

included for the sake of clarity and brevity, the entire top-level structure of

the application is contained in a single fifteen line function. The equiva-

lent message-driven version spans five different functions and uses more than

double the lines of code.

53

SendStrips

processStrip processStrip

doStencil

Figure 5.1: The control flow associated with the jacobi code in listings 5.1
and 5.2, from the perspective of a single chare containing one array chunk.
Two messages are send out to neighbors initially in the sendStrips function.
Then incoming messages from neighbors trigger left and right processStrip
methods. Once these have both completed, the stencil computation can take
place, at which point the process is repeated in the next iteration.

However, merely comparing the length of the two listings understates the

advantage in clarity that SDAG provides. Adding additional functions does

not only increase the length of the code. It also increases the mental burden

on the programmer, because the nature of the interactions between these

functions is never explicit in the code. To determine the path of execution

that will occur when the code is run, the programmer must reason carefully

about the chain of messages and function calls that will occur. In addition,

it is not clear if these functions might be called from other code elsewhere in

the application. Furthermore, the functions do not all correspond to natural

units of work. The fact that the loop calculations are now split across the

three functions jacobi, mainLoop, and checkOverlapCompletion obscures

the programmer’s intent and forces the reader to jump between various points

in the program with no obvious connection in order to determine the overall

control flow of the application. Reasoning about code becomes much more

difficult because the desired semantics of the function are not made explicit

as they are in the SDAG version.

In addition, the message-driven version of the code suffers from an in-

creased need for state variables. The overlap between receiving the left and

54

Listing 5.2: The message-driven equivalent of the SDAG Jacobi function in
listing 5.1. The simple control flow expressed in the SDAG loop is broken
into several interacting functions.

1 entry void jacobi()

2 {

3 i = 0;

4 mainLoop();

5 }

6

7 void mainLoop()

8 {

9 leftStripReceived = rightStripReceived = false;

10 if (i < N) {

11 sendStrips();

12 }

13 }

14

15 entry void getStripFromLeft(Strip s)

16 {

17 processStripFromLeft(s);

18 leftStripReceived = true;

19 checkOverlapCompletion();

20 }

21

22 entry void getStripFromRight(Strip s)

23 {

24 processStripFromRight(s);

25 rightStripReceived = true;

26 checkOverlapCompletion();

27 }

28

29 void checkOverlapCompletion()

30 {

31 if (leftStripReceived && rightStripReceived) {

32 doStencil();

33 ++i;

34 mainLoop();

35 }

36 }

55

right boundary regions is accomplished transparently in the SDAG code, but

requires the addition of two state variables to determine when both sides

have been received. While the additional overhead is small in this case, in

larger and more complicated functions, the number of state variables required

to track control flow can become onerous. Here, SDAG does not reduce

the computational or storage overhead associated with dependency tracking.

However, it does effectively hide this complexity from the programmer and

present a clear view of the control flow of the application without the need

for exposing the state variables needed to implement it in a message-driven

system.

5.3.1 Implementing SDAG

In Charm++, SDAG is implemented as a system of complex C++ macros,

partially produced through the Charm++ translator. This allows it to in-

troduce new syntactic constructs while keeping it tightly bound to the Char-

m/C++ application and obviating the need for significant SDAG-specific

compilation tools. However, this approach entails significant compromises

in exchange for the convenience of avoiding a full language definition and

compiler infrastructure.

SDAG neatly illustrates the difficulty of building new parallel program-

ming models to interoperate with existing C++ applications without any

compiler support. SDAG defines a small set of new keywords which can

be used to specify the high-level communication structure of message-driven

code, avoiding some of the problems of non-local control flow and hidden

dependencies that can make message-driven applications difficult to follow.

However, its implementation as a macro system added on to C++-based

Charm code is very limiting, despite the fact that the Charm translator pro-

vides it with some code generation capabilities.

Atomic Blocks

The most obvious limitation of SDAG is that while its constructs include

C++ expressions and blocks of arbitrary C++ code, the SDAG infrastructure

has no way of parsing C++, and adding general-purpose C++ parsing is

notoriously complicated. As a result, C++ blocks inside SDAG constructs

56

must be enclosed in an “atomic” block which renders the contents of the

block invisible to the SDAG translator. This process is error-prone because

the translator must assume that all code in the atomic block can be correctly

parsed by a C++ compiler later, and if this is not the case the resulting

error messages can be confusing. It is also fragile, because the translator

relies on being able to match curly braces to determine where each atomic

block ends. If the programmer erroneously omits a curly brace inside a

block, the resulting error message is very confusing. The translator must

also go to efforts to detect whether or not braces within a block are inside

a comment or not. In addition, SDAG has no way of verifying that the

code contained in these blocks obeys the rule that code in an atomic block

invokes no parallel coordination operations, nor does the SDAG translator

parse the expressions that it uses for conditional and looping constructs,

eliminating any possibility for optimizations or warnings and errors based on

these expressions. Outside the context of a parser that understands block

contents, the process of translating SDAG code is messy and fragile.

Beyond this lack, SDAG also suffers from its implementation as a macro

system. Once the SDAG code is generated by the translator, the user must

insert multiple SDAG-specific macros into any class that uses SDAG meth-

ods. These macros then expand into the orchestration code that comprises

SDAG. The error messages if the programmer forgets these macros are neces-

sarily opaque and unhelpful to programmers who have not experienced them

before, and contribute to the difficulty of using SDAG. In addition to these

inconveniences, the way in which SDAG code is generated prevents an SDAG

method from invoking other SDAG methods, which is a serious problem for

anyone who wishes to use SDAG as a significant part of a real application.

Furthermore, the way that SDAG methods are split apart by the translator

prevents the use of local variables that span multiple blocks.

One fundamental limitation of combining a simple SDAG translator with

C++ applications is poor integration of sequential code with SDAG code.

C++ is far too difficult for a simple translator to parse, but it would be ex-

tremely limiting to completely segregate SDAG constructs that indicate the

conditions under which messages should be sent and actions should be taken

from the C++ code that actually implements those actions. To get around

this problem, the SDAG translator introduces the “atomic” construct, con-

sisting of the keyword atomic followed by a block of sequential code enclosed

57

in curly braces. When the SDAG translator encounters an atomic block, it

treats the contents as a black box to be inserted into generated code, and

does not attempt to the inner C++. This allows intermixing of serial code

with SDAG code without complicating the translator. However, it does so

by imposing an additional semantic burden on the programmer, forcing them

to insert additional syntax that has no bearing on meaning of the code in

question. This problem is exacerbated by the fact that SDAG uses several

common control flow constructs in its own grammar to allow the program-

mer to express application messaging behavior. In particular, SDAG methods

may contain “if” statements and “for” and “while” loops that operate identi-

cally to their C++ equivalents, even to the point of allowing arbitrary C++

expressions in the conditionals and loop initializers and updaters, but which

are nevertheless considered SDAG code which should not be enclosed in an

atomic block. This semantic mismatch is confusing to programmers who

are not familiar with the implementation of the SDAG translator, and the

need for atomic block specifiers is an annoyance even to experienced SDAG

programmers.

In Charj, SDAG constructs coexist with the sequential portions of the

language, with no arbitrary separation between them. The compiler can

infer the existence of sequential blocks of code that execute when SDAG

triggers fire, and emit correct code based on this knowledge. This eliminates

the status of standard control flow constructs like “for” and “if” as quasi-

SDAG constructs that have their normal semantic meaning but are used as

though they are not part of the normal sequential code in a method.

Initialization and Communication of SDAG Data Structures

Some of the limitations imposed by attempting to graft SDAG onto a C++-

based programming environment are not particularly deep from a technical

perspective, but nevertheless impose a substantial cognitive burden on the

programmer. To integrate code generated by the SDAG translator into the

larger C++ application, the programmer inserts special macros and func-

tion calls into their code. Specifically, for each class with SDAG methods,

the programmer inserts an SDAG CODE macro in the class body to insert the

generated code into the class, calls the sdag init() function in the class’s

constructor, and calls the sdag pup() function in the Chare’s PUP function

58

(see section 6.2) to handle serialization and deserialization of SDAG-specific

data structures.

Inserting these function calls and macros is not in itself a huge burden on

the programmer, but the necessity for these additions degrades programmer

productivity in several ways. First, they represent an easily forgotten and

somewhat arbitrary additional step that the programmer must remember

when coding. They be forgotten initially, but they also represent a continuing

maintenance burden. For example, if a Chare does not initially need a PUP

function because it is never migrated, then no sdag pup() call is needed.

However if a PUP function later becomes necessary, perhaps to facilitate

dynamic load balancing, then the programmer who adds this PUP function

must be aware that the class contains SDAG methods and that he or she must

therefore insert the appropriate call. The likelihood of errors is increased by

the fact that SDAG code must all be placed in an interface file that normally

contains only declarations and no method definitions. Since the actual SDAG

code is segregated from the bulk of the C++ implementation code, it is

more easily overlooked. In the event that one or more of the macros and

function calls is forgotten, the resulting errors can be subtle and difficult to

track down, particularly for programmers who aren’t familiar with the details

of SDAG’s implementation techniques. Particularly in the case of omitted

initialization and pup calls, the errors may manifest themselves only as subtly

incorrect data, and bugs may manifest themselves only on certain platforms.

In addition, SDAG’s macro-based implementation makes it more difficult to

debug the serial code within SDAG methods. The SDAG translator does not

attempt to parse this code. It simply breaks the sequential blocks within

the SDAG method into separate message-driven methods, which are injected

into the programmer’s Chare class via the SDAG code macro. As a result,

the C++ compiler doesn’t see this code before it is broken into pieces and

inserted via macro. Any compile-time errors in the code will therefore refer

to source code that was generated by the SDAG tools, in a method that

corresponds to some section of the original SDAG code, but which contains

automatically generated message handling code and non-semantic method

and variable names. Figuring out the relationship between this generated

code and the original SDAG method can be a daunting task for programmers

who are not already well-versed in SDAG.

59

Handling Sequential Code

Fortunately, these problems are not inherent to the SDAG programming

model. They are only present as an artifact of the way that the SDAG trans-

lator coexists with a C++ application. If the SDAG translator was able to

properly understand C++ code and interface with the programmer’s classes,

these issues could be easily avoided. In Charj, we have no such limitations.

The same parser is used to handle sequential Charj code and all SDAG-

specific constructs. Therefore all warning and error messages related to the

sequential code can be emitted as normal, with reference to their location in

the original source file and in their proper context. Furthermore, there is no

need for the insertion of macros or SDAG utility functions in separate user

code, since in Charj there is no distinction between the compilation of code

which contains SDAG constructs and code which does not.

Handling Local Variables

SDAG programming suffers from a variety of small warts and annoyances that

stem from its lack of tight integration with the larger C++ application. For

example, one significant limitation of of the original SDAG implementation

is its lack of support for local variables. Because of the way that the SDAG

translator breaks each SDAG function into a series of independent message-

driven functions, local variables declared in one part of an SDAG function

do not persist in other regions of the function. Even a loop index variable

may not be visible within the entirety of the loop body. To get around this

restriction, SDAG programs typically promote what would normally be local

variables to class variables in the enclosing Chare. This approach has several

drawbacks. First and most obviously, it removes what would normally be

locally scoped information, moving the information contained in the variable

declaration farther away from the point at which that information is useful

and exposing that data to wider visibility than is necessary. The increased

visibility of what would otherwise be local variables is also a potential source

of bugs. If, for example, two SDAG methods in the same Chare happen

to both use the loop index variable “i”, execution from portions of each

SDAG method can be interleaved, giving incorrect results. The programmer

must therefore be careful that the semantically local variables needed by each

60

SDAG method are in fact only used locally.

This problem is addressed in a straightforward way by the Charj compiler.

In a Charj program, variables may be declared in the normal way in a function

that contains SDAG constructs. The compiler ensures that any accesses

to these local variables obey the normal variable scoping rules. However,

when generating code, the compiler promotes these variables to become class

variables of the enclosing Chare. The names of the variables are mangled with

the name of the scope in which they are declared, so that there can be no

incorrect aliasing that would lead to unexpected, incorrect behavior. Local

variables in SDAG methods do incur more overhead than local variables in

other methods, because they require persistent storage in their containing

class rather than living entirely on the stack, but because the semantics

of SDAG method execution guarantee that the method’s stack frame will

be torn down and control returned to the scheduler before the method is

completed, this limitation is unavoidable.

Although the hoisting of local variables in SDAG methods to class variables

is not particularly sophisticated from a compiler analysis perspective, it is

emblematic of the things we aim to accomplish with Charj. It provides real

utility to the programmer and simplifies SDAG programs without needing

to be complicated or sophisticated. Although the ability to declare local

variables in SDAG methods is not necessarily a momentous one in terms of

its impact on the programmer, the accumulation of small advantages like this

can quickly become significant.

Calling SDAG Methods

One important criterion for assessing SDAG’s integration into a program-

ming environment is the ease with which SDAG methods can be called.

Unfortunately the original implementation of SDAG imposes some unintu-

itive restrictions on the programmer. Although SDAG methods superficially

appear identical to other entry methods, they may contain asynchronous

control flow, in that they may block to await expected incoming messages.

In order to support this control flow, SDAG must preserve local state across

any blocking operations. Furthermore, the SDAG code generation must be

aware of all code locations where control may be ceded to the scheduler.

These requirement put some important restrictions on the calling of SDAG

61

methods in the original translator. First and foremost, the programmer

cannot invoke any blocking functions from within an atomic block. Doing

so would change the parallel control flow DAG represented by the function

in a way that is invisible to the translator and produce incorrect results.

Note that since anything within an atomic block is opaque to the SDAG

translator, these errors cannot be caught at compile time. Typically they

present as corrupted data or race conditions in the user’s code. Such errors

are particularly time consuming to debug, especially when invoking third-

party code with which the programmer may not be intimately familiar.

In practice, the largest inconvenience caused by the inability to call block-

ing functions from within SDAG methods is the inability to call one SDAG

function from the body of another SDAG function. This limitation prevents

the programmer from performing common refactoring and code organization

tasks and can result in unneeded and unwanted duplication of code, increas-

ing maintenance costs and creating new opportunities for bugs.

One goal of our Charj implementation of SDAG constructs was to ease this

limitation on the calling of blocking functions. The Charj compiler’s ability

to analyze sequential code blocks and do inter-procedural analysis provides

us with all the tools needed to determine the correct DAG for any SDAG

method. However, the fact that the Charj compiler emits Charm and SDAG

code puts limits on what we can achieve without reimplementing the logic of

the original SDAG translator within Charj. There is no way of representing

such entities as a recursive SDAG function in a way that the SDAG translator

can understand.

We therefore narrow our scope to simply allow SDAG functions to invoke

other SDAG functions, with the restriction that we do not allow mutual

recursion. The Charj compiler observes that one SDAG method is calling

another SDAG method, and embeds the body of the callee within the caller,

renaming local variables as necessary. This process is repeatedly invoked until

all SDAG calls are expanded. The resulting SDAG methods each contain

their entire parallel control flow DAG, and can therefore the output of the

Charj compiler can be processed by the original SDAG translator. This

provides a useful service to the programmer (i.e. increased flexibility in the

calling of SDAG methods) without requiring the reimplementation of the

SDAG infrastructure within the Charj compiler. There are no theoretical

problems involved with allowing arbitrary calls from within SDAG methods,

62

but in practice doing so would involve substantial implementation effort to

bring SDAG infrastructure into the Charj compiler.

Handling “When” Triggers

We can also see signs of SDAG’s uneasy integration in the way that when trig-

gers are declared. Each trigger is associated with one or more actions, as in

when my action(int x) atomic { ...action... }. The names of these

actions correspond to methods that are generated by the SDAG translator,

so the programmer does not supply definitions for the actions. However, the

programmer must still provide declarations for each action type in the inter-

face file. So, for the example given, the programmer would have to declare

entry void my action(int x); in the interface file. This looks identical

to declarations for which the programmer would be required to also supply

a definition, muddling the issue of which interface definitions correspond to

actual user code somewhere in the application and which definitions only

correspond to generated code. In Charj, we scan all SDAG code to identify

triggers without the need for separate declarations. This reduces redundant

information and avoids potential confusion on the part of the reader.

The aggregate impact of these differences between the Charj SDAG im-

plementation and the original SDAG translator is a much tighter integration

between SDAG code and the rest of an application. This integration can have

a substantial qualitative effect on the experience of developing applications

that contain SDAG. In fact, one of the most important SDAG-related im-

provements in Charj is simply the capability to freely add SDAG constructs

in any Charj method without the need for relocating them to a different file

or marking their definitions with special keywords. The total effect of these

changes is to make SDAG much easier and less frustrating to use. These

benefits come without any modification of the SDAG feature set and with

no degradation of performance. In short, by bringing SDAG into the Charj

programming model as a first-class citizen, we provide a much more cohesive

and seamless experience to the programmer.

63

5.4 Multiphase Shared Arrays

Multiphase Shared Arrays (MSA) [25, 28] is a programming model for dis-

tributed arrays in a partitioned global address space, where array accesses are

governed by a shared sequence of access modes and synchronization points.

MSA addresses a common problem faced by shared memory applications:

non-deterministic outcomes due to data races. These data races may lead

to time-consuming, difficult-to-find bugs, and eliminating them while main-

taining high performance is a difficult task.

One problem common to shared memory applications are data races, where

concurrent access to globally visible data yields a non-deterministic result.

The initial development of MSA was based on the observation that applica-

tions that use shared arrays typically do so in phases. Within each phase, all

accesses to the array use a single mode, in which data is read to accomplish

a particular task, or updated to reflect the results of each thread’s work.

MSA provides a formal way of expressing and enforcing this phase struc-

ture by requiring that phases be explicitly declared and separated by syn-

chronization points. This allows MSA to provide a guarantee of deterministic

behavior and freedom from data races and deadlock. However, it also con-

fines MSA to express only a subset of all possible parallel interactions. It

is not a general-purpose parallel programming model, and as such it is only

useful as one part of a rich multi-model environment in which it can perform

its limited role extremely well while leaving general-purpose parallelism to

other models.

5.4.1 The MSA Programming Model

MSA provides an abstraction common to several HPC libraries, languages,

and applications: arrays whose elements are simultaneously accessible to mul-

tiple client threads of execution, running on distinct processors. These clients

are user-level threads, typically many on each processing element (PE), which

are tied to their PE unless explicitly migrated by the runtime system or by

the programmer. Application code specifies the dimension, type, and extent

of an array at the time of its creation, and then distributes a reference to it

among client threads. Each element has a particular home location, defined

by the array’s distribution, and is accessed through software-managed caches.

64

By establishing this discipline, MSA usage is inherently deterministic.

However, in exchange for this guarantee, the programmer gives up some

of the freedom of a completely general-purpose programming model.

Data Decomposition and Distribution

MSA decomposes arrays not into fixed chunks per PE, but rather into pages

of a common shape. Developers can vary the shape of the pages to suit

applications’ needs. For example, a 10 × 10 array could be broken into ten

10×1-shaped pages, or four 5×5 pages, etc. Thus, the library does not cou-

ple the number of pages that make up an array to the number of processors

on which an application is running or the number of threads that will oper-

ate on that array. If the various parts of a program are overdecomposed into

sufficiently more pieces than there are processors, the granularity of commu-

nication associated with data transfer can be effectively controlled, and the

runtime system can flexibly map pages to available hardware resources.

At the simplest, the pages can take a blocked row- or column-major ar-

rangement, with the block shape determined by the library to suit the under-

lying memory and communications hardware. MSA allows the application

programmer to manually specify one of a few simple decompositions, and

can be extended to support more complex cases as application needs dictate.

Once the array is split into pages, the pages are distributed among PEs.

The page objects are managed by the Charm++ runtime system. Thus,

each MSA offers control of the way in which array elements are mapped to

pages, and the mapping of pages to PEs. This affords opportunities to tune

MSA code for both application and system characteristics. The page objects

are initially distributed according to a mapping function, either specified by

application code or following the defaults in Charm++. As the program

executes, the runtime may redistribute the pages by migrating them to dif-

ferent PEs in order to account for load imbalance, communication locality,

system faults, or other concerns. The user view of an MSA program and

corresponding mapping by the runtime system are illustrated in figure 5.2.

The drawback of this scheme is high latencies for non-local reads and

phase changes. The runtime compensates by overlapping the execution of

other local threads with blocking MSA operations. This process is enabled

by overdecomposition, so that on each PE there are many threads using the

65

Client
Threads

MSAMessage-driven
Objects

(a) The user view of an MSA application.

PE 1 PE 2 PE 3
(b) One possible mapping of program entities onto PEs

Figure 5.2: The developer works with MSAs, client threads, and parallel
objects without reference to their location, allowing the runtime system to
manage the mapping of entities onto physical resources.

MSA. When the active thread blocks, either due to an MSA cache miss, or

a non-MSA operation, another thread can be scheduled.

Caching

The runtime library caches data accessed from MSAs. This approach differs

from Global Arrays [48], where the user must either allocate and manage

buffers for bulk remote array segments or incur remote communication costs

for each access. It is more similar to caching schemes in UPC, with the differ-

ence that MSA’s phase structure places much fewer restrictions on commu-

nication optimizations than even UPC’s most relaxed memory model [49].

Runtime-managed caching offers several benefits, including simpler appli-

cation logic, the potential for less memory allocation and copying, sharing

of cached data among threads, and consolidating messages from multiple

threads.

When an MSA is used by an application, each access checks whether the

element in question is present in the local cache. If the data is available, it is

66

returned and the executing thread continues uninterrupted. The programmer

can also make prefetch accesses spanning particular ranges of the array, with

subsequent accesses specifying that the programmer has ensured the local

availability of the requested element. Bulk operations allow manipulation of

an entire section of the array at once, as in Global Arrays.

These prefetch calls can be blocking or non-blocking, as the programmer

desires. This scheme naturally lends itself to optimization by a compiler.

When static compiler analysis can determine array access patterns, prefetch-

ing can be done transparently, improving program performance without in-

tervention by the programmer. This technique is discussed in detail in chap-

ter 6.

When a thread accesses data that is not cached locally, the cache requests

it from its home page, then suspends the requesting thread. At this point,

messages queued for other threads are delivered. The cache manager receives

the home page’s response and unblocks the requesting thread. Previous work

with MSA [50] has shown that the overhead of caching and associated checks

is reasonable, and well-tuned application code can match the performance of

equivalent sequential code.

Each PE hosts a cache management object which is responsible for moving

remote data to and from that PE. Synchronization work is also coalesced

from the computational threads to the cache objects to limit the number of

synchronizing entities to the number of PEs in the system. Depending on the

mode that a given array is in, the cache managers will treat its data according

to different coherence protocols, as the Munin system does [51]. However,

the MSA access modes are designed to make cache coherence simple and

inexpensive. Accesses never require remote cache invalidations or immediate

writeback.

In write-once mode, all writes to remote data can be buffered until the

end of the phase, minimizing communication costs. Runtime verification

that the write-once guarantee has not been violated takes place within the

home objects (see below) when remote writes are committed at the end of

the phase. Similarly, accumulations are performed in a local buffer, and the

result is consolidated with the remote data during the phase change.

67

Access Modes and Safety

By limiting programs to a few well-defined access modes and requiring syn-

chronization from all MSA client threads to pass from one mode to another,

race conditions within the array are excluded without requiring the program-

mer to understand a complicated memory model. The access modes MSA

provides are suitable for many common parallel access patterns, but it is

not clear that these modes are the only ones necessary or suitable to this

model. As we extend MSA further, we expect to discover more as we explore

a broader set of use cases.

Read-Only Mode: As its name suggests, read-only mode makes the

array immutable, permitting reads of any element but writes to none. Re-

mote cache lines can simply be mirrored locally, and discarded at the next

synchronization point. In this mode, there are no writes to produce race

conditions.

Listing 5.3: A characteristic array access in read-only mode.

1 x = a(i, j, k);

Write-Once Mode: Since reads are disallowed in this mode, the primary

safety concern when threads are allowed to make assignments to the array

is the prevention of write-after-write conflicts. We prevent these conflicts by

requiring that each element of the array only be assigned by a single thread

during any phase in which the array is in write-once mode. This is checked

at runtime as cached writes are flushed back to their home locations. Static

analysis could allow us to check this condition at compile time for some access

patterns and elide the runtime checks when possible.

Listing 5.4: A characteristic array access in write-once mode. The element (i,
j, k) cannot be assigned to by multiple threads within one phase, but could
potentially be assigned to multiple times by the same thread.

1 a(i, j, k) = y;

Accumulate Mode: This mode effects a reduction into each element

of the array, with each thread potentially making zero, one, or many con-

tributions to any particular element. While it is most natural to think of

68

accumulation in terms of operations like addition or multiplication, any as-

sociative, commutative binary operator can be used in this fashion. One

example, used for mesh repartitioning in the ParFUM framework [52], uses

set union as the accumulation function. The operator’s properties guaran-

tee that the order in which it’s applied does not introduce non-deterministic

results.

Listing 5.5: A characteristic array access in accumulate mode. Contributions
made by a particular thread are cached locally until the next synchronization
point, at which point contributions from different threads are accumulated
together at each array page’s home location.

1 a(i, j, k) += z;

The use of the various access modes are illustrated in the following Charm++

code snippet that computes a histogram in array H from data written into

array A by different threads:

Array subscripts are set off by parentheses, rather than the more con-

ventional square brackets, so that syntax remains consistent when access-

ing arrays of dimension greater than one. This is a restriction imposed by

C++’s different rules for overloading the subscript (operator[]) and call

(operator()) operators. This restriction does not apply to the Charj imple-

mentation of MSA, as discussed in section 5.4.2.

Even when considering only one-dimensional arrays, C++ operator over-

loading presents a problem. Depending on where it is used, an MSA array

access can be either an lvalue (that is, a value that can be assigned to),

or an rvalue (that is, a value that can be assigned, but not assigned to).

C++ operator overloading facilities are too restrictive to allow the range of

operations that we wish to express through the overloading of the bracket

operators.

Synchronization

A shared array moves from one phase to the next when its client threads

have all indicated that they have finished accessing it in the current phase,

by calling the synchronization method. During synchronization, each cache

flushes modified data to its home location and waits for its counterparts

69

Listing 5.6: A characteristic array access in accumulate mode. Contributions
made by a particular thread are cached locally until the next synchronization
point, at which point contributions from different threads are accumulated
together at each array page’s home location.

1 A.syncToWrite();

2

3 for (int i = 0; i < N/P; ++i)

4 A(tid + i*(P-1)) = f(x, i);

5

6 A.syncToRead(); // Done writing A; data can now be read

7 H.syncToAccum(); // Get ready to increment entries in H

8

9 for (int i = 0; i < N/P; ++i) {

10 int a = A(i + tid*N/P);

11 H(a) += 1;

12 }

on other PEs to do the same. Logically, client threads cannot access the

array again until synchronization is complete. In SPMD-style MSA code,

this requires that threads explicitly wait for synchronization to complete

sometime before any post-synchronization access

5.4.2 Implementing MSA

Because Charj uses the same runtime system as MSA, it is straightforward

to make use of MSA within Charj programs. Because the Charj compiler

has explicit knowledge of the MSA programming model, it can provide a far

better experience for the programmer than the C++ MSA library can.

One area in which this advantage shows itself is in enforcement of MSA’s

various access modes. Detection of MSA programming model violations is

made difficult by the fact that MSA is implemented as a C++ library. In

the original implementation of MSA, the access mode of each phase was

implicit in the structure of the code. Phase boundaries were delimited by

sync() calls, but there was no mechanism for determining the intended phase

structure of an application aside from comments or a close reading of the

code to determine which kinds of accesses are used inside of each phase.

The process of determining array phase becomes even more difficult when

considering that arrays may be passed into a function from many different

places in an application, and the function’s signature gives no indication

70

of the expected array phase. The MSA library performs checks at runtime

to ensure that there are no access mode violations, but this process incurs

performance overhead for the checking, lengthens the debugging process, and

leaves the possibility that unexercised code paths contain MSA access mode

errors.

To address these problems, MSA was later redesigned to enforce as many of

its access restrictions as possible using the C++ type system. In the modified

MSA, all accesses to the array take place through a handle object, and there

is a different type of handle for each kind of MSA phase (i.e. there is a read

phase handle type, a write phase handle type, an accumulate handle type, et

cetera). In addition, the single sync() call is replaced with specialized calls

that perform synchronization and return a handle of the appropriate type for

the ensuing phase, for example syncToRead() which performs synchroniza-

tion to end the previous phase and returns a read handle to be used in the

next phase. The interfaces of these handles enforce the access rules of the

phase by exposing only allowed operations. So, for example, trying to write

a value using a read mode handle will create a type error at compile time.

C++ operator overloading is used to support familiar array syntax.

Using the C++ type system does address some of the problems of the orig-

inal implementation. However, it suffers from problems of its own. Whereas

code using the original library could present itself as a straightforward se-

ries of operations on a single array variable, the new interface requires a

proliferation of handle objects, which are often short-lived and provide little

value to the programmer. This problem could be addressed by the use of

linear types [53], but this option is precluded by the need to work within

the C++ type system. The use of the C++ type system to detect access

mode violations is also fairly limited in the types of errors that it can de-

tect at compile time. MSA uses read-only mode, exclusive write mode, and

accumulate mode. These modes can all be enforced by careful declaration

of MSA operations in the handles (for example the array accessors in read

mode are all const), but this technique is not easily generalizable to other

access modes. To some extent this deficit could be addressed using policy

templates and static assertions in the latest C++ standard, but this would

complicate the library interface significantly.

Other techniques for enforcing MSA semantics rely on external tools.

MSAs high-level semantic conditions could be enforced using a contract ap-

71

proach [54] describing allowable operations. However, the use of contracts in

the context of the MSA C++ libary would require an external enforcement

tool and the contract conditions would depend on state variables that aren’t

visible in user code. Some alternative external static analysis tool could

also provide an enforcement mechanism, but any such tool would have to do

flow-dependent analysis and replicate much of the work of the compiler in a

separate application.

However, when implementing MSA as an integrated part of Charj, we

can avoid some of the problems inherent in expressing it as a C++ library.

We can have the best of both worlds: simple syntax which does not rely

on a typed handle approach, combined with compiler enforcement of the

MSA safety properties. Simply by observing all accesses to a particular

array, the compiler can verify that the accesses during any given phase are

consistent, provided that it has a complete view of the lifecycle of the array.

In general, this requires a whole-program analysis. However, this excludes

the possibility of calling Charj functions which take MSA arguments from

C++ code (because the mode of the MSA when it enters the function is

unknown). Pragmatically, we issue errors if any inconsistent array accesses

are detected at compile time, and warnings if functions are exposed that

could potentially be misused by external code unavailable to the compiler.

5.4.3 Static Checking

We perform static analysis to detect violations of MSA’s access mode re-

strictions. Our analysis is similar in concept to the computation of reaching

definitions [55]. The reaching definitions for a given point in a program are

the set of definitions which may have been the point at which a value used at

that point was defined in some path of execution. We wish to answer a simi-

lar question: which points of synchronization of an array might have started

the current phase when an array is accessed. Because each synchronization

indicates the nature of the ensuing phase, we can then verify that no synchro-

nization point can lead to an invalid array access without an intermediate

point of synchronization that changes the phase of the array.

In computing the synchronizations that reach a given array access, we need

concern ourselves only with accesses to MSAs and synchronization operations

72

on those arrays. For each of these statements S, we compute in[S], the set of

incoming reaching synchronizations out[S], the set of outgoing reaching syn-

chronizations, gen[S], the set of synchronizations generated by S, and kill[S],

the set of synchronizations killed by S. The governing dataflow equations

are the same as in reaching definitions:

in[S] =
⋃

p∈pred[S]

out[p]

out[S] = gen[s] ∪ (in[S]− kill[S])

where pred[S] is the set of predecessors of S. This simply states that

the synchronizations incoming to S are those outgoing from its predecessors,

and that the outgoing synchronizations are the incoming synchronizations

together with synchronizations generated by S and excluding synchroniza-

tions killed by S. The gen and kill sets are only modified by synchronization

statements. Consider a synchronization statement x on an array a. The rules

governing gen[S] and kill[S] for this statement are given by:

gen[S] = {x}

kill[S] = Xa − {x}

where Xa is the set of all synchronizations on array a. Using these defi-

nitions we can compute the set of reaching synchronizations for each array

access by iteratively applying the dataflow equations until the in[S] and

out[S] remain unchanged for each statement.

This analysis is conservative, in that it will detect violations that may not

ever occur in actual execution. For example, consider the code in listing 5.7.

Whatever the value of the condition variable, the array A will always be

synchronized to write mode before it is written to. However, we do not

attempt to determine which branches will be taken during actual execution,

and in general it is not possible to identify all cases that would actually be

safe in practice as safe. We therefore report potential access mode violations

as warnings rather than errors. If the programmer determines that the actual

pattern of access is safe, he or she can simply ignore the warning. A future

version may support pragmas to identify accesses that are known to be safe to

the compiler, allowing the programmer to eliminate warning messages which

are known to be spurious.

73

Listing 5.7: Although the array A will always be in read mode when it is
accessed, we will still warn the programmer of a possible MSA access mode
violation.

1 A.syncToRead();

2 if (condition)

3 A.syncToWrite();

4 if (!condition)

5 A.syncToWrite();

6 A[0] = 0;

5.4.4 Example Application

To illustrate the difference between the typed handle syntax and the direct

access syntax, we provide a sample MSA application which performs a his-

togramming task. There are two MSAs involved in the computation: a 2D

data array which is filled with random numbers, and a 1D bins array which

holds a histogram of the data the first array.

The handle-based application in listing 5.8 and 5.9 consists of a simple

Driver mainchare which creates worker Histogram chares and then waits

for results to be delivered via the done entry method. The Histogram ob-

jects have a single entry method that is invoked to do the main work of

the application, which must be threaded to allow MSA operations to block.

The additional MSA declarations are needed in order for the correct MSA

templates to be instantiated at compile time.

All accesses to the array take place through the typed handles MSA2D::Read,

MSA1D::Accum, etc. Each change of phase requires a new handle instantia-

tion, leading to a proliferation of variables throughout the program. However,

these handles ensure that the accesses to the arrays obey the appropriate

MSA phase rules, so that, for example, no elements are read out of an array

that is in write mode.

Listing 5.8: The interface (.ci) file for the Charm++ histogram application

with typed handles.

1 mainmodule histogram

2 {

3 mainchare Driver

4 {

5 entry void Driver(CkArgMsg*);

6 entry void done(CkReductionMsg*);

74

7 };

8

9 array [1D] Histogram

10 {

11 entry void Histogram(MSA2D data_, MSA1D bins_);

12 entry [threaded] void start();

13 };

14

15 // Any MSA templates used in the application must be

16 // explicitly instantiated in the interface file.

17 group MSA_CacheGroup<int, DefaultEntry<int>,

18 MSA_DEFAULT_ENTRIES_PER_PAGE>;

19 array [1D] MSA_PageArray<int, DefaultEntry<int>,

20 MSA_DEFAULT_ENTRIES_PER_PAGE>;

21 };

Listing 5.9: The implementation (.cc) file for the Charm++ histogram ap-

plication with typed handles.

1 #include "msa/msa.h"

2

3 typedef MSA::MSA2D<int, DefaultEntry<int>,

4 MSA_DEFAULT_ENTRIES_PER_PAGE, MSA_ROW_MAJOR> MSA2D;

5 typedef MSA::MSA1D<int, DefaultEntry<int>, MSA_DEFAULT_ENTRIES_PER_PAGE> MSA1D;

6

7 #include "histogram.decl.h"

8

9 const unsigned int ROWS = 2000;

10 const unsigned int COLS = 2000;

11 const unsigned int BINS = 10;

12 const unsigned int MAX_ENTRY = 1000;

13 unsigned int WORKERS = 10;

14

15 class Driver : public CBase_Driver

16 {

17 public:

18 Driver(CkArgMsg* m)

19 {

20 // Usage: histogram [number_of_worker_threads]

21 if (m->argc > 1) WORKERS=atoi(m->argv[1]);

22 delete m;

23

24 // Actually build the shared arrays: a 2d array to hold arbitrary

75

25 // data, and a 1d histogram array.

26 MSA2D data(ROWS, COLS, WORKERS);

27 MSA1D bins(BINS, WORKERS);

28

29 // Create worker threads and start them off.

30 workers = CProxy_Histogram::ckNew(data, bins, WORKERS);

31 workers.ckSetReductionClient(

32 new CkCallback(CkIndex_Driver::done(NULL), thisProxy));

33 workers.start();

34 }

35

36 void done(CkReductionMsg* m)

37 {

38 // When the reduction is complete, everything is ready to exit.

39 CkExit();

40 }

41 };

42

43

44 class Histogram: public CBase_Histogram

45 {

46 public:

47 MSA2D data;

48 MSA1D bins;

49

50 Histogram(const MSA2D& data_, const MSA1D& bins_)

51 : data(data_), bins(bins_) {}

52

53 Histogram(CkMigrateMessage* m) {}

54

55 ~Histogram() {}

56

57 // Note: it’s important that start is a threaded entry method

58 // so that the blocking MSA calls work as intended.

59 void start()

60 {

61 data.enroll(WORKERS);

62 bins.enroll(WORKERS);

63

64 // Fill the data array with random numbers.

65 MSA2D::Write wd = data.getInitialWrite();

66 if (thisIndex == 0) fill_array(wd);

67

76

68 // Fill the histogram bins: read from the data array and

69 // accumulate to the histogram array.

70 MSA2D::Read rd = wd.syncToRead();

71 MSA1D::Accum ab = bins.getInitialAccum();

72 fill_bins(ab, rd);

73

74 // Print the histogram.

75 MSA1D::Read rb = ab.syncToRead();

76 if (thisIndex == 0) print_array(rb);

77

78 // Contribute to Driver::done to terminate the program.

79 contribute();

80 }

81

82 void fill_array(MSA2D::Write& w)

83 {

84 // Just let one thread fill the whole data array

85 // with random entries to be histogrammed.

86 //

87 // Note: this is potentially a very inefficient access

88 // pattern, especially if the MSA doesn’t fit into

89 // memory, but it can be convenient.

90 for (unsigned int r = 0; r < data.getRows(); r++) {

91 for (unsigned int c = 0; c < data.getCols(); c++) {

92 w.set(r, c) = random() % MAX_ENTRY;

93 }

94 }

95 }

96

97 void fill_bins(MSA1D::Accum& b, MSA2D::Read& d)

98 {

99 // Determine the range of the data array that this

100 // worker should read from.

101 unsigned int range = ROWS / WORKERS;

102 unsigned int min_row = thisIndex * range;

103 unsigned int max_row = (thisIndex + 1) * range;

104

105 // Count the entries that belong to each bin and accumulate

106 // counts into the bins.

107 for (unsigned int r = min_row; r < max_row; r++) {

108 for (unsigned int c = 0; c < data.getCols(); c++) {

109 unsigned int bin = d.get(r, c) / (MAX_ENTRY / BINS);

110 b(bin) += 1;

77

111 }

112 }

113 }

114

115 void print_array(MSA1D::Read& b)

116 {

117 for (unsigned int i=0; i<BINS; ++i) {

118 CkPrintf("%d ", b.get(i));

119 }

120 }

121 };

122

123 #include "histogram.def.h"

Now, in contrast to the typed handle approach, consider the direct access

approach shown in listing 5.10. The differences in approach only affect the

Histogram class, so other portions of the application are omitted. The phase

of each array is now implicit in the code, and accesses are not mediated by

handle objects. This simplifies and shortens the code, but at the cost of

less explicit information about the phase of each array and the lack of an

enforcement mechanism for detecting illegal array accesses.

Listing 5.10: The implementation (.cc) file for the Charm++ histogram ap-

plication with direct array accesses.

1 class Histogram: public CBase_Histogram

2 {

3 public:

4 MSA2D data;

5 MSA1D bins;

6

7 Histogram(const MSA2D& data_, const MSA1D& bins_)

8 : data(data_), bins(bins_) {}

9

10 Histogram(CkMigrateMessage* m) {}

11

12 ~Histogram() {}

13

14 // Note: it’s important that start is a threaded entry method

15 // so that the blocking MSA calls work as intended.

16 void start()

17 {

18 if (thisIndex == 0) fill_array(data);

78

19

20 // transition from write mode to read mode

21 data.sync();

22

23 fill_bins(bins, data);

24

25 // transition from accumulate mode to read mode

26 bins.sync();

27

28 // Print the histogram.

29 if (thisIndex == 0) print_array(bins);

30

31 // Contribute to Driver::done to terminate the program.

32 contribute();

33 }

34

35 void fill_array()

36 {

37 // Just let one thread fill the whole data array

38 // with random entries to be histogrammed.

39 //

40 // Note: this is potentially a very inefficient access

41 // pattern, especially if the MSA doesn’t fit into

42 // memory, but it can be convenient.

43 for (unsigned int r = 0; r < data.getRows(); r++) {

44 for (unsigned int c = 0; c < data.getCols(); c++) {

45 data.set(r, c) = random() % MAX_ENTRY;

46 }

47 }

48 }

49

50 void fill_bins()

51 {

52 // Determine the range of the data array that this

53 // worker should read from.

54 unsigned int range = ROWS / WORKERS;

55 unsigned int min_row = thisIndex * range;

56 unsigned int max_row = (thisIndex + 1) * range;

57

58 // Count the entries that belong to each bin and accumulate

59 // counts into the bins.

60 for (unsigned int r = min_row; r < max_row; r++) {

61 for (unsigned int c = 0; c < data.getCols(); c++) {

79

62 unsigned int bin = data.get(r, c) / (MAX_ENTRY / BINS);

63 bins(bin) += 1;

64 }

65 }

66 }

67

68 void print_array()

69 {

70 for (unsigned int i=0; i<BINS; ++i) {

71 CkPrintf("%d ", bins.get(i));

72 }

73 }

74 };

The Charj version of this histogram application, given in listing 5.11 is

similar to the handle-less approach, but it adds phase names to the syn-

chronization calls (e.g. one might call syncToAccum rather than sync, but

the call is made directly on the MSA in question rather than on a handle

object. This adds semantic information about the programmer’s intent and

improves code readability. Actual detection of MSA access mode violations is

done by the compiler. Additionally, array access syntax uses square brackets

for consistency with sequential array access syntax, rather than getter/setter

functions and overloading of the parentheses operator.

The ability to use MSAs in a message-driven application makes it much

simpler to express a variety of interaction patterns that involve unstructured

or simply complex sharing of data across processor boundaries, as long as

that sharing conforms to a phase structure that can be expressed within

MSA. While this is more restrictive than a general-purpose partitioned global

address space array package, it provides much greater safety guarantees and

offers the possibility of increased scope for runtime optimizations thanks to

its rigid phase structure.

Listing 5.11: The core of the Charj version of the histogram application.

1 chare Histogram

2 {

3 // Member variables and constructor omitted for brevity

4 public threaded entry void start()

5 {

6 data.syncToWrite();

7 bins.syncToAccum();

80

8

9 if (thisIndex == 0) fill_array(data);

10

11 data.syncToRead();

12 fill_bins(bins, data);

13

14 print_array(bins);

15 contribute(null, CkReduction.nop, Driver.done);

16 }

17

18 private void fill_array()

19 {

20 for (unsigned int r = 0; r < data.getRows(); r++) {

21 for (unsigned int c = 0; c < data.getCols(); c++) {

22 data[r, c] = random() % MAX_ENTRY;

23 }

24 }

25 }

26

27 private void fill_bins()

28 {

29 unsigned int range = ROWS / WORKERS;

30 unsigned int min_row = thisIndex * range;

31 unsigned int max_row = (thisIndex + 1) * range;

32

33 for (unsigned int r = min_row; r < max_row; r++) {

34 for (unsigned int c = 0; c < data.getCols(); c++) {

35 unsigned int bin = data[r, c] / (MAX_ENTRY / BINS);

36 bins[bin] += 1;

37 }

38 }

39 }

40

41 private void print_array()

42 {

43 bins.syncToRead();

44 if (thisIndex != 0) return;

45 for (unsigned int i=0; i<BINS; ++i) {

46 CkPrintf("%d ", bins[i]);

47 }

48 }

49 };

81

5.5 Heterogeneous Computing

The increasing use of floating point accelerator hardware such as general pur-

pose graphical processing units (GPGPUs), field programmable gate arrays

(FPGAs), and the Cell processor, and heterogeneous systems that incor-

porate both traditional multicore processors and accelerators in HPC sys-

tems presents a challenge to developers of HPC applications. The high peak

performance and energy efficiency associated with accelerators make them

attractive targets for compute-intensive HPC codes, but this hardware is

widely considered difficult to use effectively, relative to more conventional

hardware [56–58].

However, the natural data encapsulation and virtualization provided by

the Charm++ runtime system make it well-suited to the effective use of ac-

celerator hardware. This observation led to the development of accelerated

entry methods [23,59], which are chare entry methods that the runtime may

choose to execute on accelerator hardware (but which may still be executed

on a traditional host core. By expressing an application’s expensive com-

putational kernels as accelerated entry methods, the programmer allows the

runtime system to use available acceleration hardware. This can allow work

to be shared between all the different available hardware resources, which

increases the scope for dynamically balancing computational load between

host and accelerator hardware at runtime.

Accelerated entry methods, as implemented in Charm++, look similar

to normal entry methods with a number of syntactic and semantic differ-

ences. They are identified with the accel keyword and are both defined and

declared in the Charm++ interface file, so as to give the translator the req-

uisite information needed to produce both a host implementation and one or

more accelerator implementations of the function in question. In addition,

accelerated entry methods require some special syntax and have additional

restrictions compared to non-accelerated entry methods:

1. In addition to the formal parameters of the method, the programmer

must specify which member variables of the parent chare class will be

accessed in the body of the function. These are referred to as the local

parameters. Local parameters are marked as readOnly, writeOnly, or

readWrite depending on the needs of the method. Any writeOnly or

readWrite local parameters are copied back to the host device at the

82

end of the method’s execution if the execution took place on accelerator

hardware.

2. Each accelerated entry method has an associated callback function,

specified by the programmer at the end of the function body. This entry

method is invoked on the host core when execution of the accelerated

entry method is complete.

3. Within the body of the accelerated entry method, the use of some

language features is restricted. Most notably, other entry methods

may not be invoked from the body of an accelerated entry method.

In other respects, accelerated entry methods are the same as any other

entry method. In order to demonstrate the use of accelerated entry meth-

ods and illustrate their associated syntax, in listing 5.12 we present simple

Charm++ code which takes two matrix tiles as input, multiplies them, and

adds the result to a third matrix tile stored locally on the Tile chare.

In the listing, the local tile is a variable named C, and has M rows and N

columns. Line 3 of the listing contains the local parameter list. It indicates

that the local variable C in this function corresponds to the chare member

variable C, and that it is both read and written in the method. The body

of the method simply performs the matrix multiply. At the close of the

method on line 13, the completion callback calcTile callback is given.

This callback will be invoked by the runtime system once the method has

completed and, if the execution took place on an accelerator, any modified

chare member variables have been copied back to the host core.

5.5.1 Accelerated Entry Methods in Charj

Charj presents several opportunities for simplifying the process of developing

applications which make use of accelerated entry methods. Because of the

lack of compiler support in the Charm++ implementation, the programmer

must manually specify a variety of information that is either readily available

to or easily computed by the compiler.

For example, consider the specification of local parameters. Any chare

member variables used in the body of an accelerated entry method must be

declared in the local parameter declaration block, using syntax of the form:

83

Listing 5.12: An accelerated entry method for multiplying matrix tiles in
Charm++.

1 entry [accel] void calcTile

2 (int M, int N, int K, float A[M*K], float B[K*N])

3 [readWrite : float C[M*N] <impl_obj->C>]

4 {

5 for (int row=0; row<M; ++row) {

6 for (int col=0; col<M; ++col) {

7 float cv = 0;

8 for (int elem=0; elem<K; ++elem)

9 cv += A[elem+K*row]*B[col+N*elem];

10 C[col+N*row] += cv;

11 }

12 }

13 } calcTile_callback;

1 access_specifier : type local_name <impl_obj->member_name>

where access specifier is one of readOnly, readWrite, or writeOnly,

type is the variable’s type, local name is the name used for the variable

in the accelerated entry method, and member name is the name given to the

variable in its containing class. This specification allows the generation of

code to copy class variables into an accelerator’s address space and back out

again as necessary. The impl obj syntax is clunky, but it simplifies the code

generation process undertaken by the Charm++ translator.

However, all of the information provided in the local parameter declara-

tion is also present in the method body. The information is opaque to the

Charm++ translator because it does not parse the C++ method body, but

in a Charj implementation of accelerated entry methods, we have full access

to it. We need only identify all class variables used in the accelerated entry

method, and all potential writes to and reads from these variables.

We use an interprocedural dataflow analysis [55] to identify, for each vari-

able, whether it is only written, only read, or potentially both written and

read. We consider a class variable readable at a point in a function if there

is any path from that point along which it is read, and writable if there is

any path along which it is written. If we denote the set of variables that

is readable at the entrance of basic block b as readable(b), and the corre-

sponding set of writable variables as writable(b), then in order to produce

a correct local parameter declaration for a function whose prologue is p, we

84

Listing 5.13: A Charj equivalent to the Charm++ accelerated entry method
in listing 5.12.

1 accelerated entry void calcTile(int M, int N, int K,

2 Array<float>A, Array<float> B)

3 {

4 for (int row=0; row<M; ++row) {

5 for (int col=0; col<M; ++col) {

6 float cv = 0;

7 for (int elem=0; elem<K; ++elem)

8 cv += A[elem+K*row]*B[col+N*elem];

9 C[col+N*row] += cv;

10 }

11 }

12 } calcTile_callback;

must simply compute readable(p) and writable(p):

readWrite = readable(p) ∩ writable(p)

readOnly = readable(p)− readWrite

writeOnly = writable(p)− readWrite

Because we are simply computing the union of all reads and writes to

variables, the variables that are readable in a block are simply the union

of those that are readable at the end of the block and those that are read

within the block itself, and similarly for writable variables. We apply this

condition iteratively until the sets of readable and writable variables in each

block remain unchanged. Because Charj functions may include calls to C++

functions or blocks of C++ code that are not analyzable by the compiler,

any local parameter which is available to C++ code is assumed to be both

written and read.

By automatically computing the readWrite, readOnly, and writeOnly set,

we avoid the need for local parameter declarations in Charj. As a result,

accelerated entry methods in Charj look very similar to their unaccelerated

siblings, except for the use of the accelerated keyword and the presence of

the final callback, as shown in listing 5.13.

In addition, the removal of local parameter declarations avoids a possible

source of bugs in the Charm++ implementation. Although the programmer

must specify whether a given local parameter is read only, write only, or

read/write, there is no enforcement or verification mechanism to ensure that

85

then local parameter in question is actually used in the way specified.

If the programmer wrongly declares a variable to be readonly, any writes

to that variable will still occur. If the accelerated entry method happens

to be executing on accelerator hardware, those writes will be lost, because

readonly local parameters are not copied back to the host when execution

completes. However, if the method is executed on the host, the writes will

persist. Since the runtime makes dynamic decisions about which hardware to

execute on at runtime, this non-deterministic bug may be extremely difficult

to identify.

If, on the other hand, a variable is marked as read/write or writeonly and

is in fact only ever read, the program will work as intended, but suffer from

decreased performance due to unnecessary copying of the local parameter in

question.

By eliminating the need to mark the access mode of local parameters, or

indeed to declare local parameters at all, the Charj version of accelerated

entry methods remove a possible source of programmer error while simplify-

ing the process of writing accelerated entry methods and presenting a more

familiar and consistent syntax to the programmer.

Aliasing

Generally, the parameters of entry methods are guaranteed not to alias be-

cause each resides in a separate buffer packed by the sender. However, local

parameters in accelerated entry methods represent an unusual problem be-

cause local parameters are only packed and unpacked in the event that the

method is executed on an accelerator. Therefore, if two class variables alias

one another, different behavior will be observed if the method executes on

the host than if it executes on the accelerator.

Consider the case of two arrays, A and B, which both refer to the same

region of memory. In an accelerated entry method, all even indices of A are

written to, and all odd indices of B are written to. If this method is executed

on the host core, at its completion all of the writes will persist. However, if

it is executed on an accelerator, A and B will represent two different buffers

on the device, and which ever one is copied back to the host last will be the

only one to persist.

We do not detect the potential aliasing of class variables in our analysis of

86

accelerated entry methods. Even if we did, there is currently no mechanism in

the runtime code used to execute accelerated entry methods that would allow

for correct behavior in the case of aliased local parameters. So, in this respect

Charj shares the same shortcoming of the C++ implementation of accelerated

entry methods. In practice, the requirement that local parameters do not

alias has not caused any difficulties in application development thus far.

5.6 Summary

The Charm++ runtime system is a capable platform that can support a wide

variety of programming models built on top of its message-driven foundation.

It offers high performance, flexibility, and the possibility for significant run-

time optimizations. However, past models implemented on Charm++ have

suffered from inelegance. In the case of multiphase shared arrays, this inele-

gance stemmed from the difficulty of enforcing programming model semantics

from within the confines of a C++ library.

In the case of Structured Dagger and Accelerated Entry Methods, the

inelegance stemmed from the use of the Charm++ translator as an ad-hoc

compiler for syntax added onto C++. Because the analytical power of the

Charm++ translator is relatively limited and because the C++ code that still

makes up the bulk of the syntax of both Structured Dagger and Accelerated

Entry Methods is entirely opaque to the translator, these models could not

take full advantage of the features offered by a compiler, nor were they well

integrated with C++ code.

By implementing these programming models within Charj, we integrate

them more tightly into mixed codebases, provide clearer syntax to the pro-

grammer, eliminate the possibility for common errors while gaining the abil-

ity to issue warnings or error messages for problematic code, and create the

possibility for model-specific optimizations that would not be possible using

the hybrid C++ and translator approach.

87

CHAPTER 6

OPTIMIZATIONS

This chapter discusses parallel-specific optimizations enabled by the Charj

compiler. It starts with a discussion of the basic compiler techniques used,

then goes on to describe their application in the context of specific problems

in Charm-style parallel applications.

Compiler optimization is ostensibly a tool for improving the performance of

programs. It can, when executed well and applied in the correct context, take

naive code that ignores important performance issues (potentially specific to

a particular hardware architecture) and produce efficient binaries. Viewed in

this light, compiler optimizations are a performance-improving technology.

However, compiler optimization can also provide value in the opposite di-

rection, by removing the necessity to write sophisticated code that is made

more bulky and obscure because of performance considerations. For the

sophisticated and performance-sensitive applications that are typical of the

HPC world, the potential benefit of improved compiler optimization is typ-

ically not improving the performance characteristics of straightforward but

poorly performing code. Rather, it is the replacement of baroque and opaque

but high-performing code with simpler and more straightforward code that

attains the same performance while becoming more maintainable and more

accessible to non-experts. Viewed in this light, compiler optimizations are a

productivity-improving technology.

HPC applications tend to be highly optimized by their very nature. Al-

though much productive research and huge amounts of development time

88

have been dedicated to automatic techniques for improving performance, ex-

tensive hand-tuning is still the norm, particularly for performance-sensitive

computational kernels.

In part, hand optimization is the product of the need to run efficiently

on a large variety of hardware, often while supporting a wide collection of

different compilers provided by different vendors. In the case of Charm++,

the nightly build tests alone include over a dozen compiler configurations

created by multiple providers including GNU, IBM, Microsoft, PGI, and

Intel [60]. The variety of hardware and compilers that must be supported by

the software prevents developers from relying on optimizations that aren’t

provided by even the least effective supported compiler configuration. In

fact, highly tuned (and self-tuning) software such as ATLAS [61] sometimes

goes to substantial lengths to prevent the compiler from trying to perform

optimizations that might undo their own performance tweaks and degrade

performance.

The need for labor-intensive hand optimizations is also driven in some part

by the need to support a large variety of hardware. Even considering only the

top 10 supercomputers as ranked by [62] as of November 2011, portable high

performance codes must work not only on the familiar Intel Xeon and AMD

Opteron multicore processors, but also on Fujitsu SPARC64 and IBM Pow-

erXCell, and NVIDIA GPU architectures. Particularly in the case of Cell

and GPU accelerator hardware, programmers must write special-purpose

architecture-dependent code to fully take advantage of the hardware’s po-

tential.

This diversity of hardware to be supported is a substantial challenge not

only to HPC application developers, but also to anyone aiming to provide

practical improvements to the compiler optimizations used by HPC pro-

grams. Even a very effective optimization that would allow the programmer

to substantially simplify his or her program will not produce any simplifica-

tion of code in practice unless it can be applied across the whole range of

architectures and software tool-chains that the program supports.

With Charj, our research agenda is focused on producing enabling technol-

ogy that simplifies the task of producing high performance parallel programs.

Therefore, given high complexity of typical HPC code and the relative so-

phistication of HPC programmers, compiler optimizations in Charj serve

primarily as a tool for enhancing programmer productivity by simplifying or

89

eliminating the need for program elements that may be complex and bug-

prone, repetitive and time-consuming, or time consuming to edit and modify.

Our goal is not to advance the state of the art in performance-enabling anal-

ysis and optimization, but rather to supply “retail-level” optimizations based

on well-understood compiler techniques, but to aim these optimizations di-

rectly towards what we believe to be a valuable target: the productivity of

practicing HPC application developers. By identifying common but labor-

intensive programming tasks, particularly tasks that are specific to parallel

application development in a message-driven context, we aim to provide sub-

stantial value without the need for groundbreaking analytic techniques.

6.1 Loop Optimizations for MSA

The multiphase shared array programming model (as described in section 5.4)

is carefully constructed to allow for a minimum of communication within any

given array phase. Minimizing intra-phase communication is important to

achieve high performance and prevent thread blocking on accesses.

One of the most common causes of intra-phase communication for an MSA

is the reading of array elements that are not locally available. MSA arrays

are globally accessible. That is, any thread can access any element of an

MSA without regard for its actual location in a distributed memory ma-

chine. However, as MSA arrays are distributed data structures, not all array

elements are actually present in the thread’s local address space.

The actual management of MSA data by the runtime system is somewhat

analogous to the way that an operating system might handle virtual memory.

The array is decomposed into pages, with each page being a member of

a chare array that manages the mapping of the array pages onto physical

resources. The runtime system maintains a local cache of MSA pages on

each processor. Local MSA operations first check the local cache, and only

fetch remote pages if the page in question is unavailable locally. The page

size of each MSA can be independently set programmatically when the MSA

is created. More details on the runtime operations that support the MSA

programming model are provided in section 5.4.1.

Given MSA’s page caching system, let us now consider its implications for

common array access patterns. In listing 6.1, the programmer accesses each

90

Listing 6.1: A simple loop over a two dimensional M ×N MSA array.

1 for (int i=0; i<N; ++i)

2 for (int j=0; j<M; ++j)

3 x += A[j, i];

Figure 6.1: The access pattern associated with the code in listing 6.1. Each
row of the array is accessed in turn. Arrows from the last element of a
row to the first element of the subsequent row are omitted to simplify the
diagram. The MSA array has a block-cyclic distribution, and each array
page is indicated by its own color.

element of a two dimensional M ×N MSA in row-major fashion. Since the

data for this array is distributed across potentially many different address

spaces, this series of accesses will involve communication to fetch remote data

into the local MSA cache, from which is can be read.

However, since the array access pattern is oblivious to the page structure

of the array, it potentially incurs much more communication overhead than is

necessary. Suppose the array is laid out in block cyclic fashion, so that each

page is a square subregion of the array. Figure 6.1 illustrates the combination

of row-major access pattern and block-cyclic data distribution on the array.

For illustrative purposes, suppose that the local MSA page cache holds only

a single page, and that this is the only MSA being used by the application.

In that case, we incur two page faults per row accessed: one on the first

element of the row, and one on the transition between pages that each row

contains. In our illustrated example, with M = N = 8 and a block size of

4 × 4, this corresponds to 16 page faults, four for each of the four pages in

the array. The accessing thread may share the same location as one or more

of these pages, or it may not share the same location as any of them, so the

actual communication volume induced by this access pattern is dependent

on the runtime distribution of MSA objects. However, in the worst case we

send each page to the accessing thread’s cache four times, resulting in a worst

91

Figure 6.2: The access pattern associated with the code in listing 6.2. Ar-
rows that cross row transitions within a block are omitted to simplify the
diagram. The tiled access pattern accesses each element of one MSA page
before moving on to the next one.

Listing 6.2: A tiled version of the loop in listing 6.1, with block size W ×H.
The outer loops iterate over pages, and the inner loops iterate over elements
of each page.

1 for (int i=0; i<N; i+=H) {

2 for (int j=0; j<M; j+=W) {

3 for (int x=i; x<min(i+H, N); ++x) {

4 for (int y=j; y<min(j+W, M); ++y) {

5 x += A[j, i];

6 }

7 }

8 }

9 }

case communication volume of 4×M ×N elements.

To reduce this overhead, we must modify the access pattern. By accessing

all elements of a page before moving on to the next page, we request each

page a maximum of one time and communicate at worst a volume of M ×N

elements. Since we never request any element more than once and we can

never be guaranteed that any array elements are local to us to begin with,

this is the lowest achievable worst case communication volume.

The performance gains that we can achieve on MSA loops is not limited

to modifying the access pattern to improve cache performance. We can

also explicitly prefetch MSA pages that will be needed in future iterations,

as shown in listing 6.3. By invoking prefetch calls one page ahead of the

currently accessed page, we effectively overlap the communication involved

with transmitting remote pages to the local cache with the computation

associated with loop iterations that access the current page.

In addition, by ensuring that the page in question is in the local cache

92

Figure 6.3: If the array is distributed in blocks of columns, a different access
pattern would be appropriate. Loop interchange could be used to access
entire columns in the inner loop, or the loop order can be preserved while
still proceeding block by block. This access pattern results from the same
code as shown in listing 6.2 and figure 6.1, but with long, thin blocks rather
than square ones. The only values that change are H and W .

before any accesses to the page data, we can improve the performance of

array accesses themselves. Because arbitrary accesses to MSA array data

may refer to elements that do not exist locally, the default implementation

of the MSA data access function involves a conditional check to ensure that

the requested element is locally available before it goes on to access the

requested element. However, if we can ensure that the data in question is in

fact locally available, we can directly access that data via a special accessor

function that does not do safety checking to ensure that requested elements

are local, thereby improving the performance of each local array access.

This page prefetching technique could form the basis of a more sophisti-

cated adaptive page prefetcher. The amount of prefetching that minimized

time to completion depends on a variety of factors that may be known only

at runtime, including cache occupancy, network congestion, and available

bandwidth. A sufficiently sophisticated prefetching scheme could actively

measure these quantities and dynamically adjust the prefetching policy to

conform with the current situation. While programmers can and do insert

simple prefetching code into their own MSA loops to improve performance,

the use of such a system would be highly inconvenient even to a performance-

conscious programmer. However, by inserting such code automatically with-

out user intervention, we can make any performance gains associated with

this type of system available everywhere without any penalty in code com-

plexity.

Loop tiling is in itself a large and complex area of active research in compil-

93

Listing 6.3: MSA page prefetching can be used to better overlap commu-
nication and computation, improving performance further. We also achieve
performance gains by ensuring that all page elements are available locally,
then using a raw access function that directly accesses array memory, rather
than going through an access layer that first checks for local availability.

1 A.prefetch_page(0);

2 for (int i=0; i<N; i+=P) {

3 if (i+P < N)

4 A.prefetch_page(i+P);

5 A.wait_for_page(i);

6 for (int x=i; x<min(i+P, N); ++x) {

7 x += A.raw_access(i);

8 }

9 }

ers. Significant work has been done on tiling for complex architectures and

complex loop structures [63–65], and even on tiling that explicitly targets

parallel architectures and programming models [66,67].

It is not our goal in this work to extend the frontiers of loop tiling research,

nor even to make use of cutting edge performance optimization techniques.

Rather, we simply aim to demonstrate the applicability of common compiler

techniques to specific performance problems introduced in the context of a

multi-model parallel runtime. As such, we have implemented only basic loop

tiling for perfectly nested loops without dependencies between iterations.

Future efforts to extend this work, for example by introducing polyhedral

analysis or improved dependency tracking, would expand the applicability

of this optimization to many commonly used forms of loops and thereby

broaden its impact on the performance of actual MSA programs.

6.1.1 Possible Library Implementation

Loop tiling is a classic compiler optimization, particularly in the context

of cache optimization. As such, it naturally suggested itself as a possible

optimization in the context of MSA array accesses. However, it is important

to note that this optimization need not be presented to the programmer only

in the form of a compiler optimization.

In the case of Charj, we observe the pattern of access to an MSA array,

and potentially modify that pattern if it is both safe to do so and we predict

94

Listing 6.4: Some of the advantages of our MSA loop optimizations could be
captured in C++ applications by using an iterator-based approach, which
encapsulates tiled array access inside an opaque iterator.

1 for (MSA1D<int>::tiled_iterator i = a.begin(); i != a.end(); ++i)

2 x += *i;

3 }

that doing so will increase performance, particularly in the form of reduced

misses in the MSA page cache. However, one can also pursue an alternate

strategy of making the particular array access pattern to be used opaque to

the programmer in the text of the program, and making the decision about

how to best iterate over array elements within library code that selects an

efficient pattern statically.

One natural way to implement this alternative approach is as a C++

iterator, which has the advantage of integrating cleanly with the C++ im-

plementation of MSA. By making the programmer interact with an opaque

array handle with an abstract operator that advances to the next element,

the writer of the iterator controls the pattern in which the array is accessed.

The possible use of such a scheme in application code is demonstrated in

listing 6.4.

Such an implementation can perform MSA page tiling and loop prefetch-

ing itself, and ensure that array accesses avoid the overhead of availability

checking, capturing the same performance benefits of our Charj approach.

However, this iterator-based approach is much more limited in the loops

that it can potentially support. While we have not implemented any so-

phisticated dependence analysis in the Charj compiler, we have the potential

to support much more general data access patterns than the simple, one

element at a time in predetermined order pattern that the iterator-based

approach requires. In addition, a compiler-based approach can potentially

take advantage of other optimizations, such as code motion, in the context of

MSA, while the iterator-based approach has no such possibility. Thus, while

the iterator-based approach is potentially quite useful to C++ programmers,

its applicability and versatility are potentially much more limited than the

compiler-based alternative.

95

6.2 Optimizing Data Exchange

Empirical studies have sometimes suggested that shared memory program-

ming is more productive than distributed memory [68]. One of the factors

that weighs against distributed memory programming in this analysis is the

need to pack and unpack application data. Any disagreement between pack-

ing code and the corresponding unpacking code can lead to subtle bugs, and

the code must be carefully maintained whenever the data being transmitted

changes.

In object-oriented programs, the data being transmitted will typically in-

clude user-defined types. In most programming models with explicit messag-

ing, the programmer must provide code to handle the packing and unpacking

of these types. This support for managing the communication of user-defined

types is notable for requiring the programmer to manually specify informa-

tion that the compiler itself must already know–that is, the types of the

variables involved and how they are laid out in memory.

There are many methods by which the code which transmits application

data can be created. Perhaps the simplest approach is for the programmer

to do the work manually. This largely consists of determining the size of the

data to be sent, allocating a buffer of the appropriate size, and then copying

the relevant application data into the buffer.

The advantage of this technique is that it is completely customizeable. If

a subfield of some user-defined type is needed by a receiver in some portions

of an application but not others, the programmer can account for this fact

directly. If several variables are known to be contiguous in memory, they can

be copied as a block rather than individually.

However, the drawbacks of this approach are obvious. It is a lot of repeti-

tive work to specify all the data that an application transmits in detail, and

whenever application data structures change, all the packing and unpack-

ing code has to change with it. It is also error prone, and there is no easy

way of verifying that the packing and unpacking is bug-free. While this ap-

proach may be feasible, and even high-performance given time and effort, it

is extremely poor for productivity.

Alternatively, the programmer may use a library to assist with creating

the code. This approach has the advantage that well-designed libraries can

significantly ease the process of writing packing and unpacking code while

96

increasing confidence in that code’s correctness. These libraries range from

the relatively spartan to full-featured libraries such as Boost.Serialization

which include features for cyclic data structures and conditional packing.

However, these libraries typically lack the flexibility to efficiently change

the way that an object is packed based on application context. Each field

of a type must be either always included or always excluded, leading to

inefficiencies. They also require at least some level of intervention by the

programmer to integrate their data structures with the library in question.

A large amount of work has been done on data marshalling, both on im-

proving efficiency and on reducing the burden on the programmer. Systems

such as Sun RPC [69] provided for marshalling of C structs, using a high-level

specification for communication in concert with a stub compiler. Later sys-

tems such as CORBA [70] extended this functionality into the object-oriented

world. Later work improved the efficiency of generated marshalling code by

dynamically choosing between runtime interpretation of data descriptions

and compilation [71–73]. However, these systems all require the program-

mer to explicitly describe the data to be marshalled and do not attempt to

determine if any unused data is being transmitted.

More recently there have been several approaches published for providing

serialization of C and C++ data structures in MPI applications. C++2MPI [74]

and the MPI Preprocessor [75] are both capable of automatically extracting

MPI Datatype definitions from C and C++ types. They generate a list of

offsets describing the location of all data to be marshalled relative to the

base address of the user’s data. However, they are limited to marshalling

the structure in its entirety and do not handle the case of omitting unneeded

data, even in simple cases where the unneeded data does not depend on

application context.

AutoMap and AutoLink [76] are also tools that extract MPI datatypes

from user code. However, they are limited to C and require the programmer

to annotate which fields to pack and which to omit.

Software engineering tools focused on boosting productivity through refac-

toring have also targeted data marshalling as an area where productivity

gains can be had [77]. In [78], Tansey and Telvich describe a graphical tool

for generating marshalling code in an MPI context. They allow for multiple

versions of the marshalling code to account for the case where different data

is needed by the receiver in different application contexts, much as we do

97

here. However, they rely on the user to manually specify which fields will

be packed and which will be omitted in each case, whereas we generate all

marshalling code automatically and use compiler analysis to determine which

fields to omit.

Boost.Serialization takes a library-based approach to providing simple mar-

shalling for C++ datatypes [79]. This library provides largely automatic sup-

port for serializing C++ data, but provides no facility for selectively omitting

member data depending on context.

Many programming languages explicitly targeted at parallel applications

provide automatic marshalling of data or simply present a programming

model in which marshalling of user-defined types is not an issue. Gener-

ally in programming models where communication is performed via explicit

messages marshalling is not entirely automated. This allows the programmer

some control over how marshalling takes place. In models where messaging is

implicit, the programmer may not even need to consider marshalling. How-

ever, in our case we wish to facilitate the productive use of a programming

model that does require explicit messaging rather than avoiding the issue

altogether.

6.2.1 Implementation

We use Charj to address the problem of packing and unpacking application

data in a distributed memory environment in a way that minimizes the bur-

den on the programmer while maintaining high performance. We avoid the

need for the programmer to manually specify how data structures will be

packed and unpacked, and even avoid the need for the programmer to spec-

ify which fields of a user-defined type should be packed and which do not

need to be sent and can be safely excluded. We do this while producing effi-

cient packing and unpacking code which does not require maintenance when

application datatypes or communication patterns are changed.

To this end, we use the information available at compile time to generate

packing code that guarantees type safety while eliminating the need for man-

ual intervention by the programmer. Because the compiler knows the data

layout of each type it can effectively generate packing and unpacking code

that does not require updates from the programmer. However, a straight-

98

Pack Send

(a) The simplest approach is to simply
pack the entire data structure regardless of
which fields are needed and which are not.
This is wasteful of space but maintains en-
capsulation.

Pack Send

(b) By writing a custom packing routine,
the programmer can ensure that no data
is unnecessarily transmitted at the cost
of breaking encapsulation at the receiving
side.

Pack Send

(c) Our technique packs only required
fields, but reconstitutes this data on the
receiving side as though it was the full ob-
ject. This maintains encapsulation without
wasting bandwidth, but does incur mem-
ory overhead on the receiving side.

Figure 6.4: Three approaches to message packing and unpacking. The left-
most box represents a data structure to be sent, and the rectangles inside it
represent its fields. The middle box represents the message buffer, and the
rightmost box represents the unpacked data at its destination. Fields that
are required by the receiving side are colored blue, while wasted memory is
colored pink.

forward implementation will still pack data that may not be needed on the

receiving side. The programmer can specify which fields to skip, but this re-

quires user intervention and doesn’t allow for the possibility that some fields

may be needed in one situation but not in another.

One of the benefits of our approach is that it does not require complex

or time-intensive compiler analysis. For each remotely invocable method in

our application, we wish to produce a function that will pack its arguments,

discarding any data which can be proven to be unused. The primary question

to be answered is, which variables can be discarded?

Fortunately, there is a simple compiler analysis that answers this question.

99

Since the function does not interact with its unused fields, the values in those

fields are not used in any control flow path that begins at the head of the

functions control flow graph. Thus, the function argument fields that are

not needed in the body of the function are simply those fields that are not

live at the start of the function. Live variable analysis is a well-known and

well-studied algorithm [80], so implementation is straightforward. We per-

form interprocedural analysis where possible, and when code from external

libraries is invoked we pessimistically assume that all fields of all arguments

to external functions are used.

We treat each user-defined type as a set of elements, with each element

corresponding to one field. The output of the live variable analysis is the set

of all elements which are live at the function’s beginning. Using this set we

generate packing code specific to this function which copies each live vari-

able into a buffer, and corresponding unpacking code which reconstitutes the

function arguments on the receiving side. To minimize the complexity of our

implementation we recreate the full types of all function arguments. This is

potentially wasteful of memory, as shown in figure 6.4(c). A better approach

would be to transform the receiving function so that instead of expecting the

set of arguments specified by the programmer, it instead expects the set of

variables that it actually uses. We do not believe that this transformation is

difficult, and have left it for future work.

6.2.2 Case Studies

To get a clear idea of how this all works in practice, it is helpful to look at

message packing in the context of actual applications. One of the principal

advantages of our technique is that it allows the programmer to describe com-

munication in terms natural, high-level objects with semantic meaning rather

than simply enumerating the data that will be consumed by the receiving

function. However, this benefit cannot be demonstrated on tiny programs

like microbenchmarks, because by their nature they are stripped down to the

bare essentials needed to perform one task effectively. Thus there are typi-

cally no high-level objects that are used in multiple different ways in different

contexts, as one would expect in a more realistic application.

To show how our message packing scheme works in an application context

100

without introducing the full complexities and size of a real production HPC

code, we present two case studies taken from the examples provided with the

Charm runtime system. These are scaled-down, simplified applications that

maintain the structure of more sophisticated scientific codes, but in a smaller

and simpler package.

Molecular Dynamics

Charm is best known for NAMD [81], a popular molecular dynamics program

in common use at national supercomputing sites. However, NAMD is large

and complex, and we do not have the resources that would be required to port

NAMD to Charj. However, Charm provides an example molecular dynam-

ics program, named Molecular2D, with similar overall structure to NAMD

but with greatly simplified two-dimensional physics. Since this program is

provided for pedagogical purposes we might expect it to be written in a way

that maximizes clarity at the cost of performance, and in fact this is the case,

at least when it comes to message packing.

The primary data structures used in Molecular2D are Particles, which

represent the physical objects being modeled, and Patches, which represent a

region of space which may contain any number of particles. Listing 6.5 shows

the full definition of the Particle type, which mostly consists of information

regarding the physical properties of the particle.

The application simulates the motion of these particles over a series of

timesteps. In each step, particles within a certain radius exert forces on

one another, affecting the position, velocity and acceleration of each. Ob-

jects called computes are responsible for managing the interactions between

neighboring patches. Each patch sends data regarding its particles to com-

pute objects so that they can determine the effect of those particles on parti-

cles belonging to other nearby patches. As the position of a particle changes,

it may be migrated from one patch to another.

Listing 6.6 shows the signatures of the functions used by each patch to com-

municate particle information during each timestep. These are both remotely

invoked functions, so their arguments have been marshalled by potentially

remote elements. The updateForces function is called by a compute which

has calculated force contributions to local particles. The function’s argument

101

Listing 6.5: The central particle data structure used by Molecular2D, and its
accompanying PUP method.

1 class Particle{

2 public:

3 int id;

4 double mass; // mass

5 double pos[2]; // position

6 double f[2]; // force

7 double a[2]; // acceleration

8 double v[2]; // velocity

9

10 void pup(PUP::er &p) {

11 p | id;

12 p | mass;

13 p(pos, 2);

14 p(f, 2);

15 p(a, 2);

16 p(v, 2);

17 }

18 };

Listing 6.6: Methods in Molecular2D which receive Particle objects from
remote senders. Each takes a list of particles from a remote object which has
packed the particle data into a buffer and delivered it to the current patch.

1 class Patch {

2 void updateForces(

3 vector<Particle> particles);

4 void updateParticles(

5 vector<Particle> updates);

6 // ...

7 };

is a list of particles corresponding to local particles which have forces exerted

on them by particles from another patch. The function simply updates the

net force on its own particles based on the information it receives from the

compute object. The updateParticles function migrates particles which

have moved outside a patch boundary to the appropriate neighboring patch.

This function’s argument is a list of formerly remote particles which have

moved within the boundaries of the patch during the last timestep.

Semantically, both of these functions operate on a combination of local and

remote particle data, so it is natural that they each receive a list of particles

as their argument. However, their use of the particle data they receive is

quite different. In the case of updateParticles, the particles in the list

102

Listing 6.7: A pup function equivalent to the packing code Charj generates
for the updateForces method.

1 void Particle::pup(PUP::er &p) {

2 p(f, 2);

3 }

are migrating to a new patch, and so none of their data can be omitted–

each particle will need all of its fields in the next timestep in its new patch.

However, this is not the case for updateForces. These particles are not

migrating, only contributing to the forces exerted on some local particles.

Indeed, if we look at the function body in detail, we can see that the only

fields of the received particles that used are the forces. The force members

represent 16 bytes out of a total of 76 bytes per particle, so nearly 80% of

the data transmitted to updateForces is pure waste.

In translating this code to Charj, the functions remain mostly unchanged,

except that the pup function is now unnecessary. However, the actual commu-

nication that takes place is much different. During compilation, updateParticles

and updateForces are each analyzed to determine which fields of their

arguments are potentially used. In the case of updateForces the forces

are the only particle components that can possibly be read, so method-

specific packing code equivalent to listing 6.7 is generated. In the case of

updateParticles, the elements of the argument array are added to a data

structure belonging to the patch, and from that point on any of their fields

could be accessed by Patch methods. Therefore the packing code generated

by Charj for this function is equivalent to the full pup method of the original

application.

N-Body Simulation

The second application we consider is a modified version of the Barnes-Hut

N-body algorithm [82] from the well-known SPLASH-2 suite [83]. The mod-

ifications are limited to porting the application to use the Charm runtime.

The kernel and overall structure of the application remain unchanged.

In this application, a volume of space containing particles is divided into

regions using an oct-tree, with each leaf of the tree representing a volume of

space that contains an approximately the same number of particles, though

103

Listing 6.8: A method in the Barnes-Hut application that passes information
down the tree. It receives several arguments, each of which is a field of the
parent object.

1 void recvRootFromParent(uint8_t root_id,

2 double rx, double ry,

3 double rz, double rs);

Listing 6.9: A Charj method signature corresponding the the method in
listing 6.8.

1 void recvRootFromParent(TreePiece parent);

the size of these volumes may vary greatly depending on the spatial particle

distribution. Then when performing n-body calculations, only particles from

nearby volumes must be considered individually, with the contribution of

particles from remote volumes only approximated.

The primary communication that takes place in this application is the

passing of interaction data up and down the tree. The tree is decomposed

into disjoint segments called TreePieces, and data is communicated between

pieces via remote invocation of a few methods. Actual transfer of particle

data simply uses a vector of particle information in much the same way as the

molecular dynamics application described previously. However, information

about parent-child relationships within the tree is communicated using other

methods of the TreePiece object, such as recvRootFromParent.

As shown in listing 6.8, recvRootFromParent takes several arguments de-

scribing its parent. What is not obvious from the method signature, however,

is that each of the arguments comes from a field of the same parent object.

However, it is completely impractical to send the entire parent object, be-

cause this object contains dozens of fields and a huge amount of data that

should not be transmitted.

While the solution adopted by the application of simply splitting out the

required data and sending it separately is vastly more efficient, it obscures

the origin of the data and the relationship between its arguments. One could

preserve this information to some extent by creating a custom type that

encapsulates just the information needed for this function, but that approach

has high overhead for the programmer, especially in large applications or

when an application is being refactored and its arguments change.

104

Listing 6.9 shows a Charj method signature for the same function. Within

the method, uses of rx are replaced by parent.rx, ry by parent.ry and

so on. This simplifies the method signature, making it easier to see how

the function works at a glance. Although each TreePiece contains a large

number of fields, only the ones used by the receiver are actually transmitted.

Thus we get the clarity of the simple code and the efficiency of the more cum-

bersome, optimized code. In this case the improvement isn’t life-changing,

but in a larger and more complicated application methods may have dozens

of parameters, some subset of which come from a common object and others

of which do not. In those cases the simplification may represent a dramatic

easing of the burden on the programmer.

6.3 Summary

The creation of highly optimized programs is central to the practice of HPC

application development. For performance-critical functions, HPC program-

mers spend significant time and effort to squeeze as much performance as

possible out of their code. Under these circumstances, compiler optimiza-

tions tend to function less as tools for increasing application performance,

and more as a way a productivity-enhancing tool that allows programmers

to use simpler, more straightforward code without sacrificing performance.

Of course, many traditional compiler optimizations apply to HPC domains,

often to an even greater extent than less computationally intensive problem

domains. In a serial context, performance-improving optimizations for HPC

applications have been well studied as part of the broader class of optimiza-

tions of interest to the compiler research community.

In this work, it has not been our aim to extend or improve upon the

current state of the art for these types of optimizations. Rather, we have

attempted to extend the reach of compiler optimizations to our message-

driven programming model by applying traditional optimizations in a new

context. By applying loop tiling in the context of distributed accesses to

multiphase shared arrays and live variable analysis in the context of entry

method invocation, we apply simple, well-understood techniques in places

that would not be possible without the support of a compiler with explicit

knowledge of the parallel programming model in use. These optimizations

105

demonstrate that there are opportunities within the basic message-driven

Charj programming model and the alternate models embedded within it to

improve performance through optimization without sacrificing code clarity

or brevity. These optimizations may in future form the basis for more a

sophisticated and wider-ranging family of optimizations targeted at programs

running on the Charm++ runtime system.

106

CHAPTER 7

WRITING APPLICATIONS IN

CHARJ

Ultimately, the goal of improving productivity using Charj cannot be judged

outside the context of actual parallel applications. Abstract arguments about

clarity and concision and isolated code snippets may be suggestive of benefits,

but can never be conclusive on their own. However, given the size and

complexity of real, production-ready parallel codes, it is infeasible to create

a representative sample of HPC applications in Charj without a massive

investment of resources.

Although it is infeasible to produce a suite of full-scale parallel applications

in Charj due to the huge amount of developer time and effort that would be

required, we can still capture much of the benefit we would gain from such

a suite by instead developing stripped-down versions of HPC applications

that implement core application functionality while eliminating many of the

features that make an application useful for scientists and engineers but which

have little bearing on the parallel structure of the application.

In fact, the use of small, self-contained, simplified versions of full applica-

tions as a proxy for real, fully-developed applications has gained some popu-

larity in the high performance computing community as way of investigating

design trade-offs, algorithm choices, and performance issues [84]. These sim-

plified applications, sometimes referred to as mini-apps, take advantage of

the fact that even enormous applications with over one million lines of code

107

often have performance characteristics dominated by a tiny subset of that

code, and that of the remainder, these applications can contain a large num-

ber of distinct physical models that nevertheless have common performance

characteristics [85].

For example, Sandia National Laboratories has developed a suite of mini-

apps called Mantevo [86] that aims to provide self-contained open source

software that allows for easier analysis of scientific and engineering appli-

cations in HPC. It includes mini-apps related to finite element simulation,

molecular dynamics, contact detection, and circuit simulation.

7.1 Measuring Productivity

There are many quantities that one can optimize for when writing a parallel

application. The most common such quantities in the context of high per-

formance computing are raw performance and scalability. We have argued

throughout this dissertation that we must also take into account programmer

productivity, and that the techniques outlined here are capable of improving

productivity without harming performance and scalability.

However, as we discussed in chapter 1, measuring productivity in a quan-

tifiable way is a difficult problem, particularly when we must consider trade-

offs between the time and effort needed to produce a given code and the

performance attained by that code. If we attain a 5% performance improve-

ment and increased scaling at the cost of a 20% increase in programmer time

and a 30% increase in lines of code, it is unclear whether that represents a

beneficial, productive investment of programmer time or bloating of the code-

base and an increase in potential sources of bugs that is not justified by the

performance difference. There is no general answer for these questions, and

context about the application, programming environment, and programmers

in question is necessary to even attempt to provide useful answers.

The problem is even more difficult when we consider comparisons between

different programming models. While it may be relatively straightforward

to compare the performance of, say, an MPI application and an equivalent

Charm++ application, comparing their ease of development and mainte-

nance is difficult and subjective. It is difficult to do a controlled test com-

paring the development process between two models because of confounding

108

differences in programmer experience and aptitude and because it is diffi-

cult to objectively assess metrics like code maintainability. In addition, a

controlled study to assess any productivity benefits conferred by Charj in a

realistic setting would require a large investment of programmer time that

we have been unable to arrange so far.

Given this limitation, we confine ourselves to attempt to measure pro-

ductivity indirectly, by producing Charj equivalents of existing parallel ap-

plications and comparing them. Because our thesis is that the application

of compiler techniques can improve productivity for message driven appli-

cation development, we make our comparisons to existing message-driven

Charm++ applications and do not address the larger issue of comparing

message-driven parallel application development to development using other

parallel programming models. Since the basic programming model and un-

derlying runtime system is the same in both Charj and Charm++ applica-

tions, this allows us to directly compare them and identify areas where Charj

features have a concrete impact on either the expressiveness, elegance, and

length of the code or on its performance.

To go beyond qualitative comparisons, we must measure concrete attributes

of the codes in question. The first and most basic characteristic to measure

is source lines of code (SLOC). This is simply a count of the non-empty, non-

comment lines of source code in an application. Intuitively, if two programs

perform the same tasks using the same techniques, if one is significantly

longer than the other then we would prefer the shorter one. However, while

lines of code is suggestive of greater productivity it suffers from the fact that

a “line” is not an inherently meaningful quantity in a program, and mere for-

matting conventions can significantly increase or reduce lines of code without

altering the application in question. Indeed, taken to an extreme one can

compress even very large programs to one enormous line, but we are skeptical

of the productivity benefits of this practice in the real world.

One possible alternative metric to lines of code is the cyclomatic num-

ber [87], which measures program complexity in terms of the number of

nodes and edges in its control flow graph. This metric has the advantage

that it is well-defined for any input program independent of its formatting.

However, cyclomatic complexity is in many ways a poor fit for our evalu-

ation of Charj. Because it is primarily concerned with complexity of control

flow, the cyclomatic number does not capture the effects of most of Charj’s

109

improvements relative to Charm++. For example, consider the difference be-

tween the message-driven and structured dagger (SDAG) implementations of

Jacobi relaxation given in section 5.3. The message-driven implementation

breaks control flow up across many functions with no clear indication to the

programmer how those functions relate to one another, and introduces state

variables into the containing class to buffer received messages and keep track

of which messages have been received and which are still pending. We argue

that this makes it considerably more complex than its SDAG equivalent. We

also observe that it is significantly longer than the SDAG implementation.

However, the message-driven implementation flattens all local control flow,

and therefore has a lower cyclomatic complexity than the SDAG implemen-

tation. Simply looking at control flow obscures the advantages that SDAG

provides in clarity, convenience, and concision.

Leaving Charj-specific issues aside, the cyclomatic number has been crit-

icized for its weak theoretical justification [88] and has been found to be a

worse measure of software complexity than lines of code in numerous stud-

ies [89–91]. One alternative, described in [92], is to measure complexity in

terms of the number of unique operators and operands and the total number

of occurrences of these entities. While this metric, known as programming ef-

fort, can be effective at measuring the difference in complexity between two

very different implementations of an application (i.e. in comparing across

different languages or widely differing programming models, as in [93]), a

Charj program and its Charm++ equivalent will tend to use the same set

of operators on the same operands. In some cases (such as the automated

generation of marshalling and unmarshalling functions), Charj will automat-

ically generate code that may require a substantial number of operations in

Charm++, but that difference is already captured effectively by lines of code.

For this reason, we do not use cyclomatic number or programming effort to

compare Charj applications with their Charm++ equivalents.

However, to address some of the shortcomings of SLOC as a complexity

metric, we also measure the total number of tokens in each application. This

measure is similar to SLOC in that it is mainly concerned with program

length, but it improves on SLOC in that it does not depend on the program-

mer’s formatting conventions, and complex lines of code which incorporate

inline logic and nested constructs are not favored over a less compact but

equally simple alternative formulation. To measure token counts in C++

110

source files we use an instrumented version of the tokenizer for the Clang

C++ compiler [94], and for Charj source and Charm++ interface files we

use instrumented versions of charjc and charmxi, respectively.

7.2 Selecting Applications

We use multiple criteria to select applications for implementation in Charj.

First, we only consider algorithms which are well-known and actually used

in the HPC community. It is far easier to evaluate the Charj implementation

of an algorithm when it can be directly compared to equivalent alternative

implementations. By avoiding niche or obscure algorithms, we ensure that

our examples are meaningful to a broader audience.

In addition, we want applications that are neither so small that they have

little illustrative value and provide little information about the relative dif-

ficulty of developing in Charj versus developing directly in Charm++, nor

so large that they require inordinate development time and cannot easily be

analyzed in full to determine the important points of differentiation between

Charj implementations and other implementations. Although this is a rough

guideline, we consider applications under 100 lines too small to be useful

in our analysis, and applications over 5000 lines too large to be developed

effectively while maintaining a large enough collection of Charj applications.

Beyond having a collection of reasonably sized, well known algorithms rep-

resented in our suite of applications, we also aim to represent some of the

diversity of HPC applications in our sample. Charj is meant to be a gen-

eral purpose parallel language, and while it might be possible to assemble

a collection of different matrix factorization codes that meet all our other

criteria, that would give us a very narrow view of Charj’s applicability to

realistic HPC problems in practice. Rather, we aim to gather a diverse col-

lection of applications that include some of the most common data structures

and interaction patterns in HPC. In particular, we wish to represent both

matrix-based linear algebra codes and tree-based particle interaction codes.

Finally, when possible we have chosen applications for which good Charm++

implementations already exist. Although it is worthwhile to compare Charj

applications with their equivalents across widely differing programming mod-

els, such a comparison does not necessarily shed any light on the value pro-

111

vided by the compiler relative to using the underlying runtime system without

any compiler support. Rather, it points toward differences between different

parallel programming models altogether. While such a comparison is valu-

able in a discussion about the relative merits of message-driven programming

versus message passing versus partitioned global address spaces, for example,

it does not directly answer our questions about the benefits that compiler

support can add to an existing runtime system. Therefore we prefer to com-

pare our Charj implementations with equivalent Charm++ applications. In

particular, we use some submissions from the winning Charm++ entry to

the 2011 HPC Class 2 Challenge [95]. These applications are intended as

showcases of both high performance and elegant, concise code, and therefore

represent a high bar to compare Charj applications against. By selecting

pre-existing codes that have been carefully written to exemplify the best

combination of elegance and speed possible in Charm++, we ensure that we

are comparing ourselves to strong competition in both performance and code

size.

With these criteria in mind, in this chapter we present four Charj appli-

cations and compare them to their Charm++ equivalents. The first is a

Jacobi relaxation application. In it, a 2D array is distributed across a chare

array, with each array element containing a contiguous block of columns of

the data array. In each iteration, each chare must exchange boundary in-

formation with its neighbors. After the neighbor exchange, a simple 5 point

stencil is performed on each array element. For the sake of brevity, in this

dissertation we will refer to this application simply as “Jacobi.”

The second application simulates molecular dynamics based on the Lennard-

Jones potential. The application is decomposed according to both space and

force. The 3D simulation space is divided into cells, with a chare object re-

sponsible for each cell. In each iteration, all pairs of particles within a cutoff

distance interact, exerting a force on one another. Pairs of particles that

span cells are handled by a separate set of objects called computes, with one

compute for each pair of cells within the cutoff distance.

This application, called LeanMD [96], was developed in Charm++ as a

simplified version of the popular NAMD [97] molecular dynamics application.

It is commonly used as a Charm++ benchmark application .

The final application in our suite is LU Decomposition. This algorithm

factorizes an input matrix into a lower triangular matrix (L) and an upper

112

triangular matrix (U), and is a crucial step in many fundamental numerical

algorithms. Although the ideas underlying LU decomposition were known

earlier, the modern formulation of the algorithm is credited to Alan Tur-

ing [98]. It is a crucial algorithm in HPC, and underlies LINPACK bench-

mark [99] used to rank supercomputer performance by TOP500 [62].

These applications exhibit substantial variation across a range of applica-

tion features that are relevant to the HPC community. Jacobi and LU are

both primarily concerned with operations on arrays of primitive types, as is

typical for a wide variety of HPC applications whose computational kernels

are primarily linear algebra. In contrast, LeanMD has much greater reliance

on user-defined types. The communication structure of Jacobi is extremely

simple and regular: each chare exchanges neighbor information with the same

two neighbor chares in each iteration. LeanMD has a more complex but still

static communication pattern, in which each Cell communicates with the

Computes associated with each of its neighbors within the cutoff distance.

LU has a communication pattern that varies as the algorithm proceeds, but

which can be statically determined and does not depend on the particular

input data.

In the following sections, we describe each of the applications in greater

detail, and provide details about differences between Charj and C++-based

Charm++ implementations, detailing the ways that Charj features described

in previous chapters manifest themselves in the course of actual application

development.

7.3 Jacobi Relaxation

Our first application implements an iterative algorithm for solving Laplacian

differential equations via Jacobi relaxation. This is a simple solver that can

be applied to problems such as heat diffusion. The input to the algorithm is

a two dimensional matrix whose entries denote a discretized version of the

quantity being simulated (for example, the temperature at one point of a

surface). In each timestep, every array element is replaced by the average of

its value and the value of its four neighboring elements in a 5-point stencil

operation. The application maintains two arrays, and in any given step is

reading values from one array and writing the resulting averaged values into

113

Figure 7.1: In the Jacobi application, the input matrix is decomposed into
blocks of columns. In each iteration, the leftmost and rightmost column of
each block must be exchanged with neighboring blocks to enable the local
update operation to proceed.

the other.

To parallelize the algorithm we perform a two dimensional decomposition

of the array into blocks of columns and assign each block to an element of

a chare array. Then in each iteration each chunk must communicate with

its two neighboring chunks (or one in the case of the leftmost and right-

most chunks) to exchange boundary information before performing its local

updates, as depicted in figure 7.3. This pattern of regular communication

between fixed neighbors with interspersed local computation is common to

many HPC applications, including the MILC quantum chromodynamics sim-

ulator [100] and the WRF numerical weather simulator [101,102].

Our Charj implementation is based on a preexisting Charm++ Jacobi ap-

plication. We provide abridged code listings that illustrate key elements of

the application in both Charj and Charm++ in listings 7.1 and 7.2, respec-

tively. The iterative structure of the application is expressed using Structured

Dagger constructs. The original Charm++ implementation does not use an

explicit looping construct, probably to avoid the use of class variables as

loop indices. Rather, it recursively calls the main loop function until the

appropriate number of iterations are complete. The Charj implementation

is functionally identical, but uses an SDAG for loop directly.

In each iteration, messages containing chunk boundary data are sent to

neighboring chunks. Logic for handling the first and last chunk is omitted

here and in the stencil function for the sake of brevity. Charj benefits from

syntax to concisely describe access to both individual elements and ranges of

two dimensional serial arrays, whereas the Charm++ implementation relies

on an indexing macro to simplifying array index computations and simple

114

Application Version Lines of Code Tokens

Charj 170 1216
Charm++ 397 2807

Percentage Reduction 57.1% 56.7%

Table 7.1: The Charj implementation of the Jacobi application is less than
half the size of the equivalent Charm++ application, whether measured in
lines of code or in program tokens. This reduction comes partially from the
elimination of redundant code in the Charm++ application, and partially
from direct support in Charj for two dimensional arrays.

loops over the array to copy boundary elements.

7.3.1 Performance and Productivity

The Charj implementation is less than half the size of the Charm++ im-

plementation, whether measured in lines of code or in program tokens, as

shown in table 7.1. The dramatic difference in size is in part due to the small

total size of application. Because the application kernels and communication

structure are quite brief, the overhead of redundant function and datatype

declarations in the Charm++ implementation are exaggerated beyond what

one would expect in a larger code. Charj also benefits from syntactic support

for two dimensional arrays, both when extracting boundary elements to send

to neighboring chunks and when performing the stencil computation itself.

Charj also achieves gains relative to Charm in its SDAG implementation and

by not needing user-defined message types to transmit data.

We achieve this gain in conciseness of expression while maintaining per-

formance parity with the original Charm++ implementation. We tested the

performance of both applications on the 64 nodes of the Taub cluster [103], in

which each node has two 2.67 GHz Intel Xeon hex-core processors and 24 GB

of RAM, connected by Voltaire QDR Infiniband. We evaluated the applica-

tions in a strong scaling scenario, maintaining one million elements per array

chunk, and one chunk per physical processor. The results, as shown in fig-

ure 7.3.1, do not indicate a performance advantage for either the Charm++

or Charj application.

In principle we expect a small performance penalty in the Charj applica-

115

Listing 7.1: The time loop, boundary exchange, and stencil computation of
the Charj Jacobi application.

1 entry void jacobi() {

2 for (int i=0; i<3; ++i) {

3 sendStrips();

4 overlap {

5 when getStripFromLeft(Array<double> s) {

6 processStripFromLeft(s);

7 }

8 when getStripFromRight(Array<double> s) {

9 processStripFromRight(s);

10 }

11 }

12 doStencil();

13 }

14 }

15

16 void sendStrips() {

17 // Send strip left

18 if(thisIndex > 0) {

19 chunks[thisIndex-1]@getStripFromRight(A[1, 0:myydim]);

20 } else {

21 // Send dummy message to the last chunk

22 chunks[total-1]@getStripFromRight(A[1, 0:myydim);

23 }

24 // Similarly, send strip right

25 // ...

26 }

27

28 void doStencil() {

29 resetBoundary(); // clamp boundary region values

30 if (thisIndex !=0 && thisIndex != total-1)

31 for (int i=1; i<myxdim+1; i++) {

32 for (int j=1; j<myydim-1; j++) {

33 B[i,j] = (0.2)*(A[i,j] + A[i,j+1] + A[i,j-1] + \

34 A[i+1,j] + A[i-1,j]);

35 }

36 }

37 // similar loops for leftmost and rightmost chunks.

38 }

116

Listing 7.2: The Charm++ equivalent code for the time loop, boundary
exchange, and stencil computation given in listing 7.1.

1 #define indexof(i,j,ydim) (((i)*(ydim)) + (j))

2

3 entry void singleStep(VoidMsg* msg) {

4 atomic "startwork" {

5 sendStrips();

6 }

7 overlap{

8 when getStripfromleft(Msg *aMessage){

9 atomic {processStripfromleft(aMessage);}

10 }

11 when getStripfromleftStripfromright(Msg *aMessage){

12 atomic {processStripfromright(aMessage);}

13 }

14 }

15 atomic "doWork" {

16 doStencil();

17 if(iterations < ITER)

18 thisProxy[thisIndex].singleStep(new VoidMsg);

19 }

20 }

21

22 void sendStrips() {

23 // Send strip left

24 if (thisIndex > 0) {

25 for(int i=0;i<myydim;i++)

26 temp[i] = A[indexof(1,i,myydim)];

27 chunk_arr[thisIndex-1].getStripfromright(

28 new (myydim,0) Msg(myydim,temp));

29 } else {

30 // Send dummy message to the last chunk

31 chunk_arr[total-1].getStripfromright(

32 new (myydim,0) Msg(myydim,temp));

33 }

34 // Similarly, send strip right

35 // ...

36 }

37

38 void doStencil() {

39 resetBoundary(); // clamp boundary region values

40 if (thisIndex !=0 && thisIndex != total-1)

41 for (int i=1; i<myxdim+1; i++)

42 for (int j=1; j<myydim-1; j++) {

43 B[indexof(i,j,myydim)] =

44 (0.2)*(A[indexof(i, j, myydim)] +

45 A[indexof(i, j+1,myydim)] +

46 A[indexof(i, j-1,myydim)] +

47 A[indexof(i+1,j, myydim)] +

48 A[indexof(i-1,j, myydim)]);

49 }

50 // similar loops for leftmost and rightmost chunks.

51 }

117

Processors Charj Charm

12

24

48

96

192

384

768

0.003491 0.00311
0.005004 0.007123
0.006280 0.00548
0.006269 0.00877
0.00701 0.008365
0.011008 0.009565
0.00986 0.011353

0

0.003

0.006

0.009

0.012

12 24 48 96 192 384 768

Jacobi Performance

It
e
ra

ti
o

n
 T

im
e
 (
s)

Processors

Charj Charm

Figure 7.2: Neither Charj nor Charm++ has a clear advantage in perfor-
mance for the Jacobi application. We measured time per iteration from 12
to 768 processors on the Taub cluster, maintaining a constant one million
array elements per processor.

tion, because instead of sending raw array data, we send Charj Array types,

which contain extra information about array dimensions and layout. In prac-

tice, any penalty appears to be dominated by variations in performance from

one run to the next.

7.4 Molecular Dynamics

LeanMD is a molecular dynamics simulation that was originally developed

as a Charm++ application. It simulates the behavior of atoms based on

the Lennard-Jones potential, which describes the interaction between two

uncharged molecules or atoms. The computation performed in this code is

similar to a simplified version of the short-range non-bonded force calculation

in NAMD [104, 105] and resembles the miniMD application in the Mantevo

benchmark suite [106] maintained by Sandia National Laboratories.

The force calculation in Lennard-Jones dynamics is done within a cutoff

radius, rc for every atom. For any two particles which are separated by

less than the cutoff radius, we explicitly calculate the force that each one

118

Listing 7.3: The main run loop for the Cell class in the LeanMD application.
In each step, the cell sends its local particle positions to Compute objects and
receives forces back in return, which it uses to update the particle positions.
A reduction after the final iteration is used to validate the simulation.

1 entry void run() {

2 if(thisIndex.x==0 && thisIndex.y==0 && thisIndex.z==0) {

3 stepTime = CkWallTimer();

4 }

5

6 for(int stepCount = 1; stepCount <= finalStepCount; stepCount++) {

7 //send current atom positions to my computes

8 sendPositions();

9

10 //update properties of atoms using new force values

11 when reduceForces(Array<vec3> forces) updateProperties(forces);

12

13 if (thisIndex.x==0 && thisIndex.y==0 &&

14 thisIndex.z==0 && stepCount%20==0) {

15 CkPrintf("Step %d Benchmark Time %lf ms/step\n",

16 stepCount, ((CkWallTimer() - stepTime)/20)*1000);

17 stepTime = CkWallTimer();

18 }

19 }

20 //everything done, reduction on kinetic energy

21 contribute(energy,

22 CkReduction.sum_double,

23 CkCallback(Main.energySumK, mainProxy));

24 }

exerts on the other. From these forces, we determine particle motion using

Newtonian mechanics. To parallelize these computations, we divide the three

dimensional simulation space into non-overlapping volumes called cells, with

each volume being a rectangular prism. In each timestep, force calculations

are performed on every pair of particles that are within the cutoff distance.

These calculations are managed by a separate set of chare objects called

computes. Each pair of cells within the cutoff distance (including the pair of

a cell with itself for computing the forces induced by pairs of particles within

a cell) has a compute associated with it that is responsible for computing the

interactions between the particles belonging to those cells. Once forces are

calculated by the compute objects, the cells perform force integration and

update the physical properties of their atoms, including position, velocity,

and acceleration.

At the beginning of each time step, every cell sends the positions of its

119

Listing 7.4: The Charm++ equivalent code for the Cell run loop given in
listing 7.3.

1 entry void run() {

2 if(thisIndex.x==0 && thisIndex.y==0 && thisIndex.z==0) atomic {

3 stepTime = CkWallTimer();

4 }

5

6 for(stepCount = 1; stepCount <= finalStepCount; stepCount++) {

7 //send current atom positions to my computes

8 atomic { sendPositions(); }

9

10 //update properties of atoms using new force values

11 when reduceForces(vec3 forces[n], int n) atomic {

12 updateProperties(forces, n);

13 }

14

15 if (thisIndex.x==0 && thisIndex.y==0 && thisIndex.z==0 &&

16 stepCount%20==0) atomic {

17 CkPrintf("Step %d Benchmark Time %lf ms/step\n",

18 stepCount, ((CkWallTimer() - stepTime)/20)*1000);

19 stepTime = CkWallTimer();

20 }

21 }

22 //everything done, reduction on kinetic energy

23 atomic {

24 contribute(2*sizeof(double), energy,

25 CkReduction::sum_double,

26 CkCallback(CkReductionTarget(Main,energySumK),mainProxy));

27 }

28 };

120

atoms to the computes that need them for force calculations. Every compute

receives positions from two cells and calculates the forces. These forces are

sent back to the cells which update other properties of the atoms. Every few

iterations, atoms are migrated among the cells based on their new positions.

SDAG is used to control the flow of operations in each iteration and trigger

dependent events. This process is illustrated in the Charj implementation

of the Cell class’s main loop in listing 7.3, and its Charm++ equivalent in

listing 7.3.

7.4.1 Specification and Verification

For a pair of atoms, the force can be calculated based on the distance r

between them by

~F =

(
A

r13
− B

r7

)
× ~r (7.1)

where A and B are Van der Waals constants. Table 7.2 provides the values

for A and B used in the simulation, along with a set of other simulation

parameters and the values used in our use of LeanMD.

Parameter Values

A 1.6069× 10−134

B 1.0310× 10−77

Atoms per cell 150
Cutoff distance, rc 12 Å

Cell Margin 2 Å
Time step 1 femtosecond

Table 7.2: Simulation parameters for LeanMD. A and B are the Van der
Waals constants from equation 7.1.

The application computes the kinetic and potential energy of the simulated

system and uses the principle of conservation of energy to verify that the

simulation is stable. Users can choose to run the benchmark for as many

timesteps as desired, and verification statistics are printed at the end.

121

Application Version Lines of Code Tokens

Charj 570 5190
Charm++ 872 7846

Percentage Reduction 34.6% 33.8%

Table 7.3: The Charj implementation of LeanMD is significantly shorter
than the Charm++ implementation, both in terms of lines of code and token
count.

7.4.2 Performance and Productivity

LeanMD has been developed to be as concise and clear as possible while

maintaining high performance as a part of the winning entry for the HPC

Challenge in 2011 [95]. The Charm++ implementation of LeanMD is only

773 lines of code, compared to nearly 3000 lines for the Mantevo miniMD

benchmark, which has similar goals to and fewer features than LeanMD. As

such, this application already represents a high standard of productivity and

performance in its original Charm++ embodiment. In our Charj implemen-

tation we aim to maintain this high level of performance while simplifying

the code.

The Charj implementation of LeanMD is significantly smaller than the

original Charm++ application, both in terms of lines of code and token

count, as shown in table 7.3. The relative gains are somewhat smaller than

in the Jacobi application, between 30% and 35%. This is partially due to the

larger overall size of LeanMD compared to Jacobi. The small overall size of

the Jacobi application means that the overhead imposed by duplication of

interface information across implementation, header, and interface files has a

larger impact on the relative sizes of the two codebases relative to LeanMD,

where there is significantly more serial implementation code that is quite

similar between the Charm++ and Charj implementations.

However, unlike in the Jacobi application, LeanMD user-defined types have

PUP methods that allow them to be migrated between processors. These

functions enumerate the object fields to be serialized and deserialized when

the object is transferred over a network, as shown in listing ??. The Charj

version of LeanMD gains somewhat in brevity relative to the Charm++ ver-

sion because it generates these PUP functions automatically, as described in

section 6.2. Additionally, as in the Jacobi application, Charj has some brevity

122

Listing 7.5: The PUP function for the Compute class in the Charm++ im-
plementation of LeanMD. The lack of need for PUP functions is one factor
that contributes to the size advantage of the Charj LeanMD implementation.

1 void Compute::pup(PUP::er &p) {

2 CBase_Compute::pup(p);

3 __sdag_pup(p);

4 p | stepCount;

5 p | mcast1;

6 p | mcast2;

7 PUParray(p, energy, 2);

8 p | cellCount;

9 }

Processors Charj Charm

12

24

48

96

192

384

768

0.003491 0.00311
0.005004 0.007123
0.006280 0.00548
0.006269 0.00877
0.00701 0.008365
0.011008 0.009565
0.00986 0.011353

0

0.003

0.006

0.009

0.012

12 24 48 96 192 384 768

Jacobi Performance

It
e
ra

ti
o

n
 T

im
e
 (
s)

Processors

Charj Charm

Figure 7.3: Placeholder graphic for leanmd performance

benefits relative to Charm++ in its structured dagger implementation. The

Charm++ and Charj versions of the structured dagger function that governs

the Cell object’s run loop are shown in listing ?? and ??, respectively. The

Charj version benefits from not needing explicitly specified atomic blocks, as

even this brief function contains five such blocks.

TODO: Performance data goes here.

123

7.5 LU Decomposition

The LU algorithm decomposes the input 2D matrix into square blocks, and

associates each block with a member of a chare array. The block data is

broadcast to subsequent blocks in the same row or column, and block-block

matrix multiplies are used to update local block values, with block level

factorizations also being performed for blocks on the matrix diagonal.

To be numerically stable, LU decomposition requires partial pivoting to

permute the input matrix rows [98]. However, to keep the application small

enough that we can feasibly write and analyze it, we implement a non-

pivoting version. Although our implementation is relatively brief at under

200 lines of code, the requirement for partial pivoting creates a huge increase

in complexity and code size. For comparison, the HPL 2.0 [107] implemen-

tation of LU decomposition with partial pivoting runs to 11, 967 source lines

of code and would require 2.71 person-years to develop according to David

Wheeler’s ‘SLOCCount’ tool [108]. Although lack of pivoting leads to some

loss of numerical stability, the same number of floating point operations are

performed by our non-pivoting application when compared to an LU program

that implements pivoting [109]. Our implementations (both for Charm++

and Charj) also omit some runtime optimizations that increase performance

via careful object mapping and algorithm-specific scheduling policies [110].

The program uses a two dimensional chare array to decompose the input

matrix into b × b square blocks. Each matrix block is stored in one of the

chare array elements. The mapping of the chare array elements to processors

is flexible. The default Charm++ mapping is a block mapping, but other

mappings are also possible.

The main computations performed in a dense LU algorithm are matrix-

matrix multiplications that update the values in a block. This update op-

eration is referred to as a trailing update. For block (i, j), the block LU

algorithm performs min (i, j) trailing updates. The closer a block is to the

bottom right corner of the overall matrix, the more computation is performed

for it. Other computationally intensive portions of the algorithm involve local

single-block LU factorizations to be performed for blocks along the diagonal,

and updates along the topmost active row and leftmost active column.

Listing 7.6: The Charj implementation of the chare array that contains the

matrix blocks for dense LU decomposition. This includes the overall flow of

124

control for the main algorithm in factorize, along with kernels that operate

on the local block.

1 public chare_array [2d] LUBlock {

2 Array<double, 2> LU = new Array<double, 2>([blockSize, blockSize]);

3 int internalStep;

4

5 public entry LUBlock() {

6 fillRandom(LU);

7 }

8

9 public int min(int a, int b) {

10 if (a < b) return a; else return b;

11 }

12

13 public entry void factorize() {

14 for (internalStep = 0;

15 internalStep < min(thisIndex.x, thisIndex.y);

16 internalStep++) {

17 when recvL[internalStep](Array<double, 2> mL),

18 recvU[internalStep](Array<double, 2> mU) {

19 updateMatrix(mL, mU);

20 }

21 }

22 if (thisIndex.x < thisIndex.y) {

23 // above diagonal

24 when recvL[internalStep](Array<double, 2> mL) {

25 computeU(mL);

26 sendDownwardU();

27 }

28 } else if (thisIndex.x > thisIndex.y) {

29 // below diagonal

30 when recvU[internalStep](Array<double, 2> mU) {

31 computeL(mU);

32 sendRightwardL();

33 }

34 } else {

35 // on diagonal

36 decompose();

37 if (thisIndex.x < numBlocks - 1 &&

38 thisIndex.y < numBlocks - 1) {

39 sendRightwardL();

40 sendDownwardU();

41 } else {

125

42 // implies global completion

43 CkPrintf("(%d,%d) complete\n", thisIndex.x, thisIndex.y);

44 driver@finished();

45 }

46 }

47 }

48

49 public void fillRandom(Array<double, 2> block) {

50 MatGen rnd = new MatGen(9934835);

51 rnd.skipNDoubles(thisIndex.x * blockSize);

52 rnd.getNRndDoubles(block);

53 }

54

55 public void updateMatrix(Array<double, 2> L, Array<double, 2> U) {

56 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

57 blockSize, blockSize, blockSize, -1.0, L.raw(),

58 blockSize, U.raw(), blockSize, 1.0, LU.raw(), blockSize);

59 }

60

61 public void computeU(Array<double, 2> L) {

62 cblas_dtrsm(CblasRowMajor, CblasLeft, CblasLower,

63 CblasNoTrans, CblasUnit, blockSize, blockSize,

64 1.0, L.raw(), blockSize, LU.raw(), blockSize);

65 }

66

67 public void computeL(Array<double, 2> U) {

68 cblas_dtrsm(CblasRowMajor, CblasRight, CblasUpper,

69 CblasNoTrans, CblasNonUnit, blockSize, blockSize,

70 1.0, U.raw(), blockSize, LU.raw(), blockSize);

71 }

72

73 public void decompose() {

74 for (int j = 0; j < blockSize; j++) {

75 for (int i = 0; i <= j; i++) {

76 double sum = 0.0;

77 for (int k = 0; k < i; k++)

78 sum += LU[i, k] * LU[k, j];

79 LU[i, j] -= sum;

80 }

81 for (int i = j + 1; i < blockSize; i++) {

82 double sum = 0.0;

83 for (int k = 0; k < j; k++)

84 sum += LU[i, k] * LU[k, j];

126

85 LU[i, j] -= sum;

86 LU[i, j] /= LU[j, j];

87 }

88 }

89 }

90

91 public void sendRightwardL() {

92 LUBlock@[%] row =

93 LUBlock@[%].ckNew(thisArrayID,

94 thisIndex.x, thisIndex.x, 1,

95 thisIndex.y + 1, numBlocks - 1, 1);

96 row.recvL(LU);

97 }

98

99 public void sendDownwardU() {

100 LUBlock@[%] col =

101 LUBlock@[%].ckNew(thisArrayID,

102 thisIndex.x + 1, numBlocks - 1, 1,

103 thisIndex.y, thisIndex.y, 1);

104 col.recvU(LU);

105 }

106 }

In the application, matrix blocks are represented by the LUBlock chare

array. By far the majority of application code resides in LUBlock methods,

with the exceptions being application driver code that handles command-

line arguments and launches the computation by invoking the factorize

method on an array of LUBlocks, and a class called MatGen which handles

the generation of random data for the matrix to be factored.

The full Charj implementation of LUBlock is given in listing 7.6. Its func-

tionality falls into two primary categories: linear algebra operations on the

local block, and communication with other blocks. The local operations

computeU and computeL are wrappers around the basic linear algebra sys-

tem (BLAS) function cblas dtrsm, which performs a triangular solve on the

local block. Similarly, updateMatrix wraps cblas dgemm, which performs

matrix multiplication. This functions are invoked on incoming updates that

result from local LU decompositions from other blocks in the same row or

column to the right or upward from the current block. The final local linear

algebra function is decompose, which performs an in-place LU decomposi-

tion on the local block. Communication with other blocks to send trailing

127

updates is handled by sendRightwardL and sendDownwardU, which transmit

local block data to all the other LUBlocks to the right or down from the

current block, respectively.

The overall flow of control of the algorithm is expressed in the structured

dagger function factorize. First we receive all expected trailing updates

from prior blocks via the recvL and recvU entry methods, performing a

matrix multiply for each pair of updates received. We then perform one

of three local block operations, depending on the location of the block. For

blocks above or below the diagonal, a local triangular solve is performed once

an update from the current diagonal block has been received. For blocks

on the diagonal, a local LU decomposition is performed, followed by the

transmission of trailing updates via sendRightwardL and sendDownwardU.

To factorize an n× n matrix, approximately 2n3

3
floating point operations

are required. Assuming the matrix is decomposed into b × b square blocks,

the fraction of the floating point operations spent inside the matrix-matrix

multiply operation approaches 1 − 1
b2

as b increases [109]. Thus for large

LU factorizations, almost all floating point operations occur in the context

of matrix multiplication. Therefore, a performance of a good LU implemen-

tation should approach the performance achieved by the double precision

matrix-matrix multiply.

7.5.1 Performance and Productivity

In terms of lines of code, Charj has the smallest advantage over Charm++ for

LU decomposition out of all the applications that we consider here. As shown

in table 7.4, the Charm++ implementation is only about 12% longer than

its Charj equivalent. However, the difference in token count is significantly

greater, with Charj using over 27% fewer tokens than Charm++.

For the purposes of direct comparison between the two implementations,

we include the Charm++ implementation of the LUBlock class that corre-

sponds to the Charj code in listing 7.6 in listings 7.7, 7.8, and 7.9, which

contain the interface file definitions and structured dagger implementation,

header declarations, and implementation code, respectively.

The sources of reduced code size in the Charj implementation are largely

similar to those from the Jacobi and LeanMD applications. The use of a

128

Application Version Lines of Code Tokens

Charj 150 1124
Charm++ 170 1545

Percentage Reduction 11.8% 27.2%

Table 7.4: Although the sizes of the Charj and Charm++ LU implementa-
tions are closer together in terms of lines of code than any other application
we consider, the difference in token count is much greater than the difference
in line count.

natural two-dimensional array datatype provides some increase in simplicity

versus the C++ implementation, allowing block accesses in decompose that

look like LU[i, j] rather than LU[i * blocksize + j]. The triangular

solve and matrix multiply kernels are handled by external libraries in the

same way for both implementations.

The lines of code advantage for the Charj implementation is somewhat

minimized by the fact that there are very few entry methods in the applica-

tion, and relatively few methods of any kind. While the Charj implementa-

tion benefits from smaller token counts in cases of array accesses and atomic

blocks in SDAG functions, these advantages do not translate into fewer lines

of code. Nevertheless, the 11% advantage that Charj holds in lines of code

is not insignificant, and the larger figure for tokens is more in line with its

advantages in other small applications.

Listing 7.7: The Charm++ interface definitions for the LUBlock data struc-

ture, corresponding to the Charj code in listing 7.6.

1 array [2d] LUBlock {

2 entry LUBlock();

3 entry void factorize(){

4 atomic {

5 timer = CkWallTimer();

6 }

7 for (internalStep = 0;

8 internalStep < min(thisIndex.x, thisIndex.y);

9 internalStep++) {

10 when recvL[internalStep](int refa,

11 int blockSizea,

12 double mL[blockSizea]),

13 recvU[internalStep](int refb,

129

14 int blockSizeb,

15 double mU[blockSizeb]) atomic {

16 updateMatrix(mL, mU);

17 }

18 }

19 if (thisIndex.x < thisIndex.y) {

20 when recvL [internalStep] (int ref,

21 int blockSize,

22 double mL[blockSize]) atomic {

23 computeU(mL);

24 sendDownwardU();

25 }

26 } else {

27 if (thisIndex.x > thisIndex.y) {

28 when recvU [internalStep] (int ref,

29 int blockSize,

30 double mU[blockSize]) atomic {

31 computeL(mU);

32 sendRightwardL();

33 }

34 } else {

35 atomic {

36 decompose();

37 if (thisIndex.x < numBlocks - 1 &&

38 thisIndex.y < numBlocks - 1) {

39 sendRightwardL();

40 sendDownwardU();

41 } else {

42 CkPrintf("(%d,%d) complete, time = %f\n",

43 thisIndex.x, thisIndex.y,

44 CkWallTimer() - timer);

45 driver.finished();

46 }

47 }

48 }

49 }

50 };

51 entry void recvL(int ref, int blockSize, double mL[blockSize]);

52 entry void recvU(int ref, int blockSize, double mL[blockSize]);

53 };

Listing 7.8: The C++ header declarations for the LUBlock data structure,

130

corresponding to the Charj code in listing 7.6.

1 class LUBlock: public CBase_LUBlock {

2 LUBlock_SDAG_CODE

3 public:

4 double* LU;

5 double timer;

6 int internalStep;

7 LUBlock();

8 LUBlock(CkMigrateMessage*) { };

9 void fillRandom(double* block);

10 void updateMatrix(double* L, double* U);

11 void computeU(double* L);

12 void computeL(double* U);

13 void decompose();

14 void sendRightwardL();

15 void sendDownwardU();

16 };

Listing 7.9: The C++ implementation for the LUBlock data structure, cor-

responding to the Charj code in listing 7.6.

1 LUBlock::LUBlock() {

2 __sdag_init();

3 LU = new double[blockSize * blockSize];

4 fillRandom(LU);

5 }

6

7 void LUBlock::fillRandom(double* block) {

8 MatGen rnd(128988);

9 rnd.skipNDoubles(thisIndex.x * blockSize);

10 rnd.getNRndDoubles(block);

11 }

12

13 void LUBlock::updateMatrix(double* L, double* U) {

14 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, blockSize, blockSize,

15 blockSize, -1.0, L, blockSize, U, blockSize, 1.0, LU, blockSize);

16 }

17

18 void LUBlock::computeU(double* L) {

19 cblas_dtrsm(CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,

20 blockSize, blockSize, 1.0, L, blockSize, LU, blockSize);

21 }

22

131

23 void LUBlock::computeL(double* U) {

24 cblas_dtrsm(CblasRowMajor, CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit,

25 blockSize, blockSize, 1.0, U, blockSize, LU, blockSize);

26 }

27

28 void LUBlock::decompose() {

29 for (int j = 0; j < blockSize; j++) {

30 for (int i = 0; i <= j; i++) {

31 double sum = 0.0;

32 for (int k = 0; k < i; k++)

33 sum += LU[i * blockSize + k] * LU[k * blockSize + j];

34 LU[i * blockSize + j] -= sum;

35 }

36 for (int i = j + 1; i < blockSize; i++) {

37 double sum = 0.0;

38 for (int k = 0; k < j; k++)

39 sum += LU[i * blockSize + k] * LU[k * blockSize + j];

40 LU[i * blockSize + j] -= sum;

41 LU[i * blockSize + j] /= LU[j * blockSize + j];

42 }

43 }

44 }

45

46 void LUBlock::sendRightwardL() {

47 CProxySection_LUBlock row =

48 CProxySection_LUBlock::ckNew(thisArrayID,

49 thisIndex.x, thisIndex.x, 1,

50 thisIndex.y + 1, numBlocks - 1, 1);

51 row.recvL(internalStep, blockSize*blockSize, LU);

52 }

53

54 void LUBlock::sendDownwardU() {

55 CProxySection_LUBlock col =

56 CProxySection_LUBlock::ckNew(thisArrayID,

57 thisIndex.x + 1, numBlocks - 1, 1,

58 thisIndex.y, thisIndex.y, 1);

59 col.recvU(internalStep, blockSize*blockSize, LU);

60 }

TODO: Performance data goes here.

132

Processors Charj Charm

12

24

48

96

192

384

768

0.003491 0.00311
0.005004 0.007123
0.006280 0.00548
0.006269 0.00877
0.00701 0.008365
0.011008 0.009565
0.00986 0.011353

0

0.003

0.006

0.009

0.012

12 24 48 96 192 384 768

Jacobi Performance

It
e
ra

ti
o

n
 T

im
e
 (
s)

Processors

Charj Charm

Figure 7.4: Placeholder graphic for lu performance

7.6 Summary

In this chapter, we have demonstrated the applicability of Charj to three sam-

ple applications: Jacobi relaxation, Lennard-Jones molecular dynamics, and

dense LU factorization. For each application, we our Charj implementation

with a Charm++ equivalent. The reduced size of the Charj implementation

relative to the Charm++ baseline ranged from 11.8% to 57.1% in terms of

lines of code, and from 27.2% to 56.7% in terms of total program token count.

While these numbers are not a direct measure of programmer productivity,

the substantial reduction in program size suggests that Charj programs can

be written more quickly and easily than their Charm++ equivalents, par-

ticularly in light of the fact that that Charj provides benefits to syntax and

static checking that are not captured by a simple accounting of lines of code.

TODO: add notes on performance once all data is collected.

133

CHAPTER 8

FUTURE WORK

The work discussed in this dissertation is only a part of a wider research

agenda to improve the experience of writing high performance parallel appli-

cations through the application of compiler technology. A substantial portion

of the effort involved in this work has been devoted to the development of a

flexible compiler framework that can support not only the features described

here, but a wide range of productivity- and performance-improving features

that extend upon this work in different directions. Although the possible

scope of such features is very large, we will briefly describe a few of the most

promising directions for future work in this area.

In chapter 5 we discussed the embedding of other programming models

within Charj. We have already embedded multiple models: structured dag-

ger for cleaning expressing message-driven parallel control flow, multiphase

shared arrays for disciplined access to global data, and accelerated entry

methods for effective support of hybrid accelerator architectures.

There are, however, other existing models based on the Charm++ runtime

system that we have not yet translated to Charj, and still more ideas for new

models that could benefit from our existing infrastructure. Charisma [111,

112] is an example of the former: an existing model which allows the pro-

grammer to express any application with static data flow with a global view of

control. Currently it is difficult to integrate Charisma functions in the context

of a Charm++ application because of the global view employed by Charisma.

Integrating this model into Charj would allow greater opportunities for close

134

integration between Charisma code and traditional message-passing code.

In addition to the incorporation of existing models, Charj provides a solid

foundation upon which to build future models targeted at specific problem

domains or patterns of communication. One example model which is already

under development targets divide and conquer algorithms, taking advantage

of their shared characteristics to provide more robust support for runtime

optimizations.

Furthermore, we can build abstractions that rely on static checking to

enforce safety properties and ensure high performance. For example, one

could implement a capability-based shared array model in which a chare can

own a set of capabilities on some subset of an array (such as the ability to

read it) and delegate those capabilities to other chares dynamically. With

optimization for shared memory architectures, such data structures could be

used to efficiently and safely implement algorithms such as parallel quicksort

which involve the delegation of array segments to child workers.

We have also implemented optimizations within Charj, most notably loop

tiling and prefetching for multiphase shared arrays and communication opti-

mizations that eliminate unused fields from communicated objects. However,

these optimizations only scratch the surface of what is possible, particularly

with tight integration into runtime services.

The current MSA loop optimization is relatively simple and unsophis-

ticated, in that it does not attempt to determine an optimal amount of

prefetching based on machine and application characteristics. However, one

could insert instrumentation code that attempts to determine what level

of prefetching will maximize performance depending on current conditions.

While the current simple prefetching approximates code that a programmer

might feasibly write on their own, this kind of adaptive prefetching would go

beyond normal optimization practices and potentially increase application

performance beyond typical hand-optimized code without sacrificing clarity

or elegance.

Similarly, we may be able to use compile-time knowledge of application

communication patterns to replace unoptimized communication with special-

purpose, optimized runtime code that supports persistent connections and

data streaming, thereby improving performance without obscuring the sim-

ple pattern of communication expressed by the programmer. Optimizations

could also be applied to accelerated entry methods to control grain size and

135

statically determine whether or not a given method is a good candidate for

execution on accelerator hardware.

We can also apply existing optimizations in the context of advanced run-

time features. For example, the communication optimization technique used

to reduce message sizes for receivers that use only a subset of sent data could

also be applied in the areas of fault tolerance and load balancing. In fault

tolerance, object data must be written to some data store from which it can

be reconstituted in case of a fault. By identifying non-live data at check-

point time we can reduce checkpoint size and therefore increase performance

without requiring the programmer to enumerate the variables that need to

be checkpointed. Similarly, load balancing requires the migration of object

data from one address space to another, and by omitting data that can not

be used at the destination, we reduce the cost of communication associated

with load balancing.

All of these potential extensions build upon the fundamental observation

that drives this work: that direct compiler support combined with a rich

runtime system offers significant opportunities to improve the practice of

writing scalable parallel applications. We have demonstrated a variety of

techniques that work toward this goal, and we hope that in the future many

more will come to join them.

136

APPENDIX A

CHARJ LANGUAGE GRAMMAR

We provide here a complete grammar for the Charj language. It is specified

in a simplified version of the format used by ANTLR’s lexer and parser [29].

In the grammar, words in all capitals, such as ‘CLASS,’ represent a token

that consists of the literal word in question, i.e. ‘class.’ Other literals, such

as the binary and unary operators, are simply indicated by quoted strings

containing the literal in question. Rules marked as “fragment” can only be

matched as components of another top-level rule, and never on their own.

Listing A.1: The C++ implementation for the LUBlock data structure, cor-

responding to the Charj code in listing 7.6.

1

2 charjSource

3 : compilationUnit EOF

4

5 compilationUnit

6 : packageDeclaration?

7 topLevelDeclaration+

8

9 topLevelDeclaration

10 : importDeclaration

11 | readonlyDeclaration

12 | externDeclaration

13 | typeDeclaration

14

15 packageDeclaration

137

16 : PACKAGE IDENT (DOT IDENT)* ’;’!

17

18 importDeclaration

19 : IMPORT^ qualifiedIdentifier ’.*’? ’;’!

20

21 readonlyDeclaration

22 : READONLY^ localVariableDeclaration ’;’!

23

24 externDeclaration

25 : EXTERN^ qualifiedIdentifier ’;’!

26

27 typeDeclaration

28 : classDefinition

29 | templateDeclaration

30 | interfaceDefinition

31 | enumDefinition

32 | chareDefinition

33 | messageDefinition

34

35 templateList

36 : ’class’! IDENT (’,’! ’class’! IDENT)*

37

38 templateDeclaration

39 : ’template’ ’<’! templateList ’>’! classDefinition

40

41 classDefinition

42 : PUBLIC? CLASS IDENT (EXTENDS type)?

43 (’implements’ typeList)? ’{’! classScopeDeclaration* ’}’!

44

45 chareType

46 : CHARE

47 | GROUP

48 | NODEGROUP

49 | MAINCHARE

50 | CHARE_ARRAY ’[’! ARRAY_DIMENSION ’]’!

51

52 chareDefinition

53 : PUBLIC? chareType IDENT (EXTENDS type)?

54 (’implements’ typeList)? ’{’!

55 classScopeDeclaration*

56 ’}’!

57

58 interfaceDefinition

138

59 : ’interface’ IDENT (EXTENDS typeList)? ’{’!

60 interfaceScopeDeclaration*

61 ’}’!

62

63 enumDefinition

64 : ENUM IDENT (’implements’ typeList)? ’{’!

65 enumConstants ’,’? ’;’! classScopeDeclaration*

66 ’}’!

67

68 messageDefinition

69 : MESSAGE IDENT ’{’! messageScopeDeclaration* ’}’!

70 | MULTICAST_MESSAGE IDENT ’{’! messageScopeDeclaration* ’}’!

71

72 enumConstants

73 : enumConstant (’,’! enumConstant)*

74

75 enumConstant

76 : IDENT^ arguments?

77

78 typeList

79 : type (’,’! type)*

80

81 messageScopeDeclaration

82 : primitiveVariableDeclaration

83 | objectVariableDeclaration

84

85 classScopeDeclaration

86 : methodDeclaration

87 | constructorDeclaration

88 | primitiveVariableDeclaration

89 | objectVariableDeclaration

90

91 methodDeclaration

92 : modifierList? genericTypeParameterList? type

93 IDENT formalParameterList (’;’! | block)

94

95 constructorDeclaration

96 : modifierList? genericTypeParameterList? ident=IDENT

97 formalParameterList block

98

99 primitiveVariableDeclaration

100 : modifierList? simpleType classFieldDeclaratorList ’;’!

101

139

102 objectVariableDeclaration

103 : modifierList? objectType classFieldDeclaratorList ’;’!

104

105 interfaceScopeDeclaration

106 : modifierList?

107 (genericTypeParameterList?

108 (type IDENT formalParameterList ’;’!)

109 | simpleType interfaceFieldDeclaratorList ’;’!

110 | objectType interfaceFieldDeclaratorList ’;’!)

111

112 classFieldDeclaratorList

113 : classFieldDeclarator (’,’! classFieldDeclarator)*

114

115 classFieldDeclarator

116 : variableDeclaratorId (’=’! variableInitializer)?

117

118 interfaceFieldDeclaratorList

119 : interfaceFieldDeclarator (’,’! interfaceFieldDeclarator)*

120

121 interfaceFieldDeclarator

122 : variableDeclaratorId ASSIGNMENT! variableInitializer

123

124 variableDeclaratorId

125 : IDENT^ domainExpression?

126

127 variableInitializer

128 : arrayInitializer

129 | expression

130

131 arrayInitializer

132 : ’{’! (variableInitializer

133 (’,’! variableInitializer)* ’,’?)? ’}’!

134

135 templateArg

136 : genericTypeArgument

137 | literal

138

139 templateArgList

140 : templateArg (’,’! templateArg)*

141

142 templateInstantiation

143 : ’<’ templateArgList ’>’

144 | ’<’ templateInstantiation ’>’

140

145

146 genericTypeParameterList

147 : ’<’ genericTypeParameter (’,’ genericTypeParameter)* ’>’

148

149 genericTypeParameter

150 : IDENT bound?

151

152 bound

153 : EXTENDS type (’&’ type)*

154

155 modifierList

156 : modifier+

157

158 modifier

159 : PUBLIC

160 | PROTECTED

161 | ENTRY

162 | SDAGENTRY

163 | TRACED

164 | ACCELERATED

165 | PRIVATE

166 | ABSTRACT

167 | NATIVE

168 | localModifier

169

170 localModifierList

171 : localModifier+

172

173 localModifier

174 : FINAL

175 | STATIC

176 | VOLATILE

177

178 type

179 : simpleType

180 | objectType

181 | VOID

182

183 constructorType

184 : qualifiedTypeIdent AT domainExpression?

185 | qualifiedTypeIdent domainExpression?

186 | MOD qualifiedTypeIdent AT domainExpression

187 | qualifiedTypeIdent TILDE

141

188

189 simpleType

190 : primitiveType domainExpression?

191

192 objectType

193 : qualifiedTypeIdent AT domainExpression?

194 | qualifiedTypeIdent domainExpression?

195 | qualifiedTypeIdent ’[’ MOD ’]’ AT

196 | qualifiedTypeIdent ’[’ TILDE ’]’ AT

197

198 qualifiedTypeIdent

199 : typeIdent (DOT typeIdent)*

200

201 typeIdent

202 : IDENT^ templateInstantiation?

203

204 primitiveType

205 : BOOLEAN

206 | CHAR

207 | BYTE

208 | SHORT

209 | INT

210 | LONG

211 | FLOAT

212 | DOUBLE

213

214 genericTypeArgument

215 : type

216 | ’?’

217

218 qualifiedIdentList

219 : qualifiedIdentifier (’,’! qualifiedIdentifier)*

220

221 formalParameterList

222 : ’(’! (formalParameterStandardDecl

223 (’,’! formalParameterStandardDecl)*

224 (’,’! formalParameterVarArgDecl)?

225 | formalParameterVarArgDecl) ’)’!

226

227 formalParameterStandardDecl

228 : localModifierList? type variableDeclaratorId

229

230 formalParameterVarArgDecl

142

231 : localModifierList? type ’...’ variableDeclaratorId

232

233 qualifiedIdentifier

234 : IDENT (DOT IDENT)*

235

236 block

237 : ’{’! blockStatement* ’}’!

238 | nonBlockStatement

239

240 blockStatement

241 : localVariableDeclaration ’;’!

242 | statement

243

244 localVariableDeclaration

245 : primitiveVarDeclaration

246 | objectVarDeclaration

247

248 primitiveVarDeclaration

249 : localModifierList? simpleType classFieldDeclaratorList

250

251 objectVarDeclaration

252 : localModifierList? objectType classFieldDeclaratorList

253

254 statement

255 : nonBlockStatement

256 | sdagStatement

257 | block

258

259 sdagTrigger

260 : IDENT (’[’! expression ’]’!)? formalParameterList

261

262 sdagStatement

263 : OVERLAP block

264 | WHEN (sdagTrigger (’,’ sdagTrigger)*)? block

265

266

267 nonBlockStatement

268 : ASSERT expr1=expression

269 (’:’! expr2=expression ’;’!

270 |’;’!)

271 | IF parenthesizedExpression ifStat=block

272 (ELSE elseStat=block |)

273 | FOR ’(’!

143

274 (forInit? ’;’! expression? ’;’! expressionList? ’)’! block

275 | localModifierList? type IDENT ’:’! expression ’)’! block

276)

277 | WHILE parenthesizedExpression block

278 | DO block WHILE parenthesizedExpression ’;’!

279 | SWITCH parenthesizedExpression ’{’! switchCaseLabel* ’}’!

280 | RETURN expression? ’;’!

281 | THROW expression ’;’!

282 | BREAK IDENT? ’;’!

283 | CONTINUE IDENT? ’;’!

284 | IDENT ’:’! statement

285 | ’delete’ expression ’;’!

286 | ’embed’ STRING_LITERAL EMBED_BLOCK

287 | expression ’;’!

288 | ’;’

289

290

291 switchCaseLabel

292 : CASE^ expression ’:’! blockStatement*

293 | DEFAULT^ ’:’! blockStatement*

294

295 forInit

296 : localVariableDeclaration

297 | expressionList

298

299 parenthesizedExpression

300 : ’(’! expression ’)’!

301

302 rangeItem

303 : DECIMAL_LITERAL

304 | IDENT

305

306 rangeExpression

307 : rangeItem

308 | rangeItem ’:’! rangeItem

309 | rangeItem ’:’! rangeItem ’:’! rangeItem

310

311 rangeList

312 : rangeExpression (’,’! rangeExpression)*

313

314 domainExpression

315 : ’[’! rangeList ’]’!

316

144

317 expressionList

318 : expression (’,’! expression)*

319

320 expression

321 : assignmentExpression

322

323 assignmentExpression

324 : conditionalExpression

325 ((ASSIGNMENT^

326 | ’+=’^

327 | ’-=’^

328 | ’*=’^

329 | ’/=’^

330 | ’&=’^

331 | ’|=’^

332 | ’^=’^

333 | ’%=’^

334 | ’<<=’^

335 | ’>>=’^

336 | ’>>>=’^)

337 assignmentExpression)?

338

339 conditionalExpression

340 : logicalOrExpression (’?’^ assignmentExpression

341 ’:’! conditionalExpression)?

342

343 logicalOrExpression

344 : logicalAndExpression (’||’^ logicalAndExpression)*

345

346 logicalAndExpression

347 : inclusiveOrExpression (’&&’^ inclusiveOrExpression)*

348

349 inclusiveOrExpression

350 : exclusiveOrExpression (’|’^ exclusiveOrExpression)*

351

352 exclusiveOrExpression

353 : andExpression (’^’^ andExpression)*

354

355 andExpression

356 : equalityExpression (’&’^ equalityExpression)*

357

358 equalityExpression

359 : instanceOfExpression

145

360 ((’==’^

361 | ’!=’^

362)

363 instanceOfExpression

364)*

365

366 instanceOfExpression

367 : relationalExpression (’instanceof’^ type)?

368

369 relationalExpression

370 : shiftExpression

371 ((’<=’^

372 | ’>=’^

373 | ’<’^

374 | ’>’^

375)

376 shiftExpression

377)*

378

379 shiftExpression

380 : additiveExpression

381 ((’>>>’^

382 | ’>>’^

383 | ’<<’^

384)

385 additiveExpression

386)*

387

388 additiveExpression

389 : multiplicativeExpression

390 ((’+’^

391 | ’-’^

392)

393 multiplicativeExpression

394)*

395

396 multiplicativeExpression

397 : unaryExpression

398 ((’*’^

399 | ’/’^

400 | ’%’^

401)

402 unaryExpression

146

403)*

404

405 unaryExpression

406 : ’+’ unaryExpression

407 | ’-’ unaryExpression

408 | ’++’ postfixedExpression

409 | ’--’ postfixedExpression

410 | unaryExpressionNotPlusMinus

411 ;

412

413 unaryExpressionNotPlusMinus

414 : ’!’ unaryExpression

415 | ’~’ unaryExpression

416 | ’(’ type ’)’ unaryExpression

417 | postfixedExpression

418 ;

419

420 postfixedExpression

421 : primaryExpression

422 (’.’

423 ((templateInstantiation? IDENT) (arguments)?

424 | THIS

425 | SUPER arguments

426 | (SUPER ’.’ IDENT) (arguments)?

427)

428 | (’@’ templateInstantiation? IDENT arguments)

429 | domainExpression

430)*

431 (’++’ | ’--’)?

432

433 primaryExpression

434 : parenthesizedExpression

435 | literal

436 | newExpression

437 | qualifiedIdentExpression

438 | domainExpression

439 | templateInstantiation

440 (SUPER (arguments |IDENT arguments)

441 | IDENT arguments

442 | THIS arguments

443)

444 | THIS (arguments)?

445 | SUPER arguments

147

446 | (SUPER DOT IDENT) (arguments |)

447 | SIZEOF ’(’ expression ’)’

448 -> ^(SIZEOF expression)

449 | SIZEOF ’(’ type ’)’

450 -> ^(SIZEOF type)

451

452 qualifiedIdentExpression

453 : qualifiedIdentifier

454 (arguments

455 | ’.’

456 (templateInstantiation

457 (SUPER arguments

458 | SUPER ’.’ IDENT arguments

459 | IDENT arguments

460)

461 | THIS

462 | SUPER arguments

463)

464)?

465

466 newExpression

467 : NEW (domainExpression arguments? | constructorType arguments)

468

469 arguments

470 : ’(’! expressionList? ’)’!

471

472 literal

473 : HEX_LITERAL

474 | OCTAL_LITERAL

475 | DECIMAL_LITERAL

476 | FLOATING_POINT_LITERAL

477 | CHARACTER_LITERAL

478 | STRING_LITERAL

479 | TRUE

480 | FALSE

481 | NULL

482

483 HEX_LITERAL : ’0’ (’x’|’X’) HEX_DIGIT+ INTEGER_TYPE_SUFFIX?

484

485 DECIMAL_LITERAL : (’0’ | ’1’..’9’ ’0’..’9’*) INTEGER_TYPE_SUFFIX?

486

487 OCTAL_LITERAL : ’0’ (’0’..’7’)+ INTEGER_TYPE_SUFFIX?

488

148

489 ARRAY_DIMENSION : (’1’..’6’)(’d’|’D’)

490

491 fragment

492 HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’)

493

494 fragment

495 INTEGER_TYPE_SUFFIX : (’l’|’L’)

496

497 FLOATING_POINT_LITERAL

498 : (’0’..’9’)+

499 (

500 DOT (’0’..’9’)* EXPONENT? FLOAT_TYPE_SUFFIX?

501 | EXPONENT FLOAT_TYPE_SUFFIX?

502 | FLOAT_TYPE_SUFFIX

503)

504 | DOT (’0’..’9’)+ EXPONENT? FLOAT_TYPE_SUFFIX?

505

506 fragment

507 EXPONENT : (’e’|’E’) (’+’|’-’)? (’0’..’9’)+

508

509 fragment

510 FLOAT_TYPE_SUFFIX : (’f’|’F’|’d’|’D’)

511

512 CHARACTER_LITERAL

513 : ’\’’ (ESCAPE_SEQUENCE | ~(’\’’|’\\’)) ’\’’

514

515 STRING_LITERAL

516 : ’"’ (ESCAPE_SEQUENCE | ~(’\\’|’"’))* ’"’

517

518 fragment

519 ESCAPE_SEQUENCE

520 : ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)

521 | UNICODE_ESCAPE

522 | OCTAL_ESCAPE

523

524 fragment

525 OCTAL_ESCAPE

526 : ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)

527 | ’\\’ (’0’..’7’) (’0’..’7’)

528 | ’\\’ (’0’..’7’)

529

530 fragment

531 UNICODE_ESCAPE

149

532 : ’\\’ ’u’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

533

534 IDENT

535 : CHARJ_ID_START (CHARJ_ID_PART)*

536

537 fragment

538 CHARJ_ID_START

539 : ’\u0024’

540 | ’\u0041’..’\u005a’

541 | ’\u005f’

542 | ’\u0061’..’\u007a’

543 | ’\u00c0’..’\u00d6’

544 | ’\u00d8’..’\u00f6’

545 | ’\u00f8’..’\u00ff’

546 | ’\u0100’..’\u1fff’

547 | ’\u3040’..’\u318f’

548 | ’\u3300’..’\u337f’

549 | ’\u3400’..’\u3d2d’

550 | ’\u4e00’..’\u9fff’

551 | ’\uf900’..’\ufaff’

552

553 fragment

554 CHARJ_ID_PART

555 : CHARJ_ID_START

556 | ’\u0030’..’\u0039’

557

558 WS : (’ ’|’\r’|’\t’|’\u000C’|’\n’)

559

560 fragment

561 EMBED_BLOCK

562 : ’{’ (options {greedy=false;} : EMBED_BLOCK | .)* ’}’

563

564 COMMENT

565 : ’/*’ (options {greedy=false;} : .)* ’*/’

566

567 LINE_COMMENT

568 : (’//’|’#’) ~(’\n’|’\r’)* ’\r’? ’\n’

150

REFERENCES

[1] M. Snir and D. A. Bader, “A framework for measuring supercomputer
productivity,” International Journal of High Performance Computing
Applications, vol. 18, no. 4, pp. 417–432, Winter 2004. [Online].
Available: http://hpc.sagepub.com/content/18/4/417.abstract

[2] T. Panas, D. Quinlan, and R. Vuduc, “Tool support for inspecting
the code quality of hpc applications,” in Proceedings of the
3rd International Workshop on Software Engineering for High
Performance Computing Applications, ser. SE-HPC ’07. Washington,
DC, USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/SE-HPC.2007.8 pp. 2–.

[3] J. Kepner, “Hpc productivity: An overarching view,” International
Journal of High Performance Computing Applications, vol. 18,
no. 4, pp. 393–397, Winter 2004. [Online]. Available: http:
//hpc.sagepub.com/content/18/4/393.abstract

[4] T. Sterling, “Productivity metrics and models for high performance
computing,” International Journal of High Performance Computing
Applications, vol. 18, no. 4, pp. 433–440, Winter 2004. [Online].
Available: http://hpc.sagepub.com/content/18/4/433.abstract

[5] D. J. Kuck, “Productivity in high performance computing,” Int. J.
High Perform. Comput. Appl., vol. 18, no. 4, pp. 489–504, Nov. 2004.
[Online]. Available: http://dx.doi.org/10.1177/1094342004048541

[6] M. O. McCracken, N. Wolter, and A. Snavely, “Beyond performance
tools: Measuring and modeling productivity in hpc,” in Proceedings
of the 3rd International Workshop on Software Engineering for High
Performance Computing Applications, ser. SE-HPC ’07. Washington,
DC, USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/SE-HPC.2007.2 pp. 4–.

[7] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and L. Votta,
“Measuring high performance computing productivity,” Int. J. High

151

http://hpc.sagepub.com/content/18/4/417.abstract
http://dx.doi.org/10.1109/SE-HPC.2007.8
http://hpc.sagepub.com/content/18/4/393.abstract
http://hpc.sagepub.com/content/18/4/393.abstract
http://hpc.sagepub.com/content/18/4/433.abstract
http://dx.doi.org/10.1177/1094342004048541
http://dx.doi.org/10.1109/SE-HPC.2007.2

Perform. Comput. Appl., vol. 18, no. 4, pp. 459–473, Nov. 2004.
[Online]. Available: http://dx.doi.org/10.1177/1094342004048539

[8] W. Gropp, “Learning from the success of mpi,” in High Performance
Computing HiPC 2001, ser. Lecture Notes in Computer Science,
B. Monien, V. Prasanna, and S. Vajapeyam, Eds. Springer Berlin
/ Heidelberg, 2001, vol. 2228, pp. 81–92, 10.1007/3-540-45307-5 8.
[Online]. Available: http://dx.doi.org/10.1007/3-540-45307-5 8

[9] L. Hochstein, F. Shull, and L. B. Reid, “The role of mpi
in development time: a case study,” in Proceedings of the
2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413405 pp. 34:1–34:10.

[10] R. Eigenmann and W. Blume, “An effectiveness study of parallelizing
compiler techniques,” in ICPP (2), 1991, pp. 17–25.

[11] D. Hisley, G. Agrawal, and L. Pollock, “Evaluating the effectiveness
of a parallelizing compiler,” in Languages, Compilers, and Run-Time
Systems for Scalable Computers, ser. Lecture Notes in Computer
Science, D. OHallaron, Ed. Springer Berlin / Heidelberg, 1998,
vol. 1511, pp. 195–204, 10.1007/3-540-49530-414. [Online]. Available:
http://dx.doi.org/10.1007/3-540-49530-414

[12] W. Blume and R. Eigenmann, “Performance analysis of parallelizing
compilers on the perfect benchmarks programs,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, pp. 643–656, 1992.

[13] M. L. Van De Vanter, A. Wood, C. Vick, S. Faulk, S. Squires, and L. G.
Votta, “Productive petascale computing: requirements, hardware, and
software,” Mountain View, CA, USA, Tech. Rep., 2009.

[14] E. Loh, M. L. Van De Vanter, and L. G. Votta, “Can
software engineering solve the hpcs problem?” in Proceedings
of the second international workshop on Software engineering for
high performance computing system applications, ser. SE-HPCS
’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1145319.1145328 pp. 27–31.

[15] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism. O’Reilly Media, 2007.

[16] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney,
R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach,
and S. Tasirlar, “Concurrent collections,” Sci. Program., vol. 18,
no. 3-4, pp. 203–217, Aug. 2010. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1938482.1938486

152

http://dx.doi.org/10.1177/1094342004048539
http://dx.doi.org/10.1007/3-540-45307-5_8
http://dl.acm.org/citation.cfm?id=1413370.1413405
http://dx.doi.org/10.1007/3-540-49530-414
http://doi.acm.org/10.1145/1145319.1145328
http://dl.acm.org/citation.cfm?id=1938482.1938486
http://dl.acm.org/citation.cfm?id=1938482.1938486

[17] S. Gunther, “Multi-dsl applications with ruby,” IEEE Software, vol. 27,
pp. 25–30, 2010.

[18] R. K. Brunner, “Versatile automatic load balancing with migratable
objects,” TR 00-01, January 2000.

[19] G. Zheng, “Achieving high performance on extremely large parallel
machines: performance prediction and load balancing,” Ph.D. dis-
sertation, Department of Computer Science, University of Illinois at
Urbana-Champaign, 2005.

[20] E. Meneses, G. Bronevetsky, and L. V. Kale, “Dynamic load balance
for optimized message logging in fault tolerant hpc applications,” in
IEEE International Conference on Cluster Computing (Cluster) 2011,
September 2011.

[21] S. Chakravorty and L. V. Kale, “A fault tolerant protocol for massively
parallel machines,” in FTPDS Workshop for IPDPS 2004. IEEE Press,
2004.

[22] O. Sarood and L. V. Kalé, “A ‘cool’ load balancer for parallel appli-
cations,” in Proceedings of the 2011 ACM/IEEE conference on Super-
computing, Seattle, WA, November 2011.

[23] L. V. Kale, D. M. Kunzman, and L. Wesolowski, “Accelerator Support
in the Charm++ Parallel Programming Model,” in Scientific Com-
puting with Multicore and Accelerators, J. Kurzak, D. A. Bader, and
J. Dongarra, Eds. CRC Press, Taylor & Francis Group, 2011, pp.
393–412.

[24] I. Dooley, “Intelligent runtime tuning of parallel ap-
plications with control points,” Ph.D. dissertation,
Dept. of Computer Science, University of Illinois, 2010,
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[25] J. DeSouza and L. V. Kalé, “MSA: Multiphase specifically shared ar-
rays,” in Proceedings of the 17th International Workshop on Languages
and Compilers for Parallel Computing, West Lafayette, Indiana, USA,
September 2004.

[26] A. Gursoy and L. Kale, “Dagger: Combining the benefits of syn-
chronous and asynchronous communication styles,” Parallel Program-
ming Laboratory, Department of Computer Science, University of Illi-
nois, Tech. Rep., March 1993.

[27] L. V. Kale and M. Bhandarkar, “Structured Dagger: A Coordination
Language for Message-Driven Programming,” in Proceedings of Second

153

International Euro-Par Conference, ser. Lecture Notes in Computer
Science, vol. 1123-1124, September 1996, pp. 646–653.

[28] P. Miller, A. Becker, and L. Kal, “Using shared arrays in message-
driven parallel programs,” Parallel Computing, vol. 38, no. 12, pp. 66
– 74, 2012.

[29] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll(k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp.
789–810, 1995. [Online]. Available: http://dx.doi.org/10.1002/spe.
4380250705

[30] The CHARM (5.9) programming language manual, Department of
Computer Science,University of Illinois at Urbana-Champaign, Ur-
bana, IL, 2006.

[31] T. L. Veldhuizen, “C++ templates are turing complete,” Tech. Rep.,
2003.

[32] J. Sasitorn and R. Cartwright, “Efficient first-class generics on stock
java virtual machines,” in Proceedings of the 2006 ACM symposium on
Applied computing, ser. SAC ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1141277.1141656 pp.
1621–1628.

[33] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira,
“High performance numerical computing in java: Language and
compiler issues,” in Proceedings of the 12th International Workshop
on Languages and Compilers for Parallel Computing, ser. LCPC
’99. London, UK, UK: Springer-Verlag, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645677.663925 pp. 1–17.

[34] L. M. Garshol, “Bnf and ebnf: What are they and how do
they work?” 2012. [Online]. Available: http://www.garshol.priv.no/
download/text/bnf.html

[35] T. Parr and K. Fisher, “Ll(*): the foundation of the antlr parser
generator,” SIGPLAN Not., vol. 46, no. 6, pp. 425–436, June 2011.
[Online]. Available: http://doi.acm.org/10.1145/1993316.1993548

[36] T. Parr, Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages, 1st ed. Prag-
matic Bookshelf, 2009.

[37] T. J. Parr, “Enforcing strict model-view separation in template
engines,” in Proceedings of the 13th international conference on World
Wide Web, ser. WWW ’04. New York, NY, USA: ACM, 2004.

154

http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1002/spe.4380250705
http://doi.acm.org/10.1145/1141277.1141656
http://dl.acm.org/citation.cfm?id=645677.663925
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://doi.acm.org/10.1145/1993316.1993548

[Online]. Available: http://doi.acm.org/10.1145/988672.988703 pp.
224–233.

[38] J. Weirich, “Rakefile format documentation,” 2012. [Online]. Available:
http://rake.rubyforge.org/files/doc/rakefile rdoc.html

[39] M. Fowler, “Using the rake build language,” 2012. [Online]. Available:
http://martinfowler.com/articles/rake.html

[40] T. Sloane, “Experiences with Domain-specific Language Embedding
in Scala,” in Domain-Specific Program Development, J. Lawall and
L. Réveillère, Eds., Nashville, États-Unis, 2008. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00350269 p. 7.

[41] J. Launchbury, J. R. Lewis, and B. Cook, “On embedding a
microarchitectural design language within haskell,” in Proceedings of
the fourth ACM SIGPLAN international conference on Functional
programming, ser. ICFP ’99. New York, NY, USA: ACM, 1999.
[Online]. Available: http://doi.acm.org/10.1145/317636.317784 pp.
60–69.

[42] O. Shivers, “A universal scripting framework or lambda: The ultimate
little language,” in Concurrency and Parallelism, Programming,
Networking, and Security, ser. Lecture Notes in Computer Science,
J. Jaffar and R. Yap, Eds. Springer Berlin / Heidelberg, 1996,
vol. 1179, pp. 254–265, 10.1007/BFb0027798. [Online]. Available:
http://dx.doi.org/10.1007/BFb0027798

[43] M. Bravenboer and E. Visser, “Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions,”
in Proceedings of the 19th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
ser. OOPSLA ’04. New York, NY, USA: ACM, 2004. [Online].
Available: http://doi.acm.org/10.1145/1028976.1029007 pp. 365–383.

[44] M. Bravenboer, R. de Groot, and E. Visser, “Metaborg in action:
Examples of domain-specific language embedding and assimilation
using stratego/xt,” in Generative and Transformational Techniques
in Software Engineering, ser. Lecture Notes in Computer Science,
R. Lmmel, J. Saraiva, and J. Visser, Eds. Springer Berlin /
Heidelberg, 2006, vol. 4143, pp. 297–311, 10.1007/11877028. [Online].
Available: http://dx.doi.org/10.1007/11877028 10

[45] N. Ramsey, “Embedding an interpreted language using higher-
order functions and types,” in Proceedings of the 2003 workshop
on Interpreters, virtual machines and emulators, ser. IVME

155

http://doi.acm.org/10.1145/988672.988703
http://rake.rubyforge.org/files/doc/rakefile_rdoc.html
http://martinfowler.com/articles/rake.html
http://hal.archives-ouvertes.fr/hal-00350269
http://doi.acm.org/10.1145/317636.317784
http://dx.doi.org/10.1007/BFb0027798
http://doi.acm.org/10.1145/1028976.1029007
http://dx.doi.org/10.1007/11877028_10

’03. New York, NY, USA: ACM, 2003. [Online]. Available:
http://doi.acm.org/10.1145/858570.858571 pp. 6–14.

[46] A. Gursoy and L. Kalé, “Dagger: Combining the Benefits of Syn-
chronous and Asynchronous Communication Styles,” in Proceedings
of the 8th International Parallel Processing Symposium, H. G. Siegel,
Ed., Cancun, Mexico, April 1994, pp. 590–596.

[47] A. Gursoy and L. Kale, “Tolerating latency with dagger,” in Proceed-
ings of the Eigth International Symposium on Computer and Informa-
tion Sciences, Istanbul, Turkey, November 1993.

[48] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
nonuniform memory access programming model for high-performance
computers,” J. Supercomputing, no. 10, pp. 197–220, 1996.

[49] W. Kuchera and C. Wallace, “The upc memory model: Problems and
prospects,” 2004.

[50] J. DeSouza, “Jade: Compiler-supported multi-paradigm processor
virtualization-based parallel programming,” Ph.D. dissertation, De-
partment of Computer Science, University of Illinois at Urbana-
Champaign, 2004.

[51] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Proc.
of the Second ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming (PPOPP’90), 1990. [Online]. Available:
citeseer.nj.nec.com/bennett90munin.html pp. 168–177.

[52] O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley,
G. Zheng, and L. Kale, “Parfum: A parallel framework for unstructured
meshes for scalable dynamic physics applications,” Engineering with
Computers, vol. 22, no. 3-4, pp. 215–235, September 2006.

[53] P. Wadler, “Linear types can change the world!” in Programming Con-
cepts and Methods, M. Broy and C. Jones, Eds., 1990.

[54] R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: specifying
behavioral compositions in object-oriented systems,” SIGPLAN Not.,
vol. 25, no. 10, 1990.

[55] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Addison Wesley, 1986. [Online]. Available:
http://www.worldcat.org/isbn/0201100886

156

http://doi.acm.org/10.1145/858570.858571
citeseer.nj.nec.com/bennett90munin.html
http://www.worldcat.org/isbn/0201100886

[56] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Petascale
computing with accelerators,” in Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, ser. PPoPP ’09. New York, NY, USA: ACM, 2009. [Online].
Available: http://doi.acm.org/10.1145/1504176.1504212 pp. 241–250.

[57] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Programming
the linpack benchmark for roadrunner,” IBM Journal of Research and
Development, vol. 53, no. 5, pp. 9:1 –9:11, sept. 2009.

[58] T. Endo, A. Nukada, S. Matsuoka, and N. Maruyama, “Linpack evalu-
ation on a supercomputer with heterogeneous accelerators,” in Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, april 2010, pp. 1 –8.

[59] D. M. Kunzman, “Runtime support for object-based message-driven
parallel applications on heterogeneous clusters,” Ph.D. dissertation,
Dept. of Computer Science, University of Illinois, 2012, (to appear).

[60] G. Zheng, “Charm++ automated-build status,” 2012. [Online].
Available: https://charm.cs.illinois.edu/autobuild/cur/

[61] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Comput-
ing, vol. 27, no. 1-2, pp. 3 – 35, 2001.

[62] “Top500 supercomputing sites,” http://top500.org.

[63] N. Ahmed, N. Mateev, and K. Pingali, “Tiling Imperfectly-
nested Loop Nests,” p. 60, 2000. [Online]. Available: http:
//citeseer.ist.psu.edu/ahmed00tiling.html

[64] M. Wolfe, “Iteration Space Tiling for Memory Hierarchies,” in
Proceedings of the Third SIAM Conference on Parallel Processing
for Scientific Computing. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1989. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645818.669220 pp. 357–361.

[65] M. Wolfe, “More iteration space tiling,” in Proceedings of the
1989 ACM/IEEE conference on Supercomputing, ser. Supercomputing
’89. New York, NY, USA: ACM, 1989. [Online]. Available:
http://dx.doi.org/10.1145/76263.76337 pp. 655–664.

[66] J. Xue, Loop tiling for parallelism. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 2000.

157

http://doi.acm.org/10.1145/1504176.1504212
https://charm.cs.illinois.edu/autobuild/cur/
http://citeseer.ist.psu.edu/ahmed00tiling.html
http://citeseer.ist.psu.edu/ahmed00tiling.html
http://portal.acm.org/citation.cfm?id=645818.669220
http://dx.doi.org/10.1145/76263.76337

[67] J. Ramanujam and P. Sadayappan, “Tiling Multidimensional Iteration
Spaces for Multicomputers,” Journal of Parallel and Distributed
Computing, vol. 16, no. 2, pp. 108–230, 1992. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.4376

[68] L. Hochstein and V. R. Basili, “An empirical study to compare two
parallel programming models,” in Proceedings of the eighteenth annual
ACM symposium on Parallelism in algorithms and architectures, ser.
SPAA ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1148109.1148127 pp. 114–114.

[69] Remote Procedure Calls: Protocol Specification, Sun Microsystems,
Inc., Mountain View, Calif., May 1988.

[70] The Common Object Request Broker: Architecture and Specification
(Draft), 10 December 1991, revision 1.1.

[71] P. Dietz, T. Weigert, and F. Weil, “Formal techniques for automatically
generating marshalling code from high-level specifications,” in Indus-
trial Strength Formal Specification Techniques, 1998. Proceedings. 2nd
IEEE Workshop on, 1998, pp. 40 –47.

[72] N. Feske, “A case study on the cost and benefit of dynamic rpc mar-
shalling for low-level system components,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 40–48, July 2007.

[73] C. Queinnec, “Marshaling/demarshaling as a compilation/interpreta-
tion process,” Parallel Processing Symposium, International, vol. 0, p.
616, 1999.

[74] R. Hillson and M. Iglewski, “C++2mpi: a software tool for automat-
ically generating mpi datatypes from c++ classes,” in Parallel Com-
puting in Electrical Engineering, 2000. PARELEC 2000. Proceedings.
International Conference on, 2000, pp. 13 –17.

[75] E. Renault and C. Parrot, “Mpi pre-processor: generating mpi de-
rived datatypes from c datatypes automatically,” in Parallel Processing
Workshops, 2006. ICPP 2006 Workshops. 2006 International Confer-
ence on, 0-0 2006, pp. 7 pp. –256.

[76] D. Goujon, M. Michel, J. Peeters, and J. Devaney, “Automap and
autolink tools for communicating complex and dynamic data-structures
using mpi,” in Network-Based Parallel Computing Communication,
Architecture, and Applications, ser. Lecture Notes in Computer
Science, D. Panda and C. Stunkel, Eds. Springer Berlin / Heidelberg,
1998, vol. 1362, pp. 98–109, 10.1007/BFb0052210. [Online]. Available:
http://dx.doi.org/10.1007/BFb0052210

158

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.4376
http://doi.acm.org/10.1145/1148109.1148127
http://dx.doi.org/10.1007/BFb0052210

[77] D. D. F. Kjolstad and M. Snir, “Bringing the HPC Programmer’s IDE
into the 21st Century through Refactoring,” in SPLASH 2010 Work-
shop on Concurrency for the Application Programmer (CAP’10). As-
sociation for Computing Machinery (ACM), Oct. 2010.

[78] W. Tansey and E. Tilevich, “Efficient automated marshaling of c++
data structures for mpi applications,” in Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on, april
2008, pp. 1 –12.

[79] P. Kambadur, D. Gregor, A. Lumsdaine, and A. Dharurkar, “Modern-
izing the c++ interface to mpi,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, ser. Lecture Notes in Com-
puter Science, B. Mohr, J. Traff, J. Worringen, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2006, vol. 4192, pp. 266–274.

[80] L. T. Kou, “On live-dead analysis for global data flow problems,”
J. ACM, vol. 24, pp. 473–483, July 1977. [Online]. Available:
http://doi.acm.org/10.1145/322017.322027

[81] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kale,
“NAMD: A Portable and Highly Scalable Program for Biomolecular
Simulations,” Department of Computer Science, University of Illinois
at Urbana-Champaign, Tech. Rep. UIUCDCS-R-2009-3034, February
2009.

[82] J. E. Barnes and P. Hut, “A hierarchical O(NlogN) force calculation
algorithm,” Nature, vol. 324, 1986.

[83] J. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford parallel
applications for shared memory,” Computer Architecture News, vol. 20,
no. 1, pp. 5–44, March 1992.

[84] A. Geist and S. Dosanjh, “Iesp exascale challenge: Co-design
of architectures and algorithms,” Int. J. High Perform. Comput.
Appl., vol. 23, no. 4, pp. 401–402, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1177/1094342009347766

[85] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. R. Thornquist, and R. W.
Numrich, “Improving performance via mini-applications,” Sandia Na-
tional Laboratories, Tech. Rep., 2009.

[86] M. Heroux and R. Barrett, “Mantevo project homepage,” 2012.
[Online]. Available: https://software.sandia.gov/mantevo/index.html

[87] T. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308 – 320, dec. 1976.

159

http://doi.acm.org/10.1145/322017.322027
http://dx.doi.org/10.1177/1094342009347766
https://software.sandia.gov/mantevo/index.html

[88] M. Shepperd, “A critique of cyclomatic complexity as a software met-
ric,” Software Engineering Journal, vol. 3, no. 2, pp. 30 –36, mar 1988.

[89] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,
“Measuring the psychological complexity of software maintenance
tasks with the halstead and mccabe metrics,” IEEE Trans. Softw.
Eng., vol. 5, no. 2, pp. 96–104, Mar. 1979. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1979.234165

[90] V. Basili and D. Hutchens, “An empirical study of a syntactic complex-
ity family,” Software Engineering, IEEE Transactions on, vol. SE-9,
no. 6, pp. 664 – 672, nov. 1983.

[91] J. L. Elshoff and M. Marcotty, “On the use of the cyclomatic number
to measure program complexity,” SIGPLAN Not., vol. 13, no. 12, pp.
29–40, Dec. 1978. [Online]. Available: http://doi.acm.org/10.1145/
954587.954590

[92] M. H. Halstead, Elements of Software Science. Elsevier, 1977.

[93] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D. Padua,
“Programming with tiles,” in PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel program-
ming. New York, NY, USA: ACM, 2008, pp. 111–122.

[94] C. Lattner, “clang: a c language family frontend for llvm,” 2012.
[Online]. Available: http://clang.llvm.org/

[95] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the
2011 HPC class II challenge,” Parallel Programming Laboratory, Tech.
Rep. 11-49, November 2011.

[96] V. Mehta, “LeanMD: A Charm++ framework for high performance
molecular dynamics simulation on large parallel machines,” M.S. thesis,
University of Illinois at Urbana-Champaign, 2004.

[97] R. Brunner, J. Phillips, and L.V.Kalé, “Scalable molecular dynam-
ics for large biomolecular systems,” in Proceedings of SuperComputing
2000, 2000.

[98] D. Poole, Linear Algebra: A Modern Introduction. Brooks Cole, 2005.
[Online]. Available: http://www.worldcat.org/isbn/0534998453

[99] J. Dongarra, “The Linpack Benchmark: An Explanation,” in Evalu-
ating Supercomputers, A. Van der Steen, Ed. Chapman and Hall,
1990.

160

http://dx.doi.org/10.1109/TSE.1979.234165
http://doi.acm.org/10.1145/954587.954590
http://doi.acm.org/10.1145/954587.954590
http://clang.llvm.org/
http://www.worldcat.org/isbn/0534998453

[100] M. Collaboration, “MIMD Lattice Computation (MILC) Collaboration
Home Page,” http://www.physics.indiana.edu/∼sg/milc.html.

[101] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers, “A description of the advanced re-
search wrf version 2,” NCAR, Tech. Rep. Technical Note NCAR/TN-
468+STR, June 2005.

[102] “The weather research & forecasting model website,” http://
wrf-model.org.

[103] W. Hoyzenga, “Cse parallel computing resource,” 2012. [Online].
Available: http://www.cse.illinois.edu/taub/

[104] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kale,
“Overcoming scaling challenges in biomolecular simulations across mul-
tiple platforms,” in Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2008, April 2008.

[105] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kalé, J. C.Phillips,
and C. Harrison, “Enabling and scaling biomolecular simulations of
100 million atoms on petascale machines with a multicore-optimized
message-driven runtime,” in Proceedings of the 2011 ACM/IEEE con-
ference on Supercomputing, Seattle, WA, November 2011.

[106] M. A. Heroux, D. W. Doerer, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich, “Improving performance via mini-applications,”
Sandia National Laboratories, Tech. Rep., September 2009.

[107] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary,
“HPL - a portable implementation of the high-performance
linpack benchmark for distributed-memory computers,”
http://www.netlib.org/benchmark/hpl/.

[108] D. Wheeler, “Sloccount,” 2012. [Online]. Available: http://www.
dwheeler.com/sloccount/

[109] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins
Studies in Mathematical Sciences). The Johns Hopkins University
Press, October 1996.

[110] I. Dooley, C. Mei, J. Lifflander, and L. Kale, “A study of memory-aware
scheduling in message driven parallel programs,” in PPL Technical Re-
ports 2010, no. 10-05, March 2010.

[111] C. Huang and L. V. Kale, “Charisma: Orchestrating migratable paral-
lel objects,” in Proceedings of IEEE International Symposium on High
Performance Distributed Computing (HPDC), July 2007.

161

http://www.physics.indiana.edu/~sg/milc.html
http://wrf-model.org
http://wrf-model.org
http://www.cse.illinois.edu/taub/
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

[112] P. Jetley and L. V. Kalé, “Static Macro Data Flow: Compiling Global
Control into Local Control,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium Workshops 2010, 2010.

162

	CHAPTER 1 Introduction
	CHAPTER 2 Methodology
	Objectives
	Practical Utility
	Integrating High-Level Parallel Features
	Concise and Elegant Syntax
	Reducing Programmer Burden

	Libraries versus Languages
	Infrastructure

	CHAPTER 3 The Charj Language
	The Charj Programming Model
	Charj Syntax
	Charj Keywords

	Comparing Charm Applications with Charj Applications
	Example Application
	Summary

	CHAPTER 4 The Charj Compiler
	Software Ecosystem
	Compiler Architecture
	Generating an AST
	Semantic Analysis and Optimization
	Code Generation

	Summary

	CHAPTER 5 Embedding Diverse Programming Models
	Related Work
	Supporting Multiple Programming Models
	Structured Dagger
	Implementing SDAG

	Multiphase Shared Arrays
	The MSA Programming Model
	Implementing MSA
	Static Checking
	Example Application

	Heterogeneous Computing
	Accelerated Entry Methods in Charj

	Summary

	CHAPTER 6 Optimizations
	Loop Optimizations for MSA
	Possible Library Implementation

	Optimizing Data Exchange
	Implementation
	Case Studies

	Summary

	CHAPTER 7 Writing Applications in Charj
	Measuring Productivity
	Selecting Applications
	Jacobi Relaxation
	Performance and Productivity

	Molecular Dynamics
	Specification and Verification
	Performance and Productivity

	LU Decomposition
	Performance and Productivity

	Summary

	CHAPTER 8 Future Work
	APPENDIX A Charj Language Grammar
	REFERENCES

