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1 Executive Summary
For more than 30 years since Intel’s 4004 marked the inception of semiconductor
microprocessors, the world has experienced a technological revolution as decreas-
ing feature sizes have enabled ever cheaper and faster processors over the years.
Starting in 2003, clock frequencies stopped increasing, due to thermal consider-
ations. Although feature sizes will decrease over the next decade, this will come
at the cost of decreased reliability, and larger issues involving power and energy.
In order for applications of critical importance to the nation to continue to ben-
efit from cutting-edge technology, it is clear that new research is needed. The
proposed research aims at developing an adaptive control system to this end.

The design space in this new era is large: to address the broad issues of energy,
performance, and reliability, we must deal with a higher dimensional space: the
total power draw of the system and the energy cost of a computation are separate
issues, as is the core temperature of each individual core in the system. There are
complex interdependences between these concerns: component reliability may be
tied to the voltages and to operating temperatures in each chip. The end user’s
objectives may also vary depending on application characteristics, machine char-
acteristics, and the urgency of the computation: performance within power con-
straints for some urgent tasks, and energy minimization given a deadline for an-
other, for example.

The proposed work is to develop an adaptive control system that can follow
user’s objectives and adjust system behavior to optimize the criteria of interest.
By using a runtime system to monitor system conditions and dynamically adapt
to them, we can pursue the user’s goals for performance, reliability, and energy
efficiency while minimizing the need to modify the applications directly.

We will develop and demonstrate the ability to control application energy ef-
ficiency, performance, and reliability through runtime control systems such as
energy-aware load balancers and fault tolerance schemes, using the infrastructure
provided by the Charm++ runtime system.
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2 Introduction
For more than 30 years since Intel’s 4004 marked the inception of semiconductor
microprocessors, the world has experienced a technological revolution as decreas-
ing feature sizes have enabled ever cheaper and faster processors over the years.
Starting in 2003, clock frequencies stopped increasing, due to thermal consider-
ations. Although feature sizes will decrease over the next decade, this will come
at the cost of decreased reliability and larger issues involving power and energy.
In order for applications of critical importance to the nation to continue to benefit
from cutting-edge technology, it is clear that new research is needed.

The categories of applications one must consider for such future machines is
also diverse. As discussed in section 4.4, these include science/engineering sim-
ulations, but also discrete event simulations, graph algorithms, and combinatorial
search (including game tree search) applications. Each of these application cate-
gories brings its own perspective on the interplay between and the importance of
various metrics of measuring system behavior.

The number of dimensions along which one can measure or adjust system be-
havior is also increasingly large. In addition to application execution time, we may
consider individual core temperatures, cooling energy level, frequency/voltage for
each processor, and so on.

The vision of the proposed work is to design a control system through which a
runtime system can affect an application along these dimensions, and study some
of the possible control operations in the context of future machines, and to demon-
strate the use of these operations for a collection of application classes.

To implement a good control system, one needs to have an adequate set of
levers — knobs that the system is allowed to vary to effect desired changes in the
system behavior. We believe that programming models based on “overdecompo-
sition” and its associated migratable-objects model is provides such a set of knobs
to the runtime system. This programming model has been developed for over a
decade in programming systems such as Charm++ and Adaptive MPI, and has
been demonstrated in multiple production quality applications including NAMD.

In this execution model (described in detail in section 3), the computation is
decomposed into a set of work and data units (objects) by the programmer, but
their assignment to processors is controlled by the runtime system (RTS). Since
the program is written without explicit reference to processors, the RTS is free to
change this assignment as the program executes.

To illustrate what a control system based on overdecomposition can do in
a simpler context, consider the problem of controlling processor core tempera-
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Figure 1: The effect of active runtime management on performance. The EBTuner
scheme migrates work away from underclocked processors to maintain load bal-
ance while lowering ambient temperature.

ture. We constrain the temperature of the system by reducing processor frequency
where the ambient temperature is too high. However, this reduction has the effect
of reducing performance and increasing time to completion. As the target temper-
ature is pushed lower and lower, the performance penalty becomes more severe.
However, by active management by the runtime system can alleviate the perfor-
mance penalty by migrating objects away from underclocked processors toward
processors that have not been underclocked, thereby preserving load balance by
taking advantage of the overdecomposition of the initial system. This strategy,
described more fully in [1], delivers a significant performance improvement over
the naive approach of leaving all work in its initial location, as shown in figure 1.

Thus, an adaptive runtime system with the ability to migrate objects makes it
possible to reduce the total energy used by a computation or to reduce execution
time, compared with the baseline strategy of reducing frequency and voltage for
any core that exceeds the desired temperature. Yet, the RTS leaves to question of
which parameter to optimize open. Depending on the context, energy, time, or a
weighted average may be more important to optimize. A meta-control-system is
needed to analyze the top level concerns from the user, understand the features
of the application class, and decide what criteria to assign to the normal RTS.
The RTS itself must be expanded significantly to deal with a large numbers of
sensors and control knobs that future systems will have or require (as described in
section 4).

It is the design of this expanded RTS and the meta-control-system that is the
objective we set for ourselves in this proposed work.
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3 Past Work
We now describe the execution model and the principles underlying our approach
to reliability and energy efficiency. Migratable, overdecomposed units of work
and data form the basis of our execution model (§3.1), which empowers the adap-
tive runtime system (§3.3), enabling the adaptive strategies described later (§??).

3.1 Execution Model and Cost Model
The computation in our execution model consists of a large number of units. Each
unit may be a work unit (WU), a data unit (DU), or more typically, an amalgam
of the two (WUDU). An example of a pure work unit is a pure function that is
given an input and produces an output without a side effect. A pure data unit is a
slice of data that can be read or written as a unit from outside. Common examples
of amalgams of the two include a thread with its own stack, or an object with
encapsulated data and some methods to operate on. Since both extremes can be
thought of as a special case of an amalgamated work unit/data unit, we refer to
them all as WUDUs. In addition to the WUDUs, our ontology includes the notion
of a trigger. A simple example of a trigger is an MPI-style message; but a trigger
may also be a method invocation, a continuation, or a “kick” devoid of any data
that is supposed to trigger some computation when it is received at a WUDU.

Each work unit is further broken down into dependent execution blocks (DEBs),
each of which depends on one or more pieces of data that is not local to the work
unit concerned. In addition, optionally, it may also depend on a condition local to
the work unit, typically indicating the readiness of the work unit to undertake the
computation of the DEB. A DEB’s dependencies are satisfied when all its depen-
dent data is locally available, and its conditions are satisfi are satisfied is called a
ready DEB. A DEB’s execution is atomic, in the sense that it is not paused await-
ing additional data (since there are no additional dependencies beyond the initial
ones), nor is another DEB associated with the same WUDU allowed to execute
before it completes.

Although not a part of the execution model, we also define the notion of a
sequential execution block (SEB), for completeness. A SEB is a section of a DEB
that is separated for analysis because of its cohesion. This could be a loop nest or
a function call, or just an interval between two points in the execution of a DEB.
Thus, a WUDU is a unit of migration, a DEB is a unit of scheduling, and a SEB
is the smallest unit of analysis/introspection.
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Figure 2: Execution within a processor

Execution proceeds by selecting an independent set of ready DEBs, and exe-
cuting an arbitrary subset of them. Two DEBs of the same WUDU are considered
dependent, and are not executed simultaneously. Execution of a DEB may lead to
a change in the state of the WUDU that owns it, and to creation of new triggers,
thereby adding to the set of ready DEBs. Execution continues in this fashion until
one of the DEBs calls for termination of the program. The quiescent condition,
when there are no ready DEBs, is not necessarily a ground for termination. It is
possible to specify that a trigger be created when quiescence is attained, thereby
starting the next phase of the computation.

An efficient way of ensuring independence and atomicity properties mentioned
above is to anchor each WUDU to a single core, at a time. This is the default
strategy we adopt. But we can relax it when needed, as long as these properties
are upheld.
The Cost Model for the application developer, or for the higher level languages
that translate to the level of WUDUs is as follows. Creation of each trigger has a
cost depending on the size of the payload data on it, via a standard α + nβ form,
where α and β are expressed in (say) cycles. Accessing data within a WUDU is
relatively cheap, whereas accessing data via triggers is expensive. Accessing data
in other WUDUs directly is not allowed.

This execution model is similar to that used in Charm++ for many years, as
well as in models such as HPX. Its utility, which was relatively small at terascale
for most applications, is much higher at exascale, because of its flexibility, and the
increased need for an adaptive runtime system.
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3.2 Message-driven Execution
The execution model is message-driven: since there are multiple WUDUs on each
core, a user-level scheduler must schedule DEBs based on availability of a trig-
ger, and optionally, DAG dependencies within the WUDU (see Figure 2). This
confers performance and modularity benefits to the application: if one DEB is
waiting for some remote data, another ready DEB is scheduled for execution.
This generates an adaptive and automatic overlap of communication and compu-
tation. Further, it spreads communication over the iteration, unlike the current
MPI compute-communicate paradigm, which leads to the network being used for
only a small fraction of the time. As a result, one can avoid the need for aggres-
sively engineered (and power-inefficient) networks.
Compositionality: Since executions of distinct modules can interleave in a message-
driven manner on a single core, parallel composition of parallel modules is well-
supported by this model [2].

3.3 WUDUs empower Runtime Systems
In our scheme, the programmer (at least at the base level) is still responsible for the
grainsize decisions; but the grainsize decision can be made without reference to
the total number of processors. For good performance the computation of a DEB
should be large enough to amortize the cost of its trigger. Another consideration
in deciding the grainsize is that of the memory overhead. However, none of these
quantities depend on the number of processors. Further, application developers
(or compilers) may produce parameterized code which makes it easy to change
the grainsize (See §??).

As a consequence, this methodology produces an abundance of parallelism:
the number of WUDUs (and dynamically, the number of ready DEBs) can be
much larger than the number of processors. This over-decomposition fundamen-
tally empowers the runtime system to optimize the execution in multiple ways
(§??), without intervention from the application developer.

3.4 Impact of Fault Tolerance in Energy Consumption
Power management and fault tolerance are considered two of the most critical
challenges to deliver an exascale machine [3]. In a recent study [?], we ana-
lyzed the energy profile of different fault tolerance strategies implemented in the
Charm++ runtime system. Our goal in that study was to understand how much
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(a) Checkpoint/Restart
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(b) Message-Logging
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(c) Parallel Recovery

Figure 3: Comparison of three fault tolerance strategies according to their performance
and energy consumption.

benefit it is possible to get by having an intelligent runtime system able to migrate
tasks in the system. We compared the in-memory checkpoint/restart, a particu-
lar flavor of message-logging and an extension of message-logging with parallel
recovery (a technique unique to our migratable-object technology).

Figure 3 shows an experiment of that study. For a 7-point stencil code, we ran
the three different fault tolerance strategies through a faulty execution. The top fig-
ure is called a progress diagram and presents the number of iterations completed
as a function of time. A higher slope in the curve stands for a faster algorithm.
A failure in the execution requires the progress to return to the previous saved
checkpoint. However, in the case of message-logging and parallel recovery, only
one node in rolled back. During recovery, the three strategies differ dramatically.
Whereas checkpoint/restart requires all nodes to roll back and re-execute the code
after a crash, message-logging techniques only have one node executing the lost
work. This makes the rest of the system to stay idle and return to the base power.
Furthermore, parallel recovery shrinks the recovering time, adding more energy
savings.

We developed an analytical model to understand the impact of these tech-
niques at exascale, when failure rates are expected to be high. Our model predicts
parallel recovery to reduce 13% energy consumption and 17% time execution
when compared with checkpoint/restart.
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4 Proposed Work
The Charm++ runtime system gives us the opportunity to dynamically collect a
wide variety of data about system performance, and to react to that data dynam-
ically. However, the complexity of the relationships between power, energy effi-
ciency, performance, and reliability means that there is no simple relationship or
set of rules that we can reliably follow to achieve the application user’s objectives.
Rather, we must monitor a variety of input parameters and adjust the runtime’s be-
havior to meet system constraints and manage the trade-offs between our various
objectives.

Foremost among those constraints is total power consumption. This is typi-
cally an unchanging “maximum system power” that depends on the physical in-
frastructure of the machine in question, but may also include the possibility of
short duration spikes past the nominal peak. Further, there may also be a min-
imum power consumption so as to not cause sudden load changes to the power
grid [true??].

While today’s systems are typically designed to be unable to exceed their max-
imum power budget even if all nodes are drawing as much power as possible, po-
tentially much better results could be obtained by overprovisioning hardware, so
that more energy efficient applications can make use of a greater number of cores
without exceeding the total power budget. In this scenario, active application
management to avoid exceeding the total power available is extremely important.

In addition to meeting hard constraints like total power consumption, the run-
time system must also make trade-offs between different objectives based on mea-
surements. For example, we can monitor the temperature of each core in the sys-
tem, and dynamically adjust the threshold beyond which we attempt to reduce the
temperature. By setting a higher threshold, you can save cooling energy, but you
also risk higher fault rates.

Our approach for addressing these complex issues has three parts. First, we
will develop a model which expresses the relationships between the various sys-
tem measurements we can make, the constraints we must work within, and the
actions that the runtime system can make. Second, we will investigate techniques
for dynamically monitoring those quantities that can be used to guide runtime de-
cisions and providing that data to the runtime system. Finally, we will investigate
the range of control systems that can be used by the runtime to change the balance
of performance, reliability, and energy efficiency in an application dynamically.

9



4.1 Modeling
It is simple enough to speak qualitatively about the trade-offs between energy
efficiency, time to completion, and reliability, but the quantitative relationship be-
tween these quantities in the context of supercomputing applications can quickly
become fiendishly complicated. In order to successfully pursue a user’s objec-
tives with regard to these trade-offs, we must construct a model with which we
can predict the ways in which concrete actions taken by the runtime system can
be expected to affect performance, reliability, and energy efficiency.

The runtime system can control the scheduling of SEBs onto physical re-
sources, the power draw of individual chips, the checkpoint interval, and so on.
It can measure core temperatures and power draw and the progress rates for indi-
vidual SEBs. We will construct a model that, given these inputs and an objective
function, will determine what actions the runtime system should take in pursuit
of the objective. This objective may have hard constraints based on the host ma-
chine (such as maximum total power draw), based on application logic (such as
maximum aggregate error rate), or based on external factors (such as a hard dead-
line for completion). The goal is to optimize other factors under these constraints
(for example, attaining maximum energy efficiency while completing execution
by some deadline).

Much of the work of constructing this model will consist of characterizing
the response of existing hardware to changes in scheduling policy, fault tolerance
policy, power draw, and so on.

4.2 Monitoring
In order for the runtime system to make dynamic decisions in response to environ-
mental conditions, it must have accurate data about the state of those conditions
and the way that they have responded to past actions by the runtime. In order
to facilitate the collection and use of this data, we will investigate the use of a
continuous introspection framework, which will efficiently maintain a database of
recent behavior of the WUDUs and their individual code-blocks, using hardware
counters, sensors and timers. Modern microprocessors provide extremely cheap
(fast) access to such counters, which we plan to leverage; e.g., the cost of a timer
call on the Sandy Bridge machine is 25 nanoseconds. It is feasible to maintain
such a database effectively because all the events required to monitor the activity
are accessible to the runtime system. The placement of WUDUS on processors
is done by the runtime, communication between WUDUs is mediated by the run-
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time and execution of individual DEBs on physical resources is also scheduled by
the runtime. The WUDUs are relatively coarse-grained (as a guide to intuition,
readers may assume tens of the WUDUs on a core, although in some applications
one may use thousands of them per core), so that the memory overhead of this
database is modest on each core.

4.3 Control Systems
Our proposed work is premised on the idea that a runtime system has a variety
of possible actions available to it, through which it can influence an application’s
energy efficiency, performance, and reliability. A key part of our research agenda
will be to develop these control systems by which the runtime can steer an appli-
cation through the parameter space described by these variables.

The fundamental task of the runtime system in our execution model is to
schedule WUDUs onto physical resources. This mapping of tasks and data to
hardware can in itself significantly affect the energy efficiency and performance
characteristics of an application. However, by combining this mapping with ex-
plicit control of power consumption for individual chips, selection of fault toler-
ance protocols and checkpoint intervals in accordance with the model described
in section 4.1, we will be able to change the performance, energy, and reliability
characteristics of an application according to the user’s goals.

• Power clamping: by adjusting the power consumption of individual hard-
ware elements, the runtime system can react to local load imbalances or
data center hot-spots.

• Mapping of tasks and data to processors: load imbalances can also be ad-
dressed by changing the mapping of tasks to processors. In addition, not all
SEBs are equally sensitive to processor frequency, so energy efficiency can
potentially be gained by running less sensitive SEBs at lower frequencies.

• Fault tolerance protocol: by comparing reliability estimates based on cur-
rent machine conditions with the user’s tolerance for failures, the runtime
can adjust the checkpoint interval and use either more or less conservative
fault tolerance protocols. In cases where extra reliability is needed, parts of
the application may be replicated and their results tested for agreement, al-
lowing for triple modular redundancy for components where high reliability
is paramount.
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• Dynamic job shrinkage and expansion: depending on available hardware
resources, the set of processors running the job can be expanded or shrunk,
leaving the remainder in a low-energy mode or available for other com-
putations. The runtime system remaps application WUDUs to either take
advantage of newly available hardware resources or to consolidate tasks on
a smaller set of processors.

Of course, in order to effectively pursue a user’s desired priorities, the runtime
system must be aware of what those priorities are. As part of our research, we will
investigate ways to communicate information about the user’s intent with regard to
energy, performance, and reliability trade-offs, whether through APIs, metadata
associated with the application, or direct human intervention through real-time
interactive tools. As part of our proposed research, we will investigate a variety
of control systems relevant to energy efficiency and reliability.

4.4 Application Scenarios
Depending on application characteristics and the needs of the user, different trade-
offs between energy efficiency, time to completion, and reliability will be appro-
priate. Consequently, the policies pursued by the runtime system must depend on
the context in which the application is running. To illustrate the way that these
concerns may play out in practice, consider the following different application
scenarios. Each requires a different way of navigating the parameter space.

• A physical simulation, such as fluid dynamics or weather modeling. A pos-
sible user objective in this scenario may be to minimize execution time,
while keeping energy low to the extent possible, and to run with relatively
low core temperatures such that component reliability is high in order to
minimize the time lost to checkpointing and recovery protocols. Alterna-
tively, if the simulation doesn’t have a strong deadline, and the supercom-
puter facility is not too busy with other jobs, one may want to minimize the
energy taken by the overall computation instead.

• A distributed real-time simulation with humans-in-the-loop (e.g. a war-
game) which involves one or more components running on parallel com-
puters: Here, the parallel components must keep pace with the real-time
simulation. Checkpoint/restart or even message-logging may not be enough
to avoid hiccups in the simulation in case of failures. A triple-modular-
redundant (TMR) simulation may be appropriate here. And since we are
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using TMR, it may be worthwhile to keep energy low by running at near-
threshold voltage, which reduces reliability but decreases energy substan-
tially.

• A graph algorithm that has a non-iterative structure (unlike physical simu-
lations). The floating point unit is not used much by this application, and
performance is dominated by memory access and communication. One can
afford to run processors at low frequencies, just high enough to match the
memory bandwidth.

• Combinatorial state-space search. Most combinatorial search problems are
“needle-in-haystack” problems, with a tree-structured computation. Most
branches of the tree represent “wasted” computation because they don’t
contain the solution. But, in such a situation, if the number of feasible
solutions is large, one can run the computation in a relatively low reliability
mode. Even if some branches go wrong (either missing a solution, or mis-
predicting a solution, which can be verified as infeasible very efficiently),
it’s very likely that one of the solutions will be found, and with a low-energy
cost.
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