
Simplifying Parallel Programming for CSE
Applications Using a Multi-Paradigm

Approach
Project NSF 0833188

Annual Report: Sep.2011 to Aug.2012

1 Project Participants

1.1 Funded Personnel
• Prof. Laxmikant V. Kalé (PI), Prof. David Padua (co-PI), Prof. Vikram

Adve (co-PI)
• Anshu Arya (Graduate Student): 9/17/11 - 12/31/11
• Aaron Becker (Graduate Student): 8/16/11 - 8/15/12
• Ehsan Totoni (Graduate Student): 8/16/11 - 10/15/11
• JoAnne Geigner (Information Specialist): 25% 8/16/11 - 8/15/12
• Ramprasad Venkataraman (Research Programmer): 10% 8/16/11 - 3/15/12
• Pritish Jetley (Graduate Student): 11/16/11 - 2/15/12
• Jonathan Lifflander (Graduate Student): 1/1/12 - 2/15/12
• Graham Evans (Graduate Student): 2/16/12 - 5/15/12
• Adarsh Keshan (Undergraduate Student): 5/10/12 - 7/24/12

1.2 Unfunded Collaborators
• Phil Miller (Graduate Student): University of Illinois, Dept. Computer Sci-

ence

1



2 Activities and Findings

2.1 Research Activities – 2011/2012
2.1.1 Charj

In the past year, we have extended and improved Charj, our high-level language
and associated compiler infrastructure that targets the Charm++ runtime system.
Charj aims to simplify the task of writing programs that use the Charm++ infras-
tructure and enhance programmer productivity by eliminating redundant code, fa-
cilitating the use of multiple programming models within a single application, and
taking advantage of domain-specific knowledge to power model-specific compiler
optimizations.

We have improved support for embedding multiple programming models within
Charj programs, including support for partitioned global address space program-
ming via the multiphase shared arrays programming model. We have also added
support for heterogeneous programming in Charj, allowing programmers to write
applications that run on both traditional multicore hardware and floating point
accelerator architectures such as GPUs without requiring separate code for each
architecture.

Using Charj, we developed multiple small applications that have similar com-
putational characteristics as larger, production-scale parallel applications: a Lennard-
Jones molecular dynamics application, an LU decomposition matrix factorization
application, and a Jacobi relaxation application. These applications were smaller
than their Charm++ equivalents by 27.2% to 56.7% in terms of token count and by
11.8% to 57.1% in terms of lines of code without sacrificing performance relative
to the Charm++ implementations.

One of the factors that contributes to the decrease in line and token count is the
concise syntax we have developed for sequential arrays in Charj. Our array im-
plementation allows the programmer to slice an n-dimensional array, the runtime
copying the necessary region instead of the programmer. This reduces potential
programmer error and also enables layout optimizations that the runtime can per-
form depending on access patterns.

2.1.2 Charisma

Charisma is a higher-level notation that allows for the expression of static data
flow programs in an elegant, concise and productive manner. It separates paral-
lel algorithmic structure from the sequential details of implementation, thereby

2



fostering code readability and maintainability. Recently, we added three new syn-
tactic constructs to Charisma, to obtain a language that has a much broader scope
of expression. These constructs are:

1. Publisher-directed communication patterns. The communication pattern is
specified in the form of data dependencies between published and consumed
values. To allow for greater generality and efficiency, we allow the index
expressions of published values to be any expression, whereas the index
expression of consumed values may only be (projections of) the identity
expression on object array indices.

2. Index subspaces. Ability to apply actions on predicated subsets of object
arrays.

3. Value range publication. Support for publication of ranges of parameter
values in addition to individual values and anonymous sets of values.

Given that they represent a significant syntactic departure from the previous
version, we call the new language Charisma 2.0. The new language allows for the
expression of algorithms in which communication pattern instances are tied to the
dynamic, run-time variables such as for/while-loop indices. Examples are: Paral-
lel prefix sum, Butterfly FFT, Gauss-Seidel relaxation, Dense LU decomposition,
Multigrid solvers and an ab initio quantum/molecular dynamics simulator called
OpenAtom.

2.1.3 Divide-and-Conquer

We have constructed an abstraction for the fine-grained expression of divide-and-
conquer algorithms in a productive manner. Our framework addresses an im-
portant and significant gap in the literature: generative recursion requires both
task- and data-parallel constructs, but for distributed memory machines, only the
question of task-parallelism has been studied in the past. Through our work, we
provide constructs that enable the efficient exploitation of data-parallelism on
distributed memory machines. In particular, we have created the DivConArray,
which is a global-data-view that supports operations that are important for divide-
and-conquer algorithms, namely map/reduce, read/write, and data redistribution.
The associated runtime system component automatically manages the agglom-
eration of operations and communication to ensure an efficient implementation,
while giving the programmer the convenience of expressing his/her algorithm in

3



a fine-grained manner. The framework has a separate component that performs
dynamic task agglomeration, thereby providing automatic grain size control.

2.1.4 Generic Programming

Charm++ has long supported generic programming through C++ class templates
for defining parallel objects. However, the lack of orthogonal support for method
templates and SDAG coordination code in templates limited expressiveness. We
have now extended template support to individual methods and to SDAG. This
support is used in the production application OpenAtom.

2.1.5 HPC Challenge Award

The project personnel, in collaboration with other members of the Parallel Pro-
gramming Laboratory, have implemented the complete set of benchmarks from
the HPC Challenge suite in Charm++ and SDAG. This builds on the previous
year’s effort of developing and tuning CharmLU, which implemented one mem-
ber of the suite. In the course of this effort, tools and libraries in the Charm++
stack were improved to meet the needs demonstrated by these benchmarks.

CharmLU was further used to produce a detailed study of mapping techniques
for dense linear algebra routines as relates to modern multicore supercomputer
and cluster nodes.

4



2.2 Findings – 2011-2012
Our major findings in this period (September 2011 to August 2012) were:

• Charj: The use of a programming language specific to the message-driven
programming model can result in significantly shorter applications with
equivalent performance and functionality. It also provides an opportunity
for improved warning and error messages based on semantic knowledge
of the programming model, reducing the chances for model-specific errors.
Furthermore, it exposes opportunities for compiler optimization that cannot
be performed by compilers targeted at sequential languages because of their
model-specific nature.

• Charisma: The addition of three simple constructs, namely (1) publisher-
directed communication patterns, (2) index subspaces and (3) parameter
value range publication significantly broaden the scope of expression of
Charisma, allowing us to write programs that could not otherwise have been
written in the language.

• Divide-and-Conquer: A framework that automates task grain size control
and provides dynamic agglomeration of data-parallel operations for effi-
cient communication can improve parallel performance significantly. The
framework engenders productivity by allowing the natural, fine-grained of
divide-and-conquer algorithms.

• Generic Programming: More thorough support for template metaprogram-
ming in Charm++ enables clearer, more concise expression of application
logic in the OpenAtom code. For example, algorithms that can operate in
terms of various numeric types (single versus double precision, real versus
complex) now only need to be expressed once, with the attendant benefits
for readability and correctness.

• HPC Challenge: The suite of developed benchmarks achieved admirable
performance on multiple platforms, with substantially less code than ref-
erence implementations. The necessary code also exhibited better separa-
tion of concerns between algorithmic logic necessary for correctness and
tuning logic necessary for performance. The separation was measured not
just through the volume and structure of the resulting code, but also through

5



version control logs recorded over the course of development. These bench-
marks were submitted to the HPC Challenge Competition at Supercomput-
ing 2011, where they were awarded a Class 2 (Productivity) prize for overall
performance. Additionally, CharmLU was used to study the performance
effects of various mapping schemes on performance.

6



2.3 Research Training and Development

2.4 Outreach Activities
The annual workshop on Charm++ and its applications had another edition in
May 2012. During this workshop, some of the results from our Charm++ develop-
ments were presented. We expect to continue conducting the Charm++ workshop
every year. All the materials related to the workshop are freely available from our
website, including slides and archived audio/video from the presentations.

In addition, Phil Miller delivered an introductory tutorial on Charm++ pro-
gramming to the UIUC chapter of SIAM. This tutorial provided exposure to the
Charm++ stack for large scale parallel computing to participants at many levels
(undergraduate, graduate, research staff) working in a variety of disciplines (CS,
engineering, and sciences).

2.5 Publications and Products
• Jonathan Lifflander, Phil Miller, Ramprasad Venkataraman, Anshu Arya,

Terry Jones, and Laxmikant Kale: “Mapping Dense LU Factorization on
Multicore Supercomputer Nodes”, International Parallel and Distributed
Processing Symposium (IPDPS), May 2012, Shanghai China.

• Phil Miller, Aaron Becker, and Laxmikant Kale: “Using shared arrays in
message-driven parallel programs”, Parallel Computing Volume 38 Issue
1-2, January, 2012.

• Aaron Becker: “Compiler Support for Productive Message-Driven Parallel
Programming”, Ph.D. Thesis, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, 2012.

• Pritish Jetley and Laxmikant Kale: “Optimizations for Message Driven
Applications on Multicore Architectures”, 18th annual IEEE International
Conference on High Performance Computing (HiPC), December, 2011.

2.6 Internet Dissemination
The following products have resulted from this project so far:

1. Enhancements to the Charm++ infrastructure, available at
http://charm.cs.illinois.edu

7



2. Charm++ Workshop materials, available at
http://charm.cs.illinois.edu/charmWorkshop

3 Contributions

3.1 Within Discipline
This project is developing a new approach to parallel programming that includes
development of multiple, individually incomplete, programming models. Each
model simplifies parallel programming while still covering significant categories
of applications. This collection of interoperable models provides a powerful envi-
ronment for developing future petascale applications.

3.2 Outside Discipline
Software for development of Scientific and Engineering applications can make
a significant impact on society through better understanding of physical phe-
nomenon and improved design of engineered artifacts. The results of this project,
including the new parallel programming models being developed, will lead to ef-
fective use of the petascale computing facilities being developed and deployed
nationally.

3.3 Contributions to Human Resources Development
This project is training the next generation of computer scientists in the art of using
parallel computers and in developing programming techniques for large systems.
It is giving our graduate students an excellent environment for the use of parallel
machines and for the development of languages aimed at future machines. The
software developed in this project is freely distributed via the Internet. By ac-
cessing this distribution, students from various application areas should be able to
develop parallel applications, in general, with an improved development environ-
ment.

3.4 Contributions to Resources for Research and Education
The free availability of Charm++ allows researches from various areas to have a
powerful software platform for the development of parallel applications. Also, for

8



some researchers who already created parallel versions of their codes via MPI, the
use of AMPI allows such applications to benefit from recent Charm++ enhance-
ments. Meanwhile, the various parallelization paradigms enabled by Charm++
provide a practical tool for students to grasp basic concepts of parallel computing
and parallel performance optimization.

4 Plans for the Remainder of the Project
We will continue to develop Charj, both to allow the expression of the full range
of Charm++ programs and to develop optimizations that are not feasible without
compiler assistance. We will investigate ways to use Charj to simplify shared ad-
dress space programming using the Charm++ programming model by applying
a capability system to memory shared between communicating objects. We will
investigate the use of compiler analysis to improve the efficiency of checkpointing
and process migration in Charj programs. We will also develop Charj applications
which explore common Charm++ application needs in an effort to identify more
areas where Charj can enhance programmer productivity and to demonstrate the
efficacy of Charj in simplifying the creation of parallel message-driven applica-
tions.

Similarly, we will further develop our abstractions for divide-and-conquer par-
allelism, aiming to apply automatic grain size control and agglomeration in a dis-
tributed memory context. Our goal is to demonstrate the utility of this framework
for generative recursion by developing scalable applications that make use of it.
We will also continue to refine and improve the existing SDAG and Charisma
programming models.

9


