
2 Activities and Findings

2.1 Research Activities – 2011/2012
2.1.1 Charj

In the past year, we have extended and improved Charj, our high-level language
and associated compiler infrastructure that targets the Charm++ runtime system.
Charj aims to simplify the task of writing programs that use the Charm++ infras-
tructure and enhance programmer productivity by eliminating redundant code, fa-
cilitating the use of multiple programming models within a single application, and
taking advantage of domain-specific knowledge to power model-specific compiler
optimizations.

We have improved support for embedding multiple programming models within
Charj programs, including support for partitioned global address space program-
ming via the multiphase shared arrays programming model. We have also added
support for heterogeneous programming in Charj, allowing programmers to write
applications that run on both traditional multicore hardware and floating point
accelerator architectures such as GPUs without requiring separate code for each
architecture.

Using Charj, we developed multiple small applications that have similar com-
putational characteristics as larger, production-scale parallel applications: a Lennard-
Jones molecular dynamics application, an LU decomposition matrix factorization
application, and a Jacobi relaxation application. These applications were smaller
than their Charm++ equivalents by 27.2% to 56.7% in terms of token count and by
11.8% to 57.1% in terms of lines of code without sacrificing performance relative
to the Charm++ implementations.

One of the factors that contributes to the decrease in line and token count is the
concise syntax we have developed for sequential arrays in Charj. Our array im-
plementation allows the programmer to slice an n-dimensional array, the runtime
copying the necessary region instead of the programmer. This reduces potential
programmer error and also enables layout optimizations that the runtime can per-
form depending on access patterns.

2.1.2 Charisma

Charisma is a higher-level notation that allows for the expression of static data
flow programs in an elegant, concise and productive manner. It separates paral-
lel algorithmic structure from the sequential details of implementation, thereby

2



fostering code readability and maintainability. Recently, we added three new syn-
tactic constructs to Charisma, to obtain a language that has a much broader scope
of expression. These constructs are:

1. Publisher-directed communication patterns. The communication pattern is
specified in the form of data dependencies between published and consumed
values. To allow for greater generality and efficiency, we allow the index
expressions of published values to be any expression, whereas the index
expression of consumed values may only be (projections of) the identity
expression on object array indices.

2. Index subspaces. Ability to apply actions on predicated subsets of object
arrays.

3. Value range publication. Support for publication of ranges of parameter
values in addition to individual values and anonymous sets of values.

Given that they represent a significant syntactic departure from the previous
version, we call the new language Charisma 2.0. The new language allows for the
expression of algorithms in which communication pattern instances are tied to the
dynamic, run-time variables such as for/while-loop indices. Examples are: Paral-
lel prefix sum, Butterfly FFT, Gauss-Seidel relaxation, Dense LU decomposition,
Multigrid solvers and an ab initio quantum/molecular dynamics simulator called
OpenAtom.

2.1.3 Divide-and-Conquer

We have constructed an abstraction for the fine-grained expression of divide-and-
conquer algorithms in a productive manner. Our framework addresses an im-
portant and significant gap in the literature: generative recursion requires both
task- and data-parallel constructs, but for distributed memory machines, only the
question of task-parallelism has been studied in the past. Through our work, we
provide constructs that enable the efficient exploitation of data-parallelism on
distributed memory machines. In particular, we have created the DivConArray,
which is a global-data-view that supports operations that are important for divide-
and-conquer algorithms, namely map/reduce, read/write, and data redistribution.
The associated runtime system component automatically manages the agglom-
eration of operations and communication to ensure an efficient implementation,
while giving the programmer the convenience of expressing his/her algorithm in

3



a fine-grained manner. The framework has a separate component that performs
dynamic task agglomeration, thereby providing automatic grain size control.

2.1.4 Generic Programming

Charm++ has long supported generic programming through C++ class templates
for defining parallel objects. However, the lack of orthogonal support for method
templates and SDAG coordination code in templates limited expressiveness. We
have now extended template support to individual methods and to SDAG. This
support is used in the production application OpenAtom.

2.1.5 HPC Challenge Award

The project personnel, in collaboration with other members of the Parallel Pro-
gramming Laboratory, have implemented the complete set of benchmarks from
the HPC Challenge suite in Charm++ and SDAG. This builds on the previous
year’s effort of developing and tuning CharmLU, which implemented one mem-
ber of the suite. In the course of this effort, tools and libraries in the Charm++
stack were improved to meet the needs demonstrated by these benchmarks.

CharmLU was further used to produce a detailed study of mapping techniques
for dense linear algebra routines as relates to modern multicore supercomputer
and cluster nodes.

4


