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What is Charm4py?
● Parallel/distributed programming framework for Python
● Charm++ programming model (Charm++ for Python)
● High-level, general purpose
● Runs on top of the Charm++ runtime (C++)
● Adaptive runtime features: asynchronous remote method 

invocation, overdecomposition, dynamic load balancing, 
automatic communication/computation overlap



  

Charm4py architecture
Other Python libraries/technologies: 
numpy, numba, pandas, matplotlib, 
scikit-learn, TensorFlow, ...

C / C++ / Fortran / OpenMP

charm4py

Python 
application

import charm4py

Charm++ shared library 
(libcharm.[so/dll])



  

Why Charm4py?
● Python+Charm4py easy to learn/use, productivity benefits
● Bring Charm++ to Python community

– No high-level & fast & highly-scalable parallel frameworks for Python
● Benefit from Python software stack

– Python widely used for data analytics, machine learning
– Opportunity to bring data and HPC closer

● Performance can be similar to C/C++ using the right techniques



  

Benefits to Charm++ developers
● Productivity (high-level, less SLOC, easy to debug)
● Automatic memory management
● Automatic serialization

– No need to define serialization (PUP) routines
– Can customize serialization of objects and Chares if needed

● Easy access to Python software libraries (Numpy, pandas, 
scikit-learn, TensorFlow, etc.)



  

Benefits to Charm++ developers
● Simplifies Charm++ programming (simpler API)
● Everything can be expressed in Python

– Charm++ interface (.ci) files not required
● Compilation not required



  

Hello World (complete example)
#hello_world.py
from charm4py import charm, Chare, Group

class Hello(Chare):
    def sayHi(self, values):
        print('Hello from PE', charm.myPe(), 'vals=', values)
        self.contribute(None, None, charm.thisProxy.exit)

def main(args):
    group_proxy = Group(Hello)  # create a Group of Hello chares
    group_proxy.sayHi([1, 2.33, 'hi'])

charm.start(main)



  

Running Hello World

$ ./charmrun +p4 /usr/bin/python3 hello_world.py 
# similarly on a supercomputer with aprun/srun/…

Hello from PE 0 vals= [1, 2.33, 'hi']
Hello from PE 3 vals= [1, 2.33, 'hi']
Hello from PE 1 vals= [1, 2.33, 'hi']
Hello from PE 2 vals= [1, 2.33, 'hi']



  

Performance
● Charm4py is a layer on top of Charm++

– Effort to make the critical path thin and fast (e.g. part of charm4py runtime 
is C compiled code using Cython)

● Ping pong benchmark between 2 processes
– Additional 20-30 us on top of Charm++ (Linux Xeon E3-1245, 3.30 GHz)

● Overhead lower than other Python parallel programming frameworks
– Dask (Charm4py 10x-200x faster for fine-grained computations)
– Ray (Charm4py 7-50x faster)



  

Performance (cont.)
● It's possible to develop Charm4py applications that run at 

similar speeds to equivalent Charm++ (pure C++) 
application if computation runs natively
– Numpy (high-level arrays/matrices API, native implementation)
– Numba (JIT compiles Python “math/array” code)
– Cython (compile generic Python to C)

● Key: use Python as high-level language driving machine-
optimized compiled code



  

Shared memory parallelism
● Inside the Python interpreter, NO

– CPython (most common Python implementation) can’t run multiple threads 
concurrently (Global Interpreter Lock)

● Outside the interpreter, YES
– Numpy internally runs compiled code, can use multiple threads (Intel 

Python + Numpy seems to be very good at this)
– Access external OpenMP code from Python
– Numba parallel loops
– Cython



  

Chares are distributed Python objects
● Remote methods (aka entry methods) invoked like regular 

Python objects, using a proxy: obj_proxy.doWork(x, y)
● Objects are migratable (handled by Charm++ runtime)
● Method invocation asynchronous (good for performance)
● Can obtain a future when invoking remote methods:

– future = obj_proxy.getVal(ret=True)
... do work ...
val = future.get()  # block until value received



  

Serialization (aka pickling)
● Most Python types, including custom types, can be pickled
● Can customize pickling with __getstate__ and __setstate__ 

methods
● pickle module implemented in C, recent versions are pretty 

fast (for built-in types)
– Pickling custom objects not recommended in critical path

● Charm4py bypasses pickling for certain types like Numpy 
arrays



  

Creating chares
class MyChare(Chare):
    def __init__(self, x):
        self.x = x
    def work(self, param1, param2, param3):
        ...

def main(args):
    # create single chare of type MyChare on PE 1
    obj_proxy = Chare(MyChare, args=[1], onPE=1)
    # create Group (one instance per PE)    
    group_proxy = Group(MyChare, args=[1])
    



  

Creating chares (cont.)

def main(args):
    ...
    # create 2D array, 100x100 instances of MyChare
    array_proxy = Array(MyChare, (100,100), args=[3])
    # invoke method on all members
    array_proxy.work(x, y, z)
    # invoke method on object with index (3,10)
    array_proxy[3,10].work(x, y, z)



  

Futures
● Threaded entry methods run in their own thread

– @threaded 
def myThreadedEntryMethod(self, …):

– Main function (or mainchare constructor) is threaded by default
● Threaded entry methods can use futures to wait for a result or for 

completion of a (distributed) process
● While a thread is blocked, other entry methods in the same 

process (of the same or different chares) continue to be scheduled 
and executed



  

Futures (cont.)
@threaded
def someEntryMethod(self, ...):
    a1 = Array(MyChare, 100) # create array of 100 elems
    a2 = Array(MyChare, 20) # create array of 20 elems
    charm.awaitCreation(a1, a2) # wait for creation
    f1 = a1[0].calculateValue(ret=True)
    f2 = a2[0].calculateValue(ret=True)
    a2.initialize(ret=True).get() # wait for broadcast completion
    val1 = f1.get()
    val2 = f2.get()
    f3 = charm.createFuture()
    a1.work(f3)
    f3.get()  # wait for completion  



  

Blocking collectives
● Blocking collectives are available for threaded entry 

methods (use futures internally):
@threaded
def someEntryMethod(self, ...):
    # wait for elements in my collection to reach barrier
    charm.barrier(self)
    # blocking allReduce among members of collection
    result = charm.allReduce(data, reducer, self)



  

Reductions
● Reduction (e.g. sum) by elements in a collection:

● Target of reduction can be an entry method or a future
● Easy to define custom reducer functions. Example:

– def mysum(contributions): return sum(contributions)

– self.contribute(A, Reducer.mysum, obj.collectResult)

def work(self, x, y, z):
    A = numpy.arange(100)
    self.contribute(A, Reducer.sum, obj_proxy.collectResults)



  

Benchmark using stencil3d
● In examples/stencil3d, ported from Charm++
● Stencil code, 3D array decomposed into chares
● Full Python application, array/math sections JIT 

compiled with Numba
● Cori KNL 2 nodes, strong scaling from 8 to 128 cores



  

stencil3d results on Cori KNL

(results not based on latest
Charm4py version)



  

Benchmark using LeanMD
● MD mini-app for Charm++ (

http://charmplusplus.org/miniApps/#leanmd)
– Simulates the behavior of atoms based on the Lennard-Jones potential
– Computation mimics the short-range non-bonded force calculation in NAMD
– 3D space consisting of atoms decomposed into cells
– In each iteration, force calculations done for all pairs of atoms within the 

cutoff distance
● Ported to Charm4py, full Python application. Physics code and other 

numerical code JIT compiled with Numba

http://charmplusplus.org/miniApps/#leanmd


  

LeanMD results on Blue Waters

Avg difference is 19%

(results not based on latest
Charm4py version)



  

Experimental features
● Interactive mode

– Launches an interactive Python shell where user can define new chares, 
create them, invoke remote methods, etc.

– Currently for (multi-process) single node
● Distributed pool of workers for task scheduling:
def fib(n):
    if n < 2: return n
    return sum(charm.pool.map(fib, [n-1, n-2],
               allow_nested=True))

def main(args):
result = fib(33)



  

Summary
● Easy way to write parallel programs based on Charm++ model
● Good runtime performance

– Critical sections of Charm4py runtime in C with Cython
– Most of the runtime is C++

● High performance using NumPy, Numba, Cython, interacting 
with native code

● Easy access to Python libraries, like SciPy and PyData stacks



  

Thank you
● More resources:
● Documentation and tutorial at 

http://charm4py.readthedocs.io
● Source code and examples at:

https://github.com/UIUC-PPL/charm4py

http://charm4py.readthedocs.io/
https://github.com/UIUC-PPL/charm4py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

