Flexible Computational Science Infrastructure (FleCSI)

17th Annual Workshop on Charm++ and Its Applications

Li-Ta Lo for the FleCSI Team

May 1, 2019

Ristra Big Picture Advanced Technology Development & Mitigation (ATDM)

What is FleCSI?

FleCSI is a C++ programming system for developing multi-physics simulation codes

- Runtime abstraction layer
 - High-level user interface, mid-level static specialization, low-level building blocks, tasking and fine-grained threading back-ends
- Programming model
 - Data, execution, and control models
- Useful data structure support
 - Mesh, N-Tree (N=3 → Octree), and Set topologies

FleCSI: Pure 3D Lagrangian Sedov

FleCSI: 2D/3D Eulerian Sod

The FleCSI programming structure is designed to encourage separation of concerns...

Application Development

Physicists & Applied Mathematicians

Who

FleCSI Specialization Development

What

Computational Scientists

FleCSI Core

Computer Scientists

Ristra Big Picture Advanced Technology Development & Mitigation (ATDM)

Ristra Big Picture Advanced Technology Development & Mitigation (ATDM)

Los Alamos National Laboratory

Data Model

FleCSI Topology Data Structures

- flecsi::topology::mesh_topology___
 - Support for unstructured meshes with user-defined mesh entity types, and user-defined adjacency storage
- flecsi::topology::tree_topology___
 - Support for hashed trees with user-defined node types, and user-defined relational functions, e.g., "who are my neighbors?"
- flecsi::topology::set_topology___
 - Support for sets of user-defined entities, e.g., noninteracting particles, and user-defined rules for entity migration, coloring, and binning

FleCSI Topology Data Structures

- flecsi::topology::mesh_topology_
 - Hydrodynamics (Eulerian, Lagrangian, ALE, Re-ALE, DG), Radiation/Heat Conductivity
- flecsi::topology::tree_topology_
 - N-Body, Smoothed-Particle Hydrodynamics

- flecsi::topology::set_topology___
 - Particle-in-Cell (PIC), Material-Point Method (MPM), Charged/Neutral Particle Transport

What does Topology do for you?

 FleCSI automatically generates iterators for each entity type, connectivity, and binding, or node

```
foreach(auto c: mesh.cells()) {
  foreach(auto v: mesh.vertices(c)) {
    } // for
} // for
```

What does Topology do for you?

 Topological entities define index spaces where data can be attached to the mesh

flecsi_register_data(mesh, hydro, temperature , double, dense, cells); flecsi_register_data(mesh, hydro, avg_temperature , double, dense, cells);

```
foreach(auto c: mesh.cells()) {
  foreach(auto v: mesh.vertices(c)) {
     avg_temp(c) += temp(v);
  } // for
  avg_temp(c) /= mesh.vertices(c).size();
} // for
```

Los Alamos National Laboratory

Execution Model

What does Execution do for you?

Launch task via backends

What does Execution do for you?

Maintain the illusion of single address space

14

UNCLASSIFIED | LA-UR- 17-20383

Los Alamos National Laboratory

FleCSALE Application

Fully unstructured 2D and 3D mesh specializations developed on top of FleCSI

Mesh is templated on dimension:

2D: burton_mesh_t<2> mesh; 3D: burton mesh t<3> mesh;

Application code doesn't change (code works in 2D and 3D):

```
for ( auto f : mesh.faces() )
  auto n = f->normal();
  // do some work
```

Mesh has wedges and corner data structures in addition to vertex, edge, face, and cell primitives:

```
for ( auto cn : mesh.corners() )
for ( auto wg : mesh.wedges(cn) )
auto n = wg->facet_normal();
// do some other work
```


Sedov blast wave predictions computed with the 3D cell-centered Lagrange method

17

UNCLASSIFIED | LA-UR- 17-20383

Los Alamos National Laboratory

FleCSPH Application

FleCSI : Tree Data Structures

Tree topology

- Support n-tree (also hashed n-tree)
- Constant-time neighbor look-up
- Morton ordering
- Refinement and coarsening
- Applications: SPH, N-body, AMR, Complex Flows, Monte Carlo, Molecular Dynamics

Head on Collision of two neutron stars

3D water cube drop

Los Alamos National Laboratory

Thanks for your attention!