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A Quick Introduction to Deep Learning

▶ Feed data into model (neural network)
▶ Model has many (deep) layers of neurons
▶ Model learns from existing data (i.e. training) and

outputs predictions for new data (i.e. inference)
▶ Applications

▶ Image classification
▶ Natural language processing (NLP)
▶ Autonomous driving

Image source: https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext
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Mini-batch Training

▶ Feeding training samples one by one is the most accurate but
slow

▶ Feed data in small batches to speed up tensor operations
▶ Too big batches usually hurt convergence
▶ Typical batch sizes: 128, 256

▶ Going through the entire dataset once is called an epoch
▶ Training process (repeat for all batches & epochs)

1. Load batch into memory
2. Forward pass
3. Compare model output with labels, compute loss function
4. Backward propagation
5. Update model based on the gradients
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Why Distributed Deep Learning?

▶ Training with single device/node is too slow
▶ Model is too big to fit in memory
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Distributed Deep Learning

▶ Perform training in distributed memory
▶ Approaches: data-parallel vs. model-parallel
▶ Data-parallel

▶ Most widely used approach
▶ Partition the dataset/batch between workers
▶ Each worker has a copy of model
▶ Usually 1 worker per device
▶ E.g. 4 GPUs & batch size 128 → batch size 32 per worker
▶ For each partitioned batch, train individually

→ aggregate gradients (e.g. all-reduce)
▶ Model-parallel: partition the model, not data
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Synchronize or Not is the Question

▶ Synchronous SGD
▶ Workers synchronize after training every (partitioned) batch
▶ Usually using all-reduce
▶ Has straggler problem

▶ Asynchronous SGD
▶ Allow workers to proceed without waiting for gradient updates

from other workers
▶ Problem of stale weights
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Heterogeneous Training

▶ All DL frameworks use either CPU or GPU, not both
▶ GPUs are favored over CPUs due to tensor computation speed
▶ But why not use both together?

▶ On cloud environments, GPUs will be more cost-effective
▶ On HPC environments, CPUs just sit idle

▶ Can also be used with GPUs of varying compute capabilities
▶ Goal: Perform distributed & heterogeneous training
▶ Main challenges

▶ Reconcile training speed difference
▶ Gradient aggregation between workers
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Batch Partitioning

▶ Total batch size must be kept the same
▶ Give smaller batch partition to a slower worker (usually CPU),

so that training speeds match between workers
▶ Need weighted gradient aggregation to prevent bias

▶ More weight to bigger partition
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Heterogeneous All-reduce

▶ All-reduce among all CPU and GPU workers
▶ Synchronous SGD

▶ Strategy 1
1. Move GPU gradients to host memory
2. Add all gradients in host memory using OpenMP
3. MPI all-reduce
4. Move gradients back to GPU

▶ Strategy 2
1. Move CPU gradients to GPU
2. NCCL all-reduce
3. Move gradients back to CPU
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Heterogeneous All-reduce
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Strategy 1 (MPI-based) Strategy 2 (NCCL-based)

2-node Performance

▶ PSC Bridges: 1 CPU worker (2 sockets), 2 GPU workers (2 GPUs)
▶ Default is strategy 2, much faster at larger data sizes
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Applying Heterogeneous Training

▶ Framework is in place (using PyTorch)
▶ Which applications are suitable?

▶ Image classification
▶ Uses CNNs
▶ GPU has much better performance

▶ NLP
▶ Uses RNNs & LSTMs
▶ CPU has comparable performance

▶ Machine translation with Google’s Transformer model
▶ Link to Google’s blog

▶ Image captioning with a pre-trained CNN (ResNet-152) as
encoder and LSTM as decoder

▶ Link to PyTorch tutorial
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https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning


Problem: Variability in Batch Processing
▶ Implemented heterogeneous & distributed training,

works correctly
▶ But significantly slower than homogeneous training

(using only GPUs), why?
▶ A lot of idle time before all-reduce
▶ Although batch was partitioned to have matching training times

on CPU and GPU on average,
▶ Actual times differ significantly
▶ Average time: 1.9 s
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Ongoing Work

▶ Find out what is causing the variability
▶ See if same issue occurs with other frameworks
▶ Currently trying out MXNet, only 10% variability with MNIST

▶ Apply asynchronous SGD training
▶ Performance evaluation
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Thank You
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