
Distributed Deep Learning: Leveraging
Heterogeneity and Data-Parallelism

Jæmin Choi

University of Illinois Urbana-Champaign

May 1, 2019

1 / 14



A Quick Introduction to Deep Learning

▶ Feed data into model (neural network)
▶ Model has many (deep) layers of neurons
▶ Model learns from existing data (i.e. training) and

outputs predictions for new data (i.e. inference)
▶ Applications

▶ Image classification
▶ Natural language processing (NLP)
▶ Autonomous driving

Image source: https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext

2 / 14



Mini-batch Training

▶ Feeding training samples one by one is the most accurate but
slow

▶ Feed data in small batches to speed up tensor operations
▶ Too big batches usually hurt convergence
▶ Typical batch sizes: 128, 256

▶ Going through the entire dataset once is called an epoch
▶ Training process (repeat for all batches & epochs)

1. Load batch into memory
2. Forward pass
3. Compare model output with labels, compute loss function
4. Backward propagation
5. Update model based on the gradients

3 / 14



Why Distributed Deep Learning?

▶ Training with single device/node is too slow
▶ Model is too big to fit in memory

4 / 14



Distributed Deep Learning

▶ Perform training in distributed memory
▶ Approaches: data-parallel vs. model-parallel
▶ Data-parallel

▶ Most widely used approach
▶ Partition the dataset/batch between workers
▶ Each worker has a copy of model
▶ Usually 1 worker per device
▶ E.g. 4 GPUs & batch size 128 → batch size 32 per worker
▶ For each partitioned batch, train individually

→ aggregate gradients (e.g. all-reduce)
▶ Model-parallel: partition the model, not data

5 / 14



Synchronize or Not is the Question

▶ Synchronous SGD
▶ Workers synchronize after training every (partitioned) batch
▶ Usually using all-reduce
▶ Has straggler problem

▶ Asynchronous SGD
▶ Allow workers to proceed without waiting for gradient updates

from other workers
▶ Problem of stale weights

6 / 14



Heterogeneous Training

▶ All DL frameworks use either CPU or GPU, not both
▶ GPUs are favored over CPUs due to tensor computation speed
▶ But why not use both together?

▶ On cloud environments, GPUs will be more cost-effective
▶ On HPC environments, CPUs just sit idle

▶ Can also be used with GPUs of varying compute capabilities
▶ Goal: Perform distributed & heterogeneous training
▶ Main challenges

▶ Reconcile training speed difference
▶ Gradient aggregation between workers

7 / 14



Batch Partitioning

▶ Total batch size must be kept the same
▶ Give smaller batch partition to a slower worker (usually CPU),

so that training speeds match between workers
▶ Need weighted gradient aggregation to prevent bias

▶ More weight to bigger partition

8 / 14



Heterogeneous All-reduce

▶ All-reduce among all CPU and GPU workers
▶ Synchronous SGD

▶ Strategy 1
1. Move GPU gradients to host memory
2. Add all gradients in host memory using OpenMP
3. MPI all-reduce
4. Move gradients back to GPU

▶ Strategy 2
1. Move CPU gradients to GPU
2. NCCL all-reduce
3. Move gradients back to CPU

9 / 14



Heterogeneous All-reduce

159 173 157 155 159 162 172 177 201 235 318 449
711

1262
2339

4519
8746

21809
43472

84809
168141

335974
672360

1339815

232 202 201 208 217 220 246 238
138 180 191 260

390
669

1180
2209

4150
8130

16169
32226

64466
128776

257649
515305

Data size (bytes)

Av
er

ag
e 

tim
e 

(u
s)

10

100

1000

10000

100000

100000
0

128
256

512
1024

2048
4096

8192
16384

32768
65536

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

67108864

134217728

268435456

536870912

107374182

Strategy 1 (MPI-based) Strategy 2 (NCCL-based)

2-node Performance

▶ PSC Bridges: 1 CPU worker (2 sockets), 2 GPU workers (2 GPUs)
▶ Default is strategy 2, much faster at larger data sizes

10 / 14



Applying Heterogeneous Training

▶ Framework is in place (using PyTorch)
▶ Which applications are suitable?

▶ Image classification
▶ Uses CNNs
▶ GPU has much better performance

▶ NLP
▶ Uses RNNs & LSTMs
▶ CPU has comparable performance

▶ Machine translation with Google’s Transformer model
▶ Link to Google’s blog

▶ Image captioning with a pre-trained CNN (ResNet-152) as
encoder and LSTM as decoder

▶ Link to PyTorch tutorial

11 / 14

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning


Problem: Variability in Batch Processing
▶ Implemented heterogeneous & distributed training,

works correctly
▶ But significantly slower than homogeneous training

(using only GPUs), why?
▶ A lot of idle time before all-reduce
▶ Although batch was partitioned to have matching training times

on CPU and GPU on average,
▶ Actual times differ significantly
▶ Average time: 1.9 s

12 / 14



Ongoing Work

▶ Find out what is causing the variability
▶ See if same issue occurs with other frameworks
▶ Currently trying out MXNet, only 10% variability with MNIST

▶ Apply asynchronous SGD training
▶ Performance evaluation

13 / 14



Thank You

14 / 14


