Distributed Deep Learning: Leveraging
Heterogeneity and Data-Parallelism

Jaemin Choi

University of lllinois Urbana-Champaign

May 1, 2019

114

A Quick Introduction to Deep Learning

XX
AN
e \rl) N AR A %

ASNSESNE 0N

Feed data into model (neural network)

v

v

Model has many (deep) layers of neurons

v

Model learns from existing data (i.e. training) and
outputs predictions for new data (i.e. inference)
Applications

> Image classification

» Natural language processing (NLP)

» Autonomous driving

Image source: https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext

v

2/14

Mini-batch Training

v

v

v

v

Feeding training samples one by one is the most accurate but
slow
Feed data in small batches to speed up tensor operations

» Too big batches usually hurt convergence

» Typical batch sizes: 128, 256
Going through the entire dataset once is called an epoch
Training process (repeat for all batches & epochs)

1. Load batch into memory

2. Forward pass

3. Compare model output with labels, compute loss function
4. Backward propagation

5. Update model based on the gradients

Why Distributed Deep Learning?

» Training with single device/node is too slow

> Model is too big to fit in memory

4014

Distributed Deep Learning

v

v

v

v

Perform training in distributed memory
Approaches: data-parallel vs. model-parallel
Data-parallel
» Most widely used approach
Partition the dataset/batch between workers
Each worker has a copy of model
Usually 1 worker per device
E.g. 4 GPUs & batch size 128 — batch size 32 per worker
For each partitioned batch, train individually
— aggregate gradients (e.g. all-reduce)

vV vy VY VvYy

Model-parallel: partition the model, not data

Synchronize or Not is the Question

» Synchronous SGD
» Workers synchronize after training every (partitioned) batch
» Usually using all-reduce
> Has straggler problem
» Asynchronous SGD
> Allow workers to proceed without waiting for gradient updates
from other workers
> Problem of stale weights

Heterogeneous Training

v

All DL frameworks use either CPU or GPU, not both

GPUs are favored over CPUs due to tensor computation speed

v

v

But why not use both together?

» On cloud environments, GPUs will be more cost-effective
» On HPC environments, CPUs just sit idle

v

Can also be used with GPUs of varying compute capabilities

v

Goal: Perform distributed & heterogeneous training

v

Main challenges

» Reconcile training speed difference
» Gradient aggregation between workers

/14

Batch Partitioning

Relative speeds: 1 3

96

Batch size: 128

> Total batch size must be kept the same

» Give smaller batch partition to a slower worker (usually CPU),
so that training speeds match between workers

» Need weighted gradient aggregation to prevent bias
» More weight to bigger partition

8/14

Heterogeneous All-reduce

> All-reduce among all CPU and GPU workers
» Synchronous SGD
> Strategy 1

1. Move GPU gradients to host memory

2. Add all gradients in host memory using OpenMP
3. MPI all-reduce

4. Move gradients back to GPU

> Strategy 2

1. Move CPU gradients to GPU
2. NCCL all-reduce
3. Move gradients back to CPU

Heterogeneous All-reduce

2-node Performance

@ Strategy 1 (MP-based) @ Strategy 2 (NCCL-based) 1330815
672360

moun% 335974
168141

515305
257649
128776

100000

10000

1000

Average time (us)

0 191 260

0
232202 201 208 217 220 246 2384

-

P Y P P @" & ,i\‘o (ﬂ,,;bb g (0‘) & Qb
&

H P o N ® o Vv &
SRS R LR g R SR
BT S N o P L O

& 0
2° A\Y N D
O O P A & fb/\«
QQ\"::’\"J o (@
D%‘o"’:’\b\%‘o
v NS @Wboogb\e

Data size (bytes)

» PSC Bridges: 1 CPU worker (2 sockets), 2 GPU workers (2 GPUs)

» Default is strategy 2, much faster at larger data sizes

10/14

Applying Heterogeneous Training

v

Framework is in place (using PyTorch)
Which applications are suitable?
> Image classification

» Uses CNNs
» GPU has much better performance

» NLP

» Uses RNNs & LSTMs
» CPU has comparable performance

v

v

Machine translation with Google’s Transformer model
» Link to Google's blog

v

Image captioning with a pre-trained CNN (ResNet-152) as
encoder and LSTM as decoder
» Link to PyTorch tutorial

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning

Problem: Variability in Batch Processing

» Implemented heterogeneous & distributed training,
works correctly

» But significantly slower than homogeneous training
(using only GPUs), why?
> A lot of idle time before all-reduce
» Although batch was partitioned to have matching training times
on CPU and GPU on average,
» Actual times differ significantly
» Average time: 1.9 s

CPU GPU1 | GPU 2
Batch 1 19s 25s 25s
Batch 2 23s 14s 14s
Batch 3 15s 1.8 s 1.8 s

* Total batch size: 128, CPU: 32, GPU: 96

Ongoing Work

» Find out what is causing the variability

» See if same issue occurs with other frameworks
» Currently trying out MXNet, only 10% variability with MNIST

» Apply asynchronous SGD training

» Performance evaluation

W

Thank You

