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Simulations of GRMHD coupled to Einstein’s equations are complicated, difficult, and
interesting
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Simulation Goals

• Accretion disks

• Binary neutron star
mergers

• Core-collapse supernova
explosions

Event Horizon Telescope Collaboration
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Need For High Accuracy

• Gravitational waveforms for
LIGO/Virgo and space-based
detectors

• LIGO/Virgo follow-up
waveforms

• Accretion for Event Horizon
Telescope

• Improved understanding of
heavy element generation

Abbott et al. 2017
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General Equations to Solve

• Hyperbolic equations in general form:

∂tU + ∂iF
i(U) + Bi · ∂iU = S(U)

• Elliptic equations of the form:

∂2U = S(U, ∂U)
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Vacuum Evolutions: Spectral Methods

• Smooth solutions

• Exponential convergence

• Non-overlapping grids

• General grids:

github.com/sxs-collaboration/spectre 8



Hydrodynamics: Finite Volume Methods

• Work on shocks

• Polynomial convergence

• Typically Cartesian grids

• Overlapping grids

u(x)

x
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Parallelism

Current codes:

• Message passing (MPI) + some threading

• Spectral Einstein Code (SpEC):
• Spectral methods: one element per core
• Finite volume: ∼ 100, 000 − 150, 000 cells per core

• Pseudospectral methods ∼ 50 cores

• Finite volume methods ∼ 20, 000 cores
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Discontinuous Galerkin Method

• Exponential convergence for smooth solutions

• Shock capturing

• Non-overlapping deformed grids

• hp-adaptivity

• Local time stepping

• Nearest-neighbor communication
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Boundary Data

• Boundary fluxes communicated between elements

• Nearest-neighbor only, good for parallelization

Ωk−1 Ωk

Fluxes
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Boundary Correction

• Consider element Ωk−1:

Gk−1 =
1

2

(
F i,+n+i + F i,−n−i
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The DG Algorithm Summary

1 Compute time derivatives

2 Send data for boundary data

3 Integrate in time

4 Send data for limiting

5 Apply limiter
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SpECTRE Design Goals

• Modular and extensible

• Correctness: unit tests, integration tests, physics tests, etc.

• Maintainability: GitHub, documentation, tools, etc.

• Scalability: task-based parallelism (Charm++)

• Efficiency: vectorization, hardware specific code (Blaze, LIBXSMM)

• General framework for hyperbolic (Cornell, Caltech, CalState Fullerton, UNH) and
elliptic (AEI) PDEs

github.com/sxs-collaboration/spectre 16
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Available Physical Systems

• Scalar wave

• Curved scalar wave (mostly)

• Newtonian Euler (in code review)

• Relativistic Euler (mostly)

• GRMHD

• Generalized harmonic (in code review)
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Numerical Schemes

Numerical fluxes:

• Rusanov (local Lax-Friedrichs)

• HLL

• Upwind

Planned numerical fluxes:

• HLLC

• Roe

• Marquina

Limiters:

• Minmod (MUSCL, ΛΠ1, ΛΠN )

• Krivodonova

• SimpleWENO (in code review)

• HWENO (in code review)

• Multipatch FV/FD subcell (in
progress)

Planned limiters:

• Moe-Rossmanith-Seal (MRS)

• Hierarchical Barth-Jespersen and
vertex-based
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Convergence for Smooth Problems: Alfvén Wave
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Single Black Hole Evolutions

• Generalized harmonic system • Excised cube in center

0 500 1000 1500 2000
Time/Mass

10 7

10 6

10 5

L2(Ha + a)
Error(gab)

Error( iab)
Error( ab)

github.com/sxs-collaboration/spectre 20



Komissarov Slow Shock

256 × 1 × 1 elements, 33 points per element
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Cylindrical Blast Wave

1282 × 1 elements, 23 points per element

Krivodonova SimpleWENO HWENO
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Cylindrical Blast Wave

1282 × 1 elements, 33 points per element

Krivodonova SimpleWENO HWENO
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Fishbone-Moncrief Disk

• Torus around a black hole

• Code comparison project

• χ = 0.9375, ρmax ≈ 77

• Orbital period Torb ≈ 247

• Hexahedron: [−40, 40] × [2, 40] × [−8, 8]
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Fishbone-Moncrief Disk

Rest mass density ρ at t = 600
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Fishbone-Moncrief Disk

Error in rest mass density ρ at t = 600
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Scaling Bondi Accretion GRMHD

• Run on BlueWaters supercomputer, NCSA, UIUC, IL, USA
• Green is perfect speedup for fixed problem size (strong scaling)
• Blue shows actual weak scaling (flat is ideal)
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Summary

• Improved vacuum and GRMHD simulations necessary for experiment

• Current methods difficult to scale to new machines

• Discontinuous Galerkin as alternative new method

• SpECTRE as general hyperbolic and elliptic PDE solver (not just DG)

• Successful scaling to largest machines available

• Limiting and primitive recovery an open problem
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